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ABSTRACT 

For  mathematical   programming   (MP)   to  have   greater   impact  upon 
the   decision  making  process,   MP   software   systems  must   offer 
suitable   support   in   terms   of  model   communication  and  modelling 
techniques .        In   this   paper  modelling   techniques   that   allow 
logical   restrictions   to   be   modelled   in   integer  programming 
terms   are   described  and   their   implications   discussed.   In 
addition   it   is   demonstrated   that  many   classes  of 
non-linearities  which   are   not   variable   separable  may  be 
reformulated   in  piecewise   linear   form.        It   is   shown   that 
analysis   of   bounds   is   necessary   in   the   following    three 
important   contexts:     model   reduction,   formulation   of   logical 
restrictions   as   0-1  mixed   integer   programs   and   reformulation of 
nonlinear   programs   as   variable   separable   programs,        It  is 
observed   that   as   well   as   incorporating   an   interface   between    the 
modeller   and   the   optimiser   there   is   a  need   to  make   available  to 
the   modeller   software   facilities  which   support   the  modelling 
techniques     described    here. 
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   COMPUTER  ASSISTED  MODELLING  OF  LINEAR ,   INTEGER 
   AND   SEPARABLE  PROGRAMMING  PROBLEMS 

1.             Introduction and   Background 

Modelling   of   mathematical   programs   and   their   computational   solution   are 
two   salient   activit  ies   in   the   exploitation   of  mathematical   programming as 
a   decision   tool.  Over   the   last    thirty   years   or   so   substantial   efforts 
have   been   devoted   to   the   development   of   efficient   algorithms   for  large 
scale   applications.       Efficient   and   robust   computational   algorithms   are   now 
well   documented   in   the   literature  [1].      Most   major   computer   manufacturers 
such   as    IBM   ( M P S X ) [ 2 ] ,    CDC   (APEX)  [ 3 ] ,    UNIVAC   (FMPS)    [4]    or    software 
houses   specializing   in   this   area   such   as   SCICON   (SCICONIC)   [5],   KETRON 
(MPSIII)    [6],    have   developed  mathematical   programming   systems   for  the 
solution   of   linear   and   integer   programming   problems.        Despite    the 
availability   of   such   software   the   use   of   mathematical   programming   as   a 
decision  making   tool   has   not   had   the   impact   expected  by   dedicated 
practitioners.  One   reason   for   this   state   of   affairs   is   that   the 
availability   and   scope   of   good   modelling   support      software    for 
mathematical   programming  has   not   kept   pace   with   developments   both   in 
computational   software   and   computer   technology   in  general .        Various 
modelling   systems   such   as   MGRW   [7 ] ,    MAGEN   [8],   GAMMA   III   [9],   MGG/RWG   [10 ] 
DATAFORM   [11 ],   UIMP   [12],    LOGS[13],   have   been   developed. These    systems 
and   others   are   primarily   designed   to   ease    the   task   of   communicating a 
mathematical   programming  model    to   a   computer,    of   documenting   the   model, 
and   of   creating   solution   reports.      To   date,   however,   most   of   these    systems 
are   based   on  a   procedural   language . Many   of   the   current  generation of 
applications   systems   are   designed   to   be   used   by   the   problem   owners 
themselves   rather   than   by   specialist    intermediaries . Problem   owners   are 
consequently   becoming   more    sophisticated   in   their   use    of   computer 
supported   mode 1ling . For   these   users,    the   requirements   of   a   procedural 
language   present   an   unnecessary   hurdle .  Modern   interactive   computing 
methods   on   the   other   hand,   present    the   opportunity   to   design   integrated 
easy   to    use    systems. 

The    type   of   modelling   support   discussed   so   far   assumes    that    a   model   has 
already   been   constructed.        There   is   also   great   scope   for   support   software 
to   assist     in   formulating    (and   if    necessary   automatically   reformulating) 
models   in   such   a   way   that   they   can   be   solved by   standard  mathematical 
p rogramming   codes .  

An   experimental   computer   assisted   mathematical   programming    system    (CAMPS) 
is   under   development   by   the   authors   and   Mr.   M.   Tamiz   [14]    . Within   this 
integrated   system   it    is   possible   to   construe t,    solve   and   ana lyse    linear 
and   some   classes   of   non—Iinear   problems.        The   des ign   object ives   of   CAMPS 
and   an   outline   description   of    its   use   are   discussed   in   [15]    . 

In   this   paper   several    issues   relating   to   the    formulation   of 
non—linear ities   in   a   way   that  can  be   handled  by  standard  mathematical 
programming   systems   are   discussed. 



2. 

The   contents   of   this   paper   are   organized   as   follows.        In   section   2   the   steps 
involved   in   formulating   the   underlying   LP   model   are   introduced  and   the 
notation   defined. Analysis   of   bounds   for   linear    forms    is   well   known   in   the 
context   of  model   reduction   [15 ], [16  ].The   bound   analysis   results   pertinent   to 
integer  and   separable   programming   are   presented   in   section   3.        Some   of   the 
principles   and  methods   underlying   the   formulation   of   the    logical   constraints 
using   zero-one  variables are   outlined   in   section   4. Strategies   for  separating 
variables   to   represent   a   wide   range   of   nonlinear   programming   problems  are 
presented  and  discussed   in   section  5 .        Finally   it   is   concluded   in    section   6 
that   the   techniques   discussed   in   this   paper   allow  a  modeller   considerable 
scope   in   applying  mathematical   programming   in   practice.   The  materials 
contained   in   section   3,4,5   are   not   new,   however,   in   our   analysis   of   the 
computer   support   for  modelling  we   present   a  different   focus   on   the  underlying 
modelling    principles    and   structure   of   these   problems. 

2. Statement    of    the    LP  Model 

In  order   to  derive   a  mathematical  statement   of   the  model   one   has   to   formally 
define   the  matrix  elements   of   the   constraint   relations.          In   order   to   do   this 
it    is   necessary   to   define   the   subscripts   and    their   ranges .   The   matrix 
elements themselves may be derivedout of tabular input  information relating  
to the problem. The sequence of steps leading to the derivation of a model  
naturally  emerges  and   is   set   out   below. 

Step   1      Define   the   subscripts   and   their   ranges  (sets  and 
dimensions). 

Step   2 Define   model   variab les,    constraints   and   the   matrix 
coefficients   in   terms   of   the   subscripts   defined   in   step  1. 

Step   3    Specify   the   linear   relationships   in  a   row  wise   fashion 
which   connect   the    i terns   defined   in   step  2. 

In   its  most   general   form  an   LP  model   can   be   stated   in   the  following  way: 

- Subscripts,    Ranges: 

i  =  1  ,  .  .  ,m ,   j  =  1,…,n . 

-             Variables,  constraints,   coefficients: 
x : xj   ,   j   =  1. ..n   ,   r:ri  ,   i  =   1.  . .m  ,   d  :   dj    ,  j=1, . .n, 
c: cj   j   =  1 . ..n  ,  b : b i    ,   i  =   1.. .m, 
A  : ai j:,   i   =   1...m,j   =  1...n. 

 -               Linear   objective   function  and constraints: 

                            ∑
=

n

1j
,jxjcMax

 subject to        ,   i   =   1,……..,m ∑
=

=
n

1j ibiρjxjiair

    where    ρi      is   an   (in)equality   relation    of    the    form     “ ≤ ”   ,  “ ≥ ”    or    “ = ”         (1) 

 and .   dj  : ℓj ≤  xj  ≤ uj      ,     j   = 1,…..,n. 

 where     ℓj may  br  -∞  or   finite  uj    may   be  +∞  or   finite.
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 3. Analysis   of   Bounds   for   Linear   Forms 

 3.1 Use   of   Analysis    in   Model   Reduction 

Consider   the   restrictions      ri      and      dj      of   the   linear   programming   problem 
set   out    in   (1)    and   discussed   in   section   2. Express   these   as    two   sets 
R  and   D   of   Linear   Form   constraints and   Structural    constraints  respectively. 
 

                                                   (2)∑
=

==
n

1j
m}.,1,........i,ibiρjxjia|)n,......x1{(xR

 
 
      D  =   { (x1, . . .x n )  |    ℓ j   ≤   x j   ≤  u j ,      j   =   1,...,n} (3) 

It    is    well     known [16],[17],      that   by   considering   the   constraints   sets 
R   and   D   logically   and   iteratively,    in   many   real    life   problems   one   may 
deduce    the    fo l lowing:  

( i )   whether  a  constraint   in  set   R  is   redundaut,  

( ii )          whether   a  constraint   from  set  R  may  be removed  and  replaced  by 
  a   tighter  bound   in  the   set   D, 

( iii )         whether   a  bound   in  the   set  D   is   redundant. 

All   these   results   follow   from   the   analysis   of   the   bounds   on   the   linear 
forms . 

3.2 An   Analysis   of   the   Linear   Form 

Let 

                                                                                      (4  )                 ∑
=

==
n

1j
jjii m.,,.........1i,xaF

 
denote   the   ith   linear   form. 

Introduce    two   index   sets      Pi,      and     Ni,       (column   indices   of   the   positive 
and   negative   coefficients   of   the   row   i)     such   that  

 Pi    =  { j    | a i j > 0 } , N i  =   {  j  |  a i j   <  0 } ,  i   =   1 , . ……. ., m (5  ) 

Let      Li  ≤Fi   ≤ Ui    ,   i   =   1,………,m                                                                                        ( 6 ) 
denote    the   bounds   on   the    linear   form     Fi;      then   from   the   definition   of   the 
structural    bounds   (  ℓ  j    ≤  x j    ≤  u j) the   following  is    easily  deduced: 
 
                                ,jji

ipj iNj
ajujiaiU l∑

∈
∑

∈
+=                                     (7 )  

                                ,juji
ipj iNj

ajjiaiL ∑
∈

∑
∈

+= l                                      (8 )  
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In   any   of   the   following   cases,   the   ith   Linear   Form  constraint   is   redundant 
and  may   be   removed   from   the   problem 

(a) ρi   is   "≤"     and     Ui  ≤  b i   , 

(b) ρi    is   "≥"     and     Li   ≥   b i   , 

For   a   full   discussion   of   these   aspects   of   reduction   the   reader      should 
refer   to   [16]. 

3.3 Examples 

Example   1        A   Redundant   Constraint 

Let   the    constraint   sets   R  and   D  be   as   defined   below. 

R =   {(x 1,x 2,x 3)    |   x 1   +  2 x 2   -  x 3  ≤   11} 

D  -   {(x 1, x 2,x 3)   |   0  ≤  x 1  ≤ 1 , 0 ≤  x2  ≤ 2,   0 ≤   x3   ≤ 4} 
   (9 ) 

The   bounds   on   the   linear   form   Fi   may   be   deduced   as 

L1  =   -4  ,         U1  =   5. 

We   have     U1   <   b1   ,   hence   the   constraint   is   redundant. 

   Example   2        Tightening   of   a  Bound 

Let   the   constraints   sets   R  and   D  be   as   defined  below 

R   =    {(x1,x2,x3)   |   x1    +   x2    -    2x3    =    2} 

D   =   {(x1,x2>x3)   |   0   ≤  x1  ≤  1 ,   0   ≤ x2   ≤ 3,   0  ≤ x3  ≤ 4} 
(10) 

Since     a13<  0     and    P1      is   "="     an   improved   bound   on     x3      is   given   by 

13

11
3 a

)Ub(
x

−
≤  

U1  =   4      ,      b1  =   2    ,      a13   =   -2    ,   hence     x3 ≤  1    is   the   new  bound  which   may 
be   now   introduced   in   the   set   D. 



5.  

3.4        General   Observations 

It    is   pertinent   at    this    stage   to  make   the   following  observations 
concerning   the   bound  analysis   and   i ts    application   in  other   contexts.  

( i ) Li,   may  be  -∞     or   finite   and  Ui  may  be  + ∞  or   finite.        However,   for 
finite  values   of   ℓ j,   uj,   j   =   1 ,.. . .n,    it    follows   from   (7  ), ( 8  ) 
that   Li,Ui   are   finite. 

( ii ) If   the   Linear   Form  constraints   are   connected   by   logical 
     restrictions   then   Li  ,Ui  values   as   necessary  may   be   employed  to 

(re)formulate   these   as   0—1   mixed   integer  programs. 

        ( iii)       The   derived  bounds  may   be  used   in   the   improved  reformulation and 
      par t ia l    solut ion   of    in teger     programs.  

     ( iv )  It    is   not   well   known   and   rarely   discussed   in   the   l i terature  that 
               th i s  ana lys i s  cons t i tu tes  an  essen t ia l  par t  o f  any  procedure  for  
           the  re formula t ion  of  nonl inear ,  no t  var iab le  separable  func t ions  
           in to  var iab le  separable  func t ions  wi th  a rguments  def ined  be tween  
               upper  and   lower  bounds. 

  The   consequences   of   these  observations   in  relation  to   integer   and 
 separable   model l ing  are    d iscussed   in    the    fol lowing   sect ions.  
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4.     Representation of   Logical  Restrictions   and  Related  Techniques. 

4.1   Preliminary  Considerations  and  Notation 
 
It    is   well   known   that   a   large   range   of    logical   relationships connecting 
variables    and   constraint   sets  may   be   represented   as   integer   or  mixed 
integer   programs .   The  authors   have   not   come   across  any one  source  text 
where   the  underlying  principles   have  been  presented   in  a  unified  framework. 
However,   most  of   the  basic   principles  may  be  found   in  [18],[3], [19]. 

Let 

 Δ i   i  =  1,2,...  denote logical variables  which  may  take 
      values . TRUE, or .FALSE., and 

 δ i  i  =   1,2,... denote   0-1   integer  variables. 

Define   the   following  conventions   and   symbols   for   logical   operators. 

δ I        takes   the   value   1,   if   and   only   if  Δi       is    .TRUE., 

 and   0,    if   and   only   if  Δi       is    -FALSE. 

V denotes   inclusive    .OR. 

V&       denotes   exclusive    .OR. 

&      denotes    .AND. 

 ≡       denotes   equivalence...' if   and   only   if ' 

Representing .OR.

If   the   condition     Δ1 VΔ2 VΔ3 VΔ4  is   required   to   hold   then   this   can   be 
represented   by   the   constraints 

δ 1   +  δ 2   +   δ 3   +   δ 4   ≥   1    .  (11) 

Similarly   exclusive    .OR.   relations   as   in  the  requirement   Δ1 VΔ& 2 ΔV& 3 ΔV& 4 
can   be   represented   by   the   constraint 

   δ 1   +  δ 2   +   δ 3   +   δ 4   =   1   .  (12) 

Let    Y  denote  a  logical  variable  and   y     the   corresponding   0-1   variable 
and  let  these   be  related  in  the  same  way  as     Δi  and  δ i    are   related   to  each 
other. 

Then   the   condition   : Y is  .TRUE,  if  and  only   if   Δ1 VΔ2 VΔ3 ....  Δk    is    .TRUE. 
(which   is   expressed  as  Y =   Δ1 VΔ2 V....  Δk  ), can  be  represented  by  the 
cons t ra in t  

-(k - 1)  ≤ δ 1   +  δ 2 +   ...   δ k   -  ky ≤ 0 (13) 
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Representing    .AND. 
---------------------------  
The  logical condition 

       Y   =    (Δ1   &   Δ2   &    ...    &   Δk) 

can   be   represented   by   the   constraint 

 0   ≤  δ 1   +δ 2   +  . ..   + δ k - ky  ≤ k-1 

For   other   logical   relationships   and  a  discussion  of   the  general   form   the 
readers   should   refer   to   {3]. 

p-fold   Alternatives 
-------------------------- 
The  general  forms  of   the  relations  (1 1  ) , (1 2  )  may  be  stated   as 

δ 1 +   δ 2   +   . . .   +   δ k   ≥   1   (14) 

and 

 δ 1   +   δ 2   +   . . .   +   δ k   =   1   (15 ) 

which   represent   the    inclusive   and   exclusive    .OR.    respective ly   of     k: 
logical  variables.   Now   consider   the   relations 

δ 1   +   δ 2   +   ...   +   δ k  ≥ P (16 ) 

and 
δ 1   +   δ 2+...   + δ k  =  p  (17) 

where   p is  an  integer  and  1  ≤   p  ≤   k.     The     relation   (16)   represents    the 
statement   "p   or  more   alternatives   hold   at   any   time"   and   (17  )   represents 
the   statement   "exactly p      alternatives    hold    at   any   time". 

4.2 Logically   Relating   the   Linear   Form    Constraints 

A   linear   form  constraint   involving        n     variables   represents   a  point   set 
in   En. If   a   number   of   these   are   stated   and   need   to   be   satisfied   then 
these   invoke    the    logical    .AND.   operation. 
 
Thus   for 

                                                                             (18)

∑

∑

=

=

≤=

≤=

n

1j
mjjmn1m

n

1j
1jj1n11

}bxa|)x...x{(R

..
... ... ...

}bxa|)x...x{(R
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the   constraint   set 

R  =  R1   &  R2   &   ...   Rm (19) 
is   stated   as 

                                          (20)∑
=

=≤=
n

1j
ijjin1 }m,.......,1i,bxa|)x......x{(R

It  may  be  observed   that     R,      the   intersection  of     R1,R2,...Rm  ,  is  convex  as 
Ri,     i   =   1 ,.. . ,m  are  convex. 

However,   to   represent   the   logical   .OR.   relation   of   these   constraint   sets 
R1,R2,. . .Rm       it   is   necessary   to   consider   the   structural   constraint   set 

D  =   { (x1. . .xn)   |  ℓj  ≤  xj   ≤   uj , j  =  1 , . . . ,n}               (21) 

where   some  or   all   ℓj,uj   j = l,...n  are   finite   such  that   the 
bounds   Ui, i=l...m  are   finite.        Also   from   the   redundancy   consideration  it  is 
required that     bi  <  UI      ,      i=l,..,m. 

To   represent   the   inclusive   .OR.   relation 

 R1   V  R2   V   . . .   Rm (22 ) 
introduce  the  relations 

                                           ( 23) .m,.......1i,b)1(Bxa iiij

n

1j
ji =≤δ−−∑

=

 

 and                                                                                                  ( 24)∑
=

≥δ
m

1i
i .1

   

where     B.     is   a   finite  value   such   that   for   δ i  =   0 ,  Bi  +  bi   is  greater  than 
or   equal   to   the  upper   bound  of 

∑
=

=
n

1j
jjii .xaF

 
Thus   any   finite   value;'   for     Bi      such   that 

Bi  +  b i  ≥  U i , i  =   1 , . . . , m, (25) 

leads   to   a valid   formulation.    The   exclusive   .OR.   and   the   two  forms  of 
    p-fold  alternatives   are   similarly   obtained   with   (24)   replaced  by 
   (26), (27),   or   (28)   respectively 
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)28(,p

)27(,p

m

1i
i

m

1i
i

1i

=δ

≥δ

∑
∑

=

=

=

)26(,1
m

i =δ∑

To   illustrate   these   points,   consider   the   following   example   taken  from 
[18]   and  modified. 

Let   R1  =   {(x1 ,x2)    |   x1   +  x2  ≤  4} 

R2   =   {(x1,x2)    |   -x1   +  x2   ≤  0} (29) 

R3   =   ((xl ,x2)    |   3x1   -  x2   ≤   8} 

and  let  D  = {(x1,x2)  |  0  ≤   x1   ≤  5, 0  ≤   x2   ≤   5} 

Then 

S  =   R&D =  R1  & R2  & R3   & D is  as  shown in Diagram 1  . 

 
The   three   bounds   on   the   linear   forms  may   be   computed  as 

  U1  =  10       ,     U2  =   5,         U3   =   15 
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A   formulation which  uses   the   logical    .OR.   as   well   as    .AND.   relations   such 
as  T =  R1V(R2&R3)    may be  stated  as 

and 

 x1  +  x2   -  6(1- δ1)   ≤  4 , 

 -x1  +  x2   -  5(1- δ2)  ≤ 0 , 

 3x1   -  x2   -  7(1- δ2) ≤ 8 ,    (30) 

   δ1   +    δ2   ≥  1 

   δ1 , δ2     =  0 ,1    . 

The   constraint   region     T     in   this   case   is   as   shown   in  Diagram   2. 

 
Diagram  2. 

Because of  the inclusive .OR. relat ion the constraint  region T which 
is logically stated and represented by the mixed integer formuation (30) 
is   not  a  convex   region. 
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5. Strategies    for   Separating   Variables   in    Non   Linear   Programming 
 Problems 

5.1      Linearization   of   Variable     Separable   Programming  Problems. 

The   problem 

)j(x
n

1j jfMax ∑
=

 

subject to                                               (31) ∑
=

=≤
n

1j
....m,1,........i,ib)j(xjig

is   a   general   statement   of   the   variable   separable   programming   problem. In 
order    to   carry   out   piecewise    linear   approximations    to   the   objective   and 
the   constraint      functions   it    is   necessary   to  make   two   further   assumptions 
concerning   this   problem.  

(i) The    functions      f j ( x j )  , j   =   1,..,n      (32) 

are     all   s ingle   valued. 

(ii)      The   arguments   xj  ,j  =  l,...,n      of   these    functions   have    finite   ranges 
(ℓj  ≤.xj ≤ uj      ,         j  =  1,...,n) - 

The   construction  of    piecewise    1inear   approximat ions using   weighting 
variables ,   convexity   row,   reference   row   and   function   row   is   wel1   discussed 
in   [18], [20], [22], [23] .  

5.2 An  Analysis  of   Nonlinear  Programming   Test  Problems 

It   has   been   claimed   by   proponents  of   the   separable   programming   method of 
solving   nonlinear   programming   problems    that   a   large   class   of  nonlinear 
(not   variable   separable)    programming  problems   can   be   transformed   into 
variable   separable   programming   problems.         In   order   to   investigate   the 
reality   of   this   claim   the   comprehensive   collection  of   nonlinear   programming 
test   problems  which  have  been  put   together   in  [24]    have  been  analysed. 

Consider   the   test   problems   in  the   format 

 Maximise f   (x1,. . . ,xn   ) 

subject    to g i ( x 1 . . . , x n )  ≤  b i  , i = l , . . . , m  

g i(x1….., xn)      =  bi ,       i  = mi + 1,...,m (33) 

and ℓ j≤  x j  ≤u j  ,        j   =   1,...,n . 

The   following   types   of   objective   functions f(x)      and   constraint 
functions  gi(x)    are   found   in   the   set   of   problems. 
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Objective  function  types 

(i) Constant  objective  function      ...      function  code  C. 

(ii) Linear  objective   function         ...      function  code  L. 

(iii)        Quadratic   objective  function    ...      function  code  Q. 

(iv) Sum  of   squares  objective  function   ...   function  code  S. 

(v) Generalized  polynomial  objective  function     ...      function  code  P. 

This   is  of   the  form 

                  (34)           ∑
=

∑
=

+∑
=

+++=
n

1i
........

n

1j,i kxjxix
n

1j,ki, kjjiajxixjiaixia0af(x)

It  may  be  observed   that   in  geometric   programming  problems   [25]   a  more 
general   form  is   introduced  which   is   called  the  signomial   function  and   is 
expressed   as 

                                                                        (35) ∑
∈

=
Jj

dij
i
πjcf(x) ix

where   J   is  used   to   label   the   terms   appearing  in  the  signomial   function. 
In   (34)   a0   ,ai, aij   etc,   and  in  (35)  c j ,  d i j    are  given  real  values. 
 
(vi) General   function     ...      function  code  G. 

Constraint   types

(i) No   constraint ... code  U 

(ii) Only  upper  and  lower  bounds  on  the 

variables ... code  B 

(iii)        Linear  constraint  functions ... code  L 

(iv) Quadratic   constraint   functions ... code  Q 
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(v) Generalized   Polynomial   constraint    functions       ... code   P 

This  is  of  the  same  form  as   (34)   or   (35). 

(vi)     Generalized   constraint   functions … code   G. 

The   frequency   distribution   of    the   115  test   problems   is   set  out    in   Table    1 
In    [24]     the   problems   are   numbered   from   1    to   119,   however,    there   are   no 
problems   numbered  58,  82,  94,  115! 

Objective   Function   Codes  

   
C L Q S P G 

         

Row 

sum 

  U        
Constraint  
Function

  
Codes  B   1 1 5 2 9 
  

L   10  8 6 24 

  
Q 1 7 18 2 9 1 38 

  
P  2 2  14 3 21 

  
G  3 6  7 7 23 

 Column   
 Sum  1 12 37 3 43 19 115 

Table    1 
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5.3     Manipulation  of  Non-Linear  Functions  to  Variable   Separable  Form. 

The  principal  motivation  of  deriving  variable  separable  formulations   of 
non-linear  functions   is  that   such  formulations  may  be  approximated  using 
piecewise  linear   forms.    Consequently  a   standard  mathematical  programming 
system  (e.g.   MPSX)  can be  used  to  solve   these  classes   of  non-linear 
programming  problems.      In  order   to  apply  a  piecewise  linear  approximation 
it   is   required  that   the  variables  of   the   separable   formulation,   which are 
derived  from  the  original  non-linear  functions,   be  bounded.     It   is   there- 
fore  necessary  to  apply  a  bound  analysis   to  determine  these  bounds.     In 
practical  applications   it   is  possible  to   impose  realistic  bounds  on any 
unconstrained  variables which  may  appear  in  the  problem. 

In  this   section   it   is   illustrated,   by  means  of  examples,   that  a  wide  range 
of  non-linear  functions  may  be  expressed   in  a  variable   separable  form. 
In  addition   the  corresponding  bound  analyses   (essential   for  piecewise 
linear  approximations)   are  presented.     It  may  be  observed  that  problems  in 
which  the  objective  function  has  code  C, L  or   S  and  constraints  with codes 
U,   B  or  L  are  clearly   in  variable  separable  form. 

Product  Term

  A  product  term,  x1x2,  may  be replaced by     with  the  additional )yy( 2
2

2
1 −

constraints  y1   =   ½(x1   +  x2)   and y2   =   ½(x1   - x 2 ) .      If   (ℓi   ≤  x=  ≤ui)   then, 
given   finite   ℓi   and  u i ,    finite  bounds  Li   and  Ui  may   easily  be   derived 
such  that   (Li  ≤ yi  ≤  Ui),   i   =   1,2. 

By  repeated  application  of   this   technique  a  variable  separable  formulation 
of  a  higher  order  product   term  may  be  obtained. 

Quadratic  Functionφ

For  a  general  quadratic  function, φ  (x1,...xn)   a  more  compact  variable 
separable   formulation   may   be   obtained. 

Let  ∑
=

∑
=

=φ
n

1i

n

1j jxixjiq
2
1)n,........x1(x                                                                           (36) 

Replace ∑
=

=φ
r

1k
2
kykd)r,......y1(yψby)n,........x1(x    

With  the  constraints  

                                                                                         (37)       r1,........k
n

1j jx'
kqky =∑

=
=

where     r     is   the  rank  of   the   symmetric  matrix  Q  =  {q i j }    . 

The  coefficients  qkj'.   and  dk    can  be  determined  by  applying  a   standard  method 
such  as  Lagrange's     Reduction. 

Given finite bounds ℓ j  and uj  on xj ,  j  = 1,. . .n, finite bounds Lk and Uk  
on yk, k = 1,...r, may be simply derived by considering the linear forms 
(37),   thus   enabling  a   piecewise   linear  approximation  to  be  used. 

Ratio  of  Linear  Forms 

Let    ∑
=

∑
=

==
n

1j

n

1j
.jx''

jh'H'andjx'
jhH'
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The  expression   (H'/H")   may  be  manipulated   in  the  following  way. 

   Replaced (H′/H′′)   by  y1  and  introduce  the  constraint   ∑
=

=∑
=

n

1j
.1yjx'h'

n

1j jx'
jh

As  discussed  earlier  a  variable   separable   formulation  may  be  obtained 
for  the  product   terms  of   the  constraint.     The  finite  bounds  on  xj,j   =   1,...n, 
provide  bounds  on  H' and  H"  such  that  L' ≤  H'  ≤  U'  and  L" ≤  H" ≤ U" 
from which  bounds   on y1  may be  obtained.      If  L” >  0  or U"  <  0,   the  bounds 
on  y1   are  finite  and  a  piecewise   linear  formulation  can  be  applied. 
Power Forms  -  Constant Base 

Consider  the  term  where  a >  0  . 
2
2x1ax +

A   variable  separable  formulation  may  be  obtained by replacing  by y
2
2xx1a

+
1 

And  introducing  the  constraint  log  y1  =   (log a) . ).  The    bounds 2
2x1(x +

L1  and  U1  on  can  be  derived  from  the  bounds  on x1 and x2 . 
 Power Forms  - Variavle  Base

Consider  the  term This term can be handled using the substitution .
2x

1x

y1   =   10yx2   

x1  =   10y2
(38) 
(39) 

The   constraint   (38)   can  be   handled  using   the   techniques   for  product   terms 
and  constant  base  power  forms  discussed  earlier.     For  constraint   (39)   it 
it  necessary   that   0  <   ℓ1   ≤  x1  ≤  u1   from  which   the  bounds  on  y2   are   easily 
derived- 
The  range  of   functions   illustrated  above  show  that  the  only  problems  that 
cannot  easily  be  formulated  as  variable  separable  lie   in  the  class   in  which 
the  objective  or  constraint  code  is     G     .     However,  most  problems   in  this 
class   can  be   transformed  to  a   separable  form  without   difficulty.     To 
illustrate   this    point   consider    the   following   example. 

5.4 An  Example 

Consider   the  problem   [26]. 
 Maximise x1 + 2x2 + x3

 Subject                    203x3xe
1x1

2x
2x1x ≤+

+
+                                                  (40)    

 x1  +  x2  +   x3 ≤  4 

and xl , x2,x3   ≥  0. 

(41) 

(42) 

From  restriction   (41),   (42)   it   follows   that 

0  ≤  xl , x2 , x3   ≤  4                                                                 (43) 

   Rewrite                                                                      (44)    

 

04x1x4x2xor4x
1x1

2x
=−−=

+
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Now  from   (43)   and   (44) ℓ4     ≤  x4  ≤  u4 where 

ℓ4   =  0 , u4   =  4 (45) 

The  constraint   (40)   can  be  reexpressed  as 

and 

 x1 x2  +  x4 y1  + x3 ≤ 20 

 y1  =  ex 3 

(46) 

(47) 

From  (43)   and   (47)   the  following  bounds  are  derived 

    e° = 1 ≤ y1 <  e4  =  54.598 

Thus  the   given  problem  may  be   restated  as 
Maximize  x1 + 2x2  + x3 

subject   to x1x2   + x4y1   + x3   ≤ 20 
x2   - x4   - x1x4 =  0 

 (48) 
y1   -  ex3 = 0 

x1   +  x2   +  x4   ≤  4 

and 0  <  x1,x2,x3,x4   ≤  4,        1.0  ≤  y1   ≤  54.598 

The  product   terms  are   thus   re-expressed  as 

                  2
6z2

5z4x1x,2
4z2

3z1y4x,2
2z2

1z2x1x −=−=−=
 

which  leads  to  the  full separable  programming  formulation: 

Maximise       x1  + 2x2  +  x3

Subject    to                         0
20

2
6

2
542

3
2
4

2
3

2
2

2
1

=+−−
≤+−+−

zzxx
xzzzz

                                           

0

0

0

0

0

0

4

0

64
1
21

1
2

54
1
21

1
2

41
1
24

1
2

31
1
24

1
2

22
1
21

1
2

12
1
21

1
2

421

1
3

=−+

=−+

=−+

=−+

=−+

=−+

≤++

=−

zxx

zxx

zyx

zyx

zxx

zxx

xxx

ey x

                                54.5981y14,4x.3.x2.x1xz0 ≤≤≤≤

with     as  the    easily  derived bounds   on   the   zz
iuizz

i ≤≤l i  ,     i     =   1, ……….6.
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6.      Discussion 

Most  modelling   systems   focus   on   the   task  of   creating model data  and offer 
little   support   towards   deriving   the   model   itself.     The   analysis   of  bounds 
plays   a  key   role   in  model   reduction,   for mulation   of   logical   restrictions 
and  reformulation  of  non—linear  programs  as  variable   separable programs. 
A  mathematical   programming   modelling   system   should   contain   facilities   to 
assist   the  user   to   specify  his  model   and   reduce   the   chore   of   algebraic 
manipulation.       This   aspect   is   particularly   important   for   problem  owners 
who   are   capable   of   describing   their  models   precisely  but   who  nevertheless 
may  not   be   experienced   in   reformulation   techniques   and  may  not  be   skilled 
in  algebraic  manipulation.      Computer   support   in   these  areas   offers 
increased   scope   and  applicability   of  mathematical   programming. 
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