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Summary. We refine a method of Fournier to obtain improved
upper bounds for the two and three dimensional complex

Grothendieck constants.

Let a=(aij) be an NxN matrix with complex coefficients.
The norm of a in the injective tensor product spaceIT®IT is

given by

N
|a];=sup{] iJZZlaijsitj I,

Where the supremum is taken over all choices of complex scalars
Siand t; (1< 1,j < N ) with absolute value no greater than 1.
A fundamental inequality due to Grothendieck (2, but see 4)

asserts that if X peees Ky and Y ¥y ATC unit vectors in a

complex Hilbert space, then

N
| X a (x,y)l <G ”a”ll
i,j=1 1 1 ]

WhereG is an absolute constant. (In other words, G is
independent of N, a and the vectors, and is chosen to be as
small as possible.) The symbol (, ) denotes the inner product
in the Hilbert space.

Although the exact value of G is unknown, it has been
shown that 1.273 = 4/n < G < exp(l-y) =1.527 where vy is
Euler's constant (5).

There are many proofs of Grothendieck's inequality. In (1)
Fournier gave a proof which relied on an algorithm originally
developed by Schur (6). The purpose of this note is to examine
Fournier's proof closely and to modify it in order to give new
upper bounds for constants related to the Grothendieck constant.

If Xp....Xy and Y,..Y, are unit vectors in an
r-dimensional complex Hilbert space, it is clear that there is
an absolute constant G(r) < G such that

N
|i,jz=1 %40yl = 60 lohyy-






.

We shall refer to G(r) as the r-dimensional complex Grothendieck
constant.

Theorem 1. The two dimensional complex Grothendieck constant

is bounded above by 4/3.

Theorem 2. The three dimensional complex Grothendieck constant

is bounded above by 3/2.

These results should be compared with work of Krivine (3).

He investigated the r-dimensional real Grothendieck constants
(for which all scalars and Hilbert spaces are taken to be real).
Krivine showed that the two dimensional real Grothendieck
constant is exactly V2 and that the three dimensional real
Grothendieck constant is bounded above by approximately 1.517.
He also showed how to obtain upper bounds for the r-dimensional
real Grothendieck constant when r is greater than 3

It should also be noted that in (7) different methods have
been used to improve Theorem 1 by showing that the two
dimensional complex Grothendieck constant is bounded above by
343/4 .

We now turn to a detailed discussion of Fournier's method.
This will yield proofs of Theorems 1 and 2.

First we require some notation. We shall write
o = (0],...,0N )=(exp (101),...., (exp (10N ))
for a generic point in the group ™ , the N-fold direct product
of the circle group T. The group T will be endowed with the
usual Haar probability measure do = doj..doy . We shall write
B =(B1,BN)
for a generic point in the dual group ZN , the N-fold direct
product of the integer group Z. We impose a partial order on ZN
by defining
B>0=(0,., 0)iff B =20,.., BN 20

For every B in ZN any integrable function f on TN has
associated with it a Fourier coefficient f(B) :

The space LOO(TN) is the space of all essentially bounded
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. N .
Haar measurable functions on T . For each f in LOO(TN)
We define
||f||oo=esssup[] f(o))]:weTN]

Finally we shall write HNJrl for the (N+1) dimensional
complex Hilbert space. The norm of the element h = (hg. .  hn)
is given by

|h|=0 ho|* +. + |0y |2)%

Strategy. For each N we aim to construct two non-linear maps

N
RN and S from HN+1to L® (TN)

RN :h > R}Il\I and SN 1k > SII(\I
with the properties that for all h and k in HY"!

1 hk =[RN sN(o)do
M (=R (0)s ¥

@ IRN| , <cN) |[h]]
and (3) IS} | 5 <C(N) [k

where c(N) is a constant independent of h and k .
Once this is done, the (N+1)-dimensional complex Grothendieck

inequality follows immediately. For if we choose an nxn matrix
a:(aij) and unit vectors hl, ..... ,hN andkl, ..... ,kN in HN*!

we have

PRSI =|zaiij§i (m)SEj((o)dco

[l Zainllfi (m)SII(\Ij (0)] do

<c¢(N)’| a I
This tells us that G(N+1) < ¢(N)? .

A naive algorithm. Consider initially the case N =1 .A "natural"

way to map an element x=(x0,xl)of H? into L” (T) is

X— X1 t Xp 0] .

Now consider the case N = 2 . We can start an iterative
procedure by mapping x = (x0,X1,X2) in H’ into L* (T?) in






in the following way:
X— X; + (X1 +Xo01) ® .

For general N we associate with x in HNJrl a polynomial
szlinLoo(T)N. The mapping is
N
x+Pyx ; PI;I((L))=XN+XN_1(DN+ ------ + X ON-0)

If we could find a good in equality of the type
PRI, <eN) [ x|

then we would simply be able to take R}I:I=Plll\I and SII:I=P1£\I in

the basic strategy. Unfortunately, such inequalities do not give
good enough values of ¢ (N) for our purposes.
To get over this difficulty, we shall define

N 5 N N N 5 N N
Rh —Ph +Uh and Sk —Pk +Vk

where the UE andVE are suitable "tails" chosen to be orthogonal
to each other and to the P}II\I and PE. The tails must be very

carefully chosen to control the norms of RE and SkN :

The Schur algorithm. The Schur algorithm is an inductive process

due to Schur (6) whose properties are inherited from those of
Blaschke factors. In order to understand what is going on, observe

that if we expand the Blaschke factor
(a+x1)/(1+x72)

where a:xoml/(l—|x1|2) as a formal power series in ®,
then the first two terms are

x|+ X0®] -

These terms are precisely P}((o)) . It will turn out that the
remainder of the power series forms an appropriate tail.
We now describe the Schur algorithm.
Start off with a vector x = by in HNJrl with components
bN,OZXO’bN,IZXI"""bN,N:XN

Form a new vector by.; in H" with components

2
bn_1,0=xg /(=[x N[ b1 N_1 = XN (-|xn [

Continue inductively. For each 0 <r < N-1 form a vector b,






in H ' with components
2
br,n - br+1,n /(1_‘br+l,r+1‘ ) (O=n=r).
Finally, successively define functions Qq, ... , Qx on ™
by setting
Qo (w) = bo, 0 ;

Q (@)=(0Q _ (®+b )+b ©Q @) (I =r1=<N).

Observe that Q, is a function of ®,..., ®, only.

Constraint to be imposed on the algorithm. In order to control

the norms of the functions Q, we shall require

|br,r <1

for every 0 < r < N . Itis at this stage, and at this stage

only, that our proof deviates from Fournier's.
2

N
Observe that if Z |Xn| < k then provided that %Skél
n=0
NS ? 2 2 2
D x| M- xn|)? < (k=] x| D)= xn|)P<1/4(0-K) .
n=0

(This follows from a simple calculus argument.)

As an immediate consequence, we have

[1ba]| <V2/N3 — [|bi[|< V3/2 — [[bo|| < 1 .
(This sequence could be traced further back, but there is no
point since the results which would be obtained would be weaker

than Pisier's (5).) The facts to retain are

(1) [|baf| < V23 = o, <1 (0<r=2)

and (2) ||bi]|[<V3/2 =b

<1 (0<r<l)

r,r

Properties of the algorithm.

br,r

(1) The condition

<1 for every r implies that

||Qr||oo <1 for every r.

When r = 0 this is obvious. For other values of r this

property can be proved by induction. The crucial point is that






because of the condition

(Z+br,r)/(l+br,rz)
is an analytic function of z in the region |z| <1, and has
absolute value 1 on the boundary |z| =1 . The induction is

now easy if one uses the maximum modulus principle.

A
(2) For each N, Qy :PgZI +U§ where UE(B) = 0 unless

possibly B >0 and B#(l..,1). (In other words, the Fourier

A
coefficients U%(B) are zero unless possibly all the Bn's are

positive and some of them are greater than or equal to 2 .)

To justify this assertion, one can again work by induction.
A
We aim to show that Q, =P, +U, where UDI\(I(B) = 0, unless
possibly B>0 and B £ (1,...,1), for each 0 <r < N.

If we make the natural interpretation that P[()) (m)zbo0
O b
then there is nothing to prove when r = 0.
Assume that Q =P’ +U' when 0<r<s. Then

r b b
T T

Qg(w) = (og Qs—l (o) + bs,s)/(l + bs,s g Qs—l (©))
2 .
= bgs + 05Q (@) - ‘bs,s‘ g Qq_;(w) + (terms in (;)g)
2 — —_
=bgg + (1 - ‘bs,s‘ )(Pl,s) ! (@) +U]S5 ! (®))
s—1 s—1

+ (terms in (og) .

S 20 sl )

- Pbs(w) +(l—‘bs’s‘ )Ubs (®) + (terms in ©F ) .

-1
This is what was required.

Construction of RY. Fix h in HY'. Choose ¢(N) > 2/V3 if

N =1 and c¢(N) > V3/¥2 if N =2. Set x = h/c(N) .

Now if h has norm 1 then the algorithm is constrained in

the required way. Consequently, if we set
Ry =c(N)Qy

we shall have HREHOO < c¢(N).
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. SN . . . N+1 .
Construction of k- Fix a unit vector k in H .The main
problem in difining SII(\I is to do so in such a way that its tail

is orthogonal to that of RhN.

Set k =(ky.kn_--skg) and define @=(0yr..0) .
Now choose c¢(N) as in the construction of R}I:I. Set

XZE/C(N) . Then the algorithm is constrained in the required
way, so if we define

N _ ~
Sk (o) =00y QN(co) c (N)
we can assert that HSkN H < c¢(N).
o0

Moreover, a moment's reflection shows that Sllj 1s the sum

of PE and a function whose Fourier coefficients are zero

except possibly when B < (1,...,1) and B 2 0.

Conclusion. The functions R}I:I, and SE, have all the properties

demanded by the strategy, and the Theorems are now proved.
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