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Abstract

Many-objective optimization is core to both artificial intelligence and data analytics

as real-world problems commonly involve multiple objectives which are required to be

optimized simultaneously. A large number of evolutionary algorithms have been devel-

oped to search for a set of Pareto optimal solutions for many-objective optimization

problems. It is very rare that a many-objective evolutionary algorithm performs well in

terms of both effectiveness and efficiency, two key evaluation criteria. Some algorithms

may struggle to guide the solutions towards the Pareto front, e.g., Pareto-based algo-

rithms, while other algorithms may have difficulty in diversifying the solutions evenly

over the front on certain problems, e.g., decomposition-based algorithms. Furthermore,

some effective algorithms may become very computationally expensive as the number

of objectives increases, e.g., indicator-based algorithms.

The aim of this thesis is to investigate how to make evolutionary algorithms per-

form well in terms of effectiveness and efficiency in many-objective optimization. Af-

ter conducting a review of key concepts and the state of the art in the evolutionary

many-objective optimization, this thesis shows how to improve the effectiveness of

conventional Pareto-based algorithms on a challenging real-world problem in software

engineering. This thesis then explores how to further enhance the effectiveness of lead-

ing many-objective evolutionary algorithms in general by extending the capability of a

very popular and widely cited bi-goal evolution method. Last but not least, this thesis

investigates how to strike a balance between effectiveness and efficiency of evolutionary

algorithms when solving many-objective optimization problems.

The work reported is based on either real-world or recognized synthetic datasets,

and the proposed algorithms are compared and evaluated against leading algorithms in

the field. The work does not only demonstrate ways of improving the effectiveness and

efficiency of many-objective optimization algorithms but also led to promising areas for

future research.
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Chapter 1

Introduction

Many-objective optimization problems (MaOPs) refer to the optimization scenarios

having more than three objectives to be considered simultaneously. MaOPs abound in

real-world applications, such as industrial scheduling [44], water distribution systems

[48], software engineering [64, 148, 116], and automotive engine calibration problems

[107]. For example, when assessing the performance of a machine learning algorithm,

one may need to take into account not only accuracy but also some other criteria such

as efficiency, misclassification cost, interpretability, and security.

In an MaOP, since the performance increase in one objective may lead to a decrease

in some other objectives, there is often no single best solution that can optimize all the

objectives. Thus the problem becomes one of attempting to find a set of trade-off solu-

tions or non-dominated solutions, which is known as the Pareto set. The corresponding

mapping of a Pareto set in objective space is called the Pareto front.

Evolutionary algorithms (EAs) are metaheuristic optimization algorithms inspired

by natural selection. They have been successfully applied to tackle bi- and tri-objective

problems due to the following characteristics: 1) low requirements on the problem

properties, 2) population-based property allows them to simultaneously search for a

group of solutions (or individuals) in a single run. These algorithms are referred to as

multi-objective evolutionary algorithms (MOEAs). The major purpose of MOEAs is to

provide a population (a set of optimal individuals or solutions) that balance convergence

or proximity (converging a population to the Pareto front) and diversity (diversifying

16



a population over the whole Pareto front).

During the last decade, there is an increasing interest in the use of evolutionary

algorithms to many-objective optimization problems, resulting in a variety of many-

objective evolutionary algorithms. These algorithms may be classified into five cate-

gories, i.e., the algorithms modifying the Pareto dominance relation [84, 61], the algo-

rithms modifying density estimation in the conventional Pareto-based algorithms [95],

the decomposition-based algorithms [34], the indicator-based algorithms [5], and the

aggregation-based algorithms [96]. They have been successfully applied to many appli-

cations; however, some challenges remain to be addressed.

It has been found that some many-objective evolutionary algorithms may have dif-

ficulty in converging their solutions to the Pareto front when solving many-objective

optimization problems. For example, the indicator-based [162, 9] and decomposition-

based [156, 34] algorithms may fail to provide sufficient selection pressure towards the

Pareto front even in the 4-D objective space, according to the study in [93]. Further-

more, some recent aggregation-based approaches, such as bi-goal evolution (BiGE) [96],

suffer from insufficient selection pressure on a class of MaOPs where the search process

involves dominance resistant solutions [150].

Another important issue is the diversity maintenance of the population in many-

objective optimization. Some indicator-based algorithms may bias the search towards

a certain region of the Pareto front, such as SMS-EMOA [9] and IBEA [162], which

generally prefer the knee points [97] and the boundary points [94] on the Pareto front,

respectively. In addition, the improvement in convergence might weaken the pop-

ulation’s diversity to some extent. For example, the decomposition-based algorithms

exhibit good convergence, but they commonly fail to preserve a set of evenly distributed

solutions on many-objective optimization problems with irregular Pareto fronts [71].

For another example, the algorithms modifying Pareto dominance [84, 61] could fa-

cilitate the convergence of the population in many-objective optimization, but the

obtained set of solutions tend to concentrate on one or several small regions of the

Pareto front [28, 106]. Furthermore, some state-of-the-art evolutionary algorithms for

many-objective optimization problems may fail to diversify their solutions in certain
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regions of the Pareto front. For example, SPEA2+SDE [95] has difficulty in covering

boundary solutions of the Pareto front when tackling certain problems [86].

Furthermore, some algorithms may not be very efficient when solving many-objective

optimization problems with numerous objectives (e.g., ten or more objectives). For ex-

ample, SPEA2+SDE, which has been demonstrated to be effective for tackling many-

objective optimization problems [93, 91], becomes very computationally expensive as

the number of objectives increases since its computational complexity is O(MN3) (N

is the size of the population). Moreover, the evolutionary algorithms using the hy-

pervolume indicator [165] (e.g., SMS-EMOA [9] and MO-CMA-ES [67]) suffer from an

exponential increase in computational time with the increase of the number of objec-

tives.

1.1 Aim and Objectives

Motivated by the above discussions, this thesis aims to explore how to make evolu-

tionary algorithms effective and efficient in dealing with many-objective optimization

problems. In the context of evolutionary multi-/many-objective optimization, effective-

ness refers to the performance of an algorithm in obtaining a solution set that are both

close to the Pareto front and uniformly distributed over the front. Efficiency refers to

the amount of computational time required for the execution of an algorithm.

There are three objectives to fulfill this aim:

Objective 1: To explore how to improve the effectiveness of conventional Pareto-

based algorithms for many-objective optimization problems.

Objective 2: To investigate how to further enhance the effectiveness of state-of-the-

art evolutionary algorithms for many-objective optimization problems.

Objective 3: To study how to design an evolutionary algorithm that can achieve

both effectiveness and efficiency for many-objective optimization problems.

First, this thesis addresses the issue of effectiveness in Pareto-based algorithms

for MaOPs by focusing on a real-world problem in software engineering, dubbed the

optimal feature selection problem for software product lines. Recently, various multi-
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objective evolutionary algorithms have been employed to find valid software product

configurations. However, it has been found that these algorithms have difficulty in bal-

ancing the correctness and diversity of obtained solutions within a reasonable time. To

enable Pareto-based algorithms to work well on many-objective optimization problems,

enhancing the convergence of these algorithms plays a critical role.

Second, this thesis explores how to enhance the effectiveness of advanced evolution-

ary algorithms for many-objective optimization in order to tackle more generic cases.

Recently, the bi-goal evolution (BiGE) approach, which provides a general framework

to map a solution set from the original high-dimensional objective space into a bi-

goal (objective) space of proximity and crowding degree, has become very popular and

received considerable attention in the community. However, BiGE has an important

limitation, namely, it may not be able to fully address those many-objective optimiza-

tion problems with a high chance of producing dominance resistant solutions. This

thesis shows how the effectiveness of BiGE may be enhanced by improving its crowd-

ing degree estimation.

Third, this thesis investigates how to make evolutionary algorithms for many-

objective optimization both effective and efficient. It is very rare that a many-objective

evolutionary algorithm performs well in terms of both effectiveness and efficiency on

a variety of many-objective optimization problems. For example, it is difficult for the

aggregation-based algorithms to strike a balance between convergence and diversity.

This also applies to the algorithms modifying Pareto dominance or diversity mainte-

nance. The decomposition-based algorithms often struggle to maintain diversity on

problems with irregular Pareto front shapes. Some indicator-based algorithms may

become very computationally expensive with the increase of the number of objectives.

Furthermore, many algorithms need some extra parameters, particularly for the algo-

rithms modifying the Pareto dominance relation. As such, it is of practical significance

to develop a new evolutionary algorithm that can balance effectiveness and efficiency

for various many-objective optimization problems.

This thesis explores several innovative approaches to address the above challenges

in evolutionary many-objective optimization, including a novel dominance relation for
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conventional Pareto-based algorithms in searching for a set of high-quality solutions of a

real-world many-objective optimization problem (Chapter 3), an angle-based crowding

degree estimation method for the bi-goal evolution framework to eliminate the adverse

effects caused by dominance resistant solutions in the search process (Chapter 4), and

an effective and efficient algorithm that can handle various many-objective optimization

problems (Chapter 5).

1.2 Contributions

The main contributions of the thesis are listed as follows.

Firstly, this thesis introduces a novel dominance relation, termed aggregation-based

dominance (ADO) in order to make conventional Pareto-based algorithms effective for

many-objective optimization problems. ADO focuses on the convergence enhance-

ment of Pareto-based algorithms in order to obtain a population that could strike a

balance between diversity and convergence in the high-dimensional objective space.

Specifically, since the Pareto dominance criterion is not sufficient to distinguish be-

tween individuals, ADO is served as a selection criterion to further distinguish between

non-dominated individuals during the evolutionary process. ADO is integrated into

two popular Pareto-based algorithms (i.e., NSGA-II and SPEA2+SDE) and has been

shown to be effective in accelerating the convergence process, as demonstrated in the

configuration of software product lines. Moreover, a comprehensive comparison with

four different types of evolutionary algorithms based on the recently proposed ShrInk

Prioritize (SIP) method [64] show that ADO is very competitive in finding high-quality

solutions for nine tested software product lines with up to seven objectives.

Secondly, this thesis proposes an angle-based crowding degree estimation method

for a well-established many-objective evolutionary algorithm BiGE to solve the many-

objective optimization problems where the search process involves dominance resistant

solutions. In comparison with the crowding degree estimation based on the distance

between individuals, the crowding degree estimation based on vector angles between

individuals has the advantage of distinguishing dominance resistant solutions from other
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solutions in a population. In aBiGE, the distance-based crowding degree estimation in

BiGE is replaced with the proposed angle-based crowding degree estimation in order to

weaken the adverse impact of dominance resistant solutions on the algorithm. Given

the preference of solutions with both good proximity and diversity in the bi-goal space,

dominance resistant solutions (with both poor proximity and crowding degree) would

be removed during the evolutionary process. The performance of the proposed aBiGE

algorithm is evaluated by the comparative study of aBiGE and BiGE on a series of

benchmark test problems with dominance resistant solutions. The experimental results

show the effectiveness of this replacement.

Thirdly, this thesis proposes a many-objective evolutionary algorithm (called BEE)

to achieve both high effectiveness and efficiency in many-objective optimization. BEE

focuses on the design of environmental selection to preserve promising solutions for

the next-generation evolution. It performs the key decision process of environmental

selection by selecting boundary solutions as well as non-boundary solutions. The for-

mer is to determine the range of the estimated Pareto front and the latter is to select

solutions which achieve a good balance between diversity and convergence. In partic-

ular, the diversity estimation is based on the solutions that have already been selected

for the next-generation evolution, and has a bias towards the solution that is far away

from the selected solutions (thus good diversity), whereas the convergence estimation

is concerned with the comparison between the unselected solutions. Furthermore, BEE

has no additional parameter except those associated with an evolutionary algorithm

(e.g., population size and crossover rate). Systematic experiments are carried out to

compare BEE with 11 state-of-the-art algorithms on 60 problem instances with up to

15 objectives. The experimental results show that the BEE algorithm significantly

outperforms all the compared algorithms on the majority of test problems with various

Pareto front shapes.

1.3 Thesis Structure

This thesis is organized as follows.

21



Chapter 2 provides the necessary background knowledge for the thesis. First, this

chapter presents some concepts and terminologies in multiobjective optimization, fol-

lowed by the description of key evolutionary algorithms and performance indicators.

Second, this chapter introduces many-objective optimization and discusses some gen-

eral issues on many-objective optimization. Third, this chapter reviews a variety of

recent advances in the use of evolutionary algorithms in many-objective optimization.

The main categories of these algorithms cover modification of Pareto dominance re-

lation, modification of density estimation, decomposition-based algorithms, indicator-

based algorithms, grid-based algorithms, and aggregation-based algorithms.

Chapter 3 begins with some background on software product line. Then, this chap-

ter introduce a novel aggregation-based dominance (ADO) for conventional Pareto-

based algorithms to make them suitable for many-objective optimization problems,

followed by its use in three evolutionary operations, including fitness assignment, mat-

ing selection, and environmental selection. Next, the performance of ADO is assessed

by investigating 1) whether ADO could improve the performance of two popular Pareto-

based algorithms, i.e., NSGA-II and SPEA2+SDE, and 2) how these two Pareto-based

algorithms, when integrated with ADO, perform in comparison with other state-of-

the-art algorithms in searching valid product configurations for software product lines.

Finally, the influence of the parameter setting in ADO is investigated.

In Chapter 4, an angle-based crowding degree estimation for the Bi-Goal Evolution

(BiGE) framework is proposed to address the issues caused by dominance resistant

solutions in many-objective optimization. First of all, this chapter illustrates the basic

idea for this work, and provides a comparison and analysis of density estimation based

on Euclidean distance and vector angles in many-objective optimization problems with

dominance resistant solutions. Then, this chapter introduces the angle-based crowding

degree estimation method and its incorporation into the BiGE framework. Next, the

experiments are conducted on two types of many-objective optimization problems with

and without dominance resistant solutions during the search process, respectively.

In Chapter 5, an effective and efficient algorithm (called BEE) for various many-

objective optimization problems is introduced. Initially, this chapter provides a com-
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prehensive analysis of the issues of the balance between effectiveness and efficiency in

existing MaOEAs. In addition, this chapter describes the framework and detailed in-

formation of the BEE algorithm. BEE focuses on the design of environmental selection

with two operations: selecting boundary solutions and selecting non-boundary solu-

tions, followed by the analysis of time complexity of BEE and the differences between

BEE and SPEA2+SDE since both algorithms use the shift-based comparison between

solutions in the selection procedure. Furthermore, the performance of BEE is evaluated

by the comprehensive comparative study of BEE and 11 state-of-the-art MaOEAs on

a benchmark test suite with a variety of Pareto front shapes.

In Chapter 6, the work presented in this thesis is summarized and several directions

of future research are presented.

1.4 Publications

The work resulting from this thesis has been reported in the following papers:

• Y. Xue, M. Li, M. Shepperd, S. Lauria, and X. Liu. A novel aggregation-

based dominance for Pareto-based evolutionary algorithms to configure software

product lines. Neurocomputing, 364:32–48, 2019. (Resulting from Chapter 3)

• Y. Xue, M. Li, and X. Liu. Angle-based crowding degree estimation for many-

objective optimization. Advances in Intelligent Data Analysis XVIII, Lecture

Notes in Computer Science 12080, M Berthold et al (Eds), pp. 574–586, 2020.

(Resulting from Chapter 4)

• Y. Xue, M. Li, and X. Liu. Balancing effectiveness and efficiency in evolutionary

many-objective optimization (submitted to IEEE Transactions on Evolutionary

Computation). (Resulting from Chapter 5)
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Chapter 2

Background

In this chapter, a review of evolutionary multi- and many-objective optimization is pre-

sented. First, this chapter provides basic concepts and terminologies in multiobjective

optimization, followed by the description of key evolutionary algorithms. Second, this

chapter introduces many-objective optimization and reviews state-of-the-art evolution-

ary algorithms.

2.1 Multiobjective Optimization

When tackling optimization problems in the real world, two or more performance crite-

ria are usually involved in order to determine how “good” a certain solution is. These

criteria are termed as objectives (e.g., cost, safety, efficiency, etc.) that are often in

conflict with each other. In most optimization problems there are several restrictions

imposed on these objectives according to particular features of available resources, such

as time restrictions, physical limitations, and etc. This type of problem is called the

multiobjective optimization problem (MOP), which could be observed from a wide

range of areas, such as in economics, engineering, and medical field. To model such
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problems, an MOP can be mathematically defined as follows [31]:

Minimize/Maxmize F (x) = (f1(x), f2(x), . . . , fM (x))

subject to gj(x) ≤ 0, j = 1, 2, ..., J

hk(x) = 0, k = 1, 2, ...,K

Li ≤ xi ≤ Ui, i = 1, 2, ..., n

(2.1)

where x denotes an n-dimensional decision variable vector from the feasible region

in the decision space Ω: x = (x1, x2, . . . , xn), x ∈ Ω. The last set of constraints are

referred to as variable bounds. These bounds restrict the value of each decision variable

xi within a range of Li to Ui, and constitute the decision space Ω. F (x) represents

an M -dimensional objective vector (M ≥ 2), fi(x) is the ith objective function to be

minimized or maximized, objective functions f1, f2, . . . , fM constitute M -dimensional

space called the objective space, gj(x) ≤ 0 and hk(x) = 0 define J inequality and K

equality constraints, respectively.

The concept of “optimal” in multiobjective optimization is different from that in

single-objective optimization, where the solution is usually a single solution of global

maximum or minimum depending on whether the problem is a maximization or mini-

mization problem in specific. In multiobjective optimization, since these objectives of-

ten conflict with each other, there is no single optimal solution for an MOP, but rather

a set of Pareto-optimal solutions, which are defined on the basis of the Pareto domi-

nance relation. Each solution is a trade-off among the multiple objectives. Namely, the

increase in at any one objective leads to a decrease in other objectives simultaneously.

Definition 2.1.1 (Pareto Dominance). Given two decision vectors x,y ∈ Ω of a min-

imization MOP, x is said to (Pareto) dominate y (denoted as x ≺ y ), or equivalently

y is dominated by x, if and only if [25]

∀ i ∈ (1, 2, . . . ,M) : fi(x) ≤ fi(y) ∧ ∃ i ∈ (1, 2, . . . ,M) : fi(x) < fi(y). (2.2)

Namely, given two solutions, one solution is said to dominate the other solution if
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it is at least as good as the other solution in any objective and is strictly better in at

least one objective.

Definition 2.1.2 (Pareto Optimality). For a given MOP, a solution x∗ ∈ Ω is said

to be Pareto optimal if and only if there is no solution z ∈ Ω dominates it. All such

solutions are called Pareto-optimal (or nondominated) solutions.

Definition 2.1.3 (Pareto Set). For a given MOP, all Pareto-optimal (or nondomi-

nated) solutions in the decision space constitute the Pareto set (PS).

Definition 2.1.4 (Pareto Front). For a given MOP, the Pareto front (PF) is referred

to corresponding objective vectors to a Pareto set.

Definition 2.1.5 (Dominance Resistant Solution). Given a solution set, dominance

resistant solution (DRS) is referred to the solution with an extremely poor value in at

least one objective, but with near-optimal value in some other objectives.

Because of the black-box nature of many objective functions and the complexity of

the search space, it is almost impossible to use optimization algorithms or metaheuristic

methods to calculate the true Pareto set for an MOP. Instead, algorithms aim to

produce an approximation of the Pareto front.

2.2 Evolutionary Multiobjective Optimization

2.2.1 Introduction

Evolutionary algorithms (EAs) are a class of optimization methods that simulate the

natural selection principle survival of the fittest from the biological world. Over many

years, EAs have become very popular for solving MOPs. They are known as evolu-

tionary multiobjective optimization (EMO) algorithms or multi-objective evolutionary

algorithms (MOEAs). Their population-based property allows them to simultaneously

search for a number of possible solutions in one run, while traditional optimization

methods (e.g. mathematical programming methods and simulated annealing) have to

perform a series of separate runs. Furthermore, EAs are less susceptible to the problem
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characteristics (e.g., the continuity, the Pareto front shape, multimodality, and nonlin-

ear constraint), thus, they are able to handle large and highly complex search space.

By contrast, it is very difficult to address these issues using traditional optimization

techniques.

A general framework of an MOEA is illustrated in Figure 2.1. First, a population

P is initialized by randomly generating N individuals. Second, in the mating selection,

individuals that have better quality tend to become parents of the next generation

to push for quality improvement. By doing this, the combination of these parents is

more likely to generate good offspring. Third, variation operators, i.e., crossover and

mutation, are employed to these parents to produce offspring. Fourth, environmental

selection determines the survival of solutions (i.e., next-generation population) from

the current population and offspring. This evolutionary process continues until a ter-

minating condition (e.g., the number of generations exceeds a predefined upper bound)

is reached.

Start

Stopping 
criterion 
satisfied?

No Yes

Mating 
selection

Generate initial 
population

Variation 
operators

Environmental 
selection

Stop

Figure 2.1: A general MOEA framework.

Fitness Assignment

In general, an MOEA requires both the objective function and the fitness function. The

objective function defines the optimality condition related to the characteristics of the
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problem, while the fitness function (in the algorithm domain) measures the degree to

which a particular solution fulfills the condition and assigns the corresponding value to

the solution. In multiobjective optimization, the concept of Pareto optimality is often

used to design the fitness function for the optimization of several objectives in parallel.

To approximate the Pareto front, the design of fitness functions in MOEAs usually

covers the information regarding both convergence and density (or crowding degree) of

each individual in a population. For convergence estimation, since the approximation

of the Pareto front usually consists of nondominated solutions, various ranking meth-

ods related to the nondominated solutions have been proposed for the optimization of

several objectives in parallel [47, 65, 165, 37]. These methods usually sort the individ-

uals in the objective search space before the selection procedure. Each individual is

assigned a rank, which is calculated based on the Pareto dominance relation between

any two individuals in the population (i.e., an individual dominates, is dominated by

or nondominated by other individuals).

Moreover, density information of individuals is also an important component in the

fitness function. Considering the Pareto dominance relation lacks the ability to reflect

the density information of solutions in a population, various approaches for density esti-

mation have been proposed, such as clustering [165], k-nearest distance [163], crowding

distance [37], and niching techniques (e.g., fitness sharing) [47, 126]. Usually, individu-

als are selected in a convergence-first-and-diversity-second scheme. It has been shown

that this scheme works well on MOPs with two or three conflicting objectives [37, 163].

Recently, a large number of studies [156, 92, 75, 162, 42, 9, 67, 53, 16] have developed

other criteria, such as indicator-based criterion and aggregation-based criterion, in the

fitness assignment of a population. These criteria commonly convert an objective vector

into one scalar value, based on which the individuals in a population can be totally

ordered. These criteria typically lead to better performance in terms of convergence

when compared to the Pareto dominance criterion [9].
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Diversity Maintenance

In MOPs, density estimation plays a key role in maintaining the diversity of obtained

solution set over the whole Pareto front [11]. The density becomes the main crite-

rion to guide the search when individuals could not be distinguished by using Pareto

dominance-based criterion (i.e., these individuals are nondominated with each other)

during the evolutionary process. An individual with fewer other individuals located

in its neighborhood would be assigned a lower density and has a higher possibility of

being selected for the next generation.

Over the last few decades, a variety of methods have been proposed to estimate the

density of individuals in a population during the evolutionary process. In a pioneering

study, Goldberg [52] suggested the idea of the incorporation of fitness sharing into

an evolutionary algorithm to maintain the diversity of population along the Pareto

front. Fitness sharing is a widely used niching approach, which promotes the search

in sparsely populated regions by degrading the fitness values of those individuals in

densely populated regions. Specifically, individuals in densely populated regions are

first identified by their niche counts (the number of neighbours of an individual within a

predefined niche size σshare). Then, the fitness of these solutions is penalized according

to their niche counts. Some representative MOEAs that adopt fitness sharing as the

density estimation method include the Multiobjective Genetic Algorithm (MOGA) [47],

the Nondominated Sorting Genetic Algorithm (NSGA) [126], and the Niched-Pareto

Genetic Algorithm (NPGA) [65].

Furthermore, other density estimation methods have been proposed in the litera-

ture. For example, the Strength Pareto EA (SPEA) adopts a clustering method to

estimate individuals’ density [165]. The Strength Pareto Evolutionary Algorithm 2

(SPEA2) utilizes the kth nearest neighbor method [163]. The Nondominated Sort-

ing Genetic Algorithm II (NSGA-II) employs the crowding distance method, which

estimates the density of an individual in the population by calculating the average

distance of its two closest neighbours located on either side of this individual on each

objective [37]. In grid-based MOEAs, the objective space is commonly divided into

a number of hyperboxes. Each individual is located in a specific hyperbox with a
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certain grid coordinate and its density is defined as the number of individuals in the

hyperbox where it is located. The individual located in a less populated hyperbox has

a higher possibility to survive in the next generation, and thus the diversity of the

population could be maintained. Some representative grid-based MOEAs include the

Pareto Envelope-based Selection (PESA) [29], the Pareto-Archived Evolution Strat-

egy (PAES) [80], the Pareto Envelope-based Selection using Region-based Selection

(PESA-II) [27], and the Dynamic Multiobjective EA (DMOEA) [153].

2.2.2 Multiobjective Evolutionary Algorithms Classification

Traditional multiobjective evolutionary algorithms have two common goals: one is to

converge the population to the Pareto front and the other is to maintain the diversity

of population over the Pareto front. Over the past decades, there has been increasing

interest in the development of various MOEAs. Generally, MOEAs can be categorized

into three types on the basis of their selection mechanisms, including Pareto-based

algorithms, decomposition-based algorithms, and indicator-based algorithms [140].

Pareto-based Algorithms

The majority of existing MOEAs belong to the category of Pareto-based algorithms,

which are based on the Pareto dominance relation among individuals in a population.

Pareto-based algorithms distinguish between individuals based on two criteria. The

primary selection criterion is based on the Pareto dominance relation and those non-

dominated solutions are preferred. Furthermore, since only using Pareto dominance

could degrade the diversity of the population, several techniques such as crowding de-

gree and fitness sharing have often been used as the secondary criterion in MOEAs.

The Nondominated Sorting Genetic Algorithm II (NSGA-II) [37], the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [163], and the Pareto Envelope-based Selection Al-

gorithm II (PESA-II) [27] are such representative algorithms, which have been widely

implemented in various application fields [128, 143, 158]. Among them, NSGA-II may

be one of the most popular Pareto-based algorithms, where a fast nondominated sorting

method was proposed to rank solutions during the selection process. Despite the fact
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that Pareto-based algorithms are popular in evolutionary multiobjective optimization,

these algorithms have important limitations of inferior performance on MOPs with a

high dimensional objective space [140, 73, 96] or complex Pareto sets [87].

Decomposition-based Algorithms

Another category of MOEAs is the decomposition-based algorithms, which decompose

an MOP into a set of subproblems (single-objective optimization subproblems [156]

or simple multiobjective subproblems [103]) and optimize these subproblems simulta-

neously. The most representative of this category is the Multiobjective Evolutionary

Algorithm using Decomposition (MOEA/D) [156].

The decomposition-based algorithms have several advantages over Pareto-based al-

gorithms. First, aggregation approaches in decomposition-based algorithms are ca-

pable of improving the computational efficiency for the fitness evaluation. Second,

the decomposition-based algorithms have high search ability for a variety of problems,

such as combinatorial optimization problems [17], problems with complicated Pareto

sets [87], and problems with a large number of objectives [69].

On the other hand, the decomposition-based algorithms have difficulty in main-

taining the diversity of solutions for those problems with irregular Pareto front shapes,

such as inverted, degenerate, and disconnected Pareto fronts [71]. One reason is that

the shape of the weight distribution is not consistent with the shape of the Pareto front,

and thus the uniformly distributed weight vectors could not guide the search for a set

of evenly distributed solutions over the Pareto front.

In the past decade, numerous MOEA/D variants have been proposed [103, 115, 92,

75, 108, 56, 100] to enhance the performance of MOEA/D when tackling multiobjective

optimization problems. Furthermore, the decomposition-based algorithms have been

successfully employed in a variety of real-world optimization problems [19, 54, 136].

Indicator-based Algorithms

Another category of MOEAs is characterized by using performance indicators (e.g.,

the inverted generation distance (IGD) [26] and hypervolume (HV) [165]) to guide
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the search of a population towards the Pareto front. These algorithms are known as

indicator-based algorithms.

The Indicator-Based Evolutionary Algorithm (IBEA), proposed in [162], provides

a general framework that could incorporate arbitrary performance indicators into evo-

lutionary algorithms. Recently, the HV indicator has been widely used for selection

mechanisms in MOEAs due to its good theoretical and empirical properties [166, 13].

Some representative HV-based algorithms include the S Metric Selection-based Evolu-

tionary Multiobjective Optimization Algorithm (SMS-EMOA) [9] and the Multiobjec-

tive Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES) [67].

The main shortcoming of HV-based algorithms is that the computational complex-

ity of HV increases exponentially with the increase of the number of objectives [145]. To

overcome this drawback, many studies have proposed different approaches to reduce the

computational cost of HV with respect to both the exact computation [10, 12, 144, 78]

and the approximate estimation [74, 5, 14]. Furthermore, the R2 indicator has been

employed as an alternative for the HV because of its lower computational cost than

that of HV [15].

2.2.3 Performance Indicators

Multi-objective evolutionary algorithms aim to obtain a set of nondominated solutions

that well represent the Pareto front of an MOP and their performance is commonly eval-

uated by performance indicators. The last decades have witnessed the development of

a variety of performance indicators regarding different quality aspects of the solutions

obtained by an MOEA, including (1) the closeness to the Pareto front (i.e., conver-

gence), (2) the coverage over the Pareto front (i.e., spread or extensity), and (3) the

uniformity amongst solutions (i.e., uniformity). In general, the spread and uniformity

are collectively called the diversity of the solution set. Table 2.1 lists some representa-

tive performance indicators and the quality aspect(s) evaluated by the corresponding

indicators.

As can be seen from Table 2.1, some performance indicators only measure one par-

ticular quality aspect of the solution set. Some can reflect both spread and uniformity of
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the solution set, and others cover all quality aspects (i.e., convergence, spread, and uni-

formity) of the solution set. Specifically, the Inverted Generational Distance (IGD) [26]

and the hypervolume (HV) [165] are two widely used performance indicators, which

assess the quality of the solution set in terms of both convergence and diversity (i.e.,

spread and uniformity).

As one of the most commonly used performance indicators in the area, IGD can

well reflect both convergence and diversity given the problem’s Pareto front is available.

The IGD indicator is calculated as below. Let P ∗ denote a set of uniformly distributed

reference points on the Pareto front and P denote the final solution set obtained by

an algorithm. The IGD is the average distance from points in set P ∗ to their nearest

solution in set P . Mathematically,

IGD =
1

|P ∗|
∑
z∈P ∗

d(z, P ) (2.3)

where d(z, P ) denotes the minimum Euclidean distance between a reference point z

and its nearest solution in P , and |P ∗| represents the size of P ∗. A smaller value of

IGD indicates better quality of set P for approximating the Pareto front.

Recently, a modified version of IGD, called IGD+ was proposed [70] to address the

main weakness of IGD, i.e., non-compliance with the Pareto dominance relation. In

IGD, it is possible that a solution set P has a worse IGD value than another solution

set Q even when P are superior to Q regarding the Pareto dominance. In contrast,

in IGD+, the distance between a reference point and its nearest solution is refined by

considering their Pareto dominance relationship, which ensures dominated solutions

contribute nothing to indicator values and is more accurate in the assessment.

The HV indicator (also called size of dominated space [165], hyperarea metric [137],

S metric [159], or Lebesgue measure [46]) is another frequently used performance in-

dicator in the field, which could reflect a combined performance of convergence and

diversity. Compared with IGD, the calculation of HV does not require a reference set

which represent the Pareto front, and thus it is more suitable for real-world optimiza-

tion problems, whose Pareto fronts are usually unknown. Given a solution set A, and
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Table 2.1: Performance indicators and quality aspect(s) of a solution set evaluated by
the corresponding indicators

No. Performance Indicators Convergence Spread Uniformity

1 C [164]
√

2 Generational Distance (GD) [138]
√

3 Coverage [164, 165]
√

4 Purity [6]
√

5 GDp [123]
√

6 Convergence Measure [35]
√

7 Generational Distance (GD)[139]
√

8 Coverage error ε [119]
√

9 Overall Pareto Spread [146]
√

10 Maximum Spread (MS) [160, 51, 2]
√

11 Spread assessment [102]
√

12 PD [142]
√

13 Cluster [146]
√

14 Spacing (SP) [122]
√

15 Mininmal spacing [6]
√

16 Entropy Measure [45]
√

17 Uniform Distribution [129]
√

18 ∆ Metric [37]
√ √

19 M-DI [3]
√ √

20 DCI [94]
√ √

21 Diversity Measure [35]
√ √

22 Sigma Diversity Metric [111]
√ √

23 Coverage over Pareto front (CPF)
√ √

24 HVd [77]
√ √

25 R1, R2, R3 [59]
√ √ √

26 Hypervolume (HV) [165]
√ √ √

27 Hyperarea Ratio [137]
√ √ √

28 Coverage Difference [159]
√ √ √

29 Degree of approximation (DOA) [40]
√ √ √

30 Hyperarea difference [146]
√ √ √

31 IGD-NS [135]
√ √ √

32 ε-indicator [166]
√ √ √

33 ε performance [81]
√ √ √

34 IGD [26]
√ √ √

35 IGDp [123]
√ √ √

36 G-Metric [105]
√ √ √

37 IGD+ [70]
√ √ √

38 ISDE [86, 95]
√ √ √

39 Averaged Hausdorff Distance ∆p [123]
√ √ √

40 Performance comparison indicator (PCI) [97]
√ √ √
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a reference point R = (r1, r2, . . . , rM )T , the HV indicator measures the volume of the

objective space that is dominated by solutions in A and bounded by R [165]:

HV (A) = λ(
⋃
x∈A

[f1(x), r1]× [f2(x), r2]× · · · × [fM (x), rM ]) (2.4)

where λ represents the Lebesgue measure [46], M denotes the number of objectives,

F = (f1(x), f2(x), . . . , fM (x)) is an objective vector. The larger value of HV, the better

convergence and diversity of the algorithm. Notice that reference point R should be

dominated by all nondominated solutions.

2.3 Many-Objective Optimization

2.3.1 Introduction

Many-objective optimization problems (MaOPs) refer to the optimization scenarios

having more than three objectives to be considered simultaneously. MaOPs abound in

real-world applications, such as software engineering [64, 148, 116], industrial scheduling

[44], water distribution systems [48], and automotive engine calibration problems [107].

In the last decade, there is an increasing interest in the use of evolutionary algorithms

to MaOPs, resulting in a variety of many-objective evolutionary algorithms (MaOEAs).

2.3.2 Key Challenges in Many-Objective Optimization

MaOPs with higher dimensional objective spaces pose many challenges to the conven-

tional MOEAs, which can be summarized as follows.

First, the Pareto dominance relation between individuals is not effective to facilitate

the convergence of the population in many-objective optimization. In Pareto-based

algorithms, individuals are compared through two criteria: Pareto dominance relation

and density. In a high-dimensional objective space, the majority of individuals in a

population become nondominated (i.e., equally good solutions) at an early stage of

the search [73, 61]. Since the Pareto dominance-based primary selection criterion fails

to distinguish between individuals, the second criterion - density - becomes the main
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criterion to guide the search, leading to a substantial reduction of the selection pressure

towards the Pareto front and the slowdown of the evolutionary process. This is termed

the active diversity promotion (ADP) phenomenon in [114].

Some studies [73, 140] have observed that the ADP phenomenon could lead to

the failure of Pareto-based algorithms in finding a good Pareto front approximation,

because of the preference of dominance resistant solutions [68]. These are solutions

with an extremely poor value in at least one objective, but with near-optimal value in

some other objectives. They have worse performance in terms of convergence, but they

are treated as nondominated solutions. As a result of the ADP phenomenon in Pareto-

based algorithms, the final set of solutions could be widely spread in the objective space

but far away from the true Pareto front.

Second, density estimation can be very challenging in many-objective optimization.

Althought various density estimation methods have been proposed in classical MOEAs,

they may provide inaccurate information regarding the density of population members

when solving many-objective optimization problems. For example, a density estima-

tion method, called crowding distance [37], may not be able to accurately measure the

density of individuals in a population when the number of objectives is larger than

two [82]. The main reason is that it does not treat an individual as a whole, but

takes into account the two closest neighbours of an individual on each objective. Fur-

thermore, the density estimation methods in the grid-based MOEAs [80, 29, 27, 153],

which are based on the number of individuals in each hyperbox, may fail to provide an

accurate density estimation of the individuals in a population for MaOPs. It is mainly

because there is an exponential increase in the number of hyperboxes as the number

of objectives goes up. In this case, individuals have a high possibility to spread over

different hyperboxes, leading to the inaccuracy of these density estimation methods.

Third, the effectiveness of the recombination operator in MOEAs is questionable

in many-objective optimization. The main reason is that the objective space becomes

extremely large with an increase in the number of objectives. Consequently, it is

highly possible that many individuals are far away from each other in high-dimensional

objective space, considering the population commonly consists of a small number of

36



individuals. Recent studies [34, 72, 118] have suggested that two distant parents may

produce offsprings that are also far away from their parents. Therefore, it may be

necessary to develop some special recombination operators (such as mating restriction),

which allow the offsprings to be reasonably close to their parents, in order to effectively

handling MaOPs.

Fourth, in higher-dimensional space, the computational cost of using some well-

known indicators to evaluate the performance of an MOEA is very high. For instance,

the computation of exact hypervolume increases exponentially with the number of

objectives increases [145].

Fifth, the visualization of a solution set in high-dimensional objective space is a

challenging task. It plays a vital role in helping decision makers to evaluate and select

certain solutions based on their preferences. The scatter plot, which is an intuitive and

effective visualization tool in low-dimensional objective spaces, is no longer an option

when the number of objectives exceeds three.

2.4 Evolutionary Aglorithms for Many-Objective Opti-

mization

Over the last decade, there has been a growing interest in developing many-objective

evolutionary algorithms (MaOEAs) for various MaOPs. Roughly, these MaOEAs can

be classified into six categories.

2.4.1 Modification of Pareto Dominance Relation

The first category is concerned with modifying the conventional Pareto dominance

relation for many-objective optimization. For example, a modified Pareto dominance

concept for many-objective optimization, called ε-dominance was developed in [84]. By

relaxing the area that an individual dominates, ε-dominance could provide sufficient

selection pressure towards the Pareto front.

A preference order ranking method was proposed in [39] to replace the traditional

nondominated ranking method in Pareto-based algorithms to enhance the selection
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pressure towards the Pareto front for MaOPs.

A grid dominance relation was presented in [152], which compares pairs of solu-

tions based on their coordinate location in the high-dimensional objective space. The

relaxation degree is adjusted adaptively by the grid size according to the population

during the evolutionary process.

A new dominance relation, termed fuzzy Pareto dominance was proposed in [61],

which uses the concept of fuzzy logic to alleviate the lack of effectiveness of Pareto dom-

inance for many-objective optimization. Specifically, a fuzzy Pareto dominance-based

fitness evaluation method is employed to continuously differentiate between solutions

by assigning each individual a rank value during the search process.

Recently, a strengthened dominance relation (SDR) was introduced [134] to achieve

a balance between the convergence and diversity of the nondominated solutions for

MaOPs. In SDR, a niching method is applied, which only allows one solution to

survive in each niche in order to maintain the diversity of a solution set. The degree of

the dominance area of a solution is determined by the niche size (parameter θ), which

is an acute angle value adaptively evaluated according to the population during the

evolutionary process.

Overall, compared with the Pareto dominance relation, these dominance relations

allow a solution to be easily dominated by other solutions in the high-dimensional

space, thus enhancing the selection pressure towards the Pareto front. However, they

have important limitations. First, most of them struggle to balance convergence and

diversity, and as a result, the obtained solution set may converge into one or several sub-

areas of the Pareto front [28, 106]. Second, these modified Pareto dominance relations

often involve additional parameters and a good performance on a particular problem

needs a proper setting of these parameters, especially when the number of objectives

is large [85, 98].

2.4.2 Modification of Density Estimation

The second category is concerned with modifying density estimation of the conven-

tional Pareto-based algorithms since maintaining diverse nondominated solutions may
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harm the convergence of the population evolving towards the Pareto front in the high-

dimensional space [114, 73].

For example, a modified NSGA-II, proposed in [140], assigns the crowding distance

value of boundary solution a zero value instead of an infinity value in NSGA-II, and

therefore, boundary solutions could be rejected during the evolutionary process. Ex-

perimental results indicated that the proposed algorithm had better performance than

the conventional NSGA-II in terms of the average distance (within 100, 000 function

evaluations).

For another example, diversity management mechanism DM1 [2] controls the ac-

tivation or deactivation of diversity requirements according to the distribution of the

population, hoping to achieve a proper balance between convergence and diversity. The

experimental results indicated that NSGA-II using DM1 performed consistently better

than the original NSGA-II on a set of many-objective optimization problems with 6–20

objectives.

In addition, SPEA2+SDE [95] proposed a Shift-based Density Estimation (SDE)

strategy to enable poorly converged solutions to be penalized by high density values.

These poorly converged solutions are highly possible to be eliminated during the evolu-

tionary process. The experimental results showed that the SDE strategy could largely

improve the performance of three Pareto-based algorithms (i.e., NSGA-II, SPEA2, and

PESA-II) on many-objective optimization problems. Especially, the version of SPEA2

with SDE (i.e., SPEA2+SDE) outperformed several leading MaOEAs in terms of bal-

ancing the convergence and the diversity for many-objective optimization problems.

However, SPEA2+SDE may fail to well maintain boundary solutions in some prob-

lems such as DTLZ1 [38] having a triangular Pareto front [86]. The true Pareto front of

the five-objective DTLZ1 and the final solution set of SPEA2+SDE in one typical run

on the five-objective DTLZ1 are shown by parallel coordinates in Figure 2.2. From the

figure, it can be seen that the solution set obtained by SPEA2+SDE fails to cover the

boundaries of the Pareto front, with the range of the solution set being between 0 and

around 0.4, whereas the Pareto front of five-objective DTLZ1 in the range between 0

and 0.5 on each objective. One possible reason is that SDE overemphasizes convergence
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during the evolutionary process.
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Figure 2.2: The true Pareto front of the five-objective DTLZ1 and the final solu-
tion set obtained by SPEA2+SDE on the five-objective DTLZ1 in one typical run,
shown by parallel coordinates. (a) the true Pareto front. (b) The final solution set of
SPEA2+SDE.

2.4.3 Decomposition-based Algorithms

The third category refers to decomposition-based algorithms. Decomposition is a tradi-

tional method for handling multiobjective optimization problems. Since the appearance

of the algorithm MOEA/D [156], decomposition-based algorithms have enjoyed their

popularity in the area.

MOEA/D, which was originally proposed for solving bi- and tri-objective optimiza-

tion problems, have been demonstrated to be highly competitive in tackling many-

objective optimization problems [34, 69]. In MOEA/D, an original many-objective

optimization problem is decomposed into a set of scalarizing optimization subproblems

by using a group of evenly distributed weight vectors and an aggregation approach.

Some representative aggregation approaches include the penalty-based boundary in-

tersection (PBI) approach, the Tchebycheff (TCH) approach, and the weighted sum

(WS) approach, etc. To obtain a population that could well approximate the entire

Pareto front, these predefined weight vectors are utilized to maintain the diversity of

the population, and an aggregation approach is employed to optimize each subproblem,

thus facilitating convergence of the population.
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In the past few years, there has been an increasing amount of literature on devel-

oping effective decomposition-based algorithms for many-objective optimization prob-

lems. For example, NSGA-III [34] integrates the idea of decomposition into the en-

vironmental selection procedure of the framework of NSGA-II. In NSGA-III, a set of

structure reference points are generated by using Das and Dennis’s normal-boundary

intersection approach [30]. Notice that each solution is linked to a reference point

according to its perpendicular distance towards the reference line. As in the original

NSGA-II, the nondominated sorting procedure is employed to divide the combination

of the current population and offspring into a set of nondominated fronts F0, F1, . . . ,

FK . The new population Pt+1 is constituted by selecting each front in ascending order,

starting from F0, until the size of selected solutions reaches the population size or the

critical front (denoted FL) is found. To determine which solutions in FL should be

placed into Pt+1, a niche-preservation operation is utilized to select solutions one by

one according to the niche counts (i.e., the number of solutions associated with each

reference point).

The Many-Objective Evolutionary Algorithm using Dominance and Decomposition

(MOEA/DD) [89] combines the advantages of the two well-known algorithms, i.e.,

MOEA/D and NSGA-II, for tackling many-objective optimization problems, and it has

been shown to be a promising steady-state MaOEA. In MOEA/DD, a set of weight

vectors are generated by employing Das and Dennis’s [30] normal-boundary intersection

approach, and a two-layer weight vector generation approach is utilized to reduce the

total number of generated weight vectors in the high-dimension objective space. Each

weight vector is associated with a solution, and also corresponds to a subregion that

is used for local density estimation purposes. In the mating selection procedure of

MOEA/DD, parent solutions are chosen from the neighbourhood (i.e., the T closest

subregions) of the current weight vector for generating offspring solutions. In the case

that no solutions are associated with the neighbouring subregions, parent solutions are

randomly selected from the entire population with a small probability (1−δ) to enhance

the exploration ability. The key feature of MOEA/DD is its update procedure. Each

time, only one offspring solution is added to the population, and the nondomination
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level structure of the population is updated according to the method proposed in [88].

Then, the population is updated in a steady-state hierarchical manner according to the

Pareto dominance, local density estimation, and an aggregation function (i.e., the PBI

function [156]), sequentially.

The θ-Dominance based Evolutionary Algorithm (θ-DEA) [155] was proposed to

facilitate the convergence performance of NSGA-III for many-objective optimization

problems. The θ-DEA [155] inherits the strength of NSGA-III in diversity maintenance

based on a set of uniformly distributed reference points. In θ-DEA, each solution in

the population is allocated to a cluster (represented by a reference point) according

to a clustering operator. To balance convergence and diversity, the key concept θ-

dominance is employed, which uses the PBI aggregation function [156] in the normalized

objective space and is only applied to those solutions within the same cluster. In

the environmental selection, a nondominated sorting scheme based on θ-dominance is

used to partition the combination of current population and offspring into different

θ-nondomination fronts, and a new population is constructed as in NSGA-III, but the

solutions in the last accepted front are randomly selected.

The Reference Vector-guided Evolutionary Algorithm (RVEA) [20] adopts a scalar-

ization approach, called Angle-Penalty Distance (APD), as the selection criterion for

the elitism selection strategy. RVEA divides the objective space into a set of small

subspaces by associating each solution with its closest reference vector (i.e., the ref-

erence vector that has the minimal angle to the objective vector of the solution). In

each subspace, an elitism selection strategy based on APD is applied. In APD, the

convergence of the solutions is estimated by calculating the distance between the so-

lutions and the ideal point, while the diversity of the solutions is measured by the

minimal angle between the solutions and the reference vectors. The elitist solution in

each subpopulation is defined as the one having the lowest APD value. Additionally,

a reference vector adaptive strategy is applied to maintain the population diversity in

the objective space to handle the objective functions that are not well normalized.

The Vector Angle-based Evolutionary Algorithm (VaEA) was proposed in [147],

where the maximum-vector-angle-first and the worse-elimination principles are adopted
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for the environmental selection. In the selection process, M (number of objectives)

extreme solutions and M best-converged solutions (calculated by summing up each

normalized objective value) are first selected for the new population P . Then, the

maximum-vector-angle-first principle is employed to maintain the wideness and unifor-

mity of the population by adding one solution with the maximum vector angle to the

solutions in P each time. Moreover, to facilitate the convergence of the population to

the Pareto front, the worse-elimination principle is adopted to replace solutions with

poor convergence by other solutions within its niche.

A Strength Pareto Evolutionary Algorithm using Reference Direction (SPEA/R) [76]

revives a traditional Pareto-based algorithm, called SPEA, to tackle many-objective op-

timization problems. In SPEA/R, a set of predefined reference directions are used to

divide the objective space into a number of subregions aiming to preserve population

diversity. Each solution is associated with a subregion defined by reference directions,

thereby solutions are distributed to different subregions. The new fitness assignment

scheme is employed on solutions located in each subregion. In the new fitness assign-

ment scheme, both local and global convergence of a solution are estimated according

to the raw fitness calculation method in SPEA2. In particular, the local density of a so-

lution is estimated by the proposed reference direction-based density estimator rather

than the time-consuming one in SPEA2. In the environmental selection, SPEA/R

adopts a diversity-first-and-convergence-second selection strategy, which guides the so-

lutions towards predefined search directions (a set of well-distributed reference direc-

tions), thus promoting the selection pressure for many-objective optimization.

More recently, the NSGA-II using the Reference Point-based Dominance (RPD-

NSGA-II) was proposed in [41] to deal with many-objective optimization problems. In

RPD-NSGA-II, a decomposition-based dominance, called Reference Point-based Dom-

inance (RP-dominance), is adopted to distinguish nondominated solutions for many-

objective optimization problems by using a set of uniformly distributed reference points.

Moreover, a new diversity criterion based on the PBI approach [156] is employed to

evaluate the performance of the solutions in terms of convergence and diversity based

on a set of well-distributed reference points. The main difference between NSGA-II and
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RPD-NSGA-II is that the latter employs RP-dominance instead of Pareto dominance

to perform a non-RPD-dominated sorting. Furthermore, in both algorithms, the new

population is formed by the best fronts, however, the truncation operators for the last

accepted front are different. In RPD-NSGA-II, the last considered front is truncated by

preferring the solutions having the minimum perpendicular distance to the associated

reference vectors in the objective space.

Overall, decomposition-based algorithms perform very well in terms of convergence

and are able to well maintain a set of diverse solutions for many-objective optimiza-

tion problems with regular or simplex-like Pareto fronts (e.g., a hyperplane or concave

hypersphere), when compared with traditional Pareto-based algorithms. A simple ex-

ample is illustrated in Figure 2.3 (a), where the intersection point between each weight

vector and the Pareto front would be an optimal solution to a subproblem.
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Figure 2.3: The distribution of Pareto optimal solutions (solid dots) to be found by
using systematically generated weight vectors (dashed arrows) depends on the Pareto
front shapes (solid lines). (a) Simplex-like Pareto front (b) Strongly convex Pareto
front (c) Disconnected Pareto front.

On the other hand, decomposition-based algorithms typically face challenges of

diversifying their solutions over the Pareto front for problems with irregular Pareto

front shapes, which are disconnected, strongly concave or convex, degenerate, inverted

simplex-like, and scaled, etc. [71]. The main reason is that the distribution of weight

vectors is not consistent with Pareto front shapes [71]. Two simple examples are given

in Figure 2.3 (b) and (c), which illustrate that well-distributed weight vectors may

fail to generate well-distributed solutions on problems with highly convex Pareto front
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and disconnected Pareto front, respectively. In Figure 2.3 (b), most optimal solutions

are located in the central area of the Pareto front on a highly convex Pareto front.

In Figure 2.3 (c), some weight vectors have no intersections with the Pareto front,

resulting in poor performance of decomposition-based algorithms in terms of diversity.

To address the above difficulty, a number of decomposition-based algorithms [4, 18,

149, 56, 100] have developed various adaptive adjustment of weight vectors methods to

make them more compliant with different Pareto front shapes.

2.4.4 Indicator-based Algorithms

The fourth category of MaOEAs refers to those based on indicators. Such algorithms

adopt performance indicators as selection criteria to guide the search of a popula-

tion towards the Pareto front. One representative algorithm of this category is the

indicator-based evolutionary algorithm (IBEA) [162], which provides a general frame-

work to incorporate arbitrary performance indicators into evolutionary algorithms. A

performance indicator could formulate the preference information of decision makers

and allow the comparison between pairs of individuals in the population. In [162],

dominance preserving indicators, such as the binary additive ε-indicator Iε+ [166] and

IHD-indicator based on the hypervolume concept [165], are suggested. Because of the

effectiveness of Iε+, IBEA was shown to perform well in terms of convergence for many-

objective optimization problems, but it may fail to maintain the solutions’ diversity for

many-objective optimization problems [141].

Figure 2.4 plots the final solution set of IBEA on the five-objective DTLZ3 problem

in one typical run by parallel coordinates. It should be mentioned that the parallel

coordinates is a popular approach for visualizing the many-objective solution set us-

ing a 2D parallel coordinates plane. Recently, Li et al. [101] provided a systematical

explanation of how to read a solution set of a many-objective optimization problem in

parallel coordinates. The authors indicated that the parallel coordinates can be used as

an assistant tool when evaluating a many-objective solution set, regarding its quality

in convergence, coverage, and uniformity.

As shown in Figure 2.4, the solution set obtained by IBEA only converges the
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Figure 2.4: The true Pareto front and the final solution set obtained by IBEA on the
five-objective DTLZ3 in one typical run, shown by parallel coordinates. (a) the true
Pareto front. (b) the final solution set of IBEA.

boundary areas of Pareto front, as there are no solutions located inside the range (0, 1)

on all objectives.

Because of the good theoretical and empirical properties of HV [165] shown in [166,

13], it has been commonly used in MaOEAs (e.g., SMS-EMOA [9] and MO-CMA-

ES [67]) to guide the search for a population that well approximates the Pareto front

by maximizing the corresponding HV indicator [42]. However, the main weakness of

HV-based search algorithms is that the runtime of the HV increases exponentially with

the increase of the number of objectives [145], which leads to a decreasing efficiency

for many-objective optimization problems. To deal with the aforementioned issue, an

HV estimation algorithm – HypE – was put forward in [5], which adopts the Monte

Carlo sampling to approximate the HV value and compares nondominated solutions

according to their HV-based fitness. Experimental results showed that Monte Carlo

sampling could provide a trade-off between HV computation time and accuracy, which

made HV-based search algorithms competitive for many-objective optimization [5, 14].

Recently, a large number of MaOEAs have adopted the R2 indicator as an alterna-

tive for the HV indicator because of its weaker monotonicity and lower computational

cost than HV [15, 113, 53]. For example, Phan et al. [113] proposed an extension of

IBEA with a binary R2 indicator (i.e., R2-IBEA). In R2-IBEA, a hypervolume-based
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weight vector generation approach is employed to maximize HV, while an adaptive

reference point adjustment approach is applied to reduce the bias of the R2 indicator

that preferred the central area of the Pareto front [16]. Hernández Gómez and Coello

Coello introduced an improved version of MOMBI (i.e., MOMBI-II) [63], which adopts

the achievement scalarizing function instead of the weighted Tchebycheff function to

enhance the uniform distribution. In MOMBI-II, statistical information regarding the

proximity of the population is used to update the reference points. Experimental results

showed that MOMBI-II could obtain a solution set with a more uniform distribution

than its original version and R2-IBEA for most tested optimization problems with up

to ten objectives.

In addition, some algorithms are based on the IGD-NS indicator [135]. For exam-

ple, the AR-MOEA [132] adopts the IGD-NS indicator with a reference point adaption

strategy to address many-objective optimization problems that have different types of

Pareto front in both low- and high-dimensional search spaces. The IGD-NS indicator

provides a comprehensive measurement of a nondominated solution set and is used

as the selection criterion in both mating selection and environmental selection oper-

ations. In AR-MOEA, the adaptation of reference points considers both the shape

of the approximate Pareto front constituted by those nondominated solutions in the

current population and the uniform distribution of reference points. Those reference

points are employed to calculate the IGD-NS values of those nondominated solutions in

the environmental selection, and allow the IGD-NS indicator to guide the population

towards the whole Pareto front for a variety of many-objective optimization problems.

AR-MOEA was demonstrated to be promising on various many-objective optimization

problems with both regular and irregular Pareto front shapes. However, AR-MOEA

is very time-consuming since it adopts a greedy diversity maintenance strategy that

iteratively deletes the solution with the worst diversity degree and updates the diversity

degrees of all the remaining solutions in the environmental selection.

More recently, some algorithms use the IGD indicator to guide the search in many-

objective optimization. For example, Sun et al. [127] proposed a many-objective evo-

lutionary algorithms using IGD, termed MaOEA/IGD, to deal with many-objective
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optimization problems. In MaOEA/IGD, the decomposition-based nadir point esti-

mation (DNPE) method is utilized to construct the Utopian Pareto front, where a

set of uniformly distributed reference points are generated for IGD calculation. More-

over, MaOEA/IGD adopts a computationally efficient dominance comparison strategy,

which classifies the population into three fronts by comparing the dominance relation

of the solutions to the reference points, followed by three types of proximity distance

assignments according to the rank values of individuals, aiming to distinguish individ-

uals with the same front rank values. Then, the solutions are selected based on the

assigned rank values and proximity distances of individuals, along with the linear as-

signment principle in order to improve the convergence and the diversity concurrently.

The experiments were conducted on DTLZ and WFG benchmark test suites with 8,

15, and 20 objectives. The experimental results demonstrated that MaOEA/IGD was

competitive in addressing many-objective optimization problems compared to five pop-

ular many-objective evolutionary algorithms (NSGA-III, MOEA/D, HypE, RVEA, and

KnEA). However, one weakness of MaOEA/IGD is that the extreme point estimation

method (i.e., DNPE) is very time-consuming.

Furthermore, other algorithms adopt multiple performance indicators as the selec-

tion criteria. For example, a hybrid algorithm, called Two Arch2 [141], takes advantage

of the Iε+ indicator to enhance convergence on many-objective optimization problems

and a Lp-norm-based diversity maintenance to promote diversity. For another example,

the multi-indicator-based algorithm for many-objective optimization problems, called

SRA [86], adopts a stochastic ranking technique to balance the search biases of the indi-

cators Iε+ and ISDE [95]. Both Two Arch2 and SRA were shown to be competitive on

many-objective optimization problems, but they may not be able to preserve boundary

solutions of the Pareto front for some many-objective optimization problems [141, 86].

Furthermore, SRA involves extra parameters for balancing the search biases of different

indicators and its performance is influenced by the setting of those parameters.
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2.4.5 Grid-based Algorithms

The fifth category of MaOEAs is based on dividing the objective space into grids, which

are known as grid-based algorithms. The advantage of using the grid is that it can

reflect the information of both convergence and diversity, simultaneously. Specifically,

in grid-based algorithms, each solution is located in a grid and these solutions in a

population are compared by using their grid coordinates. The convergence and diversity

of a population can be achieved by grid-based dominance criteria and grid locations,

respectively.

A steady-state multiobjective evolutionary algorithm based on the ε-dominance

concept, termed ε-MOEA [36], is a representative of the grid-based algorithms. In ε-

MOEA, two populations, i.e., an EA population (P ) and an archive population (A) are

evolved collaboratively. The EA population is randomly initialized while the archive

population stores ε-nondominated solutions of P . Next, one solution from each popu-

lation P and A is selected as parents to generate an offspring (i.e., a new individual).

The offspring is then used to update the populations P and A, where the comparisons

between individuals are based on the Pareto dominance and ε-dominance, respectively.

It should be noted that the objective space is split into hyperboxes with size ε and each

hyperbox in the archive is restricted to contain at most one solution, thus allowing

the diversity to be maintained in a population. Nevertheless, the computation costs

and information storage of each hyperbox increase exponentially with the number of

objectives. Moreover, it is highly possible that solutions in a population are far away

from each other in the high-dimensional objective space, as a result, the diversity esti-

mation method that only considers the number of solutions in a hyperbox may lose its

effectiveness to distinguish between solutions.

Another example is the Grid-based Evolutionary Algorithm (GrEA) [152], which de-

velops effective methods to use a grid in order to make evolutionary algorithms suitable

for many-objective optimization problems. In GrEA, the objective space is divided into

divM hyperboxes based on the objective values of individuals in a population, where div

denotes the number of grid divisions set by the users beforehand and M is the number

of objectives. Compared to ε-MOEA where the grid size is a fixed parameter, in GrEA,
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the grid size is adapted during the evolutionary process, which could better reflect the

location of individuals. In GrEA, the performance regarding both convergence and

diversity of an individual is evaluated based on grids. Specifically, three grid-based

criteria, including grid dominance, grid ranking, and grid coordinate point distance,

are employed for convergence estimation in a grid environment. Another criterion, i.e.,

the grid crowding distance is used for diversity estimation of individuals in the popula-

tion, which considers the number of its neighbours and the distance difference between

itself and these neighbours. In addition, GrEA adopts a fitness adjustment strategy

in environmental selection aiming to avoid partial overcrowding and explore different

directions in the archive.

Overall, grid-based algorithms have been shown to be effective for many-objective

optimization problems under the proper setting of girds, such as hyperboxes size ε in

ε-MOEA and the number of grid divisions div in GrEA [140, 98, 58, 152].

2.4.6 Aggregation-based Algorithms

The last category considers aggregation-based algorithms. They aggregate the objec-

tives of solutions into one or multiple criteria to make them comparable more easily.

Some algorithms in this category develop novel selection methods to estimate solutions’

performance regarding convergence and diversity. For example, the MaOEA using a

One-by-One Selection Strategy (called 1by1EA) [104] adopts a convergence indicator

and a distribution indicator in the environmental selection to balance convergence and

diversity. The environmental selection strategy could break down into two operations.

First, the solution with best convergence value is selected to promote the convergence

performance in many-objective optimization. Second, solutions in the neighbourhood

of the selected solution are de-emphasized by utilizing a niche technique according to

the distribution indicator, with the aim of guaranteeing the diversity of the population.

Furthermore, a boundary maintenance mechanism is adopted to enhance the spread of

a solution set over the Pareto front.

For another example, the MaOEA using a Coordinated Selection Strategy (MaOEA-

CSS) [60] focuses on the coordination and complementary design of mating selection
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and environmental selection. The new mating selection criterion takes into account

two issues: 1) the quality of both parents regarding convergence and diversity, 2)

the effective combination of selected parents in an extremely large objective space.

In the mating selection, the convergence degree of each solution is estimated by a

modified version of achievement scalarizing function (ASF), while the diversity of each

solution is estimated by an angle value. In the new environmental selection, each

time two closest solutions are identified by angle, the one with less contribution to the

convergence and diversity performance of the whole population is iteratively eliminated.

This design could alleviate the conflicting degree between convergence and diversity in

many-objective optimization.

In addition, an innovative computational approach for designing MaOEAs called

bi-goal evolution (BiGE) [96] has attracted significant attention in the field. BiGE

focuses on addressing two challenges of many-objective optimization problems. First,

increasing the number of objectives could aggravate the conflict between proximity

and diversity [114, 2]. Second, the Pareto dominance criterion, which works well on bi-

and tri-objective spaces, has difficulty in promoting convergence on higher dimensional

objective spaces. BiGE overcomes the two aforementioned challenges by transforming a

many-objective optimization problem to a bi-objective one (with respect to convergence

and diversity) and using the widely employed Pareto dominance criterion in the low-

dimensional objective space. In BiGE, the convergence of a solution is estimated by

summing up each normalized objective value. The diversity of a solution is evaluated

by a sharing function-based crowding degree and a solution that has better performance

in terms of convergence than its neighbours in a niche is assigned a better diversity

value controlled by a weight parameter (called the sharing discriminator).

Other algorithms integrate the preference information into the fitness assignment.

For example, the Knee Point-driven Evolutionary Algorithm (KnEA) [157], which has

a bias towards knee points among nondominated solutions during the selection pro-

cess in order to promote the convergence performance for many-objective optimization

problems. In KnEA, knee points are adopted as another selection criterion when the

Pareto dominance criterion fails to distinguish solutions during the evolutionary pro-
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cess. In addition, a niche method based on hyperboxes is adopted to identify the knee

points in a small neighborhood, thus the diversity of the population is maintained. It

is worth mentioning that KnEA is computationally efficient since there is no explicit

diversity measure, such as the crowding distance [37].

Overall, aggregation-based algorithms can effectively balance the convergence and

diversity for many-objective optimization problems, but some of them require extra

efforts for the proper setting of specific parameters, such as the parameter T for con-

trolling the ratio of knee points to the nondominated solutions in KnEA, the parameter

k for balancing the accuracy and the computational cost in the density estimation of

1by1EA, and the threshold value t of determining the difference of two closest solutions’

Euclidean distance in the environmental selection of MaOEA-CSS.

2.5 Summary

Chapter 2 has presented the necessary background knowledge for the thesis. First of all,

some concepts and terminologies in multiobjective optimization have been provided.

Then, many-objective optimization has been introduced, and some general issues of

applying evolutionary algorithms to many-objective optimization have been discussed.

Finally, a review of state-of-the-art evolutionary algorithms for many-objective opti-

mization has been provided. In the next chapter, the effectiveness of popular Pareto-

based algorithms in handling a practical many-objective optimization problem is ad-

dressed.
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Chapter 3

Many-Objective Optimization for

Software Product Line

Configuration

This chapter addresses the issue of effectiveness in Pareto-based algorithms for many-

objective optimization problems. In particular, a challenging real-world problem in

software engineering is used as an example of how these algorithms may be made more

effective. In software engineering, optimal feature selection for software product lines

(SPLs) is an important and complicated task, involving simultaneous optimization of

multiple competing objectives in a large but highly constrained search space. A feature

model is the standard representation of features of all possible products as well as the

relationships among them for an SPL. Recently, various multi-objective evolutionary

algorithms have been used to search for valid products (combinations of features that

satisfies all of the constraints in the feature model). However, the issue of the balance

between correctness and diversity of solutions obtained in reasonable time has been

found very challenging to address in these algorithms.

To tackle this problem, a novel dominance relation for Pareto-based algorithms is

proposed to enhance the search for high-quality solutions on the optimal feature se-

lection problem. This chapter is organized as follows. Section 3.1 is devoted to the
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introduction of this work. Section 3.2 details the ADO approach, and then Section 3.3

shows how ADO is integrated in two popular Pareto-based algorithms NSGA-II and

SPEA2+SDE. The experimental results are detailed in Section 3.4. Section 3.5 sum-

marizes this chapter.

3.1 Introduction

With the development of mobile and service-based applications, companies need to re-

configure their applications in order to retain and extend their market share. To meet

the demand of different customers, companies often develop and maintain many varia-

tions of software products [7]. Recently, there is an increasing trend to adopt software

product lines (SPLs) to reduce development costs, shorten development cycles, and

improve software reusability and flexibility [55]. An SPL is a class of similar software

products, all of which share some core functionalities. Each product configuration is

different with different features selected that aim to satisfy the specific requirements of

a particular market segment [24].

A feature model [7] is a tree structure that provides representations of an SPL for

configuring all possible software products. The key task of an SPL is to select a set of

desired features from its feature model in order to fulfill multiple functional require-

ments (e.g., minimize the product cost, maximize users’ preferences) and satisfy the

constraints related to various features. In practice, real-world SPLs often contain hun-

dreds or even thousands of features and complex constraints. For example, the Linus

X86 kernel feature model from LVAT (Linux Variability Analysis Tools) [1] repository

contains 6, 888 features and 343, 944 constraints. It is extremely difficult to manually

select optimal features for valid products in such a large and constrained search space.

This is called the optimal feature selection problem [57].

In the past decade, there have been many studies that adopt different multi-objective

evolutionary algorithms (MOEAs) as automatic configuration approaches to solve the

optimal feature selection problem, which can be seen as a many-objective optimization

problem (MaOP) [120, 62, 130, 64, 148, 121, 112, 151].
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A representative MOEA is the indicator-based evolutionary algorithm (IBEA) [162],

which adopts the hypervolume indicator to guide the search towards optimal solutions.

Some recent studies [121, 120, 130] demonstrated that IBEA outperforms some popu-

lar MOEAs, such as the Nondominated Sorting Genetic Algorithm II (NSGA-II) [37]

and the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [163] in searching for

valid solutions on both small and large feature models from the online feature model

repositories SPLOT [110] and LVAT, respectively.

Nevertheless, pure IBEA has been found to be insufficient to achieve 100% valid

solutions on large feature models. To address this issue, some studies focused on the

enhancements of this algorithm. Sayyad et al. [120] presented a “seeding” technique

for IBEA to find more valid solutions on some large feature models. Tan et al. [130]

proposed a feedback-directed IBEA, which adopted the number of constraint violations

as feedback for two evolutionary operators to improve the ability of the algorithm

to search for more valid solutions. Henard et al. [62] introduced SATIBEA, which

integrates two smart evolutionary operators into IBEA. In addition, SATIBEA could

identify and fix an invalid solution (i.e., a software product configuration with constraint

violations) by using the SAT solver.

Furthermore, other studies investigate the use of other MOEAs for the optimal fea-

ture selection problems. For example, Hierons et al. [64] presented a ShrInk Prioritize

(SIP) method for different types of MOEA. In particular, the novel encoding method is

used to identify prunable features, and the (1+n) approach is used to first optimize the

number of constraint violations and then other objectives at the same time to guide the

search to feasible space. For another example, Xiang et al. [148] proposed SATVaEA,

which combines the recently proposed VaEA [147] algorithm and SAT solvers to repair

an invalid product configuration and promote diversity of the obtained solutions.

Despite these advances, it is not an easy task for these algorithms to balance cor-

rectness and diversity of solutions in a reasonable time. In addition, it is noted that

there are few studies focusing on developing new many-objective evolutionary algo-

rithms to deal with the optimal feature selection problem in configuring SPLs. Given

the above, the work focuses on two research questions:
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1. Are traditional MOEAs really worse than state-of-the-art algorithms in solving

optimal feature selection problem for SPLs?

2. Are there methods that could improve the quality of solutions obtained by using

traditional MOEAs, such as NSGA-II without using SAT solvers?

In this chapter, investigations are carried out along these lines and an aggregation-

based dominance (ADO) for Pareto-based algorithms is proposed to direct the search

for high-quality solutions. ADO is in part inspired by the effectiveness of aggregation

functions to drive the population to different parts of the Pareto front through weighted

vectors [156, 20]. ADO can be incorporated into three evolutionary operations: fitness

assignment, mating selection, and environmental selection in different Pareto-based

algorithms to search for valid optimal solutions for an SPL.

3.1.1 Optimal Feature Selection Problem in SPLs

In software engineering, a feature model is a standard representation of features for all

possible products of an SPL and the relationships between them [79]. A feature model

describes a valid product as a combination of features that satisfies all the constraints

[131]. A feature model is represented as a tree-like structure composed of a set of

nodes representing features and connections between them. For example, Figure 3.1

illustrates a simplified feature model for mobile phone SPL.

Figure 3.1: A simple feature model for mobile phone SPL (adapted from [8])
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Relationships between a parent feature and its child features (or subfeatures) in-

clude:

• Mandatory. A mandatory feature must be included if its parent feature is

included in a product, such as the “call” feature in the example.

• Optional. An optional feature can be optionally included in a product, in Figure

3.1, the “Media” feature can be optionally included in products that contain its

parent feature (“Mobile Phone” feature).

• Alternative. If the parent feature is included in a product, exactly one feature

should be selected among a group of sub-features. For instance, a mobile phone

must provide support for either a “Basic”, or a “Color”, or a “High resolution”

screen in the same product.

• Or. If the parent feature is included in a product, one or more of the child

features should be selected. In Figure 3.1, a mobile phone can provide support

for a “Camera”, an “MP3”, or both of them when their parent feature “Media”

is included in the product.

Apart from the above parental relationships between features, feature models also

adopt cross-tree constraints (CTCs) to represent the mutual relationship for features.

Typically, there are two types of CTCs:

• Requires. This relationship allows some features to co-occur, namely, If feature

Fa requires feature Fb, the inclusion of Fa implies the inclusion of Fb in this

product. In Figure 3.1, the mobile phone with “Camera” feature requires the

“High resolution” feature.

• Excludes. This relationship indicates that some features cannot exist simulta-

neously in the same product, namely if a feature Fa excludes a feature Fb, the

inclusion of Fa implies the exclusion of feature Fb in this product, and vice versa.

In Figure 3.1, the mobile phone with “GPS” feature excludes the “Basic” feature.
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3.2 The Proposed Approach

3.2.1 Normalization

A normalization method in [76] is adopted for a many-objective optimization problem

where objective values may be disparately scaled in different SPLs. This is to enhance

the robustness of the algorithm when the scales of the objective values are different

[156, 34].

Algorithm 3.1 shows the pseudocode for the objective normalization procedure. In

normalization, every solution in a population is normalized according to the ideal point

and nadir point of each objective. Formally, in a minimization MaOP and a population

P with N individuals and M objectives, the ideal point zmin = (zmin1 , zmin2 , . . . , zminM )

is determined by searching the minimum value of each objective for all individuals in

P , which is denoted as zminj = minNi=1 fj(xi), where xi ∈ P (i = 1, 2, . . . , N). Similarly,

the nadir point zmax = (zmax1 , zmax2 , . . . , zmaxM ) is calculated by zmaxj = maxNi=1 fj(xi),

where zmaxj is the maximum of fj(xi), xi ∈ P (i = 1, 2, . . . , N). For each solution

x ∈ P , its objective vector f(x) is normalized to f̃(x) = (f̃1(x), f̃2(x), . . . , f̃M (x),

which is calculated by the following equation:

f̃j(x) =
fj(x)− zminj

zmaxj − zminj

(3.1)

Algorithm 3.1 Normalization(P )

Require: P (current population), N (population size), M (number of objective functions)
1: for j ← 1 to M do
2: zmin

j ← minx∈P fj(x) /* Find the ideal point */
3: zmax

j ← maxx∈P fj(x) /* Find the nadir point */
4: end for
5: for i← 1 to N do
6: fcon(xi)← 0
7: for j ← 1 to M do
8: f̃j(xi)← (fj(xi)− zmin

j )/(zmax
j − zmin

j )

9: fcon(xi)← fcon(xi) + f̃j(xi)
10: end for
11: end for

During the normalization procedure, the aggregation value of each individual x,
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denoted as f con(x) is also calculated (line 9 in Algorithm 3.1), which is described in

the next section.

3.2.2 Aggregation Function

Aggregation functions are basic techniques in decomposition-based algorithms and are

often employed to decompose a many-objective optimization problem into a number of

sub-problems and optimize these problems in a collaborative way. However, aggrega-

tion functions are utilized in a different manner in this chapter in order to enhance the

selection pressure in traditional Pareto-based evolutionary algorithms. Here, an aggre-

gation function is adopted to estimate the convergence performance of an individual,

which is based on aggregating the individual’s information (by taking all normalized

objective values into consideration).

In this chapter, the aggregation function in Bi-Goal Evolution (BiGE) [96] (a meta-

objective optimization approach for many-objective optimization problems) is used to

estimate the convergence performance for each individual x in a population P , denoted

as f con(x). This aggregation value is calculated by adding up all normalized objective

values of the individual in the range [0, 1]:

f con(x) =
M∑
j=1

f̃j(x) (3.2)

where f̃j(x) denotes the normalized objective value of individual x in the jth objective,

and M is the number of objectives.

This aggregation function is determined by two factors: first the number of objec-

tives, and second the performance in each objective. Given a minimization MaOP, an

individual with good convergence (that has slightly worse value in at least one objec-

tive but has significantly better value in most of the other objectives) is more likely

to obtain a lower (better) aggregation value. A smaller aggregation value of an indi-

vidual could indicate a good convergence performance. If an individual/solution is a

dominance resistant solution, it is more likely to obtain an extremely large aggregation

value compared to other individuals in a population. Keep this in mind, the aggrega-
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tion function will be involved later in the definition of aggregation-based dominance

relation, where the aggregated information of an individual is compared with others.

3.2.3 Aggregation-based Dominance

In a minimization MaOP with M objectives, ADO is defined on population P , where

each individual x is assigned an aggregation value representing its estimated conver-

gence performance, denoted as f con(x).

Definition 3.2.1 (Convergence Difference). Let x, y ∈ P where x and y are nondom-

inated solutions with respect to Pareto dominance, the convergence difference between

them is denoted as:

CD(x,y) = f con(x)− k · f con(y) (3.3)

k is a predefined parameter [0 < k < 1]. With the definition of CD(·), aggregation-based

dominance is defined as follows:

Definition 3.2.2 (Aggregation-based Dominance). Let x, y ∈ P where x and y are

nondominated solutions with respect to Pareto dominance. x is said to ADO-dominate

y, or equivalently y is ADO-dominated by x, denoted by x ≺ADO y, if

CD(x,y) < 0 and CD(y,x) > 0 (3.4)

Similarly, y ADO-dominates x when CD(y, x) < 0 and CD(x, y) > 0. Otherwise,

both individuals x and y are ADO-nondominated solutions. It is clear that there is no

possibility of both CD(x, y) < 0 and CD(y, x) < 0 at the same time.

ADO is partly inspired by the idea of using additional convergence-related criterion

in addition to traditional Pareto dominance based criterion, such as knee points in

KnEA [157], a grid-dominance-based criterion defined in [152] and so on. The proposed

ADO is used as a secondary criterion and is activated when the Pareto dominance-based

selection criterion fails to distinguish between individuals in the evolutionary process.

For ADO integrated with traditional Pareto-based algorithms, such as NSGA-II, an
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ADO-nondominated sorting is employed in the selection procedure to classify P into

different ADO-nondomination levels, which will be introduced in the next section.

Similar to ε-dominance [84] in the ε-dominance-based algorithm [38], the ADO also

modifies the traditional Pareto dominance to enhance the selection pressure towards

the Pareto front. Both of them can be categorized into a relaxed form of Pareto

dominance, which are used to determine the survival of individuals in the evolutionary

process. However, the difference is that ε-dominance enlarges the dominating space of

each individual in the population, while ADO is cooperated with Pareto dominance

and designed for those nondominated individuals.

3.3 Integrating ADO into NSGA-II and SPEA2+SDE

In this section, ADO is applied to two representative Pareto-based algorithms, NSGA-

II and SPEA2+SDE, denoted as NSGA-II-ADO and SPEA2+SDE-ADO, respectively.

Specifically, based on ADO, three modified evolutionary operators: fitness assignment,

mating selection, and environmental selection are proposed to facilitate the search for

high-quality solutions. In the next three sections, the three evolutionary operators are

introduced respectively.

3.3.1 Fitness Assignment

In Pareto-based algorithms, the fitness of individuals should cover the performance of

each individual in terms of both convergence and diversity in order to converge the

population towards the Pareto front as well as diversify the individuals over the front.

To deal with ADP phenomenon of Pareto-based algorithms as described in 2.3.2, the

fitness assignment strategy in this work focuses on the estimation of convergence by

incorporating ADO into Pareto domination-based fitness assignment strategies. In the

proposed fitness assignment strategy, Pareto dominance and ADO are used together

to evaluate the performance of individuals in terms of convergence, which works by

applying ADO when Pareto dominance fails to distinguish individuals in a population.

There are different fitness assignment strategies based on Pareto dominance to calculate
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the performance of individuals. In the experimental study, ADO is tested on the fitness

assignment strategies of two popular Pareto-based evolutionary algorithms: NSGA-II

and SPEA2+SDE.

The first tested strategy in the experiments is the non-dominated sorting-based

fitness assignment of NSGA-II [37]. It suggested using a Pareto dominance relation to

distinguish individuals in a mixed set of population. In this strategy, those solutions

that are non-dominated in terms of Pareto optimal become the first front. After re-

moving these solutions temporarily, the remaining non-dominated solutions constitute

the second front, and so on. Finally, each individual in the same front is assigned

a non-domination rank. Lower rank values represent better degrees of convergence

for individuals. The final fitness of an individual depends on its nondomination rank

(represents convergence information) and the crowding distance in (represents diversity

information). Compared to the fitness assignment of the proposed NSGA-II-ADO, the

difference is on the non-domination rank calculation of individuals in NSGA-II. Those

individuals in each front depend on both Pareto dominance and aggregation-based

dominance.

The second tested strategy in the experiments is a fine-grained fitness assignment,

which was proposed in SPEA2 [163]. Compared with non-dominated sorting, this

strategy only uses total fitness to include both convergence and density information

of an individual in a population. In the fitness assignment process, an individual x

is assigned a “strength” value which reflects its domination degree. The strength is

calculated based on Pareto dominance counts: the number of solutions it dominates.

Then, individual x is assigned a raw fitness R(x) which is determined by summing

strength of the individuals that dominate it. A low raw fitness value means that an

individual dominates many individuals which in turn is dominated by many individuals.

In particular, non-dominated individuals are assigned value zero as raw fitness. This

is followed by the density estimation D(x) of individual x that takes k-th nearest

neighbor of individual x into consideration. Finally, the total fitness F (x) of individual

x is calculated by the equation: F (x) = R(x) + D(x). For SPEA2+SDE, the only

difference is the density estimation of an individual x, where D(x) is calculated based
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on the shifted position of other individuals in a population according to the convergence

comparison between individual x and other individuals on each objective. In contrast

to the fitness assignment of SPEA2+SDE-ADO, the strength value of an individual in

SPEA2+SDE is calculated according to both Pareto dominance and aggregation-based

dominance among individuals in a population.

In the fitness assignment process, the diversity estimation also plays an important

role. It aims to obtain a set of well-distributed solutions along the entire Pareto front.

In the proposed fitness assignment, density estimation techniques remain the same

as those in the two Pareto-based evolutionary algorithms (i.e., crowding distance in

NSGA-II [37] and Shift-Based Density Estimation (SDE) in SPEA2+SDE [95]).

In summary, the main difference in the fitness assignment process by incorporating

the ADO is the evaluation of convergence for an individual. It leads to some changes

of calculating non-domination rank of individuals in NSGA-II and strength value of

individuals in SPEA2+SDE. The rest is applied in the usual way as proposed in the

original NSGA-II and SPEA2+SDE. For the NSGA-II-ADO algorithm, the fitness of

individuals includes both convergence and diversity information. In general, a smaller

value of convergence and a larger value of diversity indicate that the individual performs

better than others. In SPEA2+SDE+ADO, a smaller fitness value means the individual

has better convergence and diversity than others. In the following, the impact of ADO

in the fitness assignment process will be evaluated by considering a sorting strategy in

NSGA-II-ADO as an example.

Consider a population of four nondominated individuals in a particular generation,

including A (10, 17), B (1, 18), C (11, 6) and D (18, 2) in a bi-objective minimization

scenario, as shown in Figure 3.2.
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Figure 3.2: Four nondominated individuals in a bi-objective minimization scenario

Table 3.1 shows the ranking assignment results of an individual A in a typical bi-

objective minimization scenario. In particular, the columns f1 and f2 represent two

objective values of each individual, while columns f̃1 and f̃2 are the corresponding

normalized objective values of each individual respectively. The column f con(·) is the

aggregation-based fitness value of an individual, which is calculated by simply summing

up all normalized objective values of that individual. The column Comparison lists the

ADO-based comparison results for two individuals. If there is an individual x ADO-

dominates individual y, namely x ≺ADO y, y will be assigned with a rank equal to the

rank of x adding 1, which will be recorded in column Rank. By doing so, an individual

with better convergence will be assigned a lower value, and it will be more likely to

survive into the next generation.

In the fitness assignment process of NSGA-II-ADO, a lower rank of an individual

implies better fitness degree. Considering two nondominated individuals A and C in

Table 3.1, A, which is ADO-dominated by C (CD(C, A) = 0.84 − k × 1.47 < 0,

CD(A, C) = 1.47 − k × 0.84 > 0 assuming k = 0.6), will have a larger rank value

than C (the rank value of A (2) equals to the rank value of C (1) adding 1 [ see Table
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Table 3.1: The ranking assignment results of an individual in a typical bi-objective
minimization scenario by using the ADO.

Individuals (f1, f2) f̃1 f̃2 fcon(·) Comparison Rank

A (10, 17) 0.53 0.94 1.47 − 2

B (1, 18) 0 1 1 − 1

C (11, 6) 0.59 0.25 0.84 C ≺ADO A 1

D (18, 2) 1 0 1 − 1

3.1 ]). Namely, A has worse fitness degree compared with C and it is more likely to be

removed from the population in the following evolutionary process. In this scenario,

individual A is a dominance resistant solution since there are two individuals B and

C performing significantly better than individual A in one objective but slightly worse

than A in the other objective. Therefore, this implies ADO could distinguish between

dominance resistant solutions.

In order to explore the performance of ADO, we then consider four typical situa-

tions of individual A in a population for a bi-objective minimization problem, namely,

(a) good convergence and diversity, (b) good convergence and poor diversity, (c) poor

convergence and good diversity, and (d) poor convergence and diversity, as summa-

rized in Figure 3.3. It should be noted that these individuals in the population are

nondominated with each other.
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(a) Good proximity and diversity (b) Poor proximity, good diversity

(c) Good proximity, poor diversity (d) Poor proximity and diversity

Figure 3.3: Four situations of individual A in a population for a bi-objective minimiza-

tion problem.

Tables 3.2–3.5 show the ranking assignment results of individual A of four typical

bi-objective minimization scenarios, which correspond to four situations described in

Figure 3.3, namely: (a) good convergence and diversity, (b) good convergence and

poor diversity, (c) poor convergence and good diversity, and (d) poor convergence and

diversity.
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Table 3.2: The ranking assignment results of an individual A using the ADO (k =

0.5) in a typical bi-objective minimization scenarios that has good convergence and

diversity.

Individuals (f1, 2f2) f̃1 f̃2 fcon(·) Comparison Rank

A (5, 8) 0.24 0.41 0.65 − 1

B (1, 18) 0 1 1 − 1

C (12, 5) 0.65 0.24 0.89 − 1

D (18, 1) 1 0 1 − 1

Table 3.3: The ranking assignment results of an individual A using the ADO (k = 0.5)

in a typical bi-objective minimization scenarios that has good convergence and poor

diversity.

Individuals (f1, f2) f̃1 f̃2 fcon(·) Comparison Rank

A (3, 3) 0.12 0.12 0.24 − 1

B (1, 18) 0 1 1 B ≺ADO A 2

C (2, 4) 0.06 0.18 0.24 − 1

D (4, 2) 0.18 0.06 0.24 − 1

E (18, 1) 1 0 1 E ≺ADO A 2

Table 3.4: The ranking assignment results of an individual A using the ADO (k = 0.6)

in a typical bi-objective minimization scenarios that has poor convergence and good

diversity.

Individuals (f1, f2) f̃1 f̃2 fcon(·) Comparison Rank

A (17, 17) 0.94 0.94 1.88 − 2

B (1, 18) 0 1 1 B ≺ADO A 1

C (18, 1) 1 0 1 C ≺ADO A 1
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Table 3.5: The ranking assignment results of an individual A using the ADO (k =

0.6) in a typical bi-objective minimization scenarios that has poor convergence and

diversity.

Individuals (f1, f2) f̃1 f̃2 fcon(·) Comparison Rank

A (16, 16) 0.88 0.88 1.76 − 2

B (1, 18) 0 1 1 B ≺ADO A 1

C (15, 17) 0.82 0.94 1.76 B ≺ADO C 2

D (17, 15) 0.94 0.82 1.76 B ≺ADO D 2

E (18, 1) 1 0 1 E ≺ADO A 1

As shown in Tables 3.2 and 3.3, an individual with either both good convergence

and diversity, or good convergence but poor diversity will be assigned a low-rank value.

Although the two types of individuals have a high possibility of being preserved in

the same front, this issue could be solved by the diversity maintenance techniques of

different Pareto-based algorithms. In addition, the individuals with poor convergence

will be assigned a high-rank (poor) value during the search process no matter how

well the performance of diversity is [see Tables 3.4 and 3.5], thus being more likely

to be removed during the evolutionary process. Overall, by incorporating ADO, more

selection pressure could be provided among nondominated individuals in Pareto-based

algorithms, and individuals with both good convergence and diversity [see Figure 3.3

(a)] have the highest chance to survive in the next generation.

Finally, this section examines the ability of ADO for Pareto-based algorithms in

dealing with the ADP phenomenon caused by dominance resistant solutions. Figure

3.4 gives the comparative results of the NSGA-II-SIP (NSGA-II based on the SIP

method [64]) and NSGA-II-ADO (NSGA-II embedded with the ADO method) by plot-

ting the changes of the number of individuals in the first front in each generation

in one run. Clearly, in NSGA-II-ADO, the individuals that belong to the first front

continuously change during the evolutionary process, whereas in NSGA-II-SIP all in-

dividuals of the population belong to the first front after a few generations. This could
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be fully attributed to the incorporation of the proposed fitness assignment strategy,

which can continuously facilitate the convergence of the population during the evolu-

tionary process. Therefore, it indicates that the proposed ADO could overcome the

ADP phenomenon of Pareto-based algorithms to some extent.
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(a) NSGA-II-SIP (b) NSGA-II-ADO

Figure 3.4: The number of individuals in the first front in each generation in one typical

run of (a) NSGA-II-SIP (b) NSGA-II-ADO on the feature model - Drupal, respectively.

Population size is 100.

3.3.2 Mating Selection with Constraint Handling

In mating selection, a binary tournament selection strategy based on the dominance

relation and density information is often used to select promising individuals from the

current population for reproduction. In NSGA-II-ADO, mating selection is enhanced

by considering four criteria, namely the number of constraint violations (NCV), Pareto

dominance, ADO, and crowding distance. Because the search space for SPLs includes a

large number of constraints, a constraint handling strategy is introduced by taking into

account NCV as the first criterion to check. In addition, the convergence (evaluated

by Pareto dominance and ADO) and diversity information (evaluated by crowding

distance) of individuals are considered. Algorithm 3.2 gives a detailed procedure of
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this binary tournament selection in NSGA-II-ADO.

Algorithm 3.2 Mating selection(P )
Require: individuals a, b randomly chosen from the population
1: Q← ∅ /* New population set for crossover and mutation*/
2: if NCV (a) < NCV (b) then
3: Q← Q ∪ {a}
4: else if NCV (b) < NCV (a) then
5: Q← Q ∪ {b}
6: else
7: if a ≺ b then
8: Q← Q ∪ {a}
9: else if b ≺ a then

10: Q← Q ∪ {b}
11: else
12: if a ≺ADO b then
13: Q← Q ∪ {a}
14: else if b ≺ADO a then
15: Q← Q ∪ {b}
16: else
17: if crowd distance(a) > crowd distance(b) then
18: Q← Q ∪ {a}
19: else if crowd distance(b) > crowd distance(a) then
20: Q← Q ∪ {b}
21: else
22: if random(0, 1) < 0.5 then
23: Q← Q ∪ {a}
24: else
25: Q← Q ∪ {b}
26: end if
27: end if
28: end if
29: end if
30: end if
31: return Q

In the binary tournament mating pool, two individuals are randomly selected from

the current population. If an individual has fewer constraint violations than the other,

then the former is chosen (lines 2–5). For individuals that have the same number

of constraints, then the one that dominates the other is preferred (lines 7–10). If

the two individuals are nondominated with respect to each other, the one that ADO-

dominates the other wins the tournament (lines 12–15). If these both individuals are

ADO-nondominated to each other, then crowding distance is used for comparison (lines

17–20), and the individual with the larger crowding distance value (i.e., the individual

is located in a sparse area) is chosen. When crowding distance still cannot distinguish

between the two individuals, one of them will be randomly chosen for reproduction
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(lines 22–25).

3.3.3 Environmental Selection with Constraint Handling

Environmental selection preserves a group of best solutions in the population found

so far as the parent population for the next generation. The proposed environmental

selection in NSGA-II-ADO adopts a three-level-sorting method to assign rank values

to individuals in the population, with aim of promoting convergence of the population

and handling the constraints included in SPLs. The three-level-sorting method is based

on three criteria: the number of constraint violations as the primary criterion, followed

by Pareto-dominance and ADO.

Algorithm 3.3 illustrates the framework of the environmental selection procedure

in NSGA-II-ADO for many-objective optimization. First, the combined set (denoted

as S) of the current population and their offspring population is normalized, and the

aggregation value of each individual in S is calculated (line 2). Then, the three-level-

sorting is performed to divide the solution set S into l fronts (line 3).

Algorithm 3.3 Environmental selection(S)

Require: S (combined set of the current population and their offspring population), N (pop-
ulation size)

1: Q← ∅ /* Parent population for the next generation */
2: Normalization(S)
3: (F1, F2, . . . , Fl)← Three level sorting(S)
4: while |Q|+ |Fi| < N do
5: Q← Q ∪ Fi /* Add ith front in the parent population Q */
6: i← i+ 1 /* Check the next front for inclusion */
7: end while
8: if |Q| = N then
9: return Q

10: else
11: sort(Fi,≺n) /* Sort front Fi in descending order using ≺n */
12: Q← Q ∪ Fi[ 1 : (N − |Q|) ] /* Add first (N − |Q|) individuals from Fi */
13: end if

14: return Q

The three-level-sorting method can be seen as a complex nondominated sorting

method proposed in NSGA-II. It works as follows: (1) the population S is sorted

according to the number of constraint violations, and S is divided into different fronts,

where each front contains the same number of constraint violations. Thus, the one
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with fewer constraint violations belongs to the first layer. Those with the second fewest

number of violated constraints belong to the second layer, and so on. The purpose of

this is to quickly drive the population to feasible regions, namely finding valid products

(or valid solutions) and keeping those valid solutions in the next generation. (2) For

those individuals with the same number of violated constraints in front Fa, Pareto-

dominance criterion is activated to further classify front Fa into n nondominated fronts

(F ′a, F
′
a+1, . . . , F ′a+n). (3) For those nondominated individuals in new front F ′a, ADO

is applied to further distinguish them and divide front F ′a into m AD-nondominated

fronts (F ′′a , F ′′a+1, . . . , F ′′a+m).

After performing the three-level-sorting, l fronts (F1, F2, . . . , Fl) are selected one

by one to form the next-generation population Q. Individuals which belong to the

first front (F1) are the most promising individuals in S. If the size of F1, denoted

as |F1| is equal to population size N , all individuals in F1 are chosen. In case that

|F1| is smaller than population size N , the remaining individuals in S are chosen from

the subsequent fronts according to the front rank. That is, NSGA-II-ADO turns to

the second front (F2) for choosing the remaining individuals, followed by adding the

individuals from the third front (F3), and so on (lines 4–7). By doing this, individuals

with a lower number of constraint violations would always be included first to form

the new population. Thus, NSGA-II-ADO could quickly search for valid individuals

(product configurations in an SPL).

If the number of individuals in the last included front (denoted as Fi) is larger than

N − |Q|, then a crowded-comparison operator denoted as ≺n (the same in NSGA-II)

is applied to sort individuals in |Fi| in descending order (line 11). After that, the first

(N − |Q|) individuals in sorted Fi are chosen to fill up the population for the next

generation (line 12).

3.4 Experimental Results

In this section, the improvement for Pareto-based evolutionary algorithms by using

three enhanced evolution operators is investigated. First, this section introduces the
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experimental design, which includes the description of subject models and optimiza-

tion objectives, competitor algorithms, the basic parameter settings and system de-

scription, and performance metrics. Next, this section compares NSGA-II-ADO and

SPEA2+SDE-ADO with four different types of MOEAs based on SIP method. After

that, this section discusses the findings on time comparison, hypervolume comparison,

and parameter sensitivity.

3.4.1 Experimental Design

SPL Feature Model

The characteristics of nine SPL feature models used in this empirical study are sum-

marized in Table 3.6. For each feature model, it presents the number of features, the

number of fixed features (core and parents features with the mandatory or alterna-

tive relationship), the number of Cross-Tree Constraints (CTC), and the number of

optimization objectives (Objectives).

Table 3.6: SPL feature models summary.

Feature models # Total features #Fixed features #CTC #Objectives

BerkeleyDB [125] 13 3 0 4

ERS [43] 36 11 0 4

Web Portal [109] 43 15 6 4

E-Shop [83] 290 88 21 4

Drupal [117] 48 9 21 4

Amazon EC2 [49] 79 20 0 4

Random-10000 [110] 10,000 4,078 0 4

DrupalReal [117] 48 9 21 7

AmazonEC2Real [49] 79 20 0 7

These SPL feature models were obtained from the recently published SPL literature.

The BerkeleyDB model describes the variability of a database system. ERS is a feature

model for an Emergency Response System. Two feature models Web Portal and E-Shop

are from the widely used SPLOT feature model repository [110]. The Web portal is the

feature model for a web portal product line. The E-Shop is the largest feature model
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in SPLOT with 290 features. The Drupal and Amazon EC2 are two recently published

feature models, which represent the variability of open-source web content management

framework and Amazon Elastic Computing Service, respectively. The Random-10000

model is a randomly generated feature model with 10, 000 features, which is the largest

model in the experiments to evaluate the scalability of proposed ADO in Pareto-based

algorithms. Two feature models DrupalReal and AmazonEC2Real are derived versions

of Drupal and Amazon EC2 with realistic attribute values, respectively.

In Table 3.6, for those feature models with four optimization objectives, the follow-

ing two optimization objectives are considered to be maximized [121, 62, 64]:

• Richness of features. How many features that are selected in a configuration.

• Features that were used before. How many features that were used before in a

configuration, i.e., the number of “true” for this attribute.

In addition, two objectives should be minimized [121, 62, 64]:

• Known defects. How many known defects in a configuration.

• Cost. The total cost of a configuration.

For DrupalReal with seven objectives, the following three optimization objectives

should be maximized [64]:

• The richness of features. How many features that are selected in a configuration.

• Test assertions. How many test assertions of each feature.

• The number of reported installations. How many times a feature has been in-

stalled as reported by Drupal users.

In addition, four objectives should be minimized [64]:

• The number of lines of code.

• Cyclomatic complexity. How many independent logic paths used in a program.

• The number of developers. How many developers is involved in the development

of each DrupalReal feature.
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• The number of changes. How many changes are made in each feature.

For AmazonEC2Real with seven objectives, five optimization objectives should be

maximized [64]:

• The richness of features. How many features that are selected in a configuration.

• Instance.cores. How many cores of the instance. Randomly generated value

between 1 and 32.

• Instance.ecu. The Amazon EC2 Compute Unites. Randomly generated value

between 0 and 108.

• Instance.ram. The memory of the instance. Randomly generated value between

0 and 250.

• Instance.ssBacked. If the instance storage is SSD backed. Boolean.

In addition, two objectives should be minimized [64]:

• EC2.costMonth. Randomly generated value between 0 and 20, 000.

• Instance.costHour. Randomly generated value between 0 and 18.

Finally, many recent studies also consider correctness (the number of violated con-

straints in a configuration) as an optimization objective that should be minimized.

However, in the experiments, correctness is used to handle constrained search space of

feature models rather than an objective (see more explanations in Sections 3.3.2 and

3.3.3).

Representation

A representation (called novel encoding) introduced in [64] is to represent a product

as a binary string. Representation of products is not the main contribution of this

chapter, but it does impact the performance of search techniques. Compared with

some other representations [121, 120, 62], the novel encoding is able to avoid producing

invalid solutions and reduce search space because it simplifies the representation of a

product.
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Competitor Algorithms and Parameter Settings

Since there was no clear winner of MOEAs using the SIP method [64], The modified

algorithms (i.e., NSGA-II-ADO and SPEA2+SDE-ADO) were compared with four

SIP-based MOEAs (i.e., NSGA-II-SIP, SPEA2+SDE-SIP, IBEA-SIP, and MOEA/D-

TCH-SIP) taken from [64]. To facilitate a fair comparison with the advances for solving

optimal feature selection problem in SPLs, settings used in the experiments were the

same as those in [64]. Settings for all the MOEAs are:

• 30 runs for each algorithm per feature model to decrease the impact of their

stochastic nature.

• The termination criterion was a predefined maximum of 50, 000 evaluations.

• For crossover and mutation operators, uniform crossover and bit-flip mutation

were used, with crossover and mutation probability set to 1.0 and 1/n, respec-

tively, where n represents the number of decision variables.

There are some special configurations specific to certain MOEAs.

• The size of population for NSGA-II, SPEA2+SDE, and IBEA, was set to 100,

while the size of population for MOEA/D-TCH was set to 126 and 120 for four-

and seven-objective optimization problems, respectively.

• We set the scaling factor k in IBEA to 0.05 as suggested in the original paper [162],

and the neighborhood size to 10 percent of the population size in MOEA/D-TCH

as suggested in the original paper [156].

• The parameter used in the proposed ADO was set to 0.5 for both NSGA-II-ADO

and SPEA2+SDE-ADO.

All algorithms were implemented in C and all the experiments were conducted on

an Intel(R) Core(TM)i5−2500 CPU @ 3.30GHz with 4 GB RAM, running on Windows

7.
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Performance Assessment

Four performance metrics were adopted to evaluate the performance of algorithms.

• VN - the number of runs for each algorithm that returns at least one valid solution

(i.e., without violating any constraints) in the final solution set [64]. This is used

to evaluate the ability of an algorithm to find valid products from a feature

model. The run with invalid solutions are discarded in the experiments, since

invalid product configuration is useless in practice.

• VP - the proportion of valid distinct solutions in the final population [64]. A high

value of VP is preferred, as more options are provided to software engineers.

• TT100% - the time to reach 100% valid solutions in a population. This quality

indicator was first introduced by Sayyad et al. [120]. It measures the speed of

convergence to a large number of points within the Pareto front that have no

violations. It will be calculated when the VP values for different algorithms are

the same.

• Hypervolume (HV), as a popular performance metric in evolutionary many-

objective optimization, was used to evaluate how well a set of solutions fulfils

the optimization objectives in terms of both convergence and diversity. It is suit-

able for practical many-objective optimization problems since it does not need a

reference set to represent the Pareto front. It has been introduced in Chapter

2.2.3 in detail. Following the suggestions in [99], in this experiments, all the ob-

jective values of solutions were normalized to [0, 1] according to different ranges

of a particular objective. Furthermore, the reference point was set to (1.0, 1.0,

. . . , 1.0), which is constructed with the worst value on each objective, so-called

Nadir point. A larger HV value is preferred because it reflects better quality of A

in terms of convergence, diversity, and uniformity. Note that only those obtained

nondominated solutions with VP of 100% were used to calculate HV.
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3.4.2 Performance Comparison

Table 3.7 shows the mean results of six algorithms on all the nine feature models in

terms of VN (\30), VP, the mean of TT100%, and the mean and standard deviation

of HV metric among all the 30 runs, respectively. For each test feature model, among

different algorithms, the algorithm that has the best result based on the specific met-

ric is shown in bold. To investigate the advantages of the proposed algorithms in a

statistical sense, Wilcoxon’s rank-sum test [161] was performed between the two pro-

posed algorithms (NSGA-II-ADO and SPEA2+SDE-ADO) and each of the competitor

algorithms over each feature model at a 0.05 significance level. The symbols a, b, c

indicate that the result of the algorithm in the corresponding column is significantly

outperformed by NSGA-II-ADO, SPEA2+SDE-ADO, and both NSGA-II-ADO and

SPEA2+SDE-ADO, respectively.

Usually, only valid products are useful in practice, and thus, these algorithms are

first distinguished by their VN values and VP values (when some algorithms had the

best VN). The larger value of VN indicates that an algorithm could provide more runs

that return valid products than other algorithms. The larger value of VP means that

more valid products are provided for software engineers. The run with no one valid

product (i.e., 100 invalid solutions returned by an algorithm) will be discarded in the

experiments. As can be seen in Table 3.7, almost all algorithms could obtain valid

solutions (VN of 30 and VP of 100%) for all feature models (both with four and seven

objectives). One exception is IBEA-SIP, which only returned valid solutions with a VP

value of 100% in 12/30 runs for AmazonEC2Real. In addition, none of the algorithms

could return valid solutions in all 30 runs for Random-10000. SPEA2+SDE-ADO

returned valid solutions in 29 out of 30 runs (VN = 29), followed by NSGA-II-ADO

and SPEA2+SDE-SIP (VN = 27), IBEA-SIP (VN = 25), NSGA-II-SIP (VN = 19),

and MOEA/D-TCH-SIP (VN = 14).

The success of returning a large number of valid products in a search may be

mainly attributed to 1) the usage of the recently developed novel encoding in [64],

which could reduce the search space for producing invalid products, and 2) constraint

handling strategies in both mating selection and environmental selection, which prefer
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the solutions with less number of constraint violations. It is interesting to investigate

the influence of representation method and the influence of constraint handling strategy

in the future.

Due to the similar good performance in terms of VN and VP, the TT100% met-

ric is used to further compare the execution time of these algorithms. Statistically,

both NSGA-II-ADO and SPEA2+SDE-ADO perform better than SPEA2+SDE-SIP

and IBEA-SIP on all tested feature models. MOEA/D-TCH-SIP is shown to be the

fastest algorithm for seven of the nine feature models. NSGA-II-SIP is the second

fastest algorithm for eight of the nine feature models and is the fastest algorithm for

AmazonEC2Real. It should be noted that the execution of NSGA-II-ADO is slower

than NSGA-II-SIP for almost all feature models but is the fastest algorithm for the

largest feature model Random-10000, which only takes under an average of 29 sec-

onds. In addition, although SPEA2+SDE-ADO performs worse than those competi-

tor algorithms except IBEA-SIP in terms of TT100%, the longest execution time of

SPEA2+SDE-ADO is under an average of 37 seconds for the largest feature model in

the experiments. This indicates ADO is an efficient method in searching valid product

configurations in SPLs.

Next, the quality of obtained solutions is investigated by comparing the HV metric

values of algorithms. As shown in Table 3.7, the proposed SPEA2+SDE-ADO is the

most effective tested algorithm with regard to the best results in eight test feature

models out of nine (apart from ERS). The proposed NSGA-II-ADO performs slightly

worse than SPEA2+SDE-ADO on those feature models (BerkeleyDB, WebPortal, E-

Shop, Drupal) with four objectives, but significantly better than the four SIP-based

MOEAs. Statistically, the proportion of the tested feature models where NSGA-II-

ADO outperforms NSGA-II-SIP, SPEA2+SDE-SIP, IBEA-SIP, and MOEA/D-TCH-

SIP is 6/9, 4/9, 8/9, and 6/9, respectively. Furthermore, the proportion of the tested

feature models where SPEA2+SDE-ADO outperforms NSGA-II-SIP, SPEA2+SDE-

SIP, IBEA-SIP, and MOEA/D-TCH-SIP is 8/9, 5/9, 9/9, and 9/9, respectively.

Table 3.8 summarizes the HV differences between NSGA-II-ADO and NSGA-II-

SIP, and the differences between SPEA2+SDE-ADO and SPEA2+SDE-SIP on nine
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feature models. Positive values of HV indicate improvements, while negative values of

HV indicate the opposite.

Table 3.8: HV differences between MOEAs based on the proposed ADO method and
that based on the SIP method on nine feature models.

Feature models NSGA-II (%) SPEA2+SDE (%)

BerkeleyDB (4) 5.25 5.10

ERS (4) -0.99 -0.94

WebPortal (4) 32.52 23.55

E-Shop (4) 31.39 16.43

Drupal (4) 53.96 39.38

Amazon EC2 (4) -1.03 0.48

Random-10000 (4) 16.44 6.06

DrupalReal (7) 1.62 1.96

AmazonEC2Real (7) 6.03 1.63

As seen in Tables 3.7 and 3.8, the proposed NSGA-II-ADO performs better than

NSGA-II-SIP in seven out of nine tested feature models (with statistical significance

on six feature models). The best performance is on Drupal with an increase of 53.96%,

followed by WebPortal (32.52%), E-Shop (31.39%), and Random-10000 (16.44%). For

feature models with seven objectives, NSGA-II-ADO could also obtain better results

with 1.62% and 6.03% improvement for DrupalReal and AmazonEC2Real, respectively.

Although there is a decrease of 0.99% on ERS and 1.03% on Amazon EC2, it could be

seen as similar results due to the randomness. In addition, the proposed SPEA2+SDE-

ADO performs better than SPEA2+SDE-SIP in eight out of nine tested feature models

(with statistical significance on five feature models). The largest percent of HV increase

is 39.38% and only a very small deterioration (0.94%) on ERS. In summary, compared

with the SIP method, the integration of ADO can help NSGA-II and SPEA2+SDE

to generally improve the quality of obtained solutions for seven and eight out of nine

feature models in this experiment, respectively.

Figures 3.5–3.13 plot the distribution of the HV values of all 30 runs for all algo-

rithms on each feature model. The experimental results indicate that the ADO has

clear advantages over SIP for the nine experimental subjects, ADO can largely improve
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the performance of Pareto-based algorithms to find high-quality solutions. Compared

with NSGA-II and SPEA2+SDE based on the SIP method, using ADO could obtain

more high-quality solutions, which is evident from the HV values shown in Table 3.7.

In particular, SPEA2+SDE-ADO is the most effective MOEA on three feature models

that proved to be most challenging for search, including those with a larger number of

objectives (Drupal and Amazon with realistic attribute values) and the larger randomly

generated model (Random-10000).
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Figure 3.5: HV value comparison of six algorithms on the feature model - BerkeleyDB.
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Figure 3.6: HV value comparison of six algorithms on the feature model - ERS.
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Figure 3.7: HV value comparison of six algorithms on the feature model - WebPortal.
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Figure 3.8: HV value comparison of six algorithms on the feature model - E-Shop.
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Figure 3.9: HV value comparison of six algorithms on the feature model - Drupal.
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Figure 3.10: HV value comparison of six algorithms on the feature model - Amazon

EC2.
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Figure 3.11: HV value comparison of six algorithms on the feature model - Random-

10000.
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Figure 3.12: HV value comparison of six algorithms on the feature model - DrupalReal.
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Figure 3.13: HV value comparison of six algorithms on the feature model - Ama-

zonEC2Real.
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3.4.3 Parameter Sensitivity Analysis

To evaluate the sensitivity of the parameter k in ADO, this section investigates how

much the HV value fluctuates with the increase of the value of parameter k in the pre-

defined intervals. Here, the results for NSGA-II-ADO on six feature models (Berke-

leyDB, ERS, WebPortal, E-Shop, Drupal, and Amazon EC2) with four objectives are

shown.

In Figure 3.14, relative changes of the HV values corresponding to the increases of

k from 0.1 to 0.9 with a step of 0.1 for 30 independent runs and 50, 000 evaluations are

plotted. In Figures 3.14 (a)–(f), almost all of the feature models reach roughly highest

HV values when the parameter k value is between 0.5–0.6, except for BerkeleyDB in

Figure 3.14 (a) with the value of k is 0.4, and E-Shop in Figure 3.14 (d) with the value of

k is 0.8. In addition, for most of the feature models, the average of HV values is sharply

reduced when the value of k exceeds 0.6. However, there is one exception E-Shop, as

shown in Figure 3.14 (d), with its average HV value rising significantly with the k

value grows from 0.3 to 0.8, followed by a significant decrease. WebPortal, as shown

in Figure 3.14 (c) and Drupal, as shown in Figure 3.14 (e) have similar performance

in that their average HV values change little with the increase of k from 0.1 to 0.3,

and then a significant improvement of HV values with the increase of k from 0.3 to

0.5, which followed by a little fluctuate between range k from 0.5 to 0.6, and finally a

significant decrease between range k from 0.6 to 0.9.

In general, the experiments in this section suggest that k should be set within a

range of 0.5 to 0.6 in order to achieve a good balance between convergence and diversity.

This is because small values have little influence on the final solutions set, while large

value may lead to a subpopulation set that is limited in local optimal regions of the

Pareto front. Although the HV value fluctuates a little between 0.5 and 0.6, the changes

are small and the sensitivities are at acceptable levels. NSGA-II-ADO seems robust

on the parameter k in the suggested ranges. High-quality solutions with regard to HV

metric obtained by NSGA-II-ADO do not fluctuate much with the value of parameter

k changes in the suggested range.
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(a) BerkeleyDB (b) ERS

(c) WebPortal (d) E-Shop

(e) Drupal (f) Amazon EC2

Figure 3.14: The curves of HV with regard to k values varying from 0.1 to 0.9 with a

step of 0.1. The value of HV for each feature model is an average value of 30 independent

runs generated by proposed NSGA-II-ADO.
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3.5 Summary

The optimal feature selection problem, which can be seen as a many-objective opti-

mization problem with a constrained search space, poses great challenges for multi-

objective evolutionary algorithms. In this chapter, a new dominance relation, called

aggregation-based dominance (ADO) for Pareto-based algorithms was proposed to en-

hance the search for high-quality solutions with respect to correctness and diversity in

a reasonable amount of execution time. The proposed ADO was integrated into two

widely Pareto-based algorithms (i.e., NSGA-II and SPEA2+SDE), resulting in two new

algorithms NSGA-II-ADO and SPEA2+SDE-ADO.

This chapter carried out experiments to compare these two algorithms with four

multi-objective evolutionary algorithms based on the state-of-the-art SIP method on

nine different SPLs with up to 10, 000 features and two real-world SPLs with up to

seven objectives. The experiments have shown the effectiveness and efficiency of both

ADO-based NSGA-II and SPEA2+SDE. First, both algorithms could generate 100%

valid solutions for all feature models. Second, the performance of both algorithms was

improved as measured by the hypervolume metric in 7/9 and 8/9 feature models. Third,

even for the largest tested feature model with 10, 000 features, it required under 40 s

on a standard desktop to find 100% valid solutions in a single run of both algorithms.

In summary, this work has inherited strengths from existing Pareto-based algo-

rithms while managing to address the weakness in dealing with complex SPL selection

optimization problems. In particular, ADO is an effective method that is capable of

accelerating the convergence information in order to enhance the selection pressure

towards the Pareto front by reducing the detrimental impact caused by the active di-

versity promotion phenomenon. By embedding ADO into Pareto-based algorithms,

these algorithms can achieve higher effectiveness with regard to convergence and diver-

sity when solving many-objective optimization problems. Despite the above, this work

does not limit itself to tackle a specific many-objective optimization problem. The

next chapter attempts to enhance the effectiveness of leading evolutionary algorithms

in order to tackle more generic cases.
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Chapter 4

Angle-based Crowding Degree

Estimation for Many-Objective

Optimization

This chapter explores how the effectiveness of evolutionary algorithms may be enhanced

for many-objective optimization. In particular, this chapter focuses on a very popular

and widely cited method called BiGE [96], which adopts a meta-objective optimization

approach. BiGE (Bi-Goal Evolution) maps solutions from the original high-dimensional

objective space into a bi-goal space of proximity and crowding degree has received

increasing attention in the area. It has many distinctive advantages, however, it has

been found that BiGE tends to struggle on a class of many-objective problems where

the search process involves dominance resistant solutions, namely, those solutions with

an extremely poor value in at least one of the objectives but with (near) optimal values

in some of the others.

In this chapter, an angle-based crowding degree estimation method for BiGE (de-

noted as aBiGE) is proposed to replace distance-based crowding degree estimation in

BiGE. The rest of the chapter is organized as follows. In Section 4.1, the introduction of

this work is given. Section 4.2 presents angle-based crowding degree estimation method

and its incorporation with BiGE. The experimental results are detailed in Section 4.3.
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Section 4.4 summarizes this chapter.

4.1 Introduction

Recently, a meta-objective optimization algorithm, called Bi-Goal Evolution (BiGE) [96]

for many-objective optimization problems was proposed and has become the most cited

paper in the Artificial Intelligence journal since its publication in November 2015 ac-

cording to the Web of Science. BiGE is inspired by two observations in many-objective

optimization: 1) there is an aggravating conflict between proximity and diversity as

the dimensions of the objective space increase, and 2) the Pareto dominance relation is

not effective in solving many-objective optimization problems. In BiGE, two indicators

are used to estimate the proximity and crowding degree of solutions in the population,

respectively. By doing so, BiGE maps solutions from the original objective space to a

bi-goal space and deals with the two goals by the nondominated sorting. It is able to

provide sufficient selection pressure towards the Pareto front, regardless of the number

of objectives that the optimization problem has. Despite its attractive features, BiGE

may not be able to handle dominance resistant solutions (DRSs) during the search

process. DRSs are far away from the main population and always ranked as good solu-

tions by BiGE, thus hindering the evolutionary progress of the population. To address

this issue, this chapter proposes an angle-based crowding degree estimation method for

BiGE (denoted as aBiGE).

4.2 The Proposed Algorithm: aBiGE

4.2.1 A Brief Review of BiGE

Algorithm 4.1 shows the basic framework of BiGE. First, N individuals are randomly

generated to initialize a population. Then, the proximity and crowding degree estima-

tion are performed for all individuals in the population. Next, the mating selection

is implemented to select the promising individuals from the current population based

on the proximity and crowding degree values. Afterward, variation operators (e.g.,
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crossover and mutation) are employed to those selected individuals (i.e., the parents)

to produce new individuals (i.e., the offspring). Finally, the environmental selection is

performed to reduce the expanded population of parents and offspring to N individuals

as the new population for next generation.

Algorithm 4.1 Basic Framework of BiGE [96]

Require: P (current population), N (population size)

1: P ← Initialization(P )

2: while termination criterion not fulfilled do

3: Proximity Estimation(P )

4: Crowding Degree Estimation(P )

5: P ′ ←Mating Selection(P )

6: P ′′ ← V ariation(P ′)

7: Q← P ′⋃P ′′

8: P ← Environmental Selection(Q)

9: end while

10: return P

In particular, a simple aggregation function is adopted to estimate the proximity

of an individual. For an individual x in a population, its aggregation value (denoted

as fp(x)) is calculated by the sum of each normalized objective value in the range [0,

1] (line 3 in Algorithm 4.1), formulated as [96]:

fp(x) =

M∑
j=1

f̃j(x). (4.1)

where f̃j(x) denotes the normalized objective value of individual x in the jth objec-

tive, and M represents the number of objectives. A smaller fp value of an individual

usually indicates better performance on proximity. In particular, for a DRS, it is more

likely to obtain a significantly large fp value in comparison with other individuals in a

population.

In addition, the crowding degree of an individual x in a population P (line 4 in
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Algorithm 4.1) is defined as follows [96]:

fc(x) = (
∑

y∈P,x 6=y

sh(x,y))1/2. (4.2)

where sh(x,y) stands for a sharing function between a pair of individuals x and y in

the objective space:

sh(x,y) =


(0.5(1− d(x,y)

r
))2, if d(x,y) < r, fp(x) < fp(y)

(1.5(1− d(x,y)
r

))2, if d(x,y) < r, fp(x) > fp(y)

rand(), if d(x,y) < r, fp(x) = fp(y)

0, otherwise

(4.3)

where r represents the radius of a niche, adaptively calculated by r = 1/ M
√
N (N is

the population size and M is the number of objectives), and rand() denotes a function

that randomly assigns either sh(x,y) = (0.5(1 − d(x,y)/r))2 and sh(y,x) = (1.5(1 −

d(x,y)/r))2 or sh(x,y) = (1.5(1 − d(x,y)/r))2 and sh(y,x) = (0.5(1 − d(x,y)/r))2.

Note that the lower the fc value (i.e., crowding degree) of the individual, the better

the diversity performance.

It is observed that BiGE tends to struggle on a class of many-objective optimization

problems where the search process involves DRSs, such as the DTLZ1 and DTLZ3 test

functions (in a well-known benchmark test suite DTLZ [38]). Figure 4.1 shows the

true Pareto front of the eight-objective DTLZ1 and the final solution set of BiGE in

one typical run on the eight-objective DTLZ1 by parallel coordinates. The parallel

coordinates plot is a commonly used visualization tool in many-objective optimization,

which maps a set of solutions in the high-dimensional objective space onto a 2D parallel

coordinates plane. Particularly, Li et al. in [101] systematically explained how to read

many-objective solution sets in the parallel coordinates, and indicated that the parallel

coordinates can partly reflect the quality of a many-objective solution set in terms of

convergence, coverage, and uniformity.
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(a) The true Pareto front (b) The final solution set of BiGE

Figure 4.1: The true Pareto front of the eight-objective DTLZ1 and the final solution

set of BiGE on the eight-objective DTLZ1, shown by parallel coordinates.

Clearly, there are some solutions that are far away from the Pareto front in BiGE,

with the solution set of eight-objective DTLZ1 ranging from 0 to around 450 compared

to the Pareto front ranging from 0 to 0.5 on each objective. Such solutions always have

a poor proximity degree and a good crowding degree (estimated by Euclidean distance)

in bi-objective space (in terms of convergence and diversity), and will be preferred since

there is no solution in the population that dominates them in BiGE. These solutions

are detrimental for BiGE to converge the population to the Pareto front considering

their poor performance regarding convergence. A straightforward method to remove

DRSs is to change the crowding degree estimation method.

4.2.2 Basic Idea

The basic idea of the proposed method is based on some observations of DRSs. Fig-

ure 4.2 shows one typical situation of a non-dominated set with five individuals includ-

ing two DRSs (i.e, A and E) in a bi-objective minimization scenario.
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Figure 4.2: An example that DRSs (A and E) obtain good crowding degrees if esti-

mated by the Euclidean distance but poor crowding degrees if calculated by the vector

angle between two neighbors.

As seen from Figure 4.2, it is difficult to find a solution that dominates DRSs when

estimating the crowding degree of the solutions based on Euclidean distance. Take

individual A as an example, it performs well on objective f1 (slightly better than B

with a near-optimal value) but inferior to all the other solutions on objective f2. It

is difficult to find a solution with a better value than A on objective f1, same as

individual E on objective f2. A and E (with poor proximity degree and good crowding

degree) are considered as good solutions and have a high possibility to survive in the

next generation in BiGE. However, the results would be different if the crowding degree

estimation based on distance is replaced by that based on vector angles. Specifically,

it can be observed that 1) an individual in a crowded area (e.g., B) would have a

smaller vector angle to its neighbor compared to the individual in a sparse area (e.g.,

C), 2) a DRS would have an extremely small value of vector angle to its neighbor,

e.g., the angle between A and B or the angle between E and D. Namely, these DRSs
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would have both poor proximity and crowding degree, and have a high possibility to be

eliminated during the evolutionary process. Overall, vector angles have the advantage

of distinguishing DRSs from other solutions in a population and could be adopted in

the crowding degree estimation.

4.2.3 Angle-based Crowding Degree Estimation

Inspired by the work in [147], a novel angle-based crowding degree estimation method

is proposed and integrated into the BiGE framework (line 4 in Algorithm 4.1), called

aBiGE. Before estimating the crowding degree of an individual, some basic definitions

are first introduced.

Definition 4.2.1 (Norm). For an individual x in a population (i.e., x ∈ P ), its

norm, termed norm(x) in the normalized objective space, is calculated by the following

equation [147]:

norm(x) =

√√√√ M∑
j=1

f̃j(x)2. (4.4)

Definition 4.2.2 (Vector Angles). The vector angle between any two individuals x and

y in a population P is computed as [147]:

anglex→y = arccos

∣∣∣∣ F ′(x) • F ′(y)

norm(x) · norm(y)

∣∣∣∣ . (4.5)

where F ′(x) • F ′(y) is the inner product between F ′(x) and F ′(y) defined as:

F ′(x) • F ′(y) =

M∑
j=1

f̃j(x) · f̃j(y). (4.6)

It is worth mentioning that anglex→y ∈ [0, π/2].

Then, each individual x ∈ P is assigned a vector angle value (θ), which is the

minimum vector angle value between x and another individual in population P , namely,

θ(x) =
{

min
y∈P\{x}

anglex→y | x ∈ P
}
. (4.7)
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In the proposed angle-based crowding degree estimation, once an individual x is

selected, its θ(x) value will be punished in order to strike a balance between diversity

and proximity. Specifically, some important factors are considered:

• The individuals that have more adjacent individuals in a niche should be penal-

ized. In aBiGE, a punishment to an individual x is on the basis of the number

of individuals in the niche having a lower (better) proximity degree than the

individual x (denote as c). The punishment is aggravated with an increase of c.

• To avoid a situation where some individuals have the same θ value, individuals

should be further punished. In aBiGE, another penalty is performed according

to the proportion of the θ(x) to the sum of the θ values of all individuals in the

niche, denoted as p.

Keep the above factors in mind, in aBiGE, the crowding degree (denoted as fa) of

an individual x in a population is defined as follows:

fa(x) =
c+ 1

θ(x) · (p+ 1) +
π

90

. (4.8)

The angle-based crowding degree estimation in aBiGE aims to enhance the selection

pressure on those non-dominated solutions in the population of each generation and

avoid the negative influence of DRSs during the optimization process. It is worth

mentioning that a smaller value of fa is preferred.

4.3 Experimental Results

4.3.1 Experimental Design

To test the performance of the proposed aBiGE on those many-objective optimization

problems where the search process involves DRSs, the experiments were conducted on

nine DTLZ test instances. For each test problem (i.e., DTLZ1, DTLZ3, and DTLZ7),

five, eight, and ten objectives were considered, respectively.
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To make a fair comparison with the state-of-the-art BiGE for MaOPs, settings for

both BiGE and aBiGE are given as follows:

• The size of population for both algorithms were set to 100 for all test problems.

• Each algorithm on each test problem was executed 30 independent runs to reduce

the impact of its randomness.

• The stopping condition of a run was a predefined maximum number of 30, 000

evaluations.

• For crossover and mutation operators, the simulated binary crossover [32] and

polynomial mutation [33] were adopted, with both distribution indexes set to 20.

The crossover and mutation probability were set to 1.0 and 1/n (n is the number

of decision variables), respectively.

Li et al. [96] investigated the effect of the population size on the performance of

six algorithms. In [96], the performance of BiGE remains effective under the scenarios

with different sizes of the population. Other parameters were kept unchanged, in-

cluding the number of generations, and etc. [96]. In this chapter, the settings of the

population size and the stopping criterion of both algorithms in the experiments are

the same as in [96, 152]. For crossover and mutation operators in the experiments, the

crossover probability, the distribution index of crossover, the mutation probability, and

the distribution index of mutation were set based on the conventions [96, 152, 124, 154].

Algorithm performance was assessed by the IGD+ [70] indicator. IGD+ is a modified

version of the inverted generational distance indicator (IGD) [26] (see more details in

Chapter 2.2.3). It has been shown that IGD is not compatible with Pareto dominance

[166, 70]; consequently, DRSs in the solution set could largely affect the evaluation

results. On the other hand, IGD+ can well reflect the quality of a solution set in

terms of both convergence and diversity given the problem’s Pareto front is available,

and overcome the problem from DRSs when these solutions are included in the ref-

erence set [99]. Therefore, IGD+ is well-suited for assessing the performance of the

evolutionary approaches in our comparative study.
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4.3.2 Performance Comparison

Test Problems with DRSs

Table 4.1 shows the mean and standard deviation of IGD+ metric results on nine

DTLZ test instances with DRSs. For each test problem, among different algorithms,

the algorithm that has the best result based on the IGD+ metric is shown in bold. As

can be seen from the table, for many-objective optimization problems with DRSs, the

proposed aBiGE performs significantly better than BiGE on all test instances in terms

of convergence and diversity.

Table 4.1: Mean and standard deviation of the IGD+ metric on nine DTLZ test in-
stances. The best result for each test instance is highlighted in boldface.

Problem Obj. BiGE aBiGE
Mean SD Mean SD

DTLZ1 5 8.4207E-01 3.59E-01 1.1768E-01 3.41E-02
8 1.9350E+00 1.27E+00 1.9495E-01 9.44E-02
10 1.9653E+00 1.36E+00 2.2763E-01 9.57E-02

DTLZ3 5 1.5705E+01 5.87E+00 6.0008E+00 3.50E+00
8 3.3434E+01 1.17E+01 9.6401E+00 6.30E+00
10 3.5720E+01 1.58E+01 1.2780E+01 5.40E+00

DTLZ7 5 4.6666E-01 1.52E-01 3.1701E-01 6.48E-02
8 3.0415E+00 6.03E-01 2.6350E+00 8.59E-01
10 5.6152E+00 7.41E-01 4.0059E+00 4.53E-01

For visual observations, Figures 4.3 and 4.4 show, by parallel coordinates, the so-

lution sets of one run of the two algorithms on the five-objective DTLZ1 and the

five-objective DTLZ7. This run corresponds to the solution set with the closest result

to the average value of IGD+. As shown in Figure 4.3 (a), the solution set obtained

by BiGE has a poor convergence on the five-objective DTLZ1, with the range of its

solution set from 0 to 400 in contrast to the Pareto front ranging from 0 to 0.5 on

each objective. From Figure 4.3 (b), it can be observed that the proposed aBiGE could

converge its solution set to the Pareto front except for a few solutions.
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Figure 4.3: The final solution sets obtained by BiGE and aBiGE on the five-objective
DTLZ1, shown by parallel coordinates.
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Figure 4.4: The final solution sets obtained by BiGE and aBiGE on the five-objective

DTLZ7, shown by parallel coordinates.

For the solutions of the five-objective DTLZ7, the boundary of the first four ob-

jectives is in the range [0, 1], and the boundary of the last objective is in the range

[3.49, 10] according to the formula of DTLZ7. As can be seen from Figure 4.4, all

solutions of the proposed aBiGE appear to converge into the Pareto front. In con-

trast, some solutions (with their objective values beyond the upper boundary in the

5th objective) of BiGE fail to reach the range of the Pareto front. In addition, the

solution set of the proposed aBiGE has better extensity than BiGE on the boundaries.

In particular, the solution set of BiGE fail to cover the region from 3.49 to 6 of the last
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objective, while the solution set of the proposed aBiGE do not cover the range of the

Pareto front below 4 on the 5th objective.

Test Problem without DRSs

Figure 4.5 gives the final solution sets (with the closest results to the average values

of IGD+ among 30 runs) of both algorithms on the ten-objective DTLZ2 in order

to visualize their distribution on the many-objective optimization problems without

DRSs. As can be seen, the final solution sets of both algorithms could reach the range

of the Pareto front (with lower and upper boundary within [0, 1] on each objective), i.e.,

good convergence. Moreover, refer to [101], parallel coordinates in Figure 4.5 partly

reflect that the diversity of the solutions obtained by aBiGE is sightly worse than

that obtained by BiGE. This observation can be assessed by the IGD+ performance

indicator where BiGE obtains a slightly lower (better) IGD+ value than the proposed

aBiGE.
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Figure 4.5: The final solution sets of BiGE and aBiGE on the ten-objective DTLZ2,

shown by parallel coordinates, and their evaluation results by using the IGD+ indicator

(the lower value indicates better performance). (a) BiGE (IGD+ = 2.4319E-01) (b)

aBiGE (IGD+ = 2.5021E-01).

Overall, aBiGE algorithm performs generally better than the original BiGE algo-

rithm on test problems with DRSs in terms of convergence and diversity, even for
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the problem instances with ten objectives. It sometimes performs slightly worse than

BiGE on test problems without DRSs in terms of diversity. One possible explanation

for this is that the crowding degree estimation in aBiGE can reduce the adverse im-

pact of DRSs during the search process, thereby achieving a good balance between

convergence and diversity in many-objective optimization. As such, aBiGE is suitable

for those problems where the search process involves DRSs. Despite the advantages,

for those problems without DRSs, the crowding degree estimation in aBiGE may be

inaccurate since it only considers the distribution of individuals in a niche, while the

crowding degree estimation in aBiGE considers the distribution of individuals within

or outside a niche.

4.4 Summary

In this chapter, an issue of a well-established many-objective evolutionary algorithm

BiGE on the challenges in handling dominance resistant solutions during the search

process has been addressed. An angle-based crowding distance estimation method has

been proposed to replace the distance-based crowding distance estimation method in

BiGE, thus significantly reducing the effect of dominance resistant solutions to the

algorithm.

The effectiveness of the proposed method has been well evaluated on three repre-

sentative problems with dominance resistant solutions. It is nevertheless worth noting

that for problems without dominance resistant solutions the proposed method performs

slightly worse than the original BiGE. After addressing the issue of effectiveness faced

by a well-established many-objective evolutionary algorithm on more generic cases,

efficiency is another important issue in evolutionary many-objective optimization to

tackle. The next chapter addresses the issue of the balance between effectiveness and

efficiency in many-objective optimization by developing a new evolutionary algorithm.
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Chapter 5

Balancing Effectiveness and

Efficiency in Evolutionary

Many-Objective Optimization

In the past two chapters, the effectiveness of many-objective evolutionary algorithms

has been addressed by showing how it can be achieved on a challenging real-world

problem as well as how this type of algorithms may be further enhanced in general.

However, some effective algorithms may become very computationally expensive with

the increase of the number of objectives, e.g., certain indicator-based algorithms. In

this chapter, both effectiveness and efficiency are addressed by developing a novel many-

objective evolutionary algorithm that is able to handle various many-objective problems

without any additional parameter. This chapter has conducted extensive experiments

and found that the proposed algorithm outperforms 11 state-of-the-art many-objective

evolutionary algorithms on the majority of the tested problems.

The remainder of this chapter is organized as follows. In Section 5.1, the introduc-

tion of this work is given. Section 5.2 describes the framework and detailed information

of the proposed algorithm. The experimental results are presented in Section 5.3. Sec-

tion 5.4 summarizes this chapter.
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5.1 Introduction

In the context of evolutionary multi-/many-objective optimization, effectiveness refers

to how a search algorithm performs in terms of converging its solutions into the Pareto

front and also diversifying them over the front. Efficiency refers to how quickly a

search algorithm is executed. Achieving both high effectiveness and efficiency is not

easy, particularly on practical applications where the problem’s Pareto front may be

highly complex and unpredictable.

Convergence is especially challenging in many-objective optimization. Pareto-based

algorithms in evolutionary multiobjective optimization (EMO), e.g., NSGA-II [37] and

SPEA2 [163] often fail to scale up well in objective dimensionality. Moreover, recent

studies [93] suggest that well-established decomposition-based [156, 34], and indicator-

based [162, 9] algorithms may also struggle to converge their solutions even when the

objective dimension is as low as four.

Maintaining a well-distributed solution set is another important issue in many-

objective optimization. Improving convergence may come at a cost of compromis-

ing the diversity. For example, new dominance relations (e.g., ε-dominance [84] and

fuzzy Pareto dominance [61]), which were designed for promoting the convergence,

may lead the population into one (or several) sub-area of the Pareto front [28, 106].

Decomposition-based algorithms, which perform very well in terms of convergence, typ-

ically face challenges of diversifying their solutions over the Pareto front for problems

with irregular Pareto front shapes [71]. In addition, indicator-based algorithms tend to

favor a certain region of the Pareto front, such as IBEA [162] for the boundary solutions

of the Pareto front [94] and SMS-EMOA [9] for the knee point(s) [97]. In contrast, some

recent many-objective evolutionary algorithms may miss a certain region of the Pareto

front, such as SPEA2+SDE [95] unable to well maintain boundary solutions in some

problems [86].

On the other hand, the efficiency of some EMO algorithms decreases dramatically

with the number of objectives. For example, the time requirement of algorithms based

on the hypervolume indicator [165], such as SMS-EMOA [9] and MO-CMA-ES [67], in-
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creases exponentially in objective dimensionality. For another example, SPEA2+SDE,

which has been shown effective in recent studies [93, 91], also suffers from poor effi-

ciency as the computational complexity is O(MN3), where N denotes the size of the

population.

Lastly, many multi-/many-objective evolutionary algorithms need some extra pa-

rameters which should be set properly and individually for different problems. For

example, for algorithms based on the modified Pareto dominance relation (e.g., ε-

MOEA [36]), it is crucial to specify the relax degree of Pareto dominance (i.e., the area

that a solution dominates) for a problem with a large number of objectives [85, 98].

For another example, in some region-based MaOEAs it is important to find the right

parameters to determine the size of the region, such as the grid division parameter

in GrEA [152] and the neighborhood size in KnEA [157]. However, the sweet-spot of

such parameters may significantly shrink with the number of objectives [114]. It is

difficult or even impossible to find their best settings in the high-dimensional objective

space [98].

Given the above, this chapter aims to develop a novel balancing effectiveness and ef-

ficiency (called BEE) algorithm to solve many-objective optimization problems without

any extra parameter. Specifically, the proposed algorithm has the following desirable

features:

• effectiveness in the sense of converging its solutions into the Pareto front and also

diversifying them on the front;

• efficiency in the sense of a reasonable amount of execution time;

• suitability for MaOPs with various Pareto front shapes;

• no additional parameter except those associated with an evolutionary algorithm

(e.g., population size and crossover rate).

The proposed algorithm BEE is characterized by selecting boundary solutions as

well as non-boundary solutions. The former is to determine the range of the estimated

Pareto front, from which the latter is to maintain a set of well-distributed and well-

converged solutions in the high-dimensional space.
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5.2 The Proposed Algorithm

5.2.1 Framework of BEE

The framework of the proposed BEE is described in Algorithm 5.1. The basic proce-

dure follows many MaOEAs. First, a population P containing N solutions is randomly

generated. Next, each solution in P is assigned a fitness value according to its nondom-

inated rank. Then, mating selection is applied to select promising solutions regarding

their nondominated ranks, followed by variation operations to generate an offspring

population. Finally, the environmental selection procedure is performed to preserve

the N best solutions for next generation. Like most of existing MaOEAs (e.g., NSGA-

III [34]), the proposed algorithm focuses on the design of environmental selection, an

operation which plays a key role in algorithm performance in many-objective optimiza-

tion.

Algorithm 5.1 Framework of BEE

Require: P (population), N (population size)

1: P ← Initialize population(N)

2: Front← Pareto nondominated sort(P );

3: while the termination criterion is not met do

4: P ′ ←Mating selection(P, Front)

5: P ′′ ← V ariation(P ′)

6: P ← Environmental selection(P ∪ P ′′)

7: end while

8: return P

5.2.2 Environmental Selection

Main Procedure

Environmental selection is an evolutionary operation to determine the survival of so-

lutions (i.e., next-generation population) from the current population and offspring.

Algorithm 5.2 shows the main procedure of the environmental selection in BEE. First,

the combined set of the current population and their offspring population is sorted
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into different fronts (F1, F2, . . . ) using the nondominated sorting method [37] (line

4). Then, fronts are selected one by one to construct a new population P , starting

from F1, until the critical front Fi is found, where |F1 ∪ F2 ∪ · · · ∪ Fi−1| < N and

|F1 ∪ F2 ∪ · · · ∪ Fi−1 ∪ Fi| ≥ N (N denotes the population size) (lines 5–8). In fact,

for MaOPs, the solutions are typically Pareto nondominated to each other and con-

sequently the critical front is usually the first front, namely i is equal to 1. For size

|P |+ |Fi| > N , function Findout best in line 12 is designed to select promising N −|P |

solutions from the critical front Fi. For simplicity, “candidate set” is used to represent

all the solutions in the critical front. The function Findout best can break down into

two operations: selecting boundary solutions and selecting non-boundary solutions as

shown in Algorithm 5.3. In the next two sections, the two operations will be introduced

respectively.

Algorithm 5.2 Environmental selection(P )

Require: P (combination of the current population and the newly produced solutions)
1: Q← ∅
2: i← 1
3: (F1, F2, . . . )← Pareto nondominated sort(P )
4: while |Q|+ |Fi| < N do
5: Q← Q ∪ Fi

6: i← i+ 1
7: end while
8: if |Q| = N then
9: return Q

10: else
11: K ← N − |Q|
12: P ← Findout best(Fi,K) /* Select K solutions from Fi for the next-generation

evolution */
13: return Q

14: end if

Algorithm 5.3 Findout best(P,K)

Require: P (candidate set), K (number of solutions to be selected from the candidate set)
1: Q← Boundary solution selection(P )

/* Select boundary solutions from P */
2: Q← Nonboundary solution selection(P,Q,K)

/* Select promising non-boundary solutions from P */

3: return Q
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Selecting Boundary Solutions

Given a candidate set P , M (M denotes the number of objectives) boundary solutions

are first selected from P and placed into a set Q (which stores the solutions for the

next-generation evolution). Specifically, boundary solution bj corresponds to the one in

P that minimizes a modified version of Tchebycheff function agg(x,wj), as suggested

and practiced in the recent studies [34, 92]:

bj = arg min
x∈P

agg(x,wj) (5.1)

agg(x,wj) =
M

max
i=1

{
1

wj,i
|fi(x)− zmini |

}
(5.2)

where P stands for the candidate set, and wj = (wj,1, wj,2, . . . , wj,M )T denotes a

weight vector close to the jth objective axis direction:

wj,i =

 1, i = j

10−6, i 6= j
(5.3)

In the case that multiple weight vectors share the same boundary solutions, du-

plicate boundary solutions are deleted. Algorithm 5.4 gives the procedure of selecting

boundary solutions.

Algorithm 5.4 Boundary solution selection(P )

Require: P (candidate set), M (number of objectives)
1: Q← ∅
2: for j ← 1 to M do
3: bj ← arg minx∈P agg(x,wj)
4: end for
5: Q← {b1, b2, . . . , bM}
6: Q← unique(Q);

/* Delete duplicate boundary solutions */
7: Normalization(P,Q)

/* Objective normalization */

8: return Q

In Algorithm 5.4, function Normalization in line 7 is used to normalize each ob-

jective of solutions in the candidate set for the preprocessing of selecting non-boundary
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solutions as described in the next section. Here, the normalization operation in NSGA-

III [34] is employed. Specifically, for each solution x in the candidate set, its ith

objective value fi(x) is normalized as follows:

f̃i(x) =
fi(x)− zmini

ai
(5.4)

where zmini denotes the minimum value of the ith objective for all solutions in the

candidate set. The denominator ai represents the intercept of the (M −1)-dimensional

linear hyperplane with the objective axis fi. The (M−1)-dimensional linear hyperplane

is constructed by M boundary solutions b1, b2, . . . , bM of the candidate set. In the

case that the number of boundary solutions is less than M , ai is assigned the maximum

value of the ith objective for all solutions in the candidate set. Algorithm 5.5 gives the

normalization procedure.

Algorithm 5.5 Normalization(P,Q)

Require: P (candidate set), Q (selected solutions), M (number of objectives)
1: for i← 1 to M do
2: zmin

i ← minx∈P fi(x)
3: f̄i(x)← fi(x)− zmin

i /* Translate the objectives */
4: end for
5: (a1, a2, . . . , aM )← Compute intercept(f̄ , Q)
6: for each solution x ∈ P do
7: for i← 1 to M do
8: f̃i(x)← f̄i(x)/ai
9: end for

10: end for

Selecting Non-boundary Solutions

After the boundary solutions are selected, now BEE selects solutions far away from

them (thus good diversity), but at the same time takes into account how these solutions

perform in terms of their closeness to the Pareto front, relative to other solutions. That

is, BEE selects solutions that have a good balance between diversity and convergence, in

which the diversity is measured based on the solutions BEE has already selected while

the convergence is concerned with the comparison between the unselected solutions.

To do so, a step-by-step selection approach is proposed.
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First, a metric (sd) is defined to reflect the quality of the unselected solutions in

terms of both convergence and diversity, relative to the selected solutions:

sd(x, Q) = min
y∈Q

dist(x,y′) (5.5)

where Q denotes the set of solutions which are already selected for the next-generation

evolution, dist(x,y′) represents the normalized Euclidean distance between solution

x and y′, x = (f̃1(x), f̃2(x), . . . , f̃M (x)) is an unselected solution in the candidate

set, and y′ = (f̃1(y′), f̃2(y′), . . . , f̃M (y′)) is the shifted version of selected solution

y = (f̃1(y), f̃2(y), . . . , f̃M (y)), which is defined as follows:

f̃i(y
′) =

 f̃i(x), if f̃i(y) < f̃i(x)

f̃i(y), otherwise
(5.6)

where f̃i(x), f̃i(y), and f̃i(y
′) stand for the ith normalized objective value of individuals

x, y, and y′, respectively. Based on y′, the normalized Euclidean distance between x

and y′, namely dist, is calculated:

dist(x,y′) =

√√√√ M∑
i=1

(f̃i(x)− f̃i(y′))2 (5.7)

where M denotes the number of objectives.

Second, some promising non-boundary solutions are selected. Specifically, the so-

lution with the maximum sd value among unselected solutions (i.e., s = argmaxx∈P\Q

sd(x, Q)) is selected and placed into Q. The above steps are repeated until the size of

selected solutions reaches the population size.

It should be noted that once a solution s is selected, the sd value of each remaining

solution x in the candidate set is updated according to dist(x, s′) (i.e., sd(x, Q) =

min{dist(x, s′), sd(x, Q)}), where s′ represents the shifted version of the new selected

solution s according to equation (5.6). Algorithm 5.6 gives the procedure of selecting

non-boundary solutions.
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Algorithm 5.6 Nonboundary solution selection(P,Q,K)

Require: P (candidate set), Q (selected solutions), K (number of solutions to be selected from
the candidate set)

1: P ← P \Q
2: for x ∈ P do
3: sd(x, Q) ← min

y∈Q
dist(x,y) /* Initialize the sd values of all unselected solutions in

the candidate set */
4: end for
5: while |Q| < K do
6: s ← argmax

x∈P
sd(x, Q) /* Select promising non-boundary solutions from the unse-

lected solutions */
7: Q← Q ∪ {s}
8: P ← P \{s}
9: for x ∈ P do

10: sd(x, Q)← min{dist(x, s′), sd(x, Q)}
11: end for
12: end while
13: return Q

An Example of Environmental Selection

Consider a bi-objective minimization problem where a set of seven candidate solutions

A–G to be selected. Figure 5.1 shows the environmental selection procedure. The

actual objective values (f1, f2) and sd values of the non-boundary solutions in the

candidate set are given in Table 5.1.
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Figure 5.1: A bi-objective example of the environmental selection procedure, where the

population size is set to five and the candidate set consists of seven solutions A–G.

The number in parentheses associated with a non-boundary solution represents the sd

value of that solution. (a) Selecting A and G (since they are two boundary solutions).

(b) Selecting D (since it has the maximum sd value 8.5 among non-boundary solutions

B–F). (c) Selecting F (since it has the maximum sd value 4 among non-boundary

solutions B, C, E, F). (c) Selecting B (since it has the maximum sd value 3 among

non-boundary solutions B, C, E).
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Table 5.1: An illustration of how the sd value of each solution changes during selecting

non-boundary solutions. The framed solutions mean that they have been selected. The

population size is set to five.

(a) (b)

(f1, f2) sd

A (1.5, 15) -

G (15.5, 1) -

B (2.5, 10.5) (4.5)

C (5, 8) (7)

D (5.5, 6.5) (8.5)

E (7.5, 5.5) (8)

F (8.5, 2.5) (7)

(f1, f2) sd

A (1.5, 15) -

G (15.5, 1) -

D (5.5, 6.5) -

B (2.5, 10.5) (3)

C (5, 8) (0.5)

E (7.5, 5.5) (1)

F (8.5, 2.5) (4)

(c) (d)

(f1, f2) sd

A (1.5, 15) -

G (15.5, 1) -

D (5.5, 6.5) -

F (8.5, 2.5) -

B (2.5, 10.5) (3)

C (5, 8) (0.5)

E (7.5, 5.5) (1)

(f1, f2) sd

A (1.5, 15) -

G (15.5, 1) -

D (5.5, 6.5) -

F (8.5, 2.5) -

B (2.5, 10.5) -

C (5, 8) (0.5)

E (7.5, 5.5) (1)

First, A and G are selected (i.e., Q = {A,G}) since both A and G are boundary

solutions identified by equations (5.1) and (5.2), as shown in Figure 5.1 (a). For the

non-boundary solutions B–F, their sd values are calculated, as shown in Table 5.1 (a).

Second, the non-boundary solution D is selected (i.e., Q = {A, G, D}) since

it has the maximum sd value among non-boundary solutions B–F (Figure 5.1 (b)).

Accordingly, the sd values of the unselected solutions B, C, E, F are updated (Table 5.1

(b)) according to lines 9–11 in Algorithm 5.6.

Third, the non-boundary solution F is chosen (i.e., Q = {A, G, D, F}) since it

has the maximum sd value among non-boundary solutions B, C, E, F (Figure 5.1 (c)).

The sd values of unselected solutions B, C, E remain unchanged (Table 5.1 (c)) since
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the Euclidean distance between these solutions and the shifted version of F, namely

dist values, are no less than their original sd values.

Finally, the non-boundary solution B is selected since it has the maximum sd value

among non-boundary solutions B, C, E (Figure 5.1 (d)). The sd values of C and E

remain unchanged (Table 5.1 (d)) since the Euclidean distance between these solutions

and the shifted version of B, namely dist values, are no less than their original sd

values. The final selected solutions are A, G, D, F, B.

In the environmental selection, its two operations, i.e., selecting boundary solutions

and selecting non-boundary solutions work collaboratively. The former is to preserve

solutions which perform best at least one objective. On the basis of these selected

boundary solutions, the latter is to preserve well-balanced solutions by using the sd

metric. A higher sd value indicates a better quality in terms of convergence and

diversity. As can be seen in Figure 5.1, the best balanced solution, relative to the

current selected solutions, is selected in turn; i.e., select D (relative to A and G),

select F (relative to A, G, and D), and select B (relative to A, G, D and F).

5.2.3 Time Complexity

Considering a situation having M objectives and the evolutionary population consist-

ing of N individuals. Here, N ≥M is assumed and the worst case is considered where

all solutions are nondominated with each other in the population. In one generation

of BEE, nondominated sorting (line 3 in Algorithm 5.2) of the population requires

O(MN2) comparisons. In the environmental selection, selecting boundary solutions

(lines 2–4 in Algorithm 5.4) requires O(M2N) comparisons. Finding the minimum

value of each objective (line 2 in Algorithm 5.5) requires O(MN) comparisons. The

translation of the objectives (line 3 in Algorithm 5.5) requires O(MN) comparisons.

Computing the intercepts (line 5 in Algorithm 5.5) requires O(M3) comparisons. The

normalization of candidate solutions (lines 6–10 in Algorithm 5.5) requires O(N) com-

parisons. Initializing the sd values of all unselected solutions in the candidate set

(lines 2–4 in Algorithm 5.6) requires O(M2N) computations. Selecting promising non-

boundary solutions from the unselected solutions using the quick sort (line 6 in Algo-
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rithm 5.6) requires O(M2N) computations. Updating the sd values for the unselected

solutions (lines 7–12 in Algorithm 5.6) requires O(MN2) computations. In summary,

by taking into account all the above operations, the overall time complexity of one

generation of BEE in the worst case is O(MN2).

5.2.4 Comparison with SPEA2+SDE

Since both the proposed BEE algorithm and SPEA2+SDE [95] use the shift-based com-

parison between solutions in the selection procedure, this section will introduce their

differences. In SPEA2+SDE, the solutions are shifted for the density estimation, thus

the performance depends heavily on the accuracy of the density estimation operator of

the original SPEA2. In contrast, BEE is a standalone algorithm which focuses on how

to select a set of well-converged and diverse solutions. Furthermore, BEE preserves the

boundary solutions explicitly, but SPEA2+SDE does not and may lose the boundary

solutions of the Pareto front on some problems, as shown in [86]. In addition, the time

complexity of BEE is O(MN2), lower than O(MN3) of SPEA2+SDE.

The above differences result in BEE to outperform SPEA2+SDE in terms of both

performance and computational time, as will be seen in the next section.

5.3 Experimental Results

5.3.1 Experimental Design

To assess BEE, this chapter considers the following test suite, performance metric,

state-of-the-art peer algorithms, and parameter settings, which are summarized in Ta-

ble 5.2.
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Table 5.2: Experimental setup

Factor Details

Test problems MaF1–15 [21]

Performance metric IGD [26]

Number of objectives (M) {3, 5, 10, 15}

Population size (N) for M = {3, 5, 10, 15} {105, 126, 230, 240}

SBX [32] probability (pc) 1.0

PM [33] probability (pm) 1/n

Distribution index for SBX (ηc) 20

Distribution index for PM (ηm ) 20

Number of runs 30

Maximum of generations (MaxGen) 300

Parameter values of RVEA α = 2, fr = 0.1

Parameter values of MOEA/DD T = 0.1N , δ = 0.9, θ = 5

Parameter values of 1by1EA k = 0.1N , R = 1

Parameter values of MaOEA-CSS t = 0

Parameter values of SRA pc = 0.6

Test Problems

The MaF test suite [21] is a continuous benchmark test suite proposed for the CEC’2017

competition on evolutionary many-objective optimization. In MaF, 15 test functions

with diverse properties are selected or modified from existing test problems to well

represent various real-world scenarios. In comparison with other test suites such as

DTLZ [38] and WFG [66], MaF includes more problems with irregular Pareto front

shapes, which poses bigger challenges for MaOEAs to approximate the whole Pareto

front. In Table 5.3, the characteristics of all the MaF problems are summarized. The

number of objectives was set to M = 3, 5, 10, 15. Their parameters were set according

to [21].

116



Table 5.3: Characteristics of test problems in MaF.

Problem Characteristics

MaF1 Linear, no single optimal solution in any subset of objectives

MaF2 Concave, no single optimal solution in any subset of objectives

MaF3 Convex, multimodal

MaF4
Concave, multimodal, badly scaled and no

single optimal solution in any subset of objectives

MaF5 Convex, biased, Badly scaled

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, multimodal

MaF8 Linear, degenerate

MaF9
Linear, degenerate, Pareto optimal solutions

are similar to their image in the objective space

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased deceptive

MaF13
Concave, unimodal, nonseparable, degenerate,

complex Pareto set

MaF14
Linear, partially separable, large scale, non-uniform

correlations between decision variables and objective functions

MaF15
Convex, partially separable, large scale, non-uniform

correlations between decision variables and objective functions

Performance Metric

The Inverted Generational Distance (IGD) [26] was adopted as the performance metric

to assess the performance of algorithms. It has been introduced in Chapter 2.2.3 in

detail. As one of the most commonly used performance metrics in the area, IGD can

well evaluate the effectiveness (i.e., convergence and diversity) of a set of solutions given

the problem’s Pareto front is available, which is the case in the experiments conducted

in this chapter. Following the suggestions in [99], the Pareto dominance relation among

the solution sets obtained by different algorithms is tested. The results indicated that

the compared solution sets in the experiments were nondominated to each other, and

therefore, IGD is well-suited to the experiments. Notice that dominance resistant

solutions are not the main challenge to be handled during the search process in this
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chapter, and thus the original version of IGD was adopted rather than IGD+ that was

used in Chapter 4.

Compared Algorithms

To evaluate the performance of the proposed algorithm, eleven state-of-the-art many-

objective evolutionary algorithms were chosen for comparison. They are NSGA-III [34],

RVEA [20], MOEA/DD [89], RPD-NSGA-II [41], 1by1EA [104], MaOEA-CSS [60],

VaEA [147], NSGA-II/SDR [134], SPEA2+SDE [95], SRA [86], AR-MOEA [132].

These algorithms span over the majority of categories (cf. Section 2.4). Specifically,

NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, and VaEA are decomposition-based al-

gorithms. 1by1EA and MaOEA-CSS are aggregation-based algorithms. NSGA-II/SDR

modifies the conventional Pareto dominance relation. SPEA2+SDE changes density

estimation of the conventional Pareto-based algorithms. Finally, SRA and AR-MOEA

are two indicator-based algorithms.

All these algorithms were implemented in a recently developed Matlab platform

PlatEMO1 [133]. PlatEMO provides over 50 multi-/many-objective evolutionary algo-

rithms and over 100 test problems (e.g., MaF test problems), as well as some widely

used performance metrics (e.g., IGD metric). All the experiments were conducted on

an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with 16GB RAM, running on Windows

10. To make the comparison statistically significant, the Wilcoxon’s rank sum test [161]

was used throughout the experiments.

Parameter Settings

In all peer algorithms, the simulated binary crossover (SBX) [32] operator and poly-

nomial mutation (PM) [33] operator were employed to perform variation, with both

distribution indexes being set to 20. The SBX probability was set to 1.0 and PM prob-

ability was set to 1/n, where n denotes the number of decision variables. For each test

problem, each algorithm was executed 30 runs independently. The termination crite-

rion of all algorithms was specified as the maximum number of generations (MaxGen)

1PlatEMO can be downloaded from: https://github.com/BIMK/PlatEMO.
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and was set to 300.

These settings are consistent with the general settings as in [152, 96]. It is worth

noting that the experiments in Chapters 3 and 4 utilized the same settings.

Additionally, the population size of four decomposition-based algorithms NSGA-

III, RVEA, MOEA/DD, and RPD-NSGA-II cannot be arbitrary. The population size

of the four algorithms is equal to the number of weight vectors, which is controlled by

two parameters including the number of objectives (M) and the number of divisions

considered along each objective (H). To generate a set of weight vectors that uniformly

distributed in a simplex, the Das and Dennis’s [30] systematic approach for M ≤ 5 and

the two-layer weight vectors generation approach [34] for M > 5 were adopted, as

suggested in [34, 89]. The population size of the four algorithms was set to 105 for

tri-objective problems (where H = 13), 126 for five-objective problems (where H = 5),

230 for ten-objective problems (where H = 3 and H = 1 for the boundary layer and

insider layer, respectively), and 240 for fifteen-objective problems (where H = 2 and

H = 2 for the boundary layer and insider layer, respectively), as suggested in [154, 50].

For a fair comparison, the population size of the other algorithms is the same as that

in these four algorithms.

In addition, some of the compared algorithms require specific parameters for their

execution. Here, these parameters were set according to their original papers. In

RVEA, the parameter α, which controls the rate of change of the penalty function, was

set to 2, and the frequency fr, which employs reference vector adaptation, was set to

0.1, as recommended in [20]. In MOEA/DD, the neighbourhood size T was set to 10

percent of the population size, the neighbourhood selection probability δ was set to

0.9, and the penalty parameter of the PBI function θ was set to 5 according to [89]. In

1by1EA, the parameter k was set to 10 percent of the population size to balance the

computational cost and the accuracy in density estimation, and the parameter R, which

controls distribution threshold, was set to 1, as suggested in [104]. In MaOEA-CSS,

the threshold value t of determining the difference of two closest solutions’ Euclidean

distance in the environmental selection was set to 0, as recommended in [60]. For SRA,

the parameter pc for the purpose of balancing the different indicators in the stochastic
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ranking strategy was set to 0.6, as suggested in [86].

5.3.2 Performance Comparison

Algorithm Performance on Tri-Objective Problems

Table 5.4 shows the mean and standard deviation (in parentheses) of the IGD values

obtained by BEE and compared algorithms on the tri-objective MaF problems. From

Table 5.4, it can be seen that BEE obtains the best results on seven test problems (i.e.,

MaF1–4, MaF8–10). These seven problems are featured as a variety of characteristics,

such as inverted, multimodal, badly-scaled, degenerate, and biased. Concerning pair-

wise comparison, BEE performs significantly better than the compared algorithms on

most of the tri-objective test problems. Specifically, the proportion of the test problems

where BEE significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II,

1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA

is 11/15, 12/15, 9/15, 12/15, 10/15, 10/15, 9/15, 11/15, 13/15, 12/15, and 10/15,

respectively.

For a visual understanding of how solutions are distributed, Figure 5.2 plots the

final solution set obtained by each algorithm on the tri-objective MaF1 with the me-

dian IGD value among all the 30 runs. As seen in Figure 5.2, VaEA, SRA, AR-MOEA,

and BEE are the only four algorithms that perform well in terms of both convergence

and diversity. Among them, BEE appears to be the best, with its solutions uniformly

distributed on the Pareto front. For the other eight algorithms, maintaining a set

of diverse solutions seems challenging, especially for four decomposition-based algo-

rithms NSGA-III, RVEA, MOEA/DD, and RPD-NSGA-II. The main reason is that

decomposition-based algorithms, which work well for MaOPs with regular Pareto front

shapes, typically struggle for irregular shapes, which is the case in this instance having

an inverted hyperplane. It is worth mentioning that RVEA only keeps one solution to

a weight vector, which leads to an evenly distributed solution set but with fewer solu-

tions (only 35 out of 105 solutions). It can be observed from Table 5.4 that the four

algorithms (NSGA-III, RVEA, MOEA/DD, and RPD-NSGA-II) obtain poor results

regarding the IGD metric with RVEA performing worst.
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(a) NSGA-III (b) RVEA (c) MOEA/DD

(d) RPD-NSGA-II (e) 1by1EA (f) MaOEA-CSS

(g) VaEA (h) NSGA-II/SDR (i) SPEA2+SDE

(g) SRA (k) AR-MOEA (l) BEE

Figure 5.2: The final solution set with the median IGD obtained by the 12 algorithms
on the tri-objective MaF1.
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Algorithm Performance on Five-Objective Problems

Table 5.5 shows the mean and standard deviation (in parentheses) of the IGD values

obtained by BEE and the compared algorithms on the five-objective MaF problems.

From Table 5.5, it can be seen that BEE obtains the best mean on four test problems,

MaF4, MaF8, MaF10, and MaF13. Concerning pairwise comparison, BEE performs

significantly better than all the compared algorithms except VaEA for more than half

of the five-objective test problems. Specifically, the proportion of the test problems

where BEE significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II,

1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA is

12/15, 11/15, 14/15, 11/15, 9/15, 11/15, 7/15, 11/15, 9/15, 10/15, and 8/15, respec-

tively.

Algorithm Performance on Ten-Objective Problems

Table 5.6 shows the mean and standard deviation (in parentheses) of the IGD values

obtained by BEE and the compared algorithms on the ten-objective MaF problems.

From Table 5.6, it can be seen that BEE obtains the best results on four test prob-

lems, MaF4, MaF8, MaF10, and MaF13. Concerning pairwise comparison, BEE per-

forms significantly better than compared algorithms except SPEA2+SDE on over half

of the ten-objective test problems. Specifically, the proportion of the test problems

where BEE significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II,

1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA is

12/15, 12/15, 13/15, 11/15, 12/15, 11/15, 7/15, 11/15, 5/15, 10/15, and 8/15, respec-

tively.

For a visual understanding of how the solutions are distributed, Figure 5.3 plots

the final solution set obtained by each algorithm with the median IGD value among

all the 30 runs on the ten-objective MaF8, where the optimal region is a decagon in

the decision space. From Figure 5.3, it can be observed that all the algorithms except

RVEA, MOEA/DD, and MaOEA-CSS perform well regarding convergence (solutions

located inside or very close to the polygon). Among these algorithms, NSGA-III, RPD-

NSGA-II, 1by1EA, and SRA perform poorly regarding diversity, with their solutions
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crowded in some small sub-regions, leading to a large proportion of sparse regions. One

interesting observation is that 1by1EA obtains a solution set that is evenly distributed

but only covers the central region of the polygon. One possible explanation is that

the boundary maintenance mechanism in 1by1EA may fail to find boundary solutions

when the Pareto front is irregular. This can also be seen in Figure 5.2 (e), where

1by1EA fails to obtain boundary solutions even for the tri-objective MaF1 which has

an inverted simplex-like Pareto front.

Another interesting observation is that SRA sometimes provides a set of well-

converged solutions, but may fail to distribute its solutions in some regions between

a pair of parallel target lines within the optimal polygon. One explanation for this

is that SRA could effectively guide the population into the optimal region, but may

have difficulty in diversifying its solutions over the optimal polygon of the ten-objective

MaF8 problem, which has many parallel target lines and constrained areas [93].

Although VaEA, NSGA-II/SDR, AR-MOEA, and SPEA2+SDE can provide a bet-

ter balance between convergence and diversity, they have their own disadvantages. The

solutions of VaEA and AR-MOEA are not uniformly distributed over the decagon,

with some solutions crowded or even overlapping in some regions. NSGA-II/SDR and

SPEA2+SDE struggle to find boundary solutions of the decagon. Finally, among these

algorithms, BEE obtains very promising results on the ten-objective MaF8 problem,

with a set of evenly distributed solutions covering the whole decagon.

Algorithm Performance on Fifteen-Objective Problems

Table 5.7 shows the mean and standard deviation (in parentheses) of the IGD values

obtained by BEE and the compared algorithms on the fifteen-objective MaF problems.

From Table 5.7, it can be seen that BEE obtains the best IGD mean on five test

problems, MaF2, MaF4, MaF8, MaF10, and MaF13. Concerning pairwise comparison,

BEE performs significantly better than the compared algorithms on the majority of the

test problems. Specifically, the proportion of the test problems where BEE significantly

outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-CSS,

VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA is 11/15, 10/15, 13/15,
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Figure 5.3: The final solution set with the median IGD obtained by the 12 algorithms
on the ten-objective MaF8.
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11/15, 12/15, 12/15, 9/15, 9/15, 8/15, 10/15, and 9/15, respectively.

Overall Performance

To provide an overall picture of the overall performance of the 12 different algorithms

across the 60 different problem instances, the average performance scores [5] based on

the IGD results are shown in Figure 5.4. For a specific problem instance, the per-

formance score of an algorithm is the number of the peer algorithms that perform

significantly better than the algorithm on the problem instance according to the statis-

tical results. The smaller the score, the better the performance of the algorithm on the

problem instance. As can be seen, the proposed obtains the best average IGD score,

followed by SPEA2+SDE. Namely, in general, BEE provides competitive performance

among the peer algorithms on 60 problem instances.

5.3.3 Computational Cost between SPEA2+SDE and BEE

As the time complexity of BEE isO(MN2), significantly lower than that of SPEA2+SDE

(O(MN3)), it is expected that this can be well reflected in their computational time

required. Figure 5.5 shows the average results on the MaF10 problem with different

numbers of objectives in 30 runs. Clearly, BEE always incurs lower computational

cost, and their differences become clearer with the increase of the number of objec-

tives. When the objective dimensionality is up to 15, BEE requires around 15 seconds

to run, whereas SPEA2+SDE takes approximately 150 seconds.
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Figure 5.5: The average computational time of BEE and SPEA2+SDE on MaF10 with

different numbers of objectives in 30 runs.

5.4 Summary

Balancing effectiveness and efficiency can be a challenging task in many-objective op-

timization, particularly in a real-world application, where the problem’s Pareto front

is typically irregular. In this chapter, a parameter-free many-objective evolutionary

algorithm (called BEE) was proposed, with the aim of achieving high effectiveness

and efficiency on problems with various Pareto front shapes. The proposed algorithm

was compared with 11 state-of-the-art algorithms on 60 problem instances with up to

15 objectives. The experimental results have shown that the proposed algorithm sig-

nificantly outperforms all the compared algorithms on the majority of the instances.

Altogether, BEE represents a significant advance in evolutionary many-objective opti-

mization, which provides innovative ideas for developing better algorithms.
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Chapter 6

Conclusion

This chapter first summarizes the research carried out in this thesis and the contribu-

tions of each chapter in Section 6.1. Then, this chapter outlines some future research

directions in Section 6.2.

6.1 Thesis Summary

This thesis aimed to address the effectiveness and efficiency of evolutionary algorithms

for many-objective optimization. After reviewing key concepts and major advances in

many-objective optimization, this thesis has set out to achieve three research objectives,

including how to enhance the effectiveness of Pareto-based algorithms to solve many-

objective optimization problems (via a case study on a challenging problem in software

engineering); how to make this type of algorithms more effective to handle more generic

situations (via a case study on a very popular and widely cited algorithm called BiGE);

and how to develop an effective and efficient evolutionary algorithm for many-objective

optimization.

To fulfill the research aim, three innovative approaches have been presented in

this thesis. Specifically, a novel dominance relation in Chapter 3 has been introduced

to make conventional Pareto-based algorithms more effective in many-objective opti-

mization; an angle-based crowding degree estimation approach in Chapter 4 has been

proposed to further enhance the effectiveness of BiGE for a class of many-objective op-
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timization problems where the search process involves dominance resistant solutions;

and a parameter-free many-objective evolutionary algorithm in Chapter 5 has been

developed to solve optimization problems with various Pareto front shapes both effec-

tively and efficiently. In the following, the contributions for each of these chapters are

summarized.

Chapter 3 has proposed a novel aggregation-based dominance (ADO) to address

the effectiveness of the conventional Pareto-based algorithms for many-objective opti-

mization. ADO focuses on the convergence enhancement of Pareto-based algorithms.

Instead of modifying Pareto dominance relation (e.g., [84, 61, 134]), ADO is used as a

secondary selection criterion when Pareto dominance fails to differentiate between so-

lutions in a population, thus providing additional selection pressure towards the Pareto

front in the high-dimensional objective space.

The proposed ADO was applied to two popular Pareto-based algorithms NSGA-

II and SPEA2+SDE. It has been observed that ADO can accelerate the convergence

process in many-objective optimization, as shown in the experiments on the optimal

feature selection problem for software product lines. Furthermore, the two modified

algorithms have been demonstrated to be competitive in searching for a set of valid

and diverse product configurations by comparing them with four different types of

evolutionary algorithms.

Chapter 4 has presented a variant of BiGE (called aBiGE) to handle the many-

objective optimization problems with dominance resistant solutions in an effective

manner. In aBiGE, a novel angle-based crowding distance estimation method has been

developed to replace the distance-based crowding distance estimation method in BiGE.

The basic idea of angle-based crowding distance estimation is simple – by assigning a

larger (worse) crowding degree to dominance resistant solutions, such solutions have a

high possibility to be eliminated in the bi-goal space of proximity and diversity using

the Pareto dominance relation. Therefore, aBiGE could avoid the negative influence

of dominance resistant solutions during the evolutionary process.

To test the performance of the proposed aBiGE, the experiments were carried out

by comparing it with the original BiGE on three representative problems involving
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dominance resistant solutions. The experimental results have shown that aBiGE sig-

nificantly outperforms BiGE on all test problems in terms of convergence and diversity.

Nevertheless, the performance of aBiGE may be slightly degraded on problems without

dominance resistant solutions. This indicates that the proposed aBiGE can address the

challenges in handling dominance resistant solutions during the search process while

inheriting the advantages of the bi-goal evolution framework.

Chapter 5 has proposed a many-objective evolutionary algorithm (called BEE),

which aims to achieve high effectiveness and efficiency for many-objective optimization.

BEE focuses on the design of environmental selection, where its two operations, i.e., se-

lecting boundary solutions and selecting non-boundary solutions work collaboratively.

Specifically, the former is to determine the range of the Pareto front approximation,

from which the latter is to preserve a set of well-converged and diverse solutions. Dur-

ing the selection procedure, the diversity is calculated based on the distance between

unselected solutions and the solutions that have already been selected for the next-

generation evolution. In particular, the unselected solution that is far away from the

current selected solutions (i.e., solutions with good diversity, relative to the current

selected solutions) is preferred. Furthermore, the convergence is measured by consider-

ing how the unselected solutions perform with respect to their closeness to the Pareto

front, relative to other unselected solutions.

Systematic experiments were carried out to make an extensive comparison of BEE

with 11 state-of-the-art algorithms on 60 problem instances with up to 15 objectives.

The comparative results have shown that the proposed algorithm is highly practical

in many-objective optimization in view of 1) competitive performance in converging

its solutions into the Pareto front and also diversifying them on the front (i.e., ef-

fectiveness); 2) a reasonable amount of execution time (i.e., efficiency); 3) suitability

for MaOPs with various Pareto front shapes; 4) no additional parameter except those

associated with an evolutionary algorithm.
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6.2 Future Work

There are several directions for future research:

First, further analysis of the parameter settings for ADO needs to be carried out.

In Chapter 3, the sensitivity of the parameter k in ADO has been evaluated on the

experiments with NSGA-II-ADO on six feature models with four objectives. The ex-

periments have shown that almost all of the feature models reach roughly the highest

HV values when the parameter k value is between 0.5–0.6. The influence of parameter

(k) settings in ADO for more Pareto-based algorithms should be studied.

Second, the scalability of ADO in terms of the size of feature models should be

investigated. Chapter 3 has shown that ADO could assist Pareto-based algorithms

in searching for valid and diverse product configurations on eight published feature

models with a maximum of 290 features and a randomly generated feature model with

10, 000 features. In this empirical study, there is only one large feature model out of

nine feature models, but more complex and large feature models could be investigated,

e.g., LVAT [1] repositories with real-world feature models including the aforementioned

Linux X86 kernel model with 6, 888 features.

Third, performance investigation of aBiGE on problems without dominance resis-

tant solutions can be conducted. In Chapter 4, aBiGE algorithm has been introduced

to address the issue of effectiveness on the many-objective problems with a high prob-

ability to produce dominance resistant solutions. The experiments were carried out on

nine DTLZ [38] test problems. One area of further research is to focus on the prob-

lems without dominance resistant solutions, aiming at a deeper understanding of the

behaviour of the proposed aBiGE algorithm as well as a comprehensive improvement

of the algorithm on both types of problems. Other well-known benchmark suites could

be used, such as the walking fish group (WFG) toolkit [66] and multiline distance

minimization problem (ML-DMP) [93].

Fourth, a thorough empirical investigation of different mating selection strategies

in BEE should be performed. Like most many-objective evolutionary algorithms, BEE

focuses on the environmental selection component of an evolutionary algorithm, leav-
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ing mating selection flexible to be implemented (Chapter 5). It would be interesting to

explore the mating selection component in many-objective optimization further, par-

ticularly on how to select solutions based on their shifted position for the crossover

operation.

Fifth, how the preference information of decision makers may be integrated into

many-objective evolutionary algorithms is worth studying. A set of trade-off solu-

tions approximating the entire Pareto front are usually generated by traditional many-

objective evolutionary algorithms, but it may be difficult for a decision maker to un-

derstand these solutions when the number of objectives is large [90]. One direction for

future research is to incorporate the preferences of the decision maker into the proposed

many-objective evolutionary algorithms, which would be helpful in directing the search

for solutions of interest.

Finally, the performance of the proposed innovative algorithms on more real-world

applications needs to be tested. In this thesis, well-defined benchmark suites were

mainly used to investigate the effectiveness of the presented many-objective evolution-

ary algorithms including aBiGE and BEE. Although ADO has been applied to the

optimal feature selection for software product lines, it is interesting to apply the pro-

posed many-objective approaches to more real-world scenarios in engineering [22] and

manufacturing [23], and understand their characteristics in more depth.
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