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Abstract
We propose a method for constructing optimal block de-
signs for experiments on networks. The response model for 
a given network interference structure extends the linear 
network effects model to incorporate blocks. The optimal-
ity criteria are chosen to reflect the experimental objec-
tives and an exchange algorithm is used to search across 
the design space for obtaining an efficient design when an 
exhaustive search is not possible. Our interest lies in es-
timating the direct comparisons among treatments, in the 
presence of nuisance network effects that stem from the 
underlying network interference structure governing the 
experimental units, or in the network effects themselves. 
Comparisons of optimal designs under different models, 
including the standard treatment models, are examined by 
comparing the variance and bias of treatment effect esti-
mators. We also suggest a way of defining blocks, while 
taking into account the interrelations of groups of experi-
mental units within a network, using spectral clustering 
techniques to achieve optimal modularity. We expect con-
nected units within closed- form communities to behave 
similarly to an external stimulus. We provide evidence 
that our approach can lead to efficiency gains over con-
ventional designs such as randomised designs that ignore 
the network structure and we illustrate its usefulness for 
experiments on networks.
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1 |  INTRODUCTION

Designing experiments on networks is a growing area of research mainly due to the rise and popularity 
of online social networks and viral marketing. The work presented here is motivated by the need to 
develop a practical methodology for obtaining efficient designs which control for variation among the 
experimental units from two sources: blocks and network interference, so that the true effects of the 
treatments can be detected.

Consider a commercial experiment on a social networking site to compare the effectiveness of 
different advertisements concerning a product. The network members are connected via virtual friend-
ships. The responses can be the quantities purchased during the week immediately following the 
advertising campaign. The company’s goal is to maximise the appeal of the product by using the 
advertisement as a tool to affect the purchasing decisions of potential customers and the experiment 
will be used as a means for comparing different advertisements. The advertisements used might have 
an effect not only on the recipient but also on their (virtual) friends. Moreover, there may be block-
ing structures related to different age groups of customers or cliques of close friends who engage in 
similar behaviours, for example, making similar decisions as to what quantity of product to purchase. 
We might expect subjects in the same block to have similar responses and subjects in different (non- 
overlapping) blocks to have dissimilar responses, irrespective of the presence or absence of viral 
effects of specific advertisements. By allowing for this in the design, we ensure more precise compar-
isons of the effects of advertisements.

The methodology demonstrated in this paper is straightforward for moderate sizes of networks 
of hundreds of vertices. For the motivational example below, the optimal design was found within a 
few minutes. Applications of such networks are plentiful and examples include agriculture, biology, 
engineering, marketing, pharmaceuticals and other areas. As motivation, consider the network illus-
trated in Figure 1, which is a small subset of the Facebook network as obtained from the Stanford 
network data set collection (snap.stanford.edu/data/egonets- Facebook.html), comprising 324 vertices 
(Facebook members) and 2514 undirected edges (mutual virtual friendships) forming an ego network. 
The ‘centre’ vertex of an ego network (the ‘ego’) is not included in the graph, which consists of only 
the ego’s friends (its contacts).

A noteworthy work which accommodated interference is Besag and Kempton (1986), which dis-
cussed spatial techniques and provided appropriate models to adjust for response or treatment inter-
ference in the context of agricultural field experiments. With our interest in the case of treatment 
interference, we focus on the model of Pearce (1957) presented by Besag and Kempton (1986), which 
jointly takes into account ‘local’ (i.e. direct) and ‘remote’ (i.e. indirect or neighbour) effects in the 
model. A wide variety of candidate models has been suggested for the case of treatment interference 
thereafter. Important examples include the work of Druilhet (1999), Kunert and Martin (2000) and 
Kunert and Mersmann (2011), who provided models and efficient designs that concern experiments 
where units are arranged in a circle or a line and in which neighbours one unit apart can interfere with 
each other. More recently, Parker et al. (2016) adopted the conceptual approach of Pearce (1957) and 
introduced a model, called the linear network effects model (LNM). The LNM is similar to the model 
of Kunert and Martin (2000). However, it differs by relaxing the assumption of neighbour effects 
existing in only one direction and allows for a network setting in which units can be linked in a way 
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that does not form a regular layout. Here, we extend the LNM of Parker et al. (2016) to include the 
notion of blocks.

Other previous work has focused on representing block designs as graphs and combining graph 
theoretic and optimality properties (Bailey, 2007; Bailey & Cameron, 2009, 2013; Wit et al., 2005). In 
contrast, in our current work the edges are not defined by the block structure and instead correspond 
to existing connections between experimental units.

Typically the blocking structure in an experiment will be pre- defined, for example similarly situ-
ated plots in an agricultural experiment or defined via measured covariates in a medical study. The 
analysis is adjusted appropriately to control for the block- specific effects (sometimes referred to as 
nuisance effects) to improve precision. Our methodology directly addresses this case where blocks 
are known prior to decisions about treatment allocation being made. However, in a setting of a social 
network it may be desirable or necessary to define the blocks based on the connectivity structure. We 
provide a general method of finding blocks in the context of a network where similarity of the experi-
mental units is based on the physical or logical densely connected clusters on the respective graph. For 
example people with similar socioeconomic status might form communities within a contact network 
which can define the blocks of the experimental design.

After we introduce the block network model (BNM) (Section 2), we define two specific design 
criteria for estimating with minimum variance the direct treatment comparisons in the presence of 
nuisance network effects or the network effects themselves (Section 3). We describe a systematic ex-
change algorithm used to obtain our designs (Section 4). We then make some comparisons among op-
timal designs under different models and investigate issues associated with the design efficiency and 
bias arising in the analysis of dependent data (Section 5). When blocks arise as cliques in the network, 
we suggest a method to define the blocks using spectral clustering and the concept of modularity. We 
give an example illustrating the recommended step- by- step methodology for the special case of two 
unstructured treatments (Section 6). Finally, we discuss some practical concerns emerging from the 
suggested methodology and further issues of interest (Section 7).

F I G U R E  1  A Facebook ego network with 24 non- overlapping blocks indicated by colours [Colour figure can be 
viewed at wileyonlinelibrary.com]
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2 |  STATISTICAL MODEL

Suppose that n experimental units are available for experimentation and that they form a net-
work which is represented by means of a graph  = ( ,  ), with vertex set  (of size n) and edge 
set  (of size l). The vertices might represent individuals connected through edges which might 
indicate some form of connection such as friendship, collaboration or communication. The ad-
jacency matrix of a graph is an n × n matrix A = [Ajh ] with j, h ∈ V, which is a compact way to 
represent the collection of edges. We focus on connected, undirected and unweighted graphs with 
Ajh = Ahj ∈ {0, 1} representing the absence or presence of an edge between the vertices j and h 
(mutual connections). Thus A is symmetric and binary. The diagonal elements represent the self- 
links, which by convention are set to zero. In an undirected network, the degree, dj, of the vertex 
vj ∈  denotes the number of vertices that vertex vj is connected to (number of neighbours), that 
is, dj =

∑
n
h=1

Ajh .
We assume that there are groups of experimental units which are expected to give similar re-

sponses, for example, because they share properties. We label these groups 1, …, κ and let group g 
have n(g) experimental units within it. We model the responses of experimental units by the block 
network model (BNM), which is an extension of the LNM (Parker et al., 2016) and is described by 
the equation 

where i = 1, 2, …, � ; j = 1, 2, …, n(i), yij is the continuous response from unit j in the ith block receiving 
the treatment s = r(ij) ∈ {1, …, m}, μ represents the response for a baseline treatment or (unit) average, bi 
is the effect of block i, �r(ij) is the (direct) treatment effect, A{ij,gh}/ A = A{ij,gh} with j, h ∈ V is the adjacency 
matrix indicating the edge between units j and h belonging to blocks i and g  ∈ {1, 2, …, κ} respectively, 
�r(gh) is the network effect (neighbour or indirect treatment effect) and �ij are the errors, which we assume 
to be independent and identically distributed with mean 0 and constant variance �2 .

To overcome the model overparametrisation requires imposing some constraints, otherwise the 
normal equations have an infinite number of solutions and our parameters cannot be uniquely esti-
mated. In our examples, without loss of generality, we assume the set- last- to- zero linear constraints 
with the mth treatment effect �m and κth block effect b� to be set equal to zero. A wider set of network 
structures can be tackled by introducing a constraint on the model parameters corresponding to the 
network effects, that is, �m = 0. For example, in practical terms that would allow regular graphs to be 
considered.

The expectation of the response for this model in matrix form is 

where � = (� �T bT �T )T = (� �1…�m−1 b1 … b�−1 �1…�m )T is the vector of parameters. 
There are no columns corresponding to the mth treatment effect and the κth block effect since we have 
assumed them to be zero. Following Bailey (2008) Section 2.7), vector u

s
 corresponds to an n × 1 vector 

where for each of the treatments (s = 1, 2, …, m) all the elements of the vector equal zero, except for those 
which correspond to the units which receive that treatment and are equal to one. For instance u1 is the 
indicator vector with ones for the unit(s) receiving treatment s = 1 and zeros elsewhere. The same holds 
for the vector w

i
 for block i. The symmetric information matrix M is 

BNM: yij = � + �r(ij) + bi +

�∑
g= 1

n( g )∑
h= 1

A{ij,gh}�r(gh) + �ij,

�
[
y
]
=
(
1 u

1
…um−1 w

1
…w�−1

Au
1
…Aum

)
�,
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where X� and Xb are the incidence matrices for treatment and block effects respectively and X∗
�  and X∗

b
 are 

the same matrices with their last columns deleted. We should note at this point that only certain types of 
network structures will enable us to estimate the network effects. With regular graphs the estimation of 
network effects is not possible due to the singular information matrix and therefore imposing additional 
restrictions on the values of the γ parameters may be appropriate for such cases.

3 |  DESIGNS WITH BLOCK AND NETWORK EFFECTS

In order to determine the optimal block designs we use the L- optimality criterion that minimises the 
average variance of the estimators of a pre- specified set of linear functions of the parameters ST�, 
where S corresponds to multiple vectors of known constants (Atkinson et al., 2007, Ch. 10). The op-
timality criterion function to be minimised is thus a scalar function of var(ST�̂ ), where �̂ is the least 
squares estimator of β which is proportional to ST {M(� )}−1 S, where M(ξ) = M corresponds to the 
information matrix and ξ is a design chosen from Ξ the set of all possible designs, where the design 
is a choice of treatment assignments to the experimental units that correspond to the vertices of the 
network. The minimisation of the optimality criterion function 

where L = SST, leads to an L- optimal design. For the L- optimal design � ∗, �∗ = � (� ∗ ) = min�∈Ξ�(� ),   
is the optimal function value.

To obtain these pairwise differences we have to explicitly define the s vectors that compose S.

Definition  Let s (�1, �2 ) be a contrast vector formed in the following way:

1. Form a vector of 2m  +  κ  +  1 zeroes, corresponding to the intercept, m treatment effects, 
τ, followed by κ block effects, b, followed by m network effects, γ.

2. Let the �1th and �2th elements be 1 and - 1 respectively, corresponding to the particular effects we 
wish to estimate in a given contrast.

3. Delete the (m + 1)th and (m + κ + 1)th elements, corresponding to our restriction that �m = 0 and 
b� = 0 to estimate the treatment and block effects uniquely.
The resulting vectors of length (2m  +  κ  −  1) are pre-  and post- multiplied by the 

(2m + κ − 1) × (2m + κ − 1) matrix M−1 in the summation that defines the optimality criteria �1 and 
�2 which we now define.

We seek to minimise the average variance of all pairwise differences of treatment effects 

M =

⎛
⎜⎜⎜⎜⎝

n 1
TX∗

� 1
TX∗

b
1

TAX�

X∗T

� 1 X∗T

� X∗
� X∗T

� X∗
b

X∗T

� AX�

X∗T

b
1 X∗T

b
X∗
� X∗T

b
X∗

b
X∗T

b
AX�

XT
�A1 XT

�AX∗
� XT

�AX∗
b

XT
�A2X�

⎞
⎟⎟⎟⎟⎠

,

� (� ) = Tr
(
ST {M (� )}−1 S

)
= Tr

(
{M (� )}−1 L

)
,

2

m (m − 1)

m− 1∑
s= 1

m∑
s� = s+ 1

var
(
�̂s−�s�

)
,
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which is proportional to 

 Alternatively we seek to minimise the average variance of all pairwise differences of network effects 

 For instance, for the case of m = 2 treatments and κ = 2 blocks the criteria become 

where s (2, 3) = (0 1 0 0 0)T and s (6, 7) = (0 0 0 1 − 1)T. The first corresponds to the 
estimate of the treatment effect difference, and the second to the estimate of the difference between net-
work effects.

We will often compare the performance of two designs using their relative efficiency, which, 
with respect to the objective function ϕ of a design �2 compared with a design �1, is given by 
Eff(�1, �2 ) = �(�1 )∕�(�2 ). We can also define the L- efficiency of a design ξ as Eff(� ) = Eff(� ∗ , � ),  
where � ∗ is the L- optimal design. We return to these definitions when assessing the performance of 
different optimal designs based on different models for a number of given networks.

4 |  EXCHANGE ALGORITHM

When exhaustive search to find an optimal design is not possible due to the large number of units and/
or treatments, we implement an approximate method. In the literature, there exist a number of com-
putationally efficient algorithms for finding near- optimal designs in a practical amount of time using 
iterative methods, for example, Fedorov (1972) and Cook and Nachtsheim (1980). The main steps 
involved in the majority of those algorithms are the following: (i) initialisation of the search, for ex-
ample, random generation of a non- singular design (i.e. the matrix M must be non- singular to ensure 
that the parameters in ϕ are estimable); (ii) modification of the current solution, for example, make 
exchanges in the treatment set; (iii) assessment of new solution, that is, design is assessed with respect 
to an objective function. Steps (ii)– (iii) are repeated until no change improves the design value; (iv) 
termination of the search process and return of the final design (which is assumed to be optimal).

We adapt the ‘Modified Fedorov Exchange Algorithm’ of Cook and Nachtsheim (1980) to obtain 
an exchange algorithm for finding near- optimal designs for unstructured treatments on networks. The 
algorithm can be described as follows:

Point Exchange on Networks (PEN) Algorithm

1. Step 1: Generate a random initial design (i.e. random assignment of a treatment label to 
each unit). Units are labelled from 1 to n.

2. Step 2: Calculate the optimality criterion function ϕ (�1, �2 or any other defined criterion) for the 
arbitrary design of step 1.

�1 =

m∑
v= 2

m+ 1∑
q= v+ 1

sT (v, q)M−1s (v, q) .

�2 =

2m+ �∑
v=m+ � + 2

2m+ � + 1∑
q= v+ 1

sT (v, q )M−1s (v, q) .

�1= sT(2, 3) M−1 s(2, 3)

�2= sT(6, 7) M−1 s(6, 7),
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3. Step 3: Iterate from j = 1 to n to find a better design (where j corresponds to the j- th unit). In the jth 
iteration:
a. Exchange the treatment applied to unit j with another treatment.
b. Calculate the information matrix. If it is non- singular, compute the new value of the chosen 

criterion. Otherwise go to d.
c. If the new criterion function value is better than the current one, keep the exchange of treatments. 

Otherwise, undo the exchange.
d. If j < n, set j ← j + 1.

4. Step 4: Repeat step 3 until a complete pass of all the vertices yields no further improvement and 
then go to step 5.

5. Step 5: Rerun all the above steps for several randomly generated initial designs and return the de-
sign with the lowest criterion function value �∗. This is the near- optimal design, which will usually 
be globally optimal, although this cannot be guaranteed. End.

The last step is required to obtain an efficient final design (and overcome the problem of becom-
ing stuck in a local optimum) by using multiple random initialisations. For the particular problems 
of interest in this work, the PEN algorithm appears to be powerful enough and simple to implement.

5 |  COMPARISON OF OPTIMAL DESIGNS UNDER 
DIFFERENT MODELS

We aim to construct experimental designs on networks that are efficient for estimating treatment 
or network effects. However, we want to investigate the bias of the estimated model parameters 
introduced by possible model misspecification. In this section we provide comparisons of optimal 
designs for estimating the treatment and network effects under traditional models that ignore network 
interference and models that account for it. In doing so we compare the optimal designs with network 
effects to the randomised balanced designs (equal replication), providing evidence that depending on 
the outcome of the randomisation, the balanced design is typically not very good. In the majority of 
cases designs that account for the network structure have higher efficiency than the standard designs.

We also obtain the bias introduced in the parameter estimators due to the model misspecification as 
a function of the unknown model parameters. The models we consider are the model, CRM, derived 
from the completely randomised design, the model, RBM, derived from the generalised randomised 
block design (which allows blocks potentially to be different sizes), the linear network effects model, 
LNM, and the block linear network model, BNM, defined as: 

In all cases, we assume that the errors are independent and randomly distributed with zero mean 
and constant variance. The CRM and RBM are the standard treatment models that are derived from 
randomisation schemes without and with blocks respectively. The designs for which these models are 

CRM: yj=�+�r(j)+�j

RBM: yij=�+�r(ij)+bi+�ij

LNM: yj=�+�r(j)+

n∑
h= 1

A{j,h}�r(h)+�j

BNM: yij=�+�r(ij)+bi+

�∑
g= 1

n( g )∑
h= 1

A{ij,gh}�r(gh)+�ij.
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appropriate are the simplest forms of designs to compare different treatments by randomly assigning 
them to experimental units (which for RBM are additionally arranged in κ blocks). The LNM and BNM 
are extensions of CRM and RBM respectively, including a network term for capturing the connections 
between units. Figure 2 illustrates the hierarchy among the models by means of a Hasse diagram (see, 
e.g. Bailey, 2008). Here, we use the Hasse diagram to describe the collection of models considered, 
with dots representing models and lines representing nesting relationships between models. If the true 
model is a submodel of the assumed model, the bias in estimating treatment effects will be zero. This 
will be further explained in the following examples. Designs which are optimal for each of these 
models are labelled CRD (for the Completely Randomised Design), RBD (for the Randomised Block 
Design), LND (for the Linear Network Design) and BND (for the Block Network Design) respectively.

We now compare the properties of each design for each model. In doing so we obtain the optimal 
function values for the two optimality criteria considering each model. Under the assumption of inde-
pendent errors that have a common variance �2, the variance– covariance matrix of the least squares 
estimator �̂ is var( �̂ ) = �2M−1. Given that interest lies in the comparisons of the designs, the value 
�2 is not relevant since the value is the same if the model is identical for all proposed designs for a 
particular experiment.

5.1 | Efficiencies of randomised designs

If we ignore the network structure in our design, we would generally assume that all experimental 
units in the network (for the CRD) or within a block (for the RBD) were exchangeable. There are 
therefore a large number of designs which we could choose as optimal under the CRD or RBD. In 
general, we would choose one of these equivalent designs at random, and we refer to this as a ran-
domised design.

In this section we compare the optimal designs with network effects to the randomised balanced 
designs (while ignoring the network structure), providing evidence that when under randomisation, 
the balanced design is typically not very good. In the majority of cases designs that account for the 
network structure have higher efficiency than the standard designs. The optimal randomised designs, 
under the CRM and the RBM, have near- equal replication of each treatment.

Example 1 The social network in Figure 3 is a real- world co- authorship network, comprising 22 sub-
jects (PhD students, supervisors and co- authors) and 27 edges, which indicate the ties between 

F I G U R E  2  Hasse diagram for the collection of models
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individuals with common publications, or ties between PhD students and their supervisors. Let 
us assume that we want to conduct an experiment on this network in order to compare two dis-
tinct treatments. Consider a small hypothetical experiment on these work colleagues, for exam-
ple, to compare different text messages with the object of raising charitable funds. The responses 
of the subjects could be measured by means of their donations. The subjects work together and 
might hold discussions with each other. Therefore, the text messages could have viral effects, as 
such affecting not only the person receiving the text message but also that person’s collabora-
tors. The three blocks have been defined following the method we suggest in Section 6, but any 
other means of defining blocks could be addressed in the same way. The resulting blocks, which 
emerged from the connectivity structure, nicely captured collaboration communities within a 
similar research area, who are likely to spend lots of time working on common projects.

We obtain the L- optimal designs (using exhaustive search) for this network which are illustrated in 
Figure 4. Overall the optimal design for �1 has all treatments equally allocated to the subjects, that is, 
11 subjects receive each of the two treatments. Subjects allocated within each treatment have similar 
first and second order degrees (numbers of connections between units of distance one or two). The de-
sign for �1 also has equal replication within each block. For �2, the design is highly dependent on the 
particular network structure. For instance subjects located at the ends of the network tend to receive 
the same treatment which is different from their better connected immediate neighbours.

Tables 1 and 2 illustrate the optimality function values for each design (columns) under the differ-
ent models (rows). We can obtain the efficiencies of the designs with respect to the optimal designs. 
The criterion function values of the optimal designs are highlighted in bold. Recall that the smaller the 
criterion function value the better the design is.

A key observation derived from these tables is that a randomised design which ignores the network 
effects is on average highly inefficient, especially with respect to �2. Note the values for CRD and 
RBD are the mean values over all 705,432 and 105,840 possible randomisations respectively.

F I G U R E  3  Social network with three blocks indicated by colours [Colour figure can be viewed at 
wileyonlinelibrary.com]
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In Table 1, we can observe that when assuming the LNM to be true, the BND, which has equal 
replication within blocks, is almost as efficient as the LND (with efficiency 0.1822/0.1827 = 99.7%). 
Under BNM the LND, which has equal replication overall but not within blocks, is 50.4% efficient. 
The poor performance of the LND relative to the BND under the BNM results from having a com-
pletely different structure and different allocation to unequal and relatively small- sized blocks. BND 
is balanced overall but also balanced within blocks. On the other hand, the optimisation process for 
the LNM drives the design away from having an equal treatment allocation within blocks, resulting 
in many neighbouring vertices receiving the same treatment. Moreover, under the BNM, a RBD 
which has equal replication within blocks performs better than LND on average. This means that, 
if we account for the blocks, we almost certainly do better. Another interesting observation is that 
CRD performs better than LND on average under BNM. This is because we consider all possible 
randomisations implying that in general randomisation will be beneficial if blocks are not known 
or included. It is worth noting that the optimal function values, which are 0.1822 (under the LNM) 

F I G U R E  4  Optimal designs (under BNM), �
1
 (left) and �

2
 (right); different colours indicate different blocks and 

different vertex shapes different treatments [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E  1  Comparisons of the designs for �
1
 under different models

Models

Optimal designs

CRD RBD LND BND

CRM 0.1818 0.1818 0.1818 0.1818

RBM 0.2034 0.1818 0.2685 0.1818

LNM 0.2126 0.2191 0.1822 0.1827

BNM 0.2500 0.2270 0.3621 0.1828

T A B L E  2  Comparisons of the designs for �
2
 under different models

Models

Optimal designs

CRD RBD LND BND

LNM 0.1447 0.1927 0.0237 0.0366

BNM 0.2354 0.2503 0.0998 0.0388
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and 0.1828 (under the BNM) are approximately equal to the minimum average variance possible 
for the unstructured case when having independent units (i.e. �2∕n1 + �2∕n2 = 2�2m∕n = 0.1818�2 
with n1 = n2 = n∕2).

In Table 2 the CRD and RBD perform poorly under both network models with their efficiencies 
being on average 16.4% and 16.5% under the LNM and BNM respectively when ignoring blocks (for 
CRD), and 12.3% and 15.5% under the LNM and BNM respectively when accounting for blocks (for 
RBD). These low efficiencies can be explained by the fact that these standard designs ignore the in-
direct treatment effects resulting from the network structure among units. We are able to estimate the 
network effects only under the LNM and the BNM. Moreover, when assuming the BNM to be true, 
the LND is only 39% efficient.

The boxplots in Figure 5 show the L- efficiencies of the designs based on �1 for all CRDs and 
RBDs. For �1, the CRD and RBD have median efficiencies 0.78 and 0.83 respectively, with minimum 
efficiencies 0.08 and 0.38 respectively. On the other hand for �2 in Figure 6, CRD and RBD perform 
similarly with median efficiencies being 0.17 and 0.18, the lower quartiles being 0.05 and 0.10 and 
the upper quartiles being 0.62 and 0.55. This results from ignoring the network effects. The LND is 
approximately 50% and 40% as efficient as the BND for �1 and �2 respectively.

Example 2 The second example network (see Figure 1) is a subset of the Facebook network where 
we wish to compare two treatments, which could correspond, for instance, to advertisements as 
discussed earlier.

The comparisons of the (near- )optimal designs under �1 and under �2 are given in Tables 3 and 4 
respectively. Note the values for CRD and RBD are the mean values over a large number of possible 
randomisations (we have evaluated 50,000 designs). Figures 7 and 8 depict the boxplots of efficiencies 
under L- optimality of the design based on �1 and �2 respectively for a number of possible designs 
(chosen at random) for CRD and RBD which do not take into account network effects, although they 
exist.

A key observation derived from these tables is that a randomised design, which ignores the net-
work effects is on average highly inefficient, at least with respect to �2. We can observe that when 

F I G U R E  5  Boxplots of efficiencies for �
1
 (assuming the BNM)
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assuming LNM to be true, the BND, which is completely balanced within blocks, is almost as effi-
cient as the LND. Under BNM the LND, which is balanced overall but unbalanced with respect to 
blocks, is 93.9% efficient. Moreover, under BNM, a random balanced RBD which is balanced within 
blocks performs better than LND on average, with the latter being as efficient as a random balanced 
CRD on average. In Table 4 the random balanced designs CRD and RBD perform poorly under both 
models with their efficiencies ranging on average between 10.6% and 14.8% respectively when ig-
noring blocks and 8.1% and 13.9% respectively when accounting for blocks. These low efficiencies 
arise because these standard designs ignore the spillover effects resulting from the network structure 
among units.

The boxplots in Figure 7 depict the efficiencies under L- optimality of the design based on �1 for 
a number of possible balanced designs (as chosen at random) for CRD and RBD which do not take 

F I G U R E  6  Boxplots of efficiencies for �
2
 (assuming the BNM)

T A B L E  3  Comparisons of the designs for �
1
 under different models

Models

Optimal designs for �1 ( × 102 )

CRD RBD LND BND

CRM 1.2346 1.2347 1.2346 1.2346

RBM 1.3298 1.2432 1.3042 1.2432

LNM 1.2481 1.2747 1.2346 1.2348

BNM 1.3749 1.2907 1.3177 1.2432

T A B L E  4  Comparisons of the designs for �
2
 under different models

Models

Optimal designs for �2 ( × 102 )

CRD RBD LND BND

LNM 0.1121 0.1474 0.0119 0.0149

BNM 0.1553 0.1647 0.0312 0.0230
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into account network effects, although they exist. The outliers are detected by setting the upper/lower 
ends of the whiskers at three standard deviations. For �1 CRD and RBD have median efficiencies 
0.92 and 0.97 respectively, with minimum efficiencies 0.68 and 0.76 respectively. On the other hand 
for �2 in Figure 8, CRD and RBD perform similarly with median efficiencies between 0.10 and 0.25, 
lower quartiles between 0.15 and 0.17 and upper quartiles between 0.27 and 0.29. This results from 
not taking into account the network effects. For �1, LND performs on average better than most of the 
balanced CRDs, but worse than the majority of balanced RBDs, while for �2 LND is approximately 
70% as efficient as BND.

F I G U R E  7  Boxplots of efficiencies for �
1

F I G U R E  8  Boxplots of efficiencies for �
2
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5.1.1 | Recommendations

These and other design examples led us to make the following general guidelines:

1. On average the randomisation process assuming no network structure leads to fairly poor de-
signs, that is high variance (this is especially true under �2). For Example 2, all designs for 
�2 were less than 35% efficient which indicates that randomised designs are highly inefficient.

2. When ignoring both block and network effects, the design can perform poorly. When taking into 
account the network effects but not the block effects, the design performs satisfactorily for �2 but 
can perform poorly for �1 when there is strong evidence of an underlying block structure.

3. By using blocks and ignoring network effects, with approximately a 25% chance (upper quartile) 
one can do just as well as when taking into account the network effects, but on average one does 
worse (for �1).

4. Evidence suggests that we will be better off by using blocks instead of ignoring them, indepen-
dently of whether we are taking into account network effects (for �1).

The optimal designs under the second optimality criterion are generally unbalanced, that is, the 
treatments have unequal replication in the design. Therefore, it is not surprising that the standard de-
signs perform poorly with median efficiencies lower than 35%. Thus in practice, when there is a strong 
belief that the units are governed by a network structure and/or when blocking structure exists, then it 
is of importance to account for those in order to obtain an efficient design.

5.2 | Bias due to model misspecification

In the previous section, we showed that randomised designs that ignore network effects are not ef-
ficient when used to fit the BNM. However, practitioners might use standard randomised designs and 
analyse their data using models that ignore network effects such as CRM and RBM. We now show 
that when we randomise and fit the corresponding model, the design can result in biased estimators of 
the quantities of interest. Although the bias has not been taken into account in the design optimality 
criteria, we can obtain it as a function of the model parameters and show that, under the false assump-
tion that there are no network effects, the bias can be practically important.

We employ Example 1 to investigate the potential impact of model bias. We consider wrongly 
fitting a simpler reduced or nested model when a more complicated model is true. For example, when 
fitting a model with no network effect (e.g. assuming RBM) we calculate the expectation of the bias 
introduced in the parameter estimates for all possible balanced designs (which are optimal when there 
is no network effect) in terms of the true unknown parameters (for true BNM). In the Appendix, we 
derive the design bias in the least squares estimators of the model parameters for the RBM, , due to 
model misspecification, that is, 

where 
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and Im is the m × m identity matrix.
Note that any parameters absent from the assumed model are estimated as zero, leading directly to 

a bias equal to the negative of the true parameter value. We obtain the biases under the different mod-
els with respect to the model parameters in Table 5. Each bias results from fitting an incorrect model 
and the fitted model is the same as that assumed when finding the design. Thus we can perform an 
experiment where we wrongly assume that there are either no network effects or no blocking effects, 
while the true model is of the form BNM. Note that if the true model is a submodel of the assumed 
model, the bias in estimating treatment effects will be zero. Moreover, the expressions resulted from 
averaging the biases across all possible balanced randomised designs. We see that if the network ef-
fects are substantial compared to the (direct) treatment effects, then ignoring them can potentially lead 
to over-  or under- estimated treatment effects. Thus, by not taking into account network effects in our 
design, we produce an experiment which can have higher variance than necessary if the correct model 
is fitted and biased estimators if a simpler model is fitted.

We can extract the bias of the treatment effects estimates (the second line in each matrix). Assuming 
that we wrongly ignore network effects, we have the following two cases of the bias for the direct treat-
ment effects estimator, where the expectation is taken over all possible randomisations 

 

If the true values of the network effects are zero (so that �1 = �2 = 0), the balanced design will 
produce unbiased estimators. We should note that the network effects are not in general of the 
same magnitude. However, for our investigation we assume them to be equal (�1 = �2 = �), and 
without loss of generality we set γ = 1. Under this assumption the bias in (2) is slightly larger than 

(1)CRD under LNM: �
[
�̂1

]
− �1 = −0.48�1 − 0.24�2,

(2)RBD under BNM: �
[
�̂1

]
− �1 = −0.72�1 − 0.05�2.

T A B L E  5  Bias under model misspecification
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in (1), that is, |0.77 | > |0.72 |. A conclusion drawn from this example is that if we use a model 
that ignores network effects there is no obvious benefit in terms of bias from including blocks. 
Thus having blocks does not insure us against the bias introduced by wrongly excluding network 
effects.

In a completely randomised design there is a 50% chance of any specific pair of units receiving 
both treatments 1 and 2. To investigate if the bias from treatment effects results from network effects 
passed on from units receiving treatment 1 to those receiving treatment 2, we focus on the number of 
links connecting the different treatments, which we call l12. The plot in Figure 9 shows the bias when 
assuming an optimal RBD under the true BNM in treatment effect estimates, as a proportion of the 
true γ, against the proportion of edges, which connect pairs of units receiving different treatments. 
Thus the expectation of the bias is over a conditional distribution of randomisations given a fixed pro-
portion of edges. The locations of the plotting symbols are related to the coefficients of the network 
effects in the bias equation under each design and are dependent on the size of the true γ. As such 
they correspond to the bias from RBDs for estimating the treatment effects due to the network effects 
under the assumption that the underlying parameters are equal to one. The expectation of the bias over 
all designs for the intersection point, which corresponds to approximately half for the proportion of 
links, is equal to zero. It should be noted that many designs are overlapping and each location of the 
plotting symbols can represent the bias due to network effects for alternative RBDs. Table 6 illustrates 
the number of balanced designs for each proportion of edges (connecting units receiving treatment 1 
to units receiving treatment 2).

F I G U R E  9  Bias in treatment effects due to network effects [Colour figure can be viewed at wileyonlinelibrary.
com]
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The boxplots in Figure 10 depict the bias in the estimation of treatment effects over all possible 
RBDs in the case that we assume that �1 = �2 for every proportion of links. This expectation is con-
ditional on the proportion of links being fixed, but averaged over the subset of randomisations which 
respect that. The limits of the boxplots are relative to the size of the true network effect. This plot 
suggests that in general the complete randomisation while ignoring the network structure does not 
perform well. In combination with the previous observation, we can conclude that the least expected 
bias in the treatment effects is achieved when the number of pairs of connected units which receive 
different treatments equals approximately half the total number of edges of the network (see Figure 
10 at the proportion 0.56).

The experimenter should impose restrictions on the allocation of treatment combinations such that 
the number of connected pairs of units receiving different treatments roughly equals half of the total 
number of edges in the network. Restrictions on the randomisation in such a way enables us to protect 
the experimental results against bias in treatment effects stemming from potential network effects.

T A B L E  6  Number of balanced designs for each proportion of edges

# designs 38 322 1532 4710 9460 12742 11838 7674 3540 952 112

Prop. of edges 0.37 0.41 0.44 0.48 0.52 0.56 0.59 0.63 0.67 0.7 0.74

F I G U R E  1 0  Bias for treatment effects when �
1
= �

2

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/70/3/596/7033949 by guest on 15 O

ctober 2023



   | 613KOUTRA et al.

6 |  DEFINING BLOCKS USING SPECTRAL CLUSTERING

In our model, we assume that individuals within the same community exhibit similar responses, which 
are different to those in other communities, irrespective of the presence or absence of viral effects 
of specific treatment. Sometimes these communities are defined by features not directly related to 
the graph structure, such as age group, sex, nationality, etc. At other times they are defined by the 
structure of the graph itself. Then we have to deduce the community structure by using a clustering 
algorithm.

Spectral clustering, as the name implies, makes use of the graph spectrum, that is, the set of eigen-
values and eigenvectors of a matrix describing the graph structure, to group vertices into communities. 
The graph spectrum plays a major role in the understanding of the structure and dynamics in the net-
work since it is linked with numerous graph properties (Chung, 1997; Von Luxburg, 2007). Spectral 
clustering is a versatile clustering method which can be applied to any network and is considered to 
give good quality solutions. To identify the number of clusters, we additionally use the modularity of 
the network, which is a measure which quantifies the strength of the community structure in a network 
(Newman, 2006).

Apart from the adjacency matrix, a graph  can be represented by other connectivity matrices 
such as the Laplacian matrices. The main differences between spectral clustering techniques lie in the 
choice of the Laplacian matrix. We use the normalised Laplacian graph, Lrw = I − D−1A, where D is 
the n × n diagonal degree matrix (where the entries are the degrees of the vertices). In fact, D−1A is 
the transition matrix of a standard random walk on the given graph, making it a useful tool for captur-
ing a diffusion process, such as the treatment propagation effects, in a network. Recall that a walk is 
a sequence of edges connected to a sequence of vertices, where vertices can appear more than once. 
A random walk is a walk across a network created by taking repeated random steps. The vertices with 
high degree are more likely to be visited by the random walk because there are more ways of reaching 
them.

For detecting communities we implement the normalised spectral clustering algorithm, namely the 
Shi and Malik (SM) algorithm (Shi & Malik, 2000) as described by Von Luxburg (2007). We describe 
the SM algorithm in the Appendix with appropriate adjustments for the purposes of this work. This 
clustering algorithm gives no hint about the choice of the number of clusters or ‘goodness’ of each 
partition. To quantify the quality of partitions and to choose the number of communities based on 
the ‘best’ partition, we use modularity (Newman & Girvan, 2004), which is defined as the difference 
between the fraction of the edges that fall within clusters and the fraction of the edges that would be 
expected to fall within the clusters if the edges were assigned randomly but keeping the degrees of 
the vertices unchanged. When the communities are not stronger than the random partition or when 
the network does not exhibit any community structure, the modularity score Q is zero or negative (see 
Appendix for the detailed definition). As such κ is regarded as the appropriate candidate for indicating 
the number of intrinsic communities which will define the blocks to be used in the design process, if 
the κth partition corresponds to the highest modularity score over all partitions.

Revisiting Example 2 we provide and implement the step- by- step methodology.
Step one: Blocking structure. Expressing the topology of the network through the normalised 

Laplacian matrix Lrw, we produce a number of possible network partitions for different values of κ (di-
mensionality of the eigenvector space, that is, the number of κ eigenvectors) using the spectral cluster-
ing algorithm SM. Then we assess all the partitions produced using the quality function of modularity 
and choose the number of communities (fixed κ) to be used for the block design, which maximises the 
value of modularity. For the social network at hand the maximum modularity value over all possible 
partitions is found for κ = 24 clusters. Figure 11 illustrates the modularity scores for different numbers 
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of communities obtained via the graph partition. This screening stage helps us to choose the number 
of communities, where the modularity score takes its maximum value. The resulting clustering is 
illustrated in Figure 1 with different colours indicating the different 24 blocks.

Step two: Optimal design with block and network effects (using PEN). The optimal function values 
resulting from this search (allowing for multiple initial designs) were found to be �∗

1
= 0.0124 and 

�∗
2
= 0.0002. Similar to the first example, �∗

1
 is approximately equal to the estimated variance of the 

difference of the two treatments when the units are independent and the model does not contain net-
work or block effects (i.e. 0.0123�2). While the optimal design for estimating �1 has 161 and 163 units 
receiving treatments 1 and 2 respectively, the optimal design for estimating the difference in network 
effects has 117 and 207 units receiving treatments 1 and 2 respectively.

7 |  DISCUSSION

Many experiments can be regarded as being on networks by appropriate specification of the adjacency 
matrix. The suggested methods are easily adaptable to a wide class of networked experiments and to 
different block definitions for enabling the researcher to make comparisons between different treat-
ments both directly and indirectly. However, generalising these methods to large- scale networks with 
hundreds of thousands of nodes, for example, commercial databases, is an open research problem.

This paper offers a framework for finding optimal block designs with network effects. It provides 
evidence that conventional designs such as randomised designs while ignoring the network structure 

F I G U R E  1 1  Modularity values for partitions of κ = 2, …, 162 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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are inefficient compared to block designs with network effects. We saw that a model which wrongly 
ignores block and/or network effects leads to inefficient designs.

We also suggest a way to define blocks, while taking into account the community structure. We 
justify our choice of using spectral clustering due to the simplicity of its implementation (standard 
linear algebra), without requiring any explicit distributional model and without making any kind of 
assumption on the formation of the clusters. We have three main components: (i) spectral clustering of 
the given social network to project the vertices of the network onto an eigenvector space; (ii) modular-
ity to choose the ‘best’ partition of the network over all partitions; and (iii) optimal block designs, for 
the clusters of subjects produced. However, there will be situations where the network is big enough 
that this method is computationally inefficient and we would have to approximate by using a different 
graph partitioning algorithm, for example, the Louvain algorithm (Blondel et al., 2008).

Based on a wide variety of examples similar to the ones we presented, we can suggest some general 
guidelines. Heuristically the experimental design for estimating the treatment effects tends to have equal 
replication within each block on the units having a similar number of connections, while for estimating 
the network effects the design is greatly influenced by the network’s first and second order connections.
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APPENDIX 

Bias due to model misspecification

We provide the derivation of the bias in the estimators of the model parameters due to model 
misspecification.

Consider performing an experiment on a network, where the adjacency matrix, A, is given. We as-
sume that the true model is the BNM. However, the postulated model for the experiment is the RBM, 
which ignores network effects (i.e. γ = 0). We want to obtain the bias in the parameter estimates due 
to the model misspecification as a function of the unknown model parameters. This will be accom-
plished by using generalised inverse matrices (Harville, 1997, Ch.9). Let �̂C and �̂R be estimators of 
β with XC =

(
1 X∗

� X∗
b

AX�

)T and XR =
(
1 X∗

� X∗
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0n×m

)T being the extended design matrices under 
the BNM and RBM respectively. Note that �̂C is the best linear unbiased estimator for β so that 
�
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�̂C

]
= � and �̂R is the OLS estimator of β for the RBM (without network effects). With the neces-

sary algebraic calculations on generalised inverse matrices (where M− is the generalised inverse of a 
square matrix M), it follows that the bias of the design, , under the assumption that there are network 
effects but we do not take them into account, is 
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where I is the (2m + κ − 1) × (2m + κ − 1) identity matrix. Let B and Γ represent the (m + κ − 1) × (m + κ − 1) 
and (m + κ − 1) × (m − 1) matrices respectively 

 Then for the (2m + κ − 1) × (2m + κ − 1) block- diagonal matrix 

 we have that B is a non- singular matrix (it has full rank) and, defining a (2m + κ − 1) × (2m + κ − 1) 
matrix 

where G11 is of dimension (m + κ − 1) × (m + κ − 1), we obtain 

implying that G is a generalised inverse of Δ if and only if BG11B = B, or if and only if G11 = B−1. Hence, 
we have 

Thus the bias introduced in the estimates of the parameters, �̂R, under the false assumption that 
there are no network effects is given by the quantity B−1Γ. This quantity is the result of ignoring the 
network effects, which is represented by an adjustment of the intercept and the treatment effect esti-
mates. Observe that �

[
�̂R

]
≠ �

[
�̂C

]
, unless B−1Γ = 0 which results from Γ = 0 or γ = 0.

Following the same rationale, we can end up in a similar expression of the design bias introduced in 
the treatment effects, when we perform an experiment where we wrongly assume there are no block-
ing effects. This means that if we consider the reduced model LNM, while the true model is of the 
form BNM, the design matrix will be of the form XR =

(
1 X∗

� 0n×(�−1) AX�

)T.

The Shi and Malik algorithm

The SM algorithm involves three steps: I. Compute the normalised graph Laplacian Lrw and its spec-
trum (as based on the known adjacency matrix of the network); II. Dimensionality reduction: using the 
κ first eigenvectors �1,…, �� of the graph Laplacian that correspond to the first κ eigenvalues sorted in 
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ascending order, let U ∈ Rn×� be the matrix containing �1, …, �� as columns. (Note that the eigenvec-
tor space varies based on the chosen dimensionality κ.); III. Clustering step: treating each row of U as 
a data point, (yi)i=1, …, n ∈ R�, group them via the (standard) k- means algorithm into κ (dimensionality 
of the eigenvector space) clusters, C1, …, C�. Therefore, the vertices of the network are projected into 
a κ- dimensional space, where κ is the number of the first nontrivial eigenvectors of Lrw. As a result, 
each unit is allocated to one cluster.

We perform the clustering step for various numbers of clusters κ, 2≤κ≤n/2, the upper bound cho-
sen so that there should be at least two units within a cluster for achieving treatment comparisons. 
Note that the partition method can rely on a different clustering step rather than k- means if required. 
However, we used this standard one, which is the most used partitioning method.

This clustering algorithm gives no hint about the choice of the number of clusters or ‘goodness’ of 
each partition. To quantify the quality of partitions and to choose the number of communities based 
on the ‘best’ partition, we use modularity, 

where sji and shi are binary indicators of whether vertices j and h belong to group i or not (membership 
vectors) and 2l =

∑
n
j=1

dj is the total degree of all the vertices. In other words, modularity is defined as 
the difference between the fraction of the edges that fall within clusters and the fraction of the edges that 
would be expected to fall within the clusters if the edges were assigned randomly but keeping the degrees 
of the vertices unchanged. The factor of 1/2 accounts for the fact that every vertex pair j,h is counted twice. 
When the communities are not better than the random partition or when the network does not exhibit any 
community structure, Q is zero or negative.

As such κ is regarded as the appropriate candidate for indicating the number of intrinsic communi-
ties which will define the blocks to be used in the design process, if the κth is the highest modularity 
score over all produced partitions, that is, κ = arg max Q.
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