

ANALYSIS AND REDUCTION OF
 LINEAR PROGRAMMING MODELS

V. Messina, University of Milan, Italy
 &

 S. Moody, Brunel University, UK

 G. Mitra (supervisor), Brunel University, UK

 October 1992
Revised August 1993

TR/07/93

CONTENTS
1. Introduction
2. Presolve Algorithm & its Implementation

2.1 FIXCOL - fixing variables at their bounds
2.2 SNGCOL - 'replacing' singleton columns with bounds on shadow prices

 2.3 REDROW - detecting redundant rows
 2.4 REMBND - tightening variable bounds
 2.5 SNGROW - replacing singleton rows by simple bounds
3. Presolve Data Structure & Communication with FortLP
4. Results
5. Post Processing & and Scope for Future Work

5.1 The need for post processing
5.2 Other reduction procedures
5.3 Implementation considerations for the doubleton reduction procedure

6. Final Comments

7. References

8. Appendix A Presolve Pseudocode
Appendix B Results from EKKPRSL (OSL)

w9253470

1. Introduction

It is well known that 'preserving' a Mathematical Programming problem prior to optimization
can dramatically reduce the problem dimension and thus solution time; in some cases it is
also possible to detect infeasibility, unboundedness (often caused by formulation errors) or
even solve the model prior to applying the simplex method which can often be costly
[WILLIAMS, 1990,p35]. Reduction procedures are not only important for the acceleration
in solution using the simplex solution, but are also critical for efficient performance of
Interior Point Methods (IPM) [LEVKOV,1992].

A method for performing reduction on Mathematical Programming problems, as set out in
[BRMIWI, 1975], is to scan the matrix a number of times, eliminating redundant constraints,
deriving bounds on shadow prices for singleton columns, removing or tightening variable
bounds (and consequently fixing them where possible), replacing singleton rows with simple
bounds and detecting unboundedness or infeasibility. This is repeated until the matrix has
been passed twice with no reduction.

In the following section of this report, our implementation of this algorithm (with
modifications and additions) is explained with reference to the pseudocode for the main
program and subroutines provided in Appendix A. In section 3 the data structure we used
in implementing the Presolve algorithm is presented with some discussion concerning the
communication with FortLP. Section 4 contains results of various problems (including some
from netlib) showing the reduction achieved with Presolve. Section 5 discusses the need for
post processing in order to reconstruct the formally optimal basis starting from the optimal
solution of the reduced problem and proposes additional reduction procedures which could
be incorporated into Presolve. The final section contains some concluding remarks and
discusses the implications of using Presolve for integer programming (at each stage of branch
and bound).

1

2. Presolve Algorithm

The presolve program described here is based on the reduction algorithm by Brearley, Mitra
and Williams [BRMIWI,1975]. For simplification the following primal and dual problems
are considered throughout this report:

Primal Problem

Max ∑
=

n

j
jj xc

1

 (2.1)

subject to i=1,2,…,m ∑
=

≤
n

j
ijij bxa

1

jjj uxl ≤≤ j=1,2,…,n

Dual Problem

Min ∑ ∑∑
= ==

−+
n

j

n

j
iiii

m

i
ii wlyuvb

1 11

Subject to ∑ j=1,2,..n (2.2)
=

=−+
m

i
jjjiij cwyva

1

 i=1,2,…,m 0,, ≥jji wyv
 j=1,2,…,n

Although it may seem restrictive to only consider constraints of type "less than or equal to"
the subsequent rules are easily adapted for "equality" or "greater than or equal to" constraints
[BRMIWI,1975]. Similarly, a minimisation problem may be dealt with by negating the
objective row coefficients and maximizing. The variable bounds, l and u , may be finite or j j

infinite, ie. the variables x may be considered as free. j

The program consists of five subroutines which perform various types of reduction: namely,
variables are fixed at their upper or lower bounds; unboundedness or infeasibility is detected,
redundant rows are set free; variable bounds are tightened. The algorithm is recursive with
reduction in one pass leading to further reduction in the next (see main program in Appendix
A). Figure 1 shows the type of reduction performed by each subroutine.

2

 Figure 1 Presolve Subroutines

2.1 FIXCOL - fixing variables at their bounds

The subroutine FIXCOL by analysing the upper and lower costs Pj and Qj (defined below)
together with the primal cost coefficients, fixes the variables (where appropriate) at their
bounds.

Thus for a particular primal variable k, the lower and upper costs, P and Q are given by k k

∑
=

≤≤
m

i
kiikk QvaP

1
 (2.3)

where P and Q are computed from the lower and upper bounds on the dual variables, P and k k j
q , as follows: j

∑∑
∑∑

∈∈

∈∈

+=

+=

kTi
iik

kSi
iikk

kTi
iik

kSi
iikk

papaQ

qapaP

iii

ikk

ikk

qvp
aiT
aiSwhere

≤≤
>=
>=

}0:{
}0:{

 (2.4)

The upper and lower bounds on the dual variables are initially determined by the primal
constraint types. See figure 2.

3

Variables Constraints Constraints Primal (max) Variables

0≥ free = ≤
Dual (min) Constraints Constraints Variables Variables

= free 0≥ ≥

Primal (min) Variables Variables Constraints Constraints
0≥ free = ≥

Dual (max) Constraints Constraints Variables Variables
= free 0≥ ≤

Figure 2 Relationship between primal/dual variables and constraints

If the lower cost Pk is less than the primal cost coefficient (dual right hand side value) ck then

.
1

kki

m

i
ik CPva >≥∑

= =

=−+
m

i
kkkiik cwyva

1
 This together with the dual constraint ∑

implies that yk must be zero and wk must be positive in the optimum solution.
 By the rules of complementary slackness we have

0)(
0)(

=−
=−

kkk

kkk

lxw
uxy

 (2.5)

As w is positive, the corresponding primal constraint must be binding, ie. x = l therefore the k k k
the variable may be fixed to its lower bound.

 then This implies that y∑
=

<≤
m

i
kkiik cQva

1
.If the upper cost Q is less than c must be k k k

positive and w is zero in the optimal solution. Again from equations (2.5) the variable may be k
fixed at its upper bound, ie. x = uk k

Figure 1 in Appendix A contains the pseudocode for this subroutine.
If a variable is to be fixed at a bound that is infinite then this implies unboundedness which is
detected by the program and so the program halts. This is not detailed in Figure 2 of the
Appendix A.

4

2.2 SNGCOL - 'replacing' singleton columns with bounds on shadow prices

The subroutine SNGCOL detects singleton columns. A singleton column in the primal problem
is a column of the A matrix with just one non-zero coefficient. Assume that a is the non-zero ik
coefficient of a singleton column k and that xt has lower and upper bounds lk and uk where l u≠k k
(l =u is not considered as in this case x would be fixed). The subroutine aims to fix the k k k
variable x (if possible) at one of its bounds. Suppose that x <u and if a contradiction occurs k k k

then xk must be equal to its upper bound. Then in the dual problem, yk=0 and from (2.5). 0w k ≥
 + wThus the dual constraint is a v = c . k k k k

lk

k
l a

c
v ≥If a < 0 then (since w >0). This gives a lower bound on v , and if this is greater lk k 1

than the existing lower bound p then the lower bound is tightened. If, however, this is greater 1

than there is a contradiction and so x is fixed to its upper bound. 1q k (since w
lk

k
l a

c
v ≤If a < 0 then > 0). This gives an upper bound on v and if this is less than lk k 1

the existing upper bound 1q then the upper bound is tightened. If, however, this is less than 1p
there is a contradiction and so x is fixed to its upper bound. k

An alternative algorithm would be to attempt (where possible) to fix x at its lower bound. In k

this case the opposite assumption, namely lk<x is made (ie. w0,yk ≥ =0) and a similar k k

argument follows as above. If a >0 then may be tightened or x may be fixed to its lower 1qlk k

bound and if a < 0 then pi may be tightened or xlk k may be fixed to- its lower bound. To use both
algorithms as suggested by [BRMIWI,1975] would involve storing two sets of and since if 1p 1q

 was tightened by the first algorithm this new p could not be used in the second algorithm. 1p 1

This seemed unduly complicated in practice so our implementation handles the first (upper
bound) algorithm.

Singleton columns are detected but are not removed. This is because there may be another
singleton column with a non-zero entry in row 1. The algorithm may tighten or again for 1p 1p
another column j ≠ k. Then on the next pass these new bounds may be used to fix the variable
at its upper bound.

 on each pass. An alternative method may be to
lk

k

a
c

Our current implementation calculates

store these values together with the indices l and k to avoid duplicating these calculations. In
addition if for a singleton column with its non-zero entry in row 1 > then all singleton 1p 1p
columns with non-zero coefficients in row 1 may also be fixed. We have chosen not to implement
this because this assumes that the A matrix and the objective coefficients remain unchanged. As
discussed later further procedures, such as the identification and reduction of doubleton rows,
may be added to our code which do alter these values. Therefore we chose a more flexible
approach in our implementation.

Figure 2 in Appendix A specifies the pseudocode for this second subroutine, SNGCOL.

5

2.3 REDROW - detecting redundant rows

This subroutine detects redundant rows in the primal problem by analysing the lower and upper

, on constraint bounds and sets these redundant rows free. Lower and upper bounds, L and Ui i
ththe i constraint are calculated by taking into account the variable bounds as follows.

∑∑

∑∑

∈∈

∈∈

+=

+=

ii

ii

Nj
jij

Pj
jiji

Nj
jij

Pj
jiji

lauaU

ualaL

where P }0:{},0:{ <=> ijiij ajNaj i

If the constraint is redundant and so is set free. This also implies that the corresponding ii bU ≤

 then the dual variable vi can be fixed to its lower bound, i.e. qi is set equal to Pi. If Li>bi constraint i can not be satisfied and the problem is declared infeasible. Furthermore, if L =bi i

, j∈Nthen row i is redundant and all x , are fixed at xiPj∈j j = l and all x are fixed at x =u . j j j j j

The pseudocode for this subroutine is provided in Appendix A (figure 3), As mentioned
previously, this only details the pseudocode for the case where the primal constraints are as
shown in (2.1). Other cases are considered in [BRMIWI,1975].

2.4 REMBND - tightening variable bounds

The subroutine REMBND removes or tightens the primal variable bounds. This subroutine is not
performed in the first pass as it is necessary to compute variable bounds by considering the
bounds on the constraints which are not determined until the subroutine REDROW is executed.

th New variable bounds are constructed by examining each constraint. Let us consider the i
constraint, then for the kth variable we have

∑
≠

−≤
kj

jiji
ik

k xab
a

x }{1
∑ −= ,kikijij laLxa assuming that aik > 0 and since

kii
ik

k lLb
a

x +−≤ }{1i t fo l lows tha t

kii
ik

k uLb
a

x +−≥ }{1,x kSimilarly, if a < 0 a new lower bound for is obtained. ik

If these new bounds are tighter than the existing ones the variable bounds are updated. If a new
lower bound is computed which is greater than the upper bound (or a new upper bound is found
which is less than the lower bound) infeasibility is detected and the program stops. Furthermore,
if a new lower/upper bound is calculated to be equal to the upper/lower bound the variable is
fixed at this bound.

6

It may be argued that a redundant variable bound should be simply removed rather than tightened
as this may result in acceleration in the simplex algorithm as there will be less bounded
variables. However, it is preferable to obtain a tighter formulation of the problem especially for
discrete programming problems discussed later and for this reason variables are not set free. In
addition this avoids the spurious unbounded condition which may occur from freeing variables,
as discussed by Tomlin and Welch [TOMWEL, 1983a].

The pseudocode for subroutine REMBND is provided in the Appendix A (figure 4).

2.5 SNGROW - replacing singleton rows by simple bounds

The final subroutine, SNGROW is the dual case of SNGCOL. Here singleton rows are replaced
by simple bounds.

A singleton row i such as implies new bounds for the variable xikik bxa ≤ . k

That is,

0

0

<≥

>≤

ik
ik

i
k

ik
ik

i
k

aif
a
bx

oraif
a
bx

Thus, if these bounds are tighter than the existing variable bounds, u and 1 then the variable k k
bounds are updated and the singleton row is set free. If the new bounds conflict with the old
ones, infeasibility is detected and the program terminates.

The pseudocode for this subroutine is provided in the Appendix A (figure 5).

7

3. Presolve Data Structure & Communication with FortLP

The Presolve algorithm is included, as an option, in FortLP's optimization framework. FortLP's
data structure consists of packed columns but, since many of the Presolve subroutines involve
row-wise operations, a new data structure is used which enables both column and row scanning.
Thus, the Presolve data structure comprises linked lists for both rows and columns. Each list has
a header which refers to the first non-zero elements of each row or column, so the i-th element
of the column\row header refers to the first element of the i-th column\row. Other arrays contain
the right hand side (rhs) values, column and row types, primal and dual variable bounds.

The A matrix is stored column-wise and row-wise. The first array stores the non-zero values (in
column order); the second array holds the column indices for these non-zero values; the third
array is a column linked list with an additional column header containing the locations of the first
elements in the columns; the fourth array holds the row indices for these non-zero values and
the fifth array is a row linked list with an additional row header locating the first non-zero
entries in the rows.

The example below illustrates the data structure used to store the given A matrix.

Example Presolve Data Structure

9)nz(zerossnonofnumber
3)n(columnsofnumber

4)m(rowofnumber

300

210

245

111

=−
=

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

8

From the column header, the first non-zero entry in column 1 is located in position 1 of the
column link array. In fact all information relating to this entry is found in position 1 of all the
arrays. Thus its value is in position 1 of the non-zero array. The column and row entry arrays
indicates that this non-zero entry is in column 1 and row 1. The column link array has a 2 in
position 1 indicating that the next non-zero entry in this column is located in position 2. Hence
position 2 of all the arrays provides information about this entry. If a column (or row) link array
has a zero entry then there are no more entries in the column (or row), so the zero in position
2 of the column link array marks the end of column 1.

The row linked list together with its row header stores the A matrix in a similar way but row-
wise, so, for example, from the row header the first entry in row 3 is located in position 5. This
has value 1 (from position 5 of the non-zero array), is in column 2 (from the column entry array)
and the next element in this row is stored in position 8 (from the row link list).

The Preserve program contains subroutines (Inipre and Outpre) that provide communication
with the FortLP optimizer. The first of these initializes the Presolve data structure and copies the
upper bound values of the variables, the rhs values, the A matrix coefficients (including the
objective row), the row and column types from FortLP.

As Presolve occurs after set-up, the lower bounds on the variables are zero. Upon completion
of the Presolve subroutine, the updated information is communicated back to FortLP so in order
to maintain the set-up conditions the variable bounds must be translated so as to restore the lower
bounds to zero. Thus, the upper bound value for each variable communicated back to FortLP
is Presolve's upper bound value minus the lower bound value. In addition, the FortLP array
(RLOFXV), storing the original lower bounds before set-up, is^updated with the new lower
bound from Presolve.

9

4. Results

Table 1 below provides the results from applying Presolve to various problems including some
netlib problems. It provides the number of redundancies detected, variable fixed and variable
bounds tightened together with the problem statistics.

It is anticipated that further improvement may be obtained by the addition of other reduction
procedures, in particular the elimination of doubleton rows (see section 5).

Further results are needed which report the time and number of iterations required to solve these
models with and without Presolve. However, as the communication with FortLP was not
complete at the time of writing and as FortLP has now been replaced by FortMP, these results
were not complete. Once Presolve is incorporated into the new FortMP, these tests will be
performed.
 TABLE 1
Problem Rows Columns No. of No. of No. of No. of Rows Columns
Name non- Redundant Fixed bounds (reduc (reduced
 zeros Rows columns tightened ed model
 model)
afiro 28 32 88 4 0 32 24 32
25fv47 821 1571 11127 43 27 1254 778 1544
ganges 1310 1681 7021 185 184 1032 1225 1497
8800 261 87 1000 99 9 60 162 72
gray2 35 48 144 0 0 24 35 48
gray9 63 96 288 0 0 48 63 96
bsc 439 209 1604 160 0 95 279 209
egout 99 144 392 24 24 55 75 117
modglob 292 422 1390 2 33 289 290 389
brandy 221 249 2150 70 44 101 221 151

Tightening bounds on variables may result in setting bounds on variables which were originally
free. This may cause the simplex algorithm to take longer, so further investigation is required
and it may be preferable not to communicate these tightened bounds back to FortLP. For
example, our preliminary tests (not reported here) showed that for a problem such as gray2,
where the only reduction performed was the tightening of bounds, the simplex algorithm took
longer with the reduced model. In addition, the tightening of a bound may suggest that the
variable can be freed. For example, if a variable originally has the conventional bounds [0,∞)
and at the end of the reduction procedure has the new bounds [5, ∞) say, then the variable will
always be greater than the original lower bound so it may be set free.

10

5. Post Processing and Scope for Future Work

5.1 The need for post processing

It is well known that applying the simplex algorithm to a reduced problem may result in a
solution that is not formally optimal [TOMWEL, 1983b]. That is, the objective function has the
correct optimal value, but the basis is incorrect. This occurs when the problem has a degenerate
optimum solution, ie. there is a redundant constraint which is binding at the optimum solution,
so the optimum basis is not unique. Thus solving the reduced model may result in a solution with
an alternate basis to that obtained by solving the original problem and so there may be different
dual values present. If dual optimality is required (for example for post optimal analysis) then
the dual simplex algorithm may be applied to obtain the 'formally' optimal solution. The solution
to the dual problem in this case will have alternate basic solutions so cycling will occur which
is computationally costly. Another cause for this lack of 'formally' optimum solution may occur
when a bounded variable is non-basic in the optimum solution of the original problem and the
bounds of this variable are tightened by the reduction procedure. Then in the reduced problem
this variable will be non-basic but at a new upper or lower bound. This means that the solution
to the reduced problem is optimum but not basic. To overcome this it is necessary to take the
optimal basis of the reduced problem, restore the bounds on the variables and perform invert.
The variables which are at their new tightened bounds will give primal infeasibility with the
original problem and so it is will be necessary to continue using dual simplex to obtain the
formally optimal solution. This too may be very computationally costly.

Tomlin and Welch propose an alternative method for obtaining a, formally optimal solution by
reconstructing the original constraints and variables (Ibid.). Currently, our code does not include
a postsolve procedure. Clearly there is a need for such an addition but this requires further
study.

5.2 Other reduction procedures

Alternative procedures exist for reducing LP problems. For an extensive review and discussion
of such procedures see (KALITEZI,1983). In addition Williams [WILLIAMS, 1982] proposes
a revised procedure for implementing the algorithm provided by [BRMIWI, 1975] which consists
of two phases. In the first phase bounds on variables are tightened and bounds on shadow prices
are relaxed while in the second phase bounds on variables are removed (where possible) and
bounds on shadow prices tightened. The procedure involves the scanning of columns which may
result in the tightening of variable bounds, the fixing of variables and the detection of singleton
columns and at the end of each pass rows are scanned which may detect redundancies,
infeasibility or singleton rows. Unlike our algorithm, when a singleton column is detected it is
replaced by shadow price bounds. This subroutine does not fix variables as in our algorithm. A
further subroutine is included in Williams' procedure which is the dual of REMBND. This may
tighten or remove bounds on the dual variables. This procedure involves the freeing of variables
in phase two which may lead to a spurious unbounded condition as mentioned earlier and as
discussed by [TOMWEL, 1983a].

11

More recently there have been other developments. For example, the elimination of duplicate
rows [TOMWEL,1986]; the nullification of balancing constraints [ANDBAR,1992]; elimination
of doubleton rows and rows with all but one element of the same sign [IBM, 1992].

The detection of duplicate rows [TOMWEL,1986] involves identifying constraints which are
identical except for a scalar multiple. This is carried out by making a single pass of the matrix,
scanning the non-fixed columns. Rows are partitioned into potential duplicates by assigning a
scalar factor to each row and dividing all elements in the row by this factor. At the end of the
pass, the duplicate rows in the A matrix are found, redundancies eliminated and infeasibility
detected. This algorithm is not costly computationally as it only involves one pass of the matrix,
but the amount of reduction achieved by this procedure is more limited than those detailed in our
Presolve algorithm. It could be argued that the existence of duplicate rows in a model are a
result of bad formulation. However, detecting such redundancy prior to optimization provides
some defence. The same is true for the detection of infeasibility or unboundedness.

The nullification of balancing constraints algorithm [ANDBAR, 1992] implemented by Andre and
Barbulescu is concerned with performing linear transformation on the coefficient matrix to
globally eliminate continuity constraints. Such a process may also increase the density of the
matrix, yet dramatically reduce the number of iterations in the simplex algorithm (op. cit. p22).
Andre and Barbulescu propose a method for avoiding an increase in the CPU time by using a
stop criterion defined by Knolmayer [KNOLMA, 1982]. Such a measure can determine whether
the total CPU time will be increased if the presolution is continued and if an increase is predicted
the presolution process may be halted and the optimization commenced.

The elimination of doubleton rows involves identifying equality constraints with exactly two non-
zero coefficients, substituting for one of these non-zero elements and setting the row free. For

k
ij

ik

ij

i x
a
a

a
b −example, if is a doubleton row then xikikjij bxaxa =+ is substituted with j

In performing this substitution the coefficients in the A matrix must be altered. This involves
scanning the coefficient matrix row by row and locating constraints with the substitution element.
When such a row is found the other doubleton coefficient must be obtained and updated. This
may result in increasing the number of non-zeroes in a row. Nevertheless, results from OSL's
preprocessing routine EKKPRSL (see Appendix B) indicate that this type of reduction is most
beneficial. However, as such a procedure may increase the density of the matrix and requires
a simultaneous row scan and double column scan it has greater complexity. Therefore the CPU
time of the Presolve algorithm is increased, but in addition the CPU time of the optimizer is
decreased.

The elimination of equality rows with all but one element of the same sign, for example

bxaxaxa nn =−−− ...
2211

is a similar to the doubleton row elimination algorithm though involving multiple column and
row scans. In this case the complexity in implementing this procedure is greater than that of the
doubleton row. These two algorithms require more computational effort that the Presolve
algorithm implemented in FortLP (described earlier), but produce greater levels of reduction.

 12

5.3 Implementation considerations for the doubleton reduction procedure

The doubleton row reduction procedure consists of the following steps:

(i) identify a doubleton row and flag it
(ii) substitute for the first variable
(iii) store doubleton column links

The first step is easy to implement with our existing data structure and subroutines GETFRW
(get the first non-zero element in the row) and GETNRW (get the next element in the row): for
each row simply perform GETFRW followed by GETNRW to obtain the second non-zero
element in the row. If this is the last element then it is a doubleton row and so flag it. It is
preferable to define a new row type to identify doubleton rows rather than just freeing them as
this makes it easier to restore the eliminated variables after optimization.

The second step involves a simultaneous column scan for the two variables in the doubleton row.
For example, assume there is a doubleton row in row i with non-zero entries in columns j and
k. Then for each non-zero element in column j (ie. i1alj ≠) the 1th element in column k must be

.
ij

ik
ljik a

a
aa −updated. If the corresponding element a is non-zero then it is replaced by ik

ij

ik
lj a

a
a−If however, it is zero then a new entry must be added to the data structure.

In addition the right hand side value b, must be similarly replaced by .
ij

i
ljl a

bab −

These substitutions are also performed in the objective row. Adding a new entry to the A matrix
is easily carried out in our data structure by adding the new entry at the end of the arrays and
updating the linked lists. This however must be communicated back to FortLP. The addition of
new non-zero elements to the right hand side vector may be necessary as a result of existing
procedures in our algorithm. This is communicated back to FortLP by allowing extra storage in
the necessary arrays. A greater allowance will be needed to account for the additions created by
this substitutions.

The third step is required so that the eliminated variables may be reinstated after optimization
by re-substitution. For each doubleton row, the column entries, j and k are stored so that a
record is kept of which variable has been substituted. Then after optimization it is easy to scan
this information and obtain values for the missing variables by back substitution. Obviously, this
information must also be communicated and stored within FortLP's data structure.

13

6. Final Comments

Our implementation of the presolve algorithm detailed in [BRMIWI, 1975] performs considerable
reduction on the test problems. It is anticipated that dramatic speed up of solution will be
achieved once this is fully incorporated into the new optimizing system FortMP (which replaces
FortLP). The elimination of doubleton rows may later be implemented to achieve further
reduction and subsequent acceleration in solution. The merit of all reduction procedures depend
on the balance between the reduction obtained and the time or cost expended in achieving this
reduction. Providing that the combined CPU time of the presolver, the solver (with the reduced
model) and the postsolver (if used) does not exceed the CPU time of the solver (with the original
problem), the reduction algorithm is worthwhile.

The new FortMP handles ranges on constraints. These may be dealt with by adding bounds on
slack (or surplus) variables corresponding to the appropriate row. These can be simply read in
together with the model and no further changes will be required to the Presolve algorithm.

A Postsolve procedure is necessary for obtaining 'formally' optimal solutions. This is particularly
important when meaningful dual values are required, for example for post-optimal analysis. The
techniques used in basis recovery in IPM may be used in implementing such a procedure.

The presolve procedure may be extended to be used in Discrete Programming, in particular at
each stage of the Branch and Bound (B & B) algorithm since at each node of the B & B tree an
LP problem must be solved. However, in order to deal with integer variables some modifications
are needed. In the subroutines where new bounds are computed, these bounds must be rounded
to the appropriate integer value (ie. the new lower bound lk is rounded to (lk+ 1-∈) and the upper
bound uk is rounded to (uk+∈) where e is a small number). Also the replacement of a singleton
column by a shadow price bound is not valid for integer variables unless the non-zero coefficient
in the singleton column is in a row where all non-zero entries correspond to integer variables and
the coefficient is a divisor of all these non-zero entries as well as the right hand side value
[WILLIAMS, 1982]. The tightening of bounds of variables is more important for integer
problems and so unlike our suggestion in section 4 all new bounds should be communicated to
the optimizer and variables should not be freed.

14

REFERENCES

[ANDBAR,1992] Andrei, N. & M. Barbulescu (1992)

Balance Constraints Reduction of Large-Scale Linear Programming Problems, Research
Institute for Informatics, Analysis & Mathematical Modeling of Systems, Bucharest,
Romania

[BRMIWI,1975] Brearley, A.L., G. Mitra & H.P. Williams (1975)
Analysis of Mathematical Programming Problems Prior to Applying the Simplex
Algorithm, Mathematical Programming 8 (1975) pp54-83, North-Holland

[IBM, 1992] Optimization Subroutine Library (1992), Guide and Reference IBM Corporation

[KALITEZI,1983] Karwan, M.H., V. Lotfi, J. Telgen & S. Zionts (eds)

Redundancy in Mathematical Programming, Lecture Notes in Economics and
Mathematical Systems, Springer-Verlag

[KNOLMA, 1982] Knolmayer, G.F. (1982),
Computational experiments in the formulation of linear product-mix and non-convex
production-investment models, Computing & Operations Research, Vol. 9 No. 3 pp207-
219

[LEVKOV,1992] Levkovitz, R. (1992),
An Investigation of Interior Point Methods for Large Scale Linear Programs: Theory and
Computational Algorithms
PhD Thesis, 1992, Department of Mathematics & Statistics, Brunei University

[TOMWEL,1983a] Tomlin, J. & J.S.Welch (1983),
A Pathological Case in the Reduction of Linear Programs, Operations Research Letters,
Vol.2, No.2, pp53-57

[TOMWEL,1983b] Tomlin, J. & J.S.Welch (1983),
Formal Optimization of Some Reduced Linear Programming Problems, Mathematical
Programming 27 (1983) pp232-240, North Holland

[TOMWEL, 1986] Tomlin, J. & J.S.Welch (1986),

Finding Duplicate Rows in a Linear Programming Model, Operations Research Letters
Vol.5, No.l, pp7-ll

[WILLIAMS, 1982] Williams, H.P. (1982),

A Reduction Procedure for Linear and Integer Programming Models in "A comparative
Study of Methods for Identifying Redundant Constraints in Linear Programming", edited
by J. Telgen & s. Zionts, Springer-Verlag

[WILLIAMS, 1990] Williams, H.P. (1990),
Model Building in Mathematical Programming, Third Edition, John Wiley

15

APPENDIX A

begin
 if j is a singleton column then

 if alj > 0 then

lj

j

a
c

 {Calculate new lower bound newp =

 for shadow price}
if newp > p1 then
 p1 = newp {Tighten bound}
 endif
 if newp > q1 then
 xj = uj {Fix variable to its upper bound }
 update rhs values
 reduct = 1
 endif

 else

lj

j

a
c

 {Calculate new upper bound newq =

 for shadow price }
 if newq < q1 then
 q1 = newq {Tighten bound}
 endif
 ifnewq , p1 then
 Xj = lj {Fix variable to its lower bound}
 update rhs values
 reduct = 1
 endif
endif

 endif

 Figure 2 Subroutine SNGCOL

16

 Figure 1 Subroutine FIXCOL

Begin

 For j=l to n do

 If Xj is not fixed then

 Initialize bounds Pj = Qj = 0
 While there is a non-zero element in column j do ija

Get ija

If row i is a non-redundant constraint then
If >0 then ija
 P {calculate Pj and Qj}

iijjj

iijjj

qaQQ

paP

+=

+=

else if <0 then ija

iijjj

iijjj

paQQ

qaPP

+=

+=

endif

 end if

 enddo
 If P > then {xj is fixed at its lower bound} jj c

 Fix xj = lj

 reduct = 1

 else if Qj< Cj then {Xj is fixed at its upper bound} Fix xj = uj

reduct = 1

 endif

 endif

enddo

 end

 Figure 1 Subroutine FIXCOL

begin

 1..mi=∀ Initialize L(i)=U(i)=0
 for i=l to m do

If row i is a non-redundant constraint then
 while there is a non-zero element aij in row i do

 If column j is not fixed then
 if aij > 0 then

 Li = Li + a lj ij
 Ui = U + aij uj s

 else if aij < 0
 Li = i + aij uj L
 Ui = Ui + aij lj

endif
 endif

 endo
 If Ui bj then ≤

 free constraint i {constraint i is redundant}
 q j = pi {Fix dual variable to lower bound}

 reduct = 1
 else if Li > bi then

 Problem is infeasible EXIT →
else if Li = bj then

 for j=l to n do
 if xj is not fixed then
 if aij > 0 then

 xj = lj
else

 xj =u j
 end if

 update rhs values
 reduct = 1

 end if
 enddo

endif
 enddo

 end

 Figure 3 Subroutine REDROW

18

begin
 for j 1 o n do = t
 for i = l to m do

if aij > 0 then

 Figure 4 Subroutine REMBND

19

)L(b
a
llnewu jj
ij

j −+=

else if aij < 0 then

 newl = lj +)U(b
a
l

ii
ij

−

endif
 endo
 if (newl > uk) or (newu < lk) then

The problem is infeasible → exit
 endif
 if newl > lk then

 lk = newl
 endif

 if newu < uk then
 uk = newu

 endif
 if uk = lk then

 xk = uk
 update rhs values
 reduct = 1
endif

 endo
 end

begin
 if i is a singleton row then
 if aik > 0 then

 newu =
ika

b i

 if newu < lk en th
 The problem is infeasible EXIT

Figure 5 Subroutine SNGROW

20

→
endif
if newu < uk then
 uk = newu
endif

 else if aik < 0 then

ik

i

a
b newl =

 if newl > uk then
 The problem is infeasible EXIT →
endif
if newl > lk then
 lk = newl
endif

 endif
endif

 end

 Figure 6 Presolve Main program

 21

Initialize
while pass<2 do
 call fixcol
 ca sngcol ll
 If tpass ≠ 1 then

call rembnd
 endif
 call redrew
 call sngrow
 If reduct = 0 then

pass = pass +1
 else

pass = 0
 end if
 tpass = tpass +1

 enddo

 Results from EKKPRSL (OSL’s reduction subroutine)

A
PPEN

D
IX

 B

 Level 1 reduction includes the elimination of doubleton rows
 Level 2 reduction includes the elimination of rows will all but one element of the same sign (but not doubleton row elimination)
 Level 3 reduction includes everything.

	Constraints

