Habitat disturbance alters color contrast and the detectability of cryptic and aposematic frogs

Barnett, James; Varela, Brandon; Jennings, Ben; Lesbarrères, David; Pruitt, Jonathan N; Green, David

Abstract

Animals use color both to conceal and signal their presence, with patterns that match the background, disrupt shape recognition, or highlight features important for communication. The forms that these color patterns take are responses to the visual systems that observe them and the environments within which they are viewed. Increasingly, however, these environments are being affected by human activity. We studied how pattern characteristics and habitat change may affect the detectability of three frog color patterns from the Bocas del Toro archipelago in Panama: Beige-Striped Brown Allobates talamancae and two spotted morphs of Oophaga pumilio, Black-Spotted Green and Black-Spotted Red. To assess detectability, we used visual modeling of conspecifics and potential predators, along with a computerbased detection experiment with human participants. Although we found no evidence for disruptive camouflage, we did find clear evidence that A. talamancae stripes are inherently more cryptic than O. pumilio spots regardless of color. We found no evidence that color pattern polytypism in O. pumilio is related to differences in the forest floor between natural sites. We did, however, find strong evidence that human disturbance affects the visual environment and modifies absolute and rank order frog detectability. Human-induced environmental change reduces the effectiveness of camouflage in A. talamancae, reduces detectability of Black-Spotted Green O. pumilio, and increases chromatic contrast, but not detectability, in Black-Spotted Red O. pumilio. Insofar as predators may learn about prey defenses and make foraging decisions based on relative prey availability and suitability, such changes may have wider implications for predator-prey dynamics.

KEYWORDS

aposematism, camouflage, habitat change, human disturbance, Oophaga pumilio, Allobates talamancae.

LAY SUMMARY

Color patterns are used by animals to conceal, or signal, their presence, but the distinction between camouflage and conspicuousness is often dependent on the background. We found that the absolute, and rank-order, detectability of leaf litter frogs at a site of increased human activity differed from that at an adjacent undisturbed site. These changes to detectability may affect the efficacy of individual defensive strategies but may also influence how predators forage on multiple prey types.

INTRODUCTION

Color forms an important aspect of the lives of many different species (Cuthill et al., 2017): camouflage allows animals to evade detection (Cott, 1940; Endler, 1978; Cuthill, 2019), aposematism warns predators to stay away (Poulton, 1890; Cott 1940; Mappes et al., 2005; Stevens and Ruxton, 2012), and sexual displays attract mates and intimidate rivals (Darwin 1871; Andersson, 1994; Weaver et al., 2017). These colors, both cryptic and conspicuous, evolve as a product of the visual systems that observe them and the backgrounds against which they are viewed (Stevens, 2007; Merilaita et al., 2017). The efficacy of camouflage in particular often depends on specific background features (Troscianko et al., 2016; Michalis et al., 2017), but conspicuous signals can also be affected by their surroundings (Gamberale-Stille, 2001; Aronsson and Gamberale-Stille, 2009; Honma et al., 2015).

The perception of animal coloration can be described in relation to the processing of chromatic (hue) and achromatic (luminance/brightness) information, as well as the structural arrangement of different pattern components that may vary in spatial frequency (size), symmetry, and orientation (Troscianko et al., 2009; Cuthill et al., 2017). In background matching camouflage, the signal-to-noise ratio between animal and background characteristics is minimized with color and patterning that matches common features of the background (Endler, 1978; Michalis et al., 2017; Cuthill, 2019). Disruptive camouflage, on the other hand, prevents detection with high contrast patterns that differentially blend into the background and break up the outline of otherwise recognizable features (Stevens and Cuthill, 2006; Stevens and Merilaita, 2009; Cuthill, 2019). In both instances, camouflage is most effective when hue and brightness are drawn from the background distribution of colors (Stevens and Merilaita, 2009; Michalis et al., 2017). However, whereas background matching is most effective when matching common background features, disruptive coloring often favors patterns that maximize contrast between pattern elements (Schaefer and Stobbe, 2006; Stevens et al., 2006; Cuthill et al., 2006; Barnett et al., 2016; Michalis et al., 2017; Phillips et al., 2017).

In aposematic signals, higher contrast against the background and between pattern components, is often associated with higher detectability and more effective avoidance learning by potential predators (Forsman and Merilaita, 1999; Forsman and Herrström, 2004; Aronsson and Gamberale-Stille, 2008). The arrangement of pattern, however, may blur the distinction between cryptic and aposematic signals. For instance, recognizable patterns can be aversive even without conspicuous colors (Wüster et al., 2004; Valkonen et al., 2011), high contrast aposematic patterns can act as disruptive camouflage in certain microhabitats (Honma et al., 2015), and when viewed from a distance high contrast patterning may blend together to match the background (Marshall, 2000; Tullberg et al., 2005; Bohlin et al., 2012; Caro et al., 2013; Barnett and Cuthill, 2014; Barnett et al., 2018).

Visual ecology, therefore, depends on a complex interaction between animal coloration and the environmental features that form the visual background. Increasingly, however, human activity is interfering with these processes and altering the background against which animals are observed (Kettlewell, 1955; Mills et al., 2013; Zimova et al., 2016; Delhey and Peters, 2017; Walton and Stevens, 2018; Guiden et al., 2019; Spaniol et al., 2020). For example, the influence of humans on the visual environment has been well illustrated by the classic evolutionary study of industrial melanism in the peppered moth (Biston betularia; Kettlewell, 1955; Walton and Stevens, 2018), but such changes are also seen as rising temperatures alter the extent and duration of snow cover (Imperio et al., 2013; Mills et al., 2013; Zimova et al., 2016; Atmeh et al., 2018) and increase the frequency of coral bleaching events (Coker et al., 2009).

The Neotropical poison frogs (Dendrobatidae) have become a model system for understanding visual ecology due to their highly variable, and often very conspicuous, color patterns and their possession of alkaloid toxins (Summers and Clough, 2001; Siddiqi et al., 2004; Roberts et al., 2007; Wang and Shaffer, 2008; Hoogmoed and Avila-Pires, 2012; Yeager et al., 2012; Twomey et al., 2016; Rojas, 2017). One species, Oophaga pumilio, exhibits an extreme degree of color variation in the Bocas del Toro archipelago in Panama. Throughout these islands, O. pumilio has diversified into both conspicuous and
cryptic color forms through interactions between genetic drift, sexual selection, and predation risk (Summers et al., 1999; Siddiqi et al., 2004; Reynolds and Fitzpatrick, 2007; Saporito et al., 2007; Maan and Cummings, 2008, 2009, 2012; Richards-Zawacki et al., 2012; Crothers and Cummings, 2015; Yang et al., 2019). Conversely, co-occurring frogs in the closely related family Aromobatidae are predominantly non-toxic and cryptic in color, despite sharing many features of their morphology, behavior, and habitat requirements with dendrobatids (Grant et al., 2006; Grant et al., 2017; Mebs et al., 2018).

Here, we examine how the interaction between frog coloration and background characteristics affects the visual ecology of terrestrial frogs in the Bocas del Toro archipelago, using the non-toxic, Beige-Striped Brown Allobates talamancae (Aromobatidae), and two allopatric color morphs of the toxic O. pumilio (Dendrobatidae): Black-Spotted Green from Isla Colón and Black-Spotted Red from Isla Bastimentos. Previous studies comparing the color and behavior of O. pumilio generally support the notion that, although both morphs are chemically defended, red morphs utilize aposematism whereas green morphs are cryptic (Pröhl and Ostrowski, 2011; Rudh et al., 2012; Rudh, 2013; Segami Marzal et al., 2017). The frogs' natural habitats are, however, exposed to human activity, including tree removal and the introduction of banana crops, that may alter the natural perception of frog coloration (Spalding, 2013; Guiden et al., 2019).

By photographing frogs and their natural leaf litter backgrounds on Isla Colón and Isla Bastimentos, as well as the leaf litter at a site of increased human activity on Isla Colón in which frogs were also present, we sought to examine the role of pattern and habitat in producing frog camouflage or conspicuousness. We measured the perceived contrast between the frogs and the three habitats with models of predator and conspecific vision, in conjunction with a computer-based detection experiment with human participants designed to assess whether these findings corresponded to differences in detectability. In particular, we were interested in whether patterning reduced detection through disruptive camouflage or through distance-dependent pattern blending, whether the polytypic color patterns of O. pumilio were specialized
towards particular local background characteristics, and whether human disturbance of habitats alters frog detectability. We predicted i) that high contrast patterning combined with cryptic colors would act as disruptive camouflage, ii) that the mean colors of the frogs would match the background and be camouflaged when viewed from a distance, iii) that as camouflage and conspicuous signaling are both affected by background features cryptic O. pumilio would be more cryptic, and conspicuous O. pumilio more detectable, at their local sites than at alternate sites, and iv) that as camouflage is particularly dependent on background characteristics habitat disturbance would make cryptic frogs more detectable.

MATERIALS AND METHODS

Image analysis

Photography

In May-June 2017, we photographed similarly sized, terrestrial leaf litter frogs and their natural habitats in the Bocas del Toro archipelago, Republic of Panama (Figure 1). On Isla Colón, we photographed 10 non-toxic Beige-Striped Brown A. talamancae (SVL $[\pm$ SD] $=20.93 \pm 2.86 \mathrm{~mm}$) and 10 of the BlackSpotted Green color form of the toxic O. pumilio ($\mathrm{SVL}=18.28 \pm 1.89 \mathrm{~mm}$). On Isla Bastimentos, we photographed 10 of the Black-Spotted Red color morph of O. pumilio (SVL $=18.28 \pm 1.89 \mathrm{~mm}$). We also photographed both the natural rainforest leaf litter of Isla Colón $(\mathrm{n}=40)$ and Isla Bastimentos ($\mathrm{n}=35$), as a well as the leaf litter at a site of disturbed habitat, that included banana crops, adjacent to the Isla Colón forest $(\mathrm{n}=40)$. These background photographs were taken at $\sim 1-2 \mathrm{~m}$ intervals along non-linear transects through the habitat, and each was orientated to capture an unobscured section of the forest floor.

Each photograph was taken from a height of 50 cm with a Canon EOS Rebel T5i DSLR and Canon EF-S 18-55 mm IS STM lens (Canon Inc., Tokyo, Japan) and all images contained a ColorChecker Passport (X-Rite Inc., Grand Rapids, MI, USA). We set the aperture to f 8 , the focal length to 30 mm , manually adjusted the shutter speed (to avoid under or over exposed regions) and saved all files in RAW format. As UV irradiance is minimal below the canopy (Théry, 2001) and there is no significant UV reflectance from
either the frogs or the leaf litter (Summers et al., 1999; Siddiqi et al., 2004; Maan \& Cummings, 2009; Flores et al., 2013; Chaves-Acuña et al., 2020; Yeager \& Barnett, 2020), we did not include ultraviolet light. For analysis we selected the dorsal pattern of each frog from its image and a randomly located square region of interest from each of the background images covering $\sim 200 \mathrm{~mm}^{2}$ of the leaf litter.

Visual modeling

To quantify how easily the frogs' colors and patterns could be distinguished from the different backgrounds, we used visual modeling. We modelled bird vision to assess how coloration may act as a defense, O. pumilio vision to measure how differences in habitat may affect sexual signals, and human vision to enable more intuitive interpretation of the image analysis and detection data.

We created a custom camera linearization profile using the 9% and 59% reflectance tiles from the ColorChecker Passport and then converted each linearized photograph into relative cone capture rates using the MICA toolbox (Troscianko and Stevens, 2015) in ImageJ v1.52k (Schneider et al., 2012). The modeling protocol was repeated for the three visual systems: tetrachromatic Indian peafowl (Pavo cristatus: $\lambda_{\max }$ LWS $=605$, MWS $=537$, SWS $=477$, VS $=432$, and double cones $=567 \mathrm{~nm}($ Hart, 2002)), trichromatic O. pumilio ($\lambda_{\max }$ LWS $=561$, MWS $=489$, and SWS $=466 \mathrm{~nm}$ (Siddiqi et al., 2004)), and trichromatic human $\left(\lambda_{\max } \mathrm{LWS}=564\right.$, MWS $=534$, and SWS $=420 \mathrm{~nm}$ (Smith and Pokorny, 1975)).

We calculated chromatic (hue) and achromatic (luminance) contrast using the receptor noise limited visual discrimination model implemented through the MICA toolbox (Vorobyev and Osorio, 1998; Troscianko and Stevens, 2015). All Weber fractions, estimates of intrinsic photoreceptor noise, were set at 0.05 (Siddiqi et al., 2004; Maan and Cummings, 2012). The model generated 'just noticeable differences' (JNDs), a measure of visual contrast in which higher values indicate that colors are more likely to be discerned from each other. JNDs of <1 suggest that two colors are unlikely to differentiated even under ideal lighting conditions, values between 1 and 3 are a close match and difficult to distinguish
under natural lighting conditions, and values >3 are increasingly likely to be differentiated (Vorobyev and Osorio, 1998; Nokelainen et al., 2019).

We calculated JNDs of chromatic contrast in a pairwise manner between each background and the frogs' base colors (BC), stripe or spot colors (SC), and the mean color (MC) of each frog. The base colors occupied the greatest area on the frog's body, with A. talamancae $=$ brown, Black-Spotted Green O. pumilio $=$ green, and Black-Spotted Red O. pumilio $=$ red. Whereas, the stripe $/$ spots colors were A. talamancae $=$ beige, Black-Spotted Green O. pumilio $=$ black, and Black-Spotted Red O. pumilio $=$ black. To assess the effect of habitat change, we compared each frog to the background at their native site (i.e. A. talamancae and Black-Spotted Green O. pumilio to Isla Colón forest and Black-Spotted Red O. pumilio to Isla Bastimentos forest) and to the disturbed habitat on Isla Colón. To investigate local adaptation in polytypic O. pumilio, we also compared each O. pumilio morph to the natural background of the other, i.e. "Allopatric", morph. The avian and human visual models used all three frog color patterns, but for the O. pumilio visual model, we only used the two O. pumilio morphs to investigate intraspecific communication.

We analyzed achromatic contrast and pattern matching (Fast Fourier bandpass filtering - granularity analysis) using the luminance channels of each visual model (avian = double cone, O. pumilio = LWS, and human $=(\mathrm{LWS}+\mathrm{MWS}) / 2)$. We generated JNDs of achromatic contrast using the mean luminance response from each region of interest $(\mathrm{BL}=$ base luminance; $\mathrm{SL}=$ stripe/spot luminance; $\mathrm{ML}=$ mean luminance) with the same pairwise comparisons as described for chromatic contrast. We measured pattern energy, the standard deviation of the pixel values at each filter size, by doubling the wavelength at each step along eight filter bands from $2 \mathrm{px}(\sim 0.07 \mathrm{~mm})$ to $256 \mathrm{px}(\sim 9 \mathrm{~mm})$, which was the approximate width of the frogs, in the MICA toolbox. To compare how well each frogs' patterning matched the background pattern, we calculated the area between the spatial frequency curves for each frogbackground pair using a piecewise linear function ('approxfun' function) in R 3.6.1 (R Core Team, 2019).

Smaller values indicated a closer match between frog and background patterning across the spatial frequency range.

To assess how background affected visual contrast, we analyzed chromatic contrast, log-transformed achromatic contrast, and the area between pattern energy curves, as the response variables in a series of general linear mixed effects models in R 3.6.1 using R package lme4 (Bates et al., 2014; R Core Team, 2019). Each of these models included background type as a fixed effect and both frog ID and background ID as random factors. We performed pairwise Tukey tests to compare the natural background to the alternative habitats (Disturbed and Allopatric) and adjusted p-values using the single-step method using R package multcomp (Hothorn et al., 2008).

Detection

Detection stimuli

To assess how differences in visual contrast corresponded to detectability we ran a computer-based detection experiment using human participants. Using humans as surrogate predators enabled us to measure detectability under controlled conditions, without the potentially confounding factor of target avoidance. Humans are unlikely to be a natural selective force on frog coloration and do differ in visual processing from the frogs' natural predators (Kelber 2019; Hauzman 2020), however, there are important similarities in visual perception and in direct comparisons of target detectability humans and birds have repeatedly been shown to respond in similar ways when UV reflectance is minimal (Troscianko et al., 2009; Olsson et al., 2015; Barnett et al., 2016; Xiao and Cuthill, 2016; Barnett et al., 2018; Barnett, Michalis et al., 2020; Kjernsmo et al. 2020). In this experiment, we manipulated frog color patterns to test how the arrangement of pattern components may act as either camouflage or salient signaling. We also manipulated the background both to test for local adaption in O. pumilio and to assess to how anthropogenic changes may affect detection.

To create the stimuli, we first cropped the dorsal pattern (without legs) of each frog and the square regions of each background used in the visual modeling from the standardized photographs (Figure 1). To allow for pattern manipulations, we standardized the colors of each individual frog into two classes using k-means clustering in MATLAB 2017a. The centroids of each cluster were then used to recolor specific pattern regions of the frogs. We created a total of seven different pattern manipulations (A, B, C, D, E, F, and G$)$ that were applied to the three different frogs $(1=$ A. talamancae; $2=$ Black-Spotted Green O. pumilio, and $3=$ Black-Spotted Red O. pumilio).

For our baseline control, we recreated the natural patterns of each frog with its standardized colors (Treatment A1: brown with beige stripes, Treatment A2: green with black spots, and Treatment A3: red with black spots). Next, to assess how the ratio of color components affected detectability, we reversed these pattern regions (Treatment B1: beige with brown stripes, Treatment B2: black with green spots, and Treatment B3: black with red spots). Then, to investigate how the presence of pattern affected detection, we removed the frog's pattern to leave the base colors (Treatment C1: plain brown, Treatment C2: plain green, and Treatment C3: plain red). Next, as adjacent patches of color will be summed perceptually into an average color when viewed from a distance, we used the mean colors of the frogs and the backgrounds to test for distance-dependent camouflage. In a fourth treatment, we recolored each frog with its mean color (Treatments D1-D3), and in a fifth treatment, we recolored each frog with the mean color from a randomly selected photograph of the its natural background: Isla Colón forest for A. talamancae (Treatment E1) and Black-Spotted Green O. pumilio (Treatment E2), and Isla Bastimentos forest for Black-Spotted Red O. pumilio (Treatment E3). Sixth, to represent random sample background matching and evaluate camouflage efficacy, we used the shape of each frog to crop a random section from a randomly selected patch of the frog's natural forest (Treatments F1-F3). The A. talamancae and BlackSpotted Green O. pumilio replicates of Treatments E and F were both sampled from the same pool of background images but were included to control for any differences in size or shape between frog types. Finally, to investigate how pattern and color interact, in the seventh treatment, we swapped the colors
between the sympatric Beige-Striped Brown A. talamancae and the Black-Spotted Green O. pumilio (Treatment G1: green-and-black stripes and Treatment G2: brown-and-beige spots).

These various frog treatments were then combined with the photographs of the background to create a series of experimental stimuli. All frog treatments (A-G) were combined with their natural backgrounds (Natural): A. talamancae and Black-Spotted Green O. pumilio with Isla Colón forest, and Black-Spotted Red O. pumilio with Isla Bastimentos forest. To investigate how habitat disturbance may affect detectability, the natural patterns of each frog type (Treatments A1-A3) were also combined with the disturbed habitat (Disturbed), and to examine local adaptation in O. pumilio, the natural patterns of the green and red morphs (Treatments A2-A3) were each combined with the other's natural background (Allopatric).

For each of the human participants, we randomly selected five of each type of frog and all the stimuli made using these individuals ($\mathrm{n}=125$ / participant). As the number of Isla Colón stimuli (75) was larger than the number of background photographs (40), we randomly reselected 35 background photographs and rotated each by 90° in a randomly selected direction. Each frog was then added to the background at a random location (excluding a margin equal to the length of the frog) and with a randomly selected orientation (integer values between 1 and 360). To remove edge artifacts, a Gaussian filter of one standard deviation was applied to each image. Frog and background selection, background rotation, and frog placement were randomized separately for each participant, such that all stimuli were unique.

Detection protocol

Twenty human participants, with normal or corrected to normal vision, were tasked with searching for the frogs on a 13" MacBook Air (Apple Inc., Cupertino, CA, USA, 2018). Each image was presented at 150 x 150 mm , frogs were $\sim 15 \mathrm{~mm}$ long, and participants sat $\sim 0.5 \mathrm{~m}$ away from the screen. Consequently, scenes and frogs occupied $\sim 17^{\circ} 00^{\prime}$ and $\sim 1^{\circ} 40^{\prime}$ of visual angle respectively. All images contained a frog and each participant was shown a single block of all 125 stimuli in an individually randomized sequence.

All clicks within a circle centered on the frog with a diameter of the frog's length plus 10% were classified as correct. Likelihood of detection (i.e. Detection Probability, DP) and time taken to click on the frog (i.e. Reaction Time, RT) were recorded in Psychtoolbox (Brainard, 1997) in MATLAB 2017a.

Detection analysis

Using R package lme4 (Bates et al., 2014), we analyzed Detection Probability with a binomial generalized linear mixed effects model (with nlminb optimizer from package optimx (Nash \& Varadhan 2011)) and analyzed \log transformed Reaction Time with a general linear mixed effects model. Both models included stimulus type as a fixed effect and participant number as a random effect. Pairwise Tukey tests, prespecified to test particular hypotheses, were conducted in R package emmeans (Lenth, 2019), and as the number of comparisons was equal to the degrees of freedom, p-values did not need to be adjusted.

To investigate whether O. pumilio color patterns were best matched with particular local background characteristics, we first compared the detectability of the natural pattern of each color morph between its Natural and Allopatric forests (Natural vs. Allopatric for Treatments A2 and A3). Second, to assess how environmental change may affect the camouflage/signal efficacy of each frog, we compared the frogs' natural patterns between the Natural and Disturbed habitats (Natural vs. Disturbed for Treatments A1, A2, and A3). Third, to assess how habitat change may affect relative detectability, we then compared the natural patterns of the sympatric A. talamancae and Black-Spotted Green O. pumilio both in their native forest (Treatments A1 vs. A2 in Natural) and in the disturbed habitat (Treatments A1 vs. A2 in Disturbed).

To investigate how different pattern components affected detection, we compared the natural patterns to the reversed patterns (Treatments A vs. B in Natural) and to the patternless treatment (Treatments A vs. C in Natural). To evaluate the potential for distance-dependent pattern blending camouflage, we compared the natural pattern of each frog to random sample background matching (Treatments A vs. F in Natural) and the mean frog colors to the mean background colors (Treatments D vs. E in Natural). Finally, to
determine how color affected pattern saliency, we compared brown-and-beige stripes to green-and-black stripes (Treatment A1 vs. G1 in Natural), brown-and-beige spots to green-and-black spots (Treatment G2 vs. A2 in Natural), and brown-and-beige spots to red-and-black spots (Treatment G2 vs. A3 in Natural).

RESULTS

Image analysis

$\underline{\text { Hue and brightness }}$

When using the avian visual model, we found a significant interaction between species and habitat type for the chromatic and achromatic contrast of each frogs' base, pattern, and mean colors. We thus analyzed the effect of habitat on chromatic and achromatic contrast separately for each species and conducted pairwise tests to investigate habitat specificity in relation to anthropogenic change and local adaptation (Figure 2; Tables $1 \& 2$). The general trends outlined below were also observed when using the O. pumilio and human visual models although perceived chromatic contrast was consistently lower (Supplementary Material: Tables S1-S4 and Figures S1-S2).

Habitat disturbance

The pattern of A. talamancae is made up of a dark brown base with two beige dorsolateral stripes. We found that both of the natural colors (BC and SC) of A. talamancae, as well as the mean color (MC), were significantly closer matches to the Natural forest than to the Disturbed habitat in chromatic contrast. However, in achromatic contrast, the brown base (BL) was a closer match to the Natural background, the beige stripes (SL) were closer to the Disturbed site, and there was no difference between backgrounds for the mean luminance (ML) (Figure 2; Tables $1 \& 2$).

The Black-Spotted Green O. pumilio has a pattern consisting of a green base with irregular black spots. We found that the green base color was significantly more distinct from the Natural forest than from the Disturbed habitat in both chromatic (BC) and achromatic (BL) contrast. Whereas the black spots were a
closer match to the Natural forest in chromatic (SC) and achromatic (SL) contrast. With the mean color, however, we did not find any difference between the Natural and Disturbed areas in chromatic contrast (MC) but we did find that achromatic contrast (ML) was significantly higher in the Natural forest (Figure 2; Tables $1 \& 2$).

Black-Spotted Red O. pumilio have a red base color covered with irregular black spots. All pattern components were a closer match to the Natural forest than to the Disturbed habitat in chromatic contrast (BC, SC, and MC), but achromatic contrast (BL, SL, and ML) was not significantly different between habitats (Figure 2; Tables $1 \& 2$).

Local adaptation in Oophaga pumilio

We found that, for the Black-Spotted Green O. pumilio, there was no difference in the chromatic contrast of the green base color (BC) between Natural and Allopatric sites, but achromatic contrast (BL) was significantly higher in the Natural forest. Conversely, the black spots were a closer match to the Natural forest in both chromatic (SC) and achromatic contrast (SL). Whereas, for the mean color, there was no significant difference in chromatic contrast (MC), but achromatic contrast (ML) was significantly higher in the Natural habitat (Figure 2; Tables $1 \& 2$).

For the Black-Spotted Red O. pumilio the chromatic and achromatic contrast of the red base and mean color (BC, BL, MC, and ML) were both significantly lower in the Natural forest than in the Allopatric forest. The black spots, however, were not significantly different in chromatic contrast (SC) between backgrounds, but we did find achromatic contrast (SL) to be significantly higher in the Natural habitat (Figure 2; Tables $1 \& 2$).

Pattern analysis

Using the avian visual model, we found a significant interaction between species and habitat type ($\chi^{2}=$ 265.41, $\mathrm{df}=3, \mathrm{p}<0.001$; Figure 3) when comparing pattern contrast between the frogs and the three
habitats. When we examined the main effects of habitat and species separately, we found a significant effect of species $\left(\chi^{2}=26.33, \mathrm{df}=2, \mathrm{p}<0.001\right)$ but no significant effect of habitat type $\left(\chi^{2}=0.89, \mathrm{df}=2\right.$, $\mathrm{p}=0.642$), enabling us to remove habitat type from further analysis. The striped pattern of A. talamancae was significantly more similar to the background than the spotted patterns of the Black-Spotted Green O. pumilio $(\mathrm{z}=-5.23, \mathrm{p}<0.001)$ and the Black-Spotted Red O. pumilio $(\mathrm{z}=-5.60, \mathrm{p}<0.001)$. There was no significant difference between the patterns of Black-Spotted Green O. pumilio and Black-Spotted Red O. pumilio $(\mathrm{z}=-0.37, \mathrm{p}=0.926)$. The same trends were found with the human and O. pumilio visual models (see Supplementary Material).

Detection

We found a significant effect of treatment on Reaction Time ($\chi^{2}=749.63, \mathrm{df}=24, \mathrm{p}<0.001$) and on Detection Probability $\left(\chi^{2}=384.31, \mathrm{df}=24, \mathrm{p}<0.001\right)$. We therefore conducted pairwise comparisons to test specific hypotheses regarding two wider themes: i) habitat specificity (local adaptation and the effect of anthropogenic change; Figure 4), and ii) the role of pattern in detectability (pattern distribution, pattern blending, and the interaction between color and pattern; Figures 5-6).

Habitat specificity

We found no evidence of local adaptation in O. pumilio, as there was no significant difference in detectability between the Natural and Allopatric backgrounds for either Black-Spotted Green O. pumilio (A2 in Natural vs A2 in Allopatric - RT: $\mathrm{t}=0.10, \mathrm{p}>0.999$, DP: $\mathrm{z}=0.34, \mathrm{p}>0.999$) or Black-Spotted Red O. pumilio (A3 in Natural vs A3 in Allopatric $-\mathrm{RT}: \mathrm{t}=0.57, \mathrm{p}>0.999, \mathrm{DP}: \mathrm{z}=1.13, \mathrm{p}=0.999$).

We found that A. talamancae were significantly more detectable in Disturbed habitat compared to Natural habitat (A1 in Natural vs A1 Disturbed - RT: $\mathrm{t}=3.60, \mathrm{p}=0.008, \mathrm{DP}: \mathrm{z}=-3.96, \mathrm{p}=0.002$) but that cooccurring Black-Spotted Green O. pumilio were significantly harder to find in the Disturbed habitat compared to Natural habitat (A2 in Natural vs A2 Disturbed - RT: $\mathrm{t}=-3.19, \mathrm{p}=0.035$, DP: $\mathrm{z}=2.02, \mathrm{p}=$ 0.652). Compared to Black-Spotted Green O. pumilio, A. talamancae were detected significantly more
slowly and less accurately in the Natural forest habitat (A1 in Natural vs A2 Natural - RT: $\mathrm{t}=-6.61, \mathrm{p}<$ 0.001 , DP: $\mathrm{z}=-3.92, \mathrm{p}=0.002$), but there was no difference in detectability in the Disturbed habitat (A1 in Disturbed vs A2 Disturbed $-\mathrm{RT}: \mathrm{t}=0.18, \mathrm{p}>0.999$, $\mathrm{DP}: \mathrm{z}=-2.27, \mathrm{p}=0.429$). In contrast to the Black-Spotted Green morph, however, there was no significant difference in the time taken to find BlackSpotted Red O. pumilio between its Natural forest and the Disturbed habitat (A3 in Natural vs A3 in Disturbed - RT: $\mathrm{t}=-0.53, \mathrm{p}>0.999$, DP: $\mathrm{z}=0.46, \mathrm{p}>0.999$).

Pattern manipulations

We found that there was no significant difference in detectability between the natural and reversed patterns for any of the three frogs: A. talamancae (A1 vs B1 - RT: $\mathrm{t}=-1.41, p=0.984, \mathrm{DP}: \mathrm{z}=0.81, p>$ 0.999), Black-Spotted Green O. pumilio (A2 vs B2 $-\mathrm{RT}: \mathrm{t}=-2.63, p=0.186$, DP: $\mathrm{z}=1.42, p=0.983$), and Black-Spotted Red O. pumilio (A3 vs B3-RT: $\mathrm{t}=-0.54, p>0.999$, DP: $z=1.62, p=0.931$). The presence/absence of beige stripes on brown A. talamancae also had no effect on detectability (A1 vs C1RT: $t=-1.59, p=0.942, D P: z=0.81, p>0.999)$. However, the presence of black spots significantly decreased the time taken to find Black-Spotted Green O. pumilio (A1 vs C2-RT: $=-4.82, \mathrm{p}<0.001$, DP: $3.70, \mathrm{p}=0.005$) even though this had no discernable effect on the Black-Spotted Red O. pumilio (A3 vs C3-RT: $\mathrm{t}=0.43, \mathrm{p}>0.999$, $\mathrm{DP}: \mathrm{z}=1.39, \mathrm{p}=0.987$).

The natural pattern of each frog was detected significantly more quickly and more accurately than random sample background matching: A. talamancae (A1 vs F1-RT: $\mathrm{t}=-5.71, \mathrm{p}<0.001, \mathrm{DP}: \mathrm{z}=2.60, \mathrm{p}=$ 0.202), Black-Spotted Green O. pumilio (A2 vs F2-RT: $\mathrm{t}=-13.96, \mathrm{p}<0.001$, DP: $\mathrm{z}=6.62, \mathrm{p}<0.001$), and Black-Spotted Red O. pumilio (A3 vs F3-RT: $\mathrm{t}=-13.16, \mathrm{p}<0.001$, DP: $\mathrm{z}=5.93, \mathrm{p}<0.001$). We found no difference in Reaction Time and Detection Probability between the mean color of the background and the mean colors of either A. talamancae (D1 vs E1-RT: $\mathrm{t}=-1.85, \mathrm{p}=0.795, \mathrm{DP}: \mathrm{z}=$ $0.33, \mathrm{p}>0.999$) or Black-Spotted Red O. pumilio (D3 vs E3 $-\mathrm{RT}: \mathrm{t}=-2.97, \mathrm{p}=0.070, \mathrm{DP}: \mathrm{z}=2,43, \mathrm{p}=$ 0.307), although the level of significance for this color pattern was marginal. By contrast, the mean color
of the Black-Spotted Green O. pumilio was found significantly more quickly than the mean of the background (D2 vs E2-RT: $\mathrm{t}=-4.26, \mathrm{p}<0.001, \mathrm{DP}: \mathrm{z}=2.31, \mathrm{p}=0.395$).

Spots were more conspicuous than stripes regardless of their color, with participants taking longer to detect brown-and-beige stripes than brown-and-beige spots (A1 vs G2-RT: $\mathrm{t}=3.93, \mathrm{p}=0.002$, DP: $\mathrm{z}=-$ $2.74, p=0.139)$. Similarly, green-and-black stripes were detected significantly more slowly than the green-and-black spots (A2 vs G1-RT: $\mathrm{t}=-3.18, \mathrm{p}=0.036$, DP: $\mathrm{z}=-2.20, \mathrm{p}=0.492$). Green was found to be a more conspicuous color than brown. However, whereas stripe color affected detectability, with brown-and-beige stripes being more cryptic than green-and-black stripes (A1 vs G1-RT: $\mathrm{t}=3.43, \mathrm{p}=$ 0.015 , DP: $\mathrm{z}=-2.35, \mathrm{p}=0.368$), there was no significant difference between brown-and-beige spots and either the green-and-black spots ($\mathrm{G} 2 \mathrm{vs} \mathrm{A} 2-\mathrm{RT}: \mathrm{t}=-2.68, \mathrm{p}=0.164, \mathrm{DP}: \mathrm{z}=1.83, \mathrm{p}=0.809$) or the red-and-black spots ($\mathrm{G} 2 \mathrm{vs} \mathrm{A} 3-\mathrm{RT}: \mathrm{t}=2.72, \mathrm{p}=0.147, \mathrm{DP}: \mathrm{z}=-2.34, \mathrm{p}=0.377$).

DISCUSSION

Our analyses reveal that the three different frogs that we studied exhibit three distinct defensive coloration strategies formed from unique interactions between chromatic, achromatic, and pattern contrast. Moreover, these different strategies were affected by habitat disturbance in different ways such that absolute and rank order detectability differed between natural and disturbed habitat.

Under natural conditions, the non-toxic A. talamancae is camouflaged, with its color and patterning both closely matched to the natural background. The toxic Black-Spotted Red O. pumilio, meanwhile, advertises its presence with color and pattern that are both, independently, highly salient. In contrast, Black-Spotted Green O. pumilio, which are also toxic, were detected quickly despite displaying colors that closely matched the natural background, a result driven by the high saliency of the spotted pattern.

Frog detectability was, therefore, associated with pattern type, with the spotted patterns of both color morphs of O. pumilio being more distinct from the background than the stripes of A. talamancae regardless of color. Similar black spots found on several other color morphs of O. pumilio are also highly
salient (Qvarnström et al., 2014) and serve to reduce predation risk (Preißler and Pröhl, 2017), an effect that appears to increase with larger spot size (Hegna et al., 2011; Qvarnström et al., 2014; Preißler and Pröhl, 2017). Qvarnström et al. (2014) showed that Black-Spotted Green O. pumilio were as detectable as Black-Spotted Red O. pumilio to domestic chickens, whereas although red patternless frogs were as detectable as spotted frogs, green patternless frogs were significantly harder for the chickens to find. We found the same, but our data also extend this finding to include the more cryptic colors of A. talamancae, with no difference in detection being found between red-and-black, green-and-black, or brown-and-beige spots.

Pattern is an important component of aposematic signaling. For example, predators find larger and more symmetrical patterns more aversive (Forsman and Merilaita, 1999; Forsman and Herrström, 2004) and are more likely to learn and remember patterns with high internal contrast (Aronsson and Gamberale-Stille, 2012; Green et al., 2018; Halpin et al., 2020). These studies, however, largely focus on artificial targets presented against simple, unnatural backgrounds at close range, where the prey is always highly detectable. The impact of pattern on detectability can, however, also depend on context and viewing distance (Tullberg et al., 2005; Bohlin et al., 2012; Rojas et al., 2014; Honma et al., 2015; Barnett et al., 2018). Despite the apparent high internal contrast of the three color patterns we examined here, there was no evidence of disruptive camouflage in any of our frogs. Moreover, although the base colors appear to cover the largest area of each frog, reversing the pattern had no effect on detection, and the presence of pattern only affected the detectability of the Black-Spotted Green O. pumilio, where frog color and patterning had opposing effects on detectability. Yet the mean color of A. talamancae was no more detectable than the mean color of the background, suggesting that its camouflaged coloring matches the background when viewed from a distance. However, although the same, was not observed in BlackSpotted Green O. pumilio, we did find some evidence for distance-dependent camouflage in the BlackSpotted Red O. pumilio. This effect, however, may only apply to observers with less effective longwave sensitivity than birds (i.e., for humans and O. pumilio) and more work is needed to understand whether
distance-dependent signaling is effective under natural conditions with regard to this frog. The presence of patterning, therefore, seems best explained by background matching camouflage in A. talamancae and salient signaling in O. pumilio.

We also examined whether the detectability of these color patterns depended on the visual characteristics of the background. We found no strong evidence to suggest that the detectability of either Black-Spotted Green or Black-Spotted Red O. pumilio was significantly affected by local variation in the natural background between islands. These data, therefore, suggest that island specific differences in the visual background may have had a minimal role in the evolution of polytypism in O. pumilio.

We did, however, find evidence to suggest that a visual environment that is altered by human activity can affect the detectability of frog coloration. Moreover, this anthropogenic change affected the three different phenotypes in different ways. In the natural forests, where the ground was covered by a layer of leaf litter, the brown, striped, A. talamancae was well camouflaged, whereas the sympatric, Black-Spotted Green O. pumilio, was comparatively conspicuous. At the forest's edge, however, where human activity has thinned the canopy, more light is able to penetrate through to the ground allowing for increased growth of green mosses and herbaceous plants. We found that this greening of the background undermined background color matching in A. talamancae but increased background color matching in Black-Spotted Green O. pumilio. Consequently, although under natural conditions A. talamancae was the more cryptic species, both frogs were equally detectable in the disturbed habitat. Furthermore, habitat change may have also affected the conspicuous aposematic signal of Black-Spotted Red O. pumilio, but this effect did not affect detection time, seemingly due to the frogs' high achromatic and pattern contrast.

Decreasing the efficacy of camouflage has clear implications for otherwise undefended prey. The risk of predation rises dramatically with increasing detectability (Zimova et al., 2016; Delhey and Peters, 2017; Atmeh et al., 2018). Conversely, for toxic prey, greater chromatic and achromatic contrast to the background can increase the speed and accuracy of predator learning of warning signals (Gamberale-

Stille, 2001; Prudic et al., 2006; Aronsson and Gamberale-Stille, 2009; Stevens and Ruxton, 2012; Halpin et al., 2020). Thus, our data suggest that habitat disturbance may undermine the camouflage of A. talamancae, increase aversion learning in Black-Spotted Red O. pumilio, and have diverging effects on Black-Spotted Green O. pumilio, where camouflage efficacy may increase but aposematic signaling may be reduced. Indeed, such changes to visual contrast are also seen in the O. pumilio visual model and similar effects may apply to important intraspecific signals where high visual contrast is used to mediate mate choice, intra-sexual conflict, and territorial disputes (Summers et al., 1999; Reynolds and Fitzpatrick, 2007; Maan and Cummings, 2008, 2009; Crothers and Cummings, 2015; Galeano and Harms, 2016). Poison frogs may be able to behaviorally mitigate some of these effects by selecting particular microhabitats (Pröhl and Ostrowski, 2011; Willink et al., 2014), but the availability of such sites will likely change as human activity alters the habitat.

Furthermore, beyond the direct effects of changing detectability, community wide shifts may have broader effects on predator-prey dynamics (Guiden et al., 2019). Predators are frequently faced with a community of prey that differ in nutritional content, ease of discovery and handling, toxicity, and in abundance. The structure of the prey community will then affect predator decision-making as predators trade off the costs and benefits of differently defended prey or alter foraging behavior (Skelhorn et al., 2016; Skelhorn and Rowe, 2016; Smith et al., 2016; Spaniol et al., 2020). As such, predation risk may also depend on changes occurring to the detectability and relative frequencies of heterospecifics. Thus, by altering the rank-order detectability of these frogs, human disturbance could alter the capacity for the frogs' predators to quickly learn important color-toxin associations.

It is important to also note that the perception of color contrast is not the only factor that may change in human modified environments. Poison frogs rely on dietary derived carotenoid pigments and chemical precursors to synthesize the colors and toxins underlying their aposematic defenses (Saporito et al., 2012; Crothers et al., 2016). In disturbed habitat, frog diets, color, and alkaloid composition may change along with the availability of their prey (McGugan et al., 2016; Moskowitz et al., 2020; Yeager et al., In

Review). As predators learn both about the frog's toxins and coloration (Skelhorn et al., 2016; Skelhorn and Rowe, 2016; Smith et al., 2016), the delicate balance between detection and avoidance is potentially disrupted further. Although it is unknown how changes to the interaction between detectability and alkaloid profiles affects frog survival in the wild, our results highlight that these impacts may not be safely ignored.

Overall, our analyses suggest that pattern is a major factor underlying differences in the detectability of three frogs that differ greatly in appearance. However, color emerges as being particularly important in explaining differences in the detectability of these frogs between different habitats. These findings correspond to three phenotypes in the context of one instance of habitat disturbance but do highlight how anthropogenic changes to the forest floor may alter visual contrast and detectability in ways that may affect the performance of defensive and sexually selected color patterns. In turn, these changes to detectability may have wide-reaching effects on animal behavior, not only with regard to individual species but across entire communities as species of all kinds are confronted with changes to their relative detectability.

REFERENCES

Aronsson M, Gamberale-Stille G. 2008. Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Anim Behav. 75:417-423.

Aronsson M, Gamberale-Stille G. 2009. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav Ecol. 20:1356-1362.

Aronsson M, Gamberale-Stille G. 2012. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav Ecol. 24:349-354.

Andersson M. 1994. Sexual selection. Princeton, NJ, USA: Princeton University Press.

Atmeh K, Andruszkiewicz A, Zub K. 2018. Climate change is affecting mortality of weasels due to camouflage mismatch. Sci Rep. 8:7648.

Barnett JB, Cuthill IC. 2014. Distance-dependent defensive coloration. Curr Biol. 24:R1157-R1158.

Barnett JB, Michalis C, Anderson HM, McEwen BL, Yeager J, Pruitt JN, Scott-Samuel NE, Cuthill IC. 2020. Imperfect transparency and camouflage in glass frogs. Proc Natl Acad Sci USA. 117:12885-12890.

Barnett JB, Michalis C, Scott-Samuel NE, Cuthill IC. 2018. Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. Proc Natl Acad Sci USA. 115:6416-6421.

Barnett JB, Redfern AS, Bhattacharyya-Dickson R, Clifton O, Courty T, Ho T, Hopes A, McPhee T, Merrison K, Owen R, Scott-Samuel NE, Cuthill IC. 2016. Stripes for warning and stripes for hiding: spatial frequency and detection distance. Behav Ecol. 28:373-381.

Barnett JB, Varela BJ, Jennings BJ, Lesbarrères D, Pruitt JN, Green DM. 2020. Data from: Habitat disturbance alters color contrast and the detectability of cryptic and aposematic frogs. Behav Ecol. https://doi.org/10.5061/dryad.5tb2rbp2p

Bates D, Mächler M, Bolker BM, Walker S. 2014. Fitting linear mixed-effects models using lme4. J Stat Softw. 67:1-48.

Bohlin T, Gamberale-Stille G, Merilaita S, Exnerová A, Štys P, Tullberg BS. 2012. The detectability of the colour pattern in the aposematic firebug, Pyrrhocoris apterus: an image-based experiment with human 'predators'. Biol J Linn Soc. 105:806-816.

Brainard DH. 1997. The Psychophysics Toolbox. Spat Vis. 10:433-436.

Caro T, Stankowich T, Kiffner C, Hunter J. 2013. Are spotted skunks conspicuous or cryptic? Ethol Ecol Evol. 25:144-160.

Chaves-Acuña W, Sadoval L, Bitton PP, Barrantes G, García-Rodríguez A. 2020. Conspecific and predator perception of the red Oophaga pumilio morph from the central Caribbean of Costa Rica. J Herpetol. 54:361-370.

Coker DJ, Pratchett MS, Munday PL, 2009. Coral Bleaching and habitat degradation increase susceptibility to predator for coral-dwelling fishes. Behav Ecol. 20:1204-1210.

Cott HB. 1940. Adaptive coloration in animals. London, UK: Methuen \& Co., Ltd.

Crothers L, Saporito RA, Yeager J, Lynch K, Friesen C, Richards-Zawacki CL, McGraw K, Cummings M. 2016. Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evol Ecol. 30:601-621.

Crothers LR, Cummings ME. 2015. A multifunctional warning signal behaves as an agonistic status signal in a poison frog. Behav Ecol. 26:560-568.

Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland

HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. 2017. The biology of color. Science. 357:eaan0221.

Cuthill IC, Stevens M, Windsor AMM, Walker HJ. 2006. The effects of pattern symmetry on detection of disruptive and background-matching coloration. Behav Ecol. 17:828-832.

Cuthill IC. 2019. Camouflage. J Zool. 308:75-92.

Darwin C. 1871. The decent of man, and selection in relation to sex. London, UK: John Murray.

Delhey K, Peters A. 2017. Conservation implications of anthropogenic impacts on visual communication and camouflage. Conserv Biol. 31:30-39.

Endler JA. 1978. A predator's view of animal color patterns. Evol Biol. 11:320-364.

Flores EE, Stevens M, Moore AJ, Blount JD. 2013. Diet, development and the optimization of warning signals in post-metamorphic green and black poison frogs. Funct Ecol. 27:816-829.

Forsman A, Herrström J. 2004. Asymmetry in size, shape, and color impairs the protective value of conspicuous color patterns. Behav Ecol. 15:141-147.

Forsman A, Merilaita S. 1999. Fearful symmetry: pattern size and asymmetry affects aposematic signal efficacy. Evol Ecol. 13:131-140.

Galeano SP, Harms KE. 2016. Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behav Ecol Sociobiol. 70:8397.

Gamberale-Stille G. 2001. Benefit by contrast: an experiment with live aposematic prey. Behav Ecol. 12:768-772.

Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, Means DB, Noonan BP, Schargel WE, Wheeler WC. 2006. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist. 2006:1-262.

Grant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel AM, Machado DJ, Rueda-Almonacid JV. 2017. Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea). S Am J Herpetol. 12:S1-S90.

Green NF, Urquhart HH, van den Berg CP, Marshall NJ, Cheney KL. 2018. Pattern edges improve predator learning of aposematic signals. Behav Ecol. 29:1481-1486.

Guiden PW, Bartel SL, Byer NW, Shipley AA, Orrock JL. 2019. Predator-prey interactions in the Anthropocene: reconciling multiple aspects of novelty. Trends Ecol Evol. 34:616-627.

Halpin CG, Penacchio O, Lovell PG, Cuthill IC, Harris JM, Skelhorn J, Rowe C. 2020. Pattern contrast influences wariness in naïve predators towards aposematic patterns. Sci Rep. 10:9246.

Hart NS. 2002. Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol. 205:3925-3935.

Hauzman E. 2020. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin Cell Dev Biol. 106:86-93.

Hegna RH, Saporito RA, Gerow KG, Donnelly MA. 2011. Contrasting colors of an aposematic poison frog do not affect predation. Ann Zool Fenn. 48:29-38.

Honma A, Mappes J, Valkonen JK. 2015. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecol Evol. 5:4863-4874.

Hoogmoed MS, Avila-Pires TCS. 2012. Inventory of color polymorphism in populations of Dendrobates galactonotus (Anura: Dendrobatidae), a poison frog endemic to Brazil. Phyllomedusa. 11:95-115.

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J. 50:346-363.

Imperio S, Bionda R, Viterbi R, Provenzale A. 2013. Climate change and human disturbance can lead to local extinction of alpine rock ptarmigan: new insight from the western Italian Alps. PLOS ONE 8:e81598.

Kelber A. 2019. Bird colour vision - from cones to perception. Curr Opin Behav Sci. 30:34-40.

Kettlewell HBD. 1955. Selection experiments on industrial melanism in the Lepidoptera. Heredity. 9:323342.

Kjernsmo K, Whitney HM, Scott-Samuel NE, Hall JR, Knowles H, Talas L, Cuthill IC. 2020. Iridescence as camouflage. Curr Biol. 30:551-555.

Lenth R, 2019. emmeans: estimated marginal means, aka least-squares means. R package version 1.4.3.01. https://CRANR-projectorg/package=emmeans.

Maan ME, Cummings ME. 2008. Female preferences for aposematic signal components in a polymorphic poison frog. Evolution. 62:2334-2345.

Maan ME, Cummings ME. 2009. Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc Natl Acad Sci USA. 106:19072-19077.

Maan ME, Cummings ME. 2012. Poison frog colors are honest signals of toxicity, particularly for bird predators. Am Nat. 179:E1-E14.

Mappes J, Marples N, Endler JA. 2005. The complex business of survival by aposematism. Trends Ecol Evol. 20:598-603.

Marshall NJ. 2000. Communication and camouflage with the same 'bright' colours in reef fishes. Philos Trans R Soc B. 355:1243-1248.

McGugan JR, Byrd GD, Roland AB, Caty SN, Kabir N, Tapia EE, Trauger SA, Coloma LA, O’Connell LA. 2016. Ant and mite diversity drives toxin variation in the little devil poison frog. J Chem Ecol. 42:537-551.

Mebs D, Yotsu-Yamashita M, Pogoda W, Vargas Alvarez J, Ernst R, Köhler G, Toennes SW. 2018. Lack of alkaloids and tetrodotoxin in the neotropical frogs Allobates spp. (Aromobatidae) and Silverstoneia flotator (Dendrobatidae). Toxicon. 152:103-105.

Merilaita S, Scott-Samuel NE, Cuthill IC. 2017. How camouflage works. Philos Trans R Soc B. 372:20160341.

Michalis C, Scott-Samuel NE, Gibson DP, Cuthill IC. 2017. Optimal background matching camouflage. Proc R Soc B. 284:20170709.

Mills LS, Zimova M, Oyler J, Running S, Abatzoglou JT, Lukacs PM. 2013. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc Natl Acad Sci USA. 110:7360-7365.

Moskowitz NA, Dorritie B, Fay T, Nieves OC, Vidoudez C, Fischer EK, Trauger SA, Coloma LA, Donoso DA, O'Connell LA. 2020. Land use impacts poison frog chemical defenses through changes in leaf litter ant communities. Neotrop Biodivers. 6:75-87.

Nash JC, Varadhan R. 2011. Unifying optimization algorithms to aid software system users: optimx for R. J Stat Softw. 43:1-14.

Nokelainen O, Maynes R, Mynott S, Price N, Stevens M. 2019. Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs. Funct Ecol. 33:654-669.

Olsson P, Lind O, Kelber A. 2015. Bird colour vision: behavioural thresholds reveal receptor noise. J Exp Biol. 218:184-193.

Phillips GAC, How MJ, Lange JE, Marshall NJ, Cheney KL. 2017. Disruptive colouration in reef fish: does matching the background reduce predation risk? J Exp Biol. 220:1962-1974.

Poulton EB. 1890. The colours of animals: their meaning and use, especially considered in the case of insects. London, UK: Kegan Paul, Trench \& Trübner.

Preißler K, Pröhl H. 2017. The effects of background coloration and dark spots on the risk of predation in poison frog models. Evol Ecol. 31:683-694.

Pröhl H, Ostrowski T. 2011. Behavioural elements reflect phenotypic colour divergence in a poison frog. Evol Ecol. 25:993-1015.

Prudic KL, Skemp AK, Papaj DR. 2006. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav Ecol. 18:41-46.

Qvarnström A, Rudh A, Edström T, Ödeen A, Løvlie H, Tullberg BS. 2014. Coarse dark patterning functionally constrains adaptive shifts from aposematism to crypsis in strawberry poison frogs. Evolution. 68:2793-2803.

R Core Team. 2019. R: A language and environment for statistical computing. Version 3.6.1. Vienna, Austria: R Foundation for Statistical Computing.

Reynolds RG, Fitzpatrick BM. 2007. Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution. 61:2253-2259.

Richards-Zawacki CL, Wang IJ, Summers K. 2012. Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Mol Ecol. 21:3879-3892.

Roberts JL, Brown JL, Schulte R, Arizabal W, Summers K. 2007. Rapid diversification of colouration among populations of a poison frog isolated on sky peninsulas in the central cordilleras of Peru. J Biogeogr. 34:417-426.

Rojas B, Rautiala P, Mappes J. 2014. Differential detectability of polymorphic warning signals under varying light environments. Behav Processes. 109:164-172.

Rojas B. 2017. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol Rev. 92:1059-1080.

Rudh A, Breed MF, Qvarnström A. 2012. Does aggression and explorative behaviour decrease with lost warning coloration? Biol J Linn Soc. 108:116-126.

Rudh A. 2013. Loss of conspicuous coloration has co-evolved with decreased body size in populations of poison dart frogs. Evol Ecol. 27:755-767.

Saporito RA, Donnelly MA, Spande TF, Garraffo HM. 2012. A review of chemical ecology in poison frogs. Chemoecology. 22:159-168.

Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. 2007. Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia. 2007:1006-1011.

Schaefer HM, Stobbe N. 2006. Disruptive coloration provides camouflage independent of background matching. Proc R Soc B. 273:2427-2432.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9:671-675.

Segami Marzal JC, Rudh A, Rogell B, Ödeen A, Løvlie H, Rosher C, Qvarnström A. 2017. Cryptic female strawberry poison frogs experience elevated predation risk when associating with an aposematic partner. Ecol Evol. 7:744-750.

Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K. 2004. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol. 207:2471-2485.

Skelhorn J, Halpin CG, Rowe C. 2016. Learning about aposematic prey. Behav Ecol. 27:955-964.

Skelhorn J, Rowe C. 2016. Cognition and the evolution of camouflage. Proc R Soc B. 283:20152890.

Smith KE, Halpin CG, Rowe C. 2016. The benefits of being toxic to deter predators depends on prey body size. Behav Ecol. 27:1650-1655.

Smith VC, Pokorny J. 1975. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm . Vis Res. 15:161-171.

Spalding AK. 2013. Environmental outcomes of lifestyle migration: land cover change and land use transitions in the Bocas del Toro Archipelago in Panama. J Lat Am Geogr. 12:179-202.

Spaniol RL, Mendonça MdS, Hartz SM, Iserhard CA, Stevens M. 2020. Discolouring the Amazon rainforest: how deforestation is affecting butterfly coloration. Biodivers Conserv. 29:2821-2838.

Stevens M, Cuthill IC, Windsor AMM, Walker HJ. 2006. Disruptive contrast in animal camouflage. Proc R Soc B. 273:2433-2438.

Stevens M, Cuthill IC. 2006. Disruptive coloration, crypsis and edge detection in early visual processing. Proc R Soc B. 273:2141-2147.

Stevens M, Merilaita S. 2009. Defining disruptive coloration and distinguishing its functions. Philos Trans R Soc B. 364:481-488.

Stevens M, Ruxton GD. 2012. Linking the evolution and form of warning coloration in nature. Proc R Soc B. 279:417-426.

Stevens M. 2007. Predator perception and the interrelation between different forms of protective coloration. Proc R Soc B. 274:1457-1464.

Summers K, Clough ME. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc Natl Acad Sci USA. 98:6227-6232.

Summers K, Symula R, Clough M, Cronin T. 1999. Visual mate choice in poison frogs. Proc R Soc B. 266:2141-2145.

Théry M. 2001. Forest light and its influence on habitat selection. Plant Ecol. 153:251-261.

Troscianko J, Stevens M. 2015. Image calibration and analysis toolbox - a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol Evol. 6:1320-1331.

Troscianko J, Wilson-Aggarwal J, Stevens M, Spottiswoode CN. 2016. Camouflage predicts survival in ground-nesting birds. Sci Rep. 6:19966.

Troscianko T, Benton CP, Lovell PG, Tolhurst DJ, Pizlo Z. 2009. Camouflage and visual perception. Philos Trans R Soc B. 364:449-461.

Tullberg BS, Merilaita S, Wiklund C, 2005. Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proc R Soc B. 272:1315-1321.

Twomey E, Vestergaard JS, Venegas PJ, Summers K, 2016. Mimetic divergence and the speciation continuum in the mimic poison frog Ranitomeya imitator. Am Nat. 187:205-224.

Valkonen J, Niskanen M, Björklund M, Mappes J. 2011. Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evol Ecol. 25:1047-1063.

Vorobyev M, Osorio D. 1998. Receptor noise as a determinant of colour thresholds. Proc R Soc B. 265:351-358.

Walton OC, Stevens M. 2018. Avian vision models and field experiments determine the survival value of peppered moth camouflage. Commun Biol. 1:118.

Wang IJ, Shaffer HB. 2008. Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution. 62:2742-2759.

Weaver RJ, Koch RE, Hill GE. 2017. What maintains signal honesty in animal colour displays used in mate choice? Philos Trans R Soc B. 372:20160343.

Wüster W, Allum CSE, Bjargardóttir IB, Bailey KL, Dawson KJ, Guenioui J, Lewis J, McGurk J, Moore AG, Niskanen M, Pollard CP. 2004. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc R Soc B. 271:2495-2499.

Xiao F, Cuthill IC. 2016. Background complexity and the detectability of camouflaged targets by birds and humans. Proc R Soc B. 283:20161527.

Yang Y, Blomenkamp S, Dugas MB, Richards-Zawacki CL, Pröhl H. 2019. Mate Choice versus mate preference: inferences about color-assortative mating differ between field and lab assays of poison frog behavior. Am Nat. 193:598-607.

Yeager J \& Barnett JB. 2020. Ultraviolet components offer minimal contrast enhancement to an aposematic signal. Ecol Evol. 10:13576-13582.

Yeager J, Brown JL, Morales V, Cummings M, Summers K. 2012. Testing for selection on color and pattern in a mimetic radiation. Curr Zool. 58:668-676.

Yeager J, McGraw K, Saporito RA, Owens B, Giltz SM, Richards-Zawacki CL. Effects of habitat quality on traits under multifarious selection for local adaptation. In Review.

Zimova M, Mills LS, Nowak JJ. 2016. High fitness costs of climate change-induced camouflage mismatch. Ecol Lett. 19:299-307.

Table 1. Visual contrast (JND means \pm SE) in luminance and hue between frog types and backgrounds according to an avian visual model.

Luminance (Achromatic)			Hue (Chromatic)			
Base	Stripe/Spot	Mean		Base	Stripe/Spot	Mean

Allobates talamancae

Natural	5.34 ± 0.22	15.24 ± 0.33	4.97 ± 0.17	4.22 ± 0.11	3.21 ± 0.08	3.05 ± 0.09
Disturbed	8.70 ± 0.22	10.60 ± 0.27	3.74 ± 0.13	5.59 ± 0.07	4.48 ± 0.08	4.77 ± 0.67

Black-Spotted Green Oophaga pumilio

Natural	10.40 ± 0.31	5.97 ± 0.23	6.55 ± 0.23	4.02 ± 0.07	3.79 ± 0.11	2.62 ± 0.07
Disturbed	6.37 ± 0.24	9.37 ± 0.24	3.79 ± 0.15	2.54 ± 0.06	4.94 ± 0.07	2.29 ± 0.06
Allopatric	7.10 ± 0.28	8.56 ± 0.27	4.22 ± 0.18	4.38 ± 0.06	4.71 ± 0.09	3.20 ± 0.06

Black-Spotted Red Oophaga pumilio

Natural	6.00 ± 0.22	5.93 ± 0.22	5.16 ± 0.20	8.05 ± 0.20	4.12 ± 0.10	5.19 ± 0.17
Disturbed	5.13 ± 0.19	6.44 ± 0.20	4.62 ± 0.17	10.21 ± 0.19	5.38 ± 0.07	7.50 ± 0.17
Allopatric	9.60 ± 0.25	4.85 ± 0.19	7.70 ± 0.24	9.46 ± 0.19	3.77 ± 0.11	6.51 ± 0.17

	Luminance (Achromatic)			Hue (Chromatic)		
	Base	Stripe/Spot	Mean	Base	Stripe/Spot	Mean
Full Model	$\begin{gathered} \chi^{2}=368.43 \\ \mathrm{df}=3, \mathrm{p}<0.001 \end{gathered}$	$\begin{gathered} \chi^{2}=199.10 \\ \mathrm{df}=3, \mathrm{p}<0.001 \end{gathered}$	$\begin{gathered} \chi^{2}=15.90 \\ \mathrm{df}=3, \mathrm{p}=0.001 \end{gathered}$	$\begin{gathered} \chi^{2}=868.07, \\ \mathrm{df}=3, \mathrm{p}<0.001 \end{gathered}$	$\begin{gathered} \chi^{2}=129.74 \\ \mathrm{df}=3, \mathrm{p}<0.001 \end{gathered}$	$\begin{gathered} \chi^{2}=8.25 .86 \\ \mathrm{df}=3, \mathrm{p}<0.001 \end{gathered}$

Allobates talamancae

	$\chi^{2}=25.62$,	$\chi^{2}=25.52$,	$\chi^{2}=3.04$,	$\chi^{2}=10.72$,	$\chi^{2}=18.29$,
Model	$\mathrm{df}=1, \mathrm{p}<0.001$	$\mathrm{df}=1, \mathrm{p}<0.001$	$\mathrm{df}=1, \mathrm{p}=0.081$	$\mathrm{df}=1, \mathrm{p}=0.001$	$\mathrm{df}=1, \mathrm{p}<0.001 \quad \mathrm{df}=1, \mathrm{p}<0.001$
Natural vs Disturbed	$\mathrm{z}=-5.46, \mathrm{p}<0.001$	$\mathrm{z}=5.45, \mathrm{p}<0.001$	$\mathrm{z}=1.74, \mathrm{p}=0.082$	$\mathrm{z}=-3.35, \mathrm{p}=0.001$	$\mathrm{z}=-4.49, \mathrm{p}<0.001 \quad \mathrm{z}=-4.44, \mathrm{p}<0.001$

Black-Spotted Green Oophaga pumilio

	$\chi^{2}=25.18$,	$\chi^{2}=25.55$,	$\chi^{2}=22.55$,	$\chi^{2}=58.26$,	$\chi^{2}=9.84$,	$\chi^{2}=11.73$,
Model	$\mathrm{df}=2, \mathrm{p}<0.001$	$\mathrm{df}=2, \mathrm{p}<0.001$	$\mathrm{df}=2, \mathrm{p}<0.001$	$\mathrm{df}=2, \mathrm{p}<0.001$	$\mathrm{df}=2, \mathrm{p}=0.007$	$\mathrm{df}=2, \mathrm{p}=0.003$
Natural vs Disturbed	$\mathrm{z}=4.83, \mathrm{p}<0.001$	$\mathrm{z}=-5.08, \mathrm{p}<0.001$	$\mathrm{z}=4.73, \mathrm{p}<0.001$	$\mathrm{z}=6.68, \mathrm{p}<0.001$	$\mathrm{z}=-3.00, \mathrm{p}=0.005$	$\mathrm{z}=1.35, \mathrm{p}=0.301$
Natural vs Allopatric	$\mathrm{z}=4.15, \mathrm{p}<0.001$	$\mathrm{z}=-3.77, \mathrm{p}<0.001$	$\mathrm{z}=3.54, \mathrm{p}=0.001$	$\mathrm{z}=-1.56, \mathrm{p}=0.206$	$\mathrm{z}=-2.34, \mathrm{p}=0.036$	$\mathrm{z}=-2.15, \mathrm{p}=0.058$

Black-Spotted Red Oophaga pumilio

	$\chi^{2}=29.75$,	$\chi^{2}=14.20$,	$\chi^{2}=32.90$,	$\chi^{2}=39.27$,	$\chi^{2}=19.76$,	
Model	$\mathrm{df}=2, \mathrm{p}<0.001$					
Natural vs Disturbed	$\mathrm{z}=1.11, \mathrm{p}=0.429$	$\mathrm{z}=-1.03, \mathrm{p}=0.480$	$\mathrm{z}=0.41, \mathrm{p}<0.882$	$\mathrm{z}=-6.72, \mathrm{p}<0.001$	$\mathrm{z}=-3.31, \mathrm{p}=0.002$	$\mathrm{z}=-8.13, \mathrm{p}<0.001$
Natural vs Allopatric	$\mathrm{z}=-4.20, \mathrm{p}<0.001$	$\mathrm{z}=2.59, \mathrm{p}=0.018$	$\mathrm{z}=-4.94, \mathrm{p}<0.001$	$\mathrm{z}=-4.41, \mathrm{p}<0.001$	$\mathrm{z}=0.94, \mathrm{p}=0.538 \quad \mathrm{z}=-4.65, \mathrm{p}<0.001$	

Figure 1

Study system: frogs and detection experiment stimuli. Left, frog color forms (top to bottom): Isla Colón Allobates talamancae, Isla Colón Black-Spotted Green Oophaga pumilio, and Isla Bastimentos BlackSpotted Red O. pumilio. Middle, detection experiment treatment designs: A = natural pattern, $\mathrm{B}=$ reversed pattern, $\mathrm{C}=$ patternless, $\mathrm{D}=$ mean frog, $\mathrm{E}=$ mean background, $\mathrm{F}=$ background matching, $\mathrm{G}=$ switched colors; $1=$ A. talamancae, $2=$ Black-Spotted Green O. pumilio, and $3=$ Black-Spotted Red O. pumilio. Right, example stimuli (top to bottom): treatment A1 on an Isla Colón forest background, treatment A2 on an Isla Colón disturbed background, and treatment A3 on an Isla Bastimentos forest background.

Figure 2

Image analysis: chromatic contrast ($\Delta \mathrm{S}$) from the avian visual model (JND means $\pm 95 \% \mathrm{CI}$ from the model $)$ for each frog (left $=$ Beige-Striped Brown A. talamancae $;$ middle $=$ Black-Spotted Green O. pumilio; right $=$ Black-Spotted Red O. pumilio) versus each background. Grey dashed lined represent absolute (1.0) and conservative (3.0) visual discrimination thresholds.

Figure 3

Image analysis: pattern (granularity) analysis from the avian visual model (area between energy curves, means $\pm 95 \%$ CI from the model). Comparing each frog (A. tal = Beige-Striped Brown A. talamancae; O. $\operatorname{pum}(\mathrm{G})=$ Black-Spotted Green O. pumilio; O. pum $(\mathrm{R})=$ Black-Spotted Red O. pumilio) to the backgrounds. There was no significant effect of background type on pattern contrast, so it was removed from the model. The striped pattern of A. talamancae was a closer match to the background than the spotted patterns of O. pumilio.

Figure 4

Detection experiment: habitat change and local adaption (reaction time (s) means $\pm 95 \%$ CI from the model: left $=A$. talamancae, middle $=$ Black-Spotted Green O. pumilio, right $=$ Black-Spotted Red O. pumilio). Human disturbance affected reaction time: in the Disturbed habitat Beige-Striped Brown A. talamancae were more easily found and Black-Spotted Green O. pumilio were more difficult to find than they were on their Natural background. Conversely, the Black-Spotted Red O. pumilio were equally detectable in both Natural and Disturbed habitats. There was no difference between Natural and Allopatric background for either morph of O. pumilio.

Figure 5

Detection experiment: pattern distribution (reaction time (s) means $\pm 95 \% \mathrm{CI}$ from the model: left $=A$. talamancae, middle $=$ Black-Spotted Green O. pumilio, right $=$ Black-Spotted Red O. pumilio). There were no differences between Natural and Reversed patterns for any of the frogs. Removing pattern did not affect detectability for A. talamancae nor Black-Spotted Red O. pumilio, but the presence of spots decreased reaction time in Black-Spotted Green O. pumilio. All frogs were more detectable than randomsample background matching, but there was no difference between the mean colors of A. talamancae or Black-Spotted Red O. pumilio and the mean color of their backgrounds, suggesting these frogs may be cryptic when viewed from a distance. The mean color of Black-Spotted Green O. pumilio was more detectable than the mean color of the background.

Figure 6

Detection experiment: interaction between pattern and color (reaction time (s) means $\pm 95 \% \mathrm{CI}$ from the model). Brown stripes (A1 - natural pattern of Beige-Striped Brown A. talamancae), green stripes (G1 switched colors), green spots (A2 - natural pattern Black-Spotted Green O. pumilio), brown spots (G2 switched colors $)$, and red spots ($\mathrm{A} 3=$ natural pattern of Black-Spotted Red O. pumilio). Spots were a
more conspicuous pattern than stripes regardless of color. Brown stripes were more cryptic than green
stripes but there was no difference between differently colored spotted patterns.

Figure 1
Study system: frogs and detection experiment stimuli. Left, frog color forms (top to bottom): Isla Colón Allobates talamancae, Isla Colón Black-Spotted Green Oophaga pumilio, and Isla Bastimentos Black-Spotted Red O. pumilio. Middle, detection experiment treatment designs: $\mathrm{A}=$ natural pattern, $\mathrm{B}=$ reversed pattern, $\mathrm{C}=$ patternless, $\mathrm{D}=$ mean frog, $\mathrm{E}=$ mean background, $\mathrm{F}=$ background matching, $\mathrm{G}=$ switched colors; $1=$ A. talamancae, $2=$ Black-Spotted Green O. pumilio, and 3 = Black-Spotted Red O. pumilio. Right, example stimuli (top to bottom): treatment A1 on an Isla Colón forest background, treatment A2 on an Isla Colón disturbed background, and treatment A3 on an Isla Bastimentos forest background.

Figure 2
Image analysis: chromatic contrast ($\Delta \mathrm{S}$) from the avian visual model (JND means $\pm 95 \%$ CI from the model) for each frog (left = Beige-Striped Brown A. talamancae; middle = Black-Spotted Green O. pumilio; right $=$ Black-Spotted Red O. pumilio) versus each background. Grey dashed lined represent absolute (1.0)

Figure 3
Image analysis: pattern (granularity) analysis from the avian visual model (area between energy curves, means $\pm 95 \%$ CI from the model). Comparing each frog (A. tal $=$ Beige-Striped Brown A. talamancae; 0 pum (G$)=$ Black-Spotted Green O. pumilio; O . pum (R$)=$ Black-Spotted Red O . pumilio) to the backgrounds. There was no significant effect of background type on pattern contrast, so it was removed
from the model. The striped pattern of A. talamancae was a closer match to the background than the

Figure 4
Detection experiment: habitat change and local adaption (reaction time (s) means $\pm 95 \%$ CI from the model: left $=$ A. talamancae, middle $=$ Black-Spotted Green O. pumilio, right $=$ Black-Spotted Red O. pumilio). Human disturbance affected reaction time: in the Disturbed habitat Beige-Striped Brown A. talamancae were more easily found and Black-Spotted Green O. pumilio were more difficult to find than they were on their Natural background. Conversely, the Black-Spotted Red O. pumilio were equally detectable in both Natural and Disturbed habitats. There was no difference between Natural and Allopatric background for either morph of O. pumilio.

Figure 5
Detection experiment: pattern distribution (reaction time (s) means $\pm 95 \% \mathrm{CI}$ from the model: left $=A$. talamancae, middle = Black-Spotted Green O. pumilio, right = Black-Spotted Red O. pumilio). There were no differences between Natural and Reversed patterns for any of the frogs. Removing pattern did not affect detectability for A. talamancae nor Black-Spotted Red O. pumilio, but the presence of spots decreased reaction time in Black-Spotted Green O. pumilio. All frogs were more detectable than random-sample background matching, but there was no difference between the mean colors of A. talamancae or BlackSpotted Red O. pumilio and the mean color of their backgrounds, suggesting these frogs may be cryptic

Figure 6
Detection experiment: interaction between pattern and color (reaction time (s) means $\pm 95 \% \mathrm{CI}$ from the model). Brown stripes (A1 - natural pattern of Beige-Striped Brown A. talamancae), green stripes (G1 mode). Bolors), green spots (A2 - natural pattern Black-Spotted Green O. pumilio), brown spots (G 2 -
switched color
switched colors), and red spots (A $=$ natural pattern of Black-Spotted Red O . pumilio). Spots were a more switched colors), and red spots ($\mathrm{A} 3=$ natural pattern of Black-Spotted Red O. pumilio). Spots were a more conspicuous pattern than stripes regardless of color. Brown stripes were more cryptic than green stripes but
there was no difference between differently colored spotted patterns.

