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0. ABSTRACT

A number of examples of collaborative research are outlined which
show how mathematicians and medical biophysicists have contributed

to a wider understanding of some problems in applied physiology.

1. INTRODUCTION

A few decades ago the techniques developed by mathematicians were
used only by physicists and engineers. Nowadays, however, researchers
in a considerable number of other, widely varying disciplines use

mathematics to help solve their problems.

More non-mathematicians have begun to use mathematics via mathematical
modeling which has received an upsurge in interest. Many universities
have introduced courses in mathematical modeling at both undergraduate
and graduate levels which have attracted mathematicians and non-
mathematicians alike. Simultaneously, students have received training
in the programming of digital computers and have thus had the powerful
combination of mathematical modelling with computer simulation at

their disposal.

The student has been helped by the growth in the number of texts on
mathematical and computer modelling, most of which present the reader
with case studies after an introduction to the philosophy of mathe-

matical modelling. One such text, by Burghes and Borrie [2], is of
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particular interest to teachers and students both at high school and
undergraduate level, and gives a very wide range of interesting
applications of mathematics. The number of journals placing emphasis
on the use of mathematical modelling and computer simulation has also
increased. These journals are directed at all academic disciplines
and levels. Interdisciplinary research conferences, at which
mathematicians and workers in other disciplines are able to exchange
views, are attracting the financial support of research councils and

other bodies.

One example, of late, in this fertilization of ideas, is the boom

in collaboration between researchers in mathematics and computer science
on the one hand, with researchers in biology and medicine on the other.
The fruits of these partnerships, in such wide fields as applied

physiology and bioengineering, are enormously beneficial to mankind.

Mathematical modeling of any aspect of the human body is a tricky
process. Many. advanced models express the physiological behaviour

of the body in the form of a system of differential equations, ordinary
or partial, with initial conditions and boundary conditions specified.
Often, it is the boundary conditions, which depend on the non-uniform
geometry of the body, which give rise to difficulties in solving the
differential equations. Indeed, it is frequently too difficult, or
impossible, to find the theoretical solution of the system and the
mathematician resorts to finding a numerical solution to the problem,
using a digital computer to calculate the results.

In the following sections of this paper case studies are outlined,
relating to the three types of second order partial differential equation,
of three physiological problems modelled recently in the literature.

It will be easy for the reader to see how the complicated geometry of

the body must be approximated to facilitate the determination of even a
numerical solution.

2. ELLIPTIC EQUATIONS

One human organ which has an irregular, curved boundary is the otolith
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membrane. Under the microscope, the otolith membrane is seen to be
roughly the shape of a kidney bean with jagged edges. The membrane
is a thin layer of gelatine; it is one component of the non-auditory
part of the inner ear, and is associated with the stability and equi-
librium of the body and stabilizing the eyes during movements of the
head. Crystals of calcite (called the otoconia .and sensitive hairs
(called the stereocilia) adhere to the otolith. The density of the
crystals is much greater than the density of the otolith and in the
normal upright position of the head the sensitive hairs protrude
vertically upwards.

Disturbance of the head from the normal upright position initiates
movement of the otoconia down the slope of the membrane. This
movement distorts the elastic membrane, causes shearing forces in
the cilia, and cause electrical signals to be sent to the brain.
The frequency and amplitude of these signals are related to the magni-
tude and direction of the displacements of the points of the membrane.
The brain's interpretation of these signals initiates responding
movements of the head for stabilizing the eyes and restoring balance.
Thus, the magnitudes and directions of displacements of points of the
membrane for various head movements are of importance in any study of
the otolith organs.

Numerical modelling of the otolith membrane makes this possible;
such models have been developed by Hudetz [4], Twizell and Curran
[16,18] and in the unpublished dissertation of Finlayson [3]. These
models assume a membrane with Poisson ratio v =0.5, Young's modulus
E = 200000 dynes cm™” and density p = 0.903 gm cm™>.

In developing a mathematical model of a human organ such as the otolith
membrane, it is essential that a reasonably close approximation to the
irregular boundary be made. The maximum length of a typical membrane
is about 0.256 cm and the maximum breadth is about 0.192 cm; the

approximate shape of the boundary OR is shown in Figure 1.
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Figure 1

The portion ACB is given by the ellipse (Twizell [16])

2 2

X + Y =1
0.009216 0.016384

and the portion ADB by the polynomial (Finlayson [3])
x=-0.084 — 0.5y + 2.1701 y* + 54.2535 y*.

The enclosed region R of the membrane is assumed to lie in the plane
z=0 when the head is in its normal upright position, with the z-axis

passing through the point 0.

It was noted in [4] that the components of the gravitational force on

the points of the membrane in the x and y directions resulting from a
rotation of the head through an angle a about the x-axis, followed by

a rotation through an angle B about the y-axis, followed by a rotation
through an angle y about the z-axis, are given by

F® = pg{cos wy(sin asin y+cos a sin B cosy) + sin y (sin o cos y — cos a sin Bsin )},

F® = pg{—sin y (sin a sin y + cos asin Bcosy) + cos y (sin a cos y — cos a sin Bsin y)},

respectively, where y is the azimuth angle and g is the acceleration due

to gravity.
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The steady-state displacements u,v in the positive x,y directions of
points of the membrane are governed by the system of elliptic partial

differential equations given by

0l 1-v 8% l+v v 1-v2 (%)
+ + + F =
ox2 2 oy? 2 0x0y E

0, (1)

2 o A2 2 _ 2
6V+1V6V+1+V 8u+1VF(Y):0’ %)
oy2 2 ox? 2 Ox0y E

in R, together with the Dirichlet boundary conditions

u(x,y)Fv(x,y)=0 ©)
forall(x,y). € OR.
Numerical solutions of equations (1), (2) with boundary conditions (3)
were obtained using finite element methods in [18], and using finite
difference methods in [3], [4], [16] for a number of different rotations
of the head.

Changing the value of g in the expressions for F*), F )

changes the
numerical solution of (1), (2) with (3). In this way gravitational
conditions in locations other than on the surface of the Earth may be
simulated and the resultant displacements of points of the membrane

computed in each location for any movement of the head (Twizell [16]).

3. HYPERBOLIC EQUATIONS

Replacing the right hand sides of (1), (2) with 0*w/at®, 8°v/ot’

respectively converts the system into the hyperbolic type. Specifying
initial values for u, v, du/dt, ov/ ot thus enables the displacements of

points of the membrane to be calculated at any time t > 0 following the
instantaneous rotations (a, B, y) from the normal upright position of the
head (at time t = 0). As t— o, the computed solutions U, V of the
hyperbolic system converge to the steady state solution of the elliptic

system discussed in §2.
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Approximating the space derivatives of the hyperbolic system with
finite difference replacements leads to a system of second order

ordinary differential equations of the form

d*w dw
— =AW+ b; W(0)=0,—=(0)=f, 4
i W+b; W(0)=0 dt() f “4)

where the constant matrix A depends on the space discretization of

the membrane and on the finite difference replacements of the space
derivatives, and the vector b depends on the applied forces F™ and

F(Y); the elements of the vector w are the computed values U,V of
the displacements of the discrete points of R at time t > 0, and

is the vector of initial speeds down the slope of the membrane. The
order of the matrix A, the vectors b, w, f, and consequently the
system (4), is 2N, where N is the number of points at which R is

discretized.

It was shown in [3] that the solution w(t) of the initial value problem

(4) satisfies the recurrence relation
w(t+0)—{exp(/B)+exp(—(B)jw(t) + w(t— ()

= {exp(/B)+exp(—/B)}A"'b—2A""b , (%)

where ¢ is a convenient time step and B is a matrix such that B> = A.
Replacing the matrix functions exp(/B) and exp(- ¢ B) with padé¢ approxi-
mants ensures that odd powers of /B vanish, so that the matrix B need
not be determined explicitly. The computed solution of (5) will depend
for its accuracy in time on the padé approximant chosen and a stability
analysis of the resulting algorithm is carried out in the usual way;
for a consistent algorithm the (0,1) and (1,0) padé approximants may not

be used.

One more occurrence of a second order hyperbolic partial differential
equation is in the mathematical modelling of arterial blood pressure.

It is often difficult to estimate values of arterial blood pressure
in healthy arteries and numerous examples of collaborative research
between mathematicians and physiologists have become evident in recent

times. In the papers by Stettler et al [12a, 12b] for instance, a
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mathematical model is developed for the prediction of the pressure
and flow pulses in arteries. The model considers branches,
bifurcations and stenoses and the numerical predictions are compared
with laboratory findings. The development of the mathematical model
by Anliker et at [la, 1b] was undertaken because of the need for a
noninvasive method of determining, in advance, possible changes which
may occur in the cardiovascular system of astronauts as a result of
prolonged exposure to weightlessness. Mathematical models of pressure
and flow in arterial stenoses are discussed using finite element methods
in Wille [20] and finite difference methods in Wille and Wallg¢e [21].
Calculations using characteristics are carried out by Rumberger and
Nerem [8] and are compared with earlier laboratory results. An
historical perspective on the development of the mechanics of blood
flow is given in the excellent review paper by Skalak et al [9] who
include a list of 154 references of other review papers, texts and

theoretical and practical research papers.

A simple mathematical model of arterial blood pressure in a cylindrical
artery of length L, inner radius R and thickness H was discussed by
Twizell [17]. Young's modulus for the arterial wall is denoted by E,
Poisson's ratio for the wall by o, and the density of blood by p. It
is assumed that the artery is sufficiently remote from the heart for a
cosinusoidal formulation to be appropriate and that the heart beats
steadily at T contractions per second.

The arterial blood pressure u(x,t) at a point x units along the length

of the artery at time t is known to satisfy the hyperbolic equation

2 2
22}{‘2‘:2; .0 <x <L, t>0 , (6)

where ¢ denotes the velocity of propagation of a pressure wave and is
a function of the elastic and physical properties of the artery and
the effects of viscosity; it is given by

) EH u
P N
2R (1-067) »p
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Writing ¢ in this form makes the model capable of dealing with changes
in the velocity of propagation of a pressure wave, and in the arterial
pressure itself, due to a number of physiological changes brought about
by arteriosclerosis, coagulation or thrombosis. The serious
limitations of such a simple model are that important features such as
junctions or curves in the artery, reflected pressure waves, and
localized changes in the inner radius or thickness of the arterial wall
are not considered.

The boundary conditions which the solution of (6) must satisfy are given
by

u(0,t)=3V(1+cos2aTt) , t>0

2nTL
u(L,t)=%V(1+cos T cos 2nTt) , t>0

and the initial conditions are given by

2nTx

u(x,0) =3 V(I1+cos ) , 0<x<L
and

du
= (x,0)=0,
5% %0

where V is the pressure at the inlet of the artery.

It is easy to deduce that

nTV . 2nTx
sin
c c

, 0 £ x< L

ou
= (x,0)=—
15).4 x.0)

and the method of characteristics may now be used to find the computed
value of u by first discretizing the initial conditions at a number of
points along the length of the artery. The x-coordinates of the nodes
of the characteristic mesh generated are found to be almost coincident
with the x-coordinates of the initial points so that arterial pressure

at any point along the artery can be monitored fairly closely.
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4. PARABOLIC EQUATIONS
Parabolic equations arise in the flow of heat in the human body and for
the environmental temperature range normally encountered by the body,
experimental data do exist against which mathematical predictions may
be compared. Arguably the most important segment of the body, in so
far as heat flow is concerned, is the torso (that part of the body not
including the head, neck or limbs), as almost 77% of cardiac output is
to this segment which must therefore be maintained at a comfortable
temperature.
The most sophisticated mathematical models of heat flow in the human
torso consider the torso to consist of four concentric circular layers
of different types of tissue, namely core, muscle, fat and skin [6,10,
11,19] 6r as elliptic cylindrical layers of tissue [19]. The main
advantage of assuming an elliptic cross-section is that the geometry
of a cross-section of the normal male human torso is approximately an
ellipse; the main disadvantage is that the algebraic manipulation
involved in the computation of heat flow is much more difficult. In
assuming three space dimensions, the model is able to deal with non-uniform
longitudinal environmental temperatures; such models also involve
increased computational difficulties [19].
The majority of models of heat flow in the human torso are two
dimensional and, because the effective thermal conductivity of the
core is approximately the same as that of the muscle and the effective
thermal conductivity of the fat is approximately the same as that of
the skin, have only two concentric layers of tissue. These layers are
usually referred to as core and the insulating layer and their thicknesses
are assumbed to be in the approximate ratio 7:1.
Other factors governing the regulation of temperature within the torso
include the generation of heat by metabolic reactions; convection of
heat by flowing blood; heat exchange between large arteries and veins;
heat loss due to sweating and shivering; loss of heat at the skin
surface due to convection, evaporation and radiation; and environmental
conditions. Open and closed loop simulations involving these factors

were dealt with fully in the doctoral thesis of Smith [10]. This work
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incorporated the control system developed by Stolwijk and Hardy [13,14,15]
which was validated experimentally by Konz et al [5].

Some of the most important uses of mathematical models of heat flow in
the torso have been in the analysis of physiological and bioengineering
problems associated with the disparate environments encountered in space
flight. Such research has been carried outextensively atthe Lyndon
B. Johnson Space Center (NASA), Houston, Texas to aid in the design and
understanding of the physiological effects of liquid-cooled garments,

the study of human thermal stress, and the study of performance under
conditions of strenuous exercise in extreme environments (see Kuznetz

[6]). The modelling of heat flow in the human torso in an industrial
environment has been carried out at the Institute for Systems Design

and Optimization, Department of Industrial Engineering, Kansas State

University by Fan, Hsu, Hwang, Konz et al.

Considering a two-dimensional, time dependent model with a circular
cross-section of radius a, consisting of the two-shell core/insulating

layer concept, the temperature u=u(r,0,t) at the point (r,0) at some
time t > 0 is known to satisfy the parabolic equation

u 1ou 1 ¢%u
y‘l-;g-l‘r—zw}'l' qs(u)+HVS(TV_u)

+[(MC) g +Hyg [Ty —u]. (7

In (7) the subscript s = 1,2 refers to the core, insulating layer,

(pC)S %:Ks{

respectively; p, C, k¥, q denote density, heat capacity, thermal
conductivity, heat generation rate, respectively; (mC). represents
the product of mass flow rate and specific heat of blood entering the
capillaries; Hyg , Hygdenote the coefficients of heat transfer between
large arteries and tissue type s per unit volume and between veins

and tissue type s per unit volume; and T, = Ta(t), Tv = Ty(t) represent
the temperatures of the blood in the arteries and veins, respectively.

Numerical values for these constants are well documented in the

literature and are presented concisely in [10,11,19].
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It was noted earlier that the effective thermal conductivities ki, k»
of the core and insulating layer annuli are different. This
discontinuity in conductivity means that (7) cannot be applied to
points on the core/insulating layer interface. Instead a boundary
condition known as flux equality must be used to calculate the

temperature; this equation is given by

ou ou

_KIEZ_KZE. (8)
When applying (7) to points at the skin surface account must be taken
of the heat exchange between the skin and the environment. This
exchange is governed by the derivative boundary condition

—, 2= Qlu- B} 450 ©)

where E is the environmental temperature and S is the heat loss due to
sweating; Q depends on the microenvironment and contains terms
representing heat loss due to convection, evaporation, conduction and

radiation at the skin surface.

The temperature of the blood in the arteries and veins vary with time
and are governed by heat balances which form a system of ordinary

differential equations given by

dT .
(WC)a dta = (MC)ze (Tae _Tab + Hay (T\t/ —Tat)
a 2w ¢ )
+ Z GZ: Has (u.g—Ta) +da (10)
r=0 6=0 >

dTy
(WO)y =% = (1C)ye (Tye ~T) + Hay (T2 ~TY)

a 2t ¢ ¢
+ Zé) 620 [(MC)es + Hys] (U5 =Ty) + qy. (11)

In (10),(11) (WC), , (WC), denote, respectively, the product of the
specific heat and the mass of blood in the arteries and veins; (mC)ge,

(mC)ye represent the product of specific heat of blood and mass flow
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rate entering the arteries and veins, respectively;HaV is the coefficient
of heat transfer between large arteries and veins; Tae’Tve denote the

temperature of the blood entering the arteries and veins, respectively;
and q,.q,represent, respectively, heat loss due to respiration via the

arterial and veinous pools. The terms 7! 1! ! o are discretized
2 2 r’

values of T, (t), Ty (t), u(r,0,t) respectively.
Equation (7) cannot be applied at the origin where r = 0. The

temperature of the tissue at the origin will however be required in

the numerical implementation of (7) to points surrounding the origin

and its value may be taken to be the arithmetic mean of the surrounding
points.

Equations (7),(10),(11) are the differential equations of the model.
Initial conditions must be specified; these will vary with environmental
conditions and must be determined for each numerical experiment. The
boundary conditions are given by (8), (9).

In seeking a numerical solution the region occupied by the torso is
discretized by a number of equally spaced points along a number of
radii inclined at equal angles to each other. The equations of the
model are applied to the mesh points as appropriate, approximating the
space derivatives in (7),(8),(9) by finite difference replacements.

This results in a system of ordinary differential equations of the
form

%=A<g>g+h(g) (12)

where the vector U = U(t) is the vector of tissue temperatures at the
points of discretization and blood temperatures; the sparse matrix A
depends on the space discretization and the physiological constants, and
the elements of the vector b depend on the heat source terms in (7), the
physiological constants and the environmental conditions.

In [10,11,19], the non-linear equation (12) was considered to be linear
in a small time interval ¢ and it was thus shown that the solution of

the resulting linear problem at time t = n/ satisfies

U(t+0) = exp(fA,) (U + A}'b_} — Ab, - 13)
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where A=Ay, b=b, at time t=nl; Ay, b, are updated for each
n=1.2,..(clearly A; b, reflect the initial conditions), Replacing

the exponential function in (13) by a suitable Padé approximant yields
a numerical solution. In the interests of stability, the chosen Pad¢
approximant should lead to an implicit solution and it must be capable
of coping with the discontinuities between initial conditions and

boundary conditions which arise following an instantaneous change in
environmental temperature. In [10,11,19] the low order (1,0) Padé
approximant was used and the computed results were extrapolated

following Lawson and Morris [7].
5. SUMMARY

A number of case studies have been outlined in the present paper
which show how mathematicians and medical biophysicists have collaborated

to give a wider understanding of some problems in applied physiology.

For each case study, the mathematical model has been seen to lead to

the numerical solution of a system of partial differential equations.

One feature of the mathematical models has been the complicated
boundary conditions which have arisen from the physiological aspects

and geometry of the human body. The procedure to be followed in computing
the numerical solution has been briefly outlined in each case, with
reference to the research literature for detailed descriptions of

algorithms.
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