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Abstract— Correlation analysis is one of the fundamental mathematical tools for identifying 15 
dependence between classes. However, the accuracy of the analysis could be jeopardized due 16 
to variance error in the data set. This paper provides a mathematical analysis of the impact of 17 
imbalanced data concerning Pearson Product Moment Correlation (PPMC) analysis. To 18 
alleviate this issue, the novel framework Robust Correlation Analysis Framework (RCAF) is 19 
proposed to improve the correlation analysis accuracy. A review of the issues due to 20 
imbalanced data and data uncertainty in machine learning is given. The proposed framework 21 
is tested with in-depth analysis of real-life solar irradiance and weather condition data from 22 
Johannesburg, South Africa. Additionally, comparisons of correlation analysis with prominent 23 
sampling techniques, i.e., Synthetic Minority Over-Sampling Technique (SMOTE) and 24 
Adaptive Synthetic (ADASYN) sampling techniques are conducted. Finally, K-Means and 25 
Wards Agglomerative hierarchical clustering are performed to study the correlation results. 26 
Compared to the traditional PPMC, RCAF can reduce the standard deviation of the correlation 27 
coefficient under imbalanced data in the range of 32.5% to 93.02%. 28 

 29 
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1. Introduction 33 
 34 
With the exponential increase of the amount of data introduced by an increasing number of 35 

physical devices, the large-scale advent of incomplete and uncertain data is inevitable, such as 36 
those from smart grids (Lai and Lai, 2015; Wu et al., 2014). For sparse data, the number of 37 
data points is inadequate for making a reliable judgement. This has been an issue for the 38 
successful delivery of megaprojects (Locatelli et al., 2017). In machine learning and data 39 
mining applications, redundant data can seriously deteriorate the reliability of models trained 40 
from the data.  41 

Data uncertainty is a phenomenon in which each data point is not deterministic but subject 42 
to some error distributions and randomness. This is introduced by noise and can be attributed 43 
to inaccurate data readings and collections. For example, data produced from GPS equipment 44 
are of uncertain nature. The data precision is constrained by the technology limitations of the 45 
GPS device. Hence, there is a need to include the mean value and variance in the sampling 46 
location to indicate the expected error. A survey of state-of-the-art solutions to imbalanced 47 
learning problems is provided in (He and Garcia, 2009). The major opportunities and 48 
challenges for learning from imbalanced data are also highlighted in (He and Garcia, 2009). 49 



 

The number of publications on imbalanced learning has increased by 20 times from 1997 to 50 
2007. Imbalanced data can be classified into two categories, namely, intrinsic and extrinsic 51 
imbalanced. Intrinsic imbalance is due to the nature of the data space, whereas extrinsic 52 
imbalance is not. Given a dataset sampled from a continuous data stream of balanced data with 53 
respect to a specific period of time; if the transmission has irregular disturbances that do not 54 
allow the data to be transmitted during this period of time, the missing data in the dataset will 55 
result in an extrinsic imbalanced situation obtained from a balanced data space. An example of 56 
intrinsic imbalanced could be due to the difference in the number of samples of different 57 
weather conditions, i.e., in general, the ‘Clear’ weather condition has the most occurrences 58 
throughout the year, whereas ‘Snow’ may only have a few occurrences. 59 

There is a growth of interest in class imbalanced problems recently due to the classification 60 
difficulty caused by the imbalanced class distributions (Wang and Yao, 2012; Xiao et al., 61 
2017). To solve this problem, several ensemble methods have been proposed to handle such 62 
imbalances. Class imbalances degrade the performance of the derived classifier and the 63 
effectiveness of selections to enhance classifier performance (Malof et al., 2012). 64 

This paper proposes and validates a new framework for the impact of imbalanced data on 65 
correlation analysis. The impact of imbalanced data is described using a mathematical 66 
formulation. Additionally, RCAF is proposed for correlation analysis with the aim of reducing 67 
the negative effects due to an imbalanced ratio. This will be investigated with a theoretical and 68 
real-life case study. 69 

Section 2 provides a literature review on the imbalanced data problem, followed by the 70 
correlation analysis of imbalanced data. Section 3 provides an overview of the critical features 71 
and the impacts on correlation analysis. Simulations will be conducted to support the findings. 72 
Section 4 proposes a new framework for the correlation analysis. Section 5 provides a real-life 73 
case study, based on solar irradiance and weather conditions, to evaluate the new framework. 74 
Different imbalanced data sampling techniques will be used to compare the correlation analysis 75 
performance. Cluster analysis of weather conditions will be given to understand the 76 
implications of the correlation results. Future work and conclusions will be given in Section 6. 77 

 78 

2. Correlation analysis and imbalanced data 79 
 80 
2.1. Imbalanced classification problems 81 

 82 
Imbalanced data refers to unequal variable sampling values in a dataset. For example, 90% 83 

of sampling data can be in the majority class, with only 10% of the sampling data in the 84 
minority class. Therefore, the imbalanced ratio is 9:1. Imbalanced data appears in many 85 
research areas. As mentioned in (Krstic and Bjelica, 2015), when TV recommender systems 86 
perform well, the number of interactions for users to express positive feedback is anticipated 87 
to be greater than the number of negative interactions on the recommended content. This is 88 
known as class imbalanced. The misclassification of the unwanted content can be recognized 89 
by TV viewers easily, therefore, system performance could decrease. 90 

Commonly, modifying imbalanced datasets to provide a balanced distribution is carried out 91 
using sampling methods (Li et al., 2010; Liu et al., 2009; Wang and Yao, 2012). From a broader 92 
perspective, over-sampling and under-sampling techniques seem to be functionally equivalent, 93 
since they both can provide the same proportion of balance by changing the size of the original 94 
dataset. In practice, each technique introduces challenges that can affect learning. The major 95 
issue with under-sampling is straightforward, classifiers will miss important information in 96 
respect to the majority class, by removing examples from the majority class (Ng et al., 2015). 97 
The issues regarding over-sampling are less straightforward. Since over-sampling adds 98 
replicated data to the original dataset, multiple instances of certain samples become ‘tied’, 99 



 

resulting in overfitting. As proposed in (Mease et al., 2007), one solution to the over-sampling 100 
problem is to add a small amount of random noise to the predictor so the replicates are not 101 
duplicated, which can minimize overfitting. This jittering adds undesirable noise to the dataset 102 
but the negative impact of imbalanced datasets has been shown to be reduced. Under-sampling 103 
is a favoured technique for class-imbalanced problems; it is very efficient since only a subset 104 
of the majority class is used. The main problem with this technique is that many majority class 105 
examples are ignored.  106 

Class imbalanced learning is employed to resolve supervised learning problems in which 107 
some classes have significantly more samples than others (Xiao et al., 2017). The study of 108 
multiclass imbalanced problems and the Dynamic Sampling method (DyS) for multilayer 109 
perceptron are provided in (Lin et al., 2013). The authors claim that the DyS method could 110 
outperform the pre-sample methods and active learning methods for most datasets. However, 111 
a theoretical foundation is necessary to explain the reason a simple method such as DyS could 112 
perform so well in practice. 113 

Support Vector Machine (SVM) is a popular machine learning technique that works 114 
effectively with balanced datasets (Batuwita and Palade, 2010; Tang et al., 2009). However, 115 
with imbalanced datasets, suboptimal classification models are produced with SVMs. 116 
Currently, most research efforts in imbalanced learning focus on specific algorithms and/or 117 
case studies. Many researchers use machine learning methods such as support vector machines 118 
(Batuwita and Palade, 2010), cluster analysis (Diamantini and Potena, 2009), decision tree 119 
learning (Mease et al., 2007; Weiss and Provost, 2003), neural networks (Yeung et al., 2016; 120 
Zhang and Hu, 2014; Zhou and Liu, 2006), etc., with a mixture of over-sampling and under-121 
sampling techniques to overcome the imbalanced data problems (Liu et al., 2009; Seiffert et 122 
al., 2010). A novel machine learning approach to assess the quality of sensor data using an 123 
ensemble classification framework is presented in (Rahman et al., 2014), in which a cluster-124 
oriented sampling approach is used to overcome the imbalance issue. 125 

The issues of class imbalanced learning methods and how they can benefit software defect 126 
prediction are given in (Wang and Yao, 2013). Different categories of class imbalanced 127 
learning techniques, including resampling, threshold moving and ensemble algorithms, have 128 
been studied for this purpose. Medical data are typically composed of ‘normal’ samples with 129 
only a small proportion of ‘abnormal’ cases, which leads to class imbalanced problems (Li et 130 
al., 2010). Constructing a learning model with all the data in class imbalanced problems will 131 
normally result in a learning bias towards the majority class. 132 

Imbalanced data can influence the feature selection results. As mentioned in (Zhang et al., 133 
2016), traditional feature selection techniques assume the testing and training datasets follow 134 
the same data distribution. This may decrease the performance of the classifier for the 135 
application of adversarial attacks in cybersecurity. For real-life applications, the distribution of 136 
different datasets and variables may be significantly different and should be thoroughly studied. 137 
Feature selection based on methods such as feature similarity measure (Mitra et al., 2002), 138 
harmony search (Diao et al., 2014; Diao and Shen, 2012), hybrid genetic algorithms (Oh et al., 139 
2004), dependency margin (Liu et al., 2015b), cluster analysis (Chow et al., 2008) has been 140 
developed. The methods have contributed to the quality enhancement of feature selection. 141 
However, the fundamental issues of the uncertainty and imbalanced ratio in datasets have not 142 
been studied. 143 

 144 
2.2. Correlation analysis for imbalanced data problems 145 

 146 
Many correlation analyses have been conducted on imbalanced datasets. For example, 147 

Community Question Answering (CQA) is a platform for information seeking and sharing. In 148 
CQA websites, participants can ask and answer questions. Feedback can be provided in the 149 



 

manner of voting or commenting. (Yao et al., 2015) proposed an early detection method for 150 
high-quality CQA questions/answers. Questions of significant importance that would be 151 
widely recognized by the participants can be identified. Additionally, helpful answers that 152 
would attain a large amount of positive feedback from participants can be discovered. The 153 
correlation of questions and answers was performed with Pearson R correlation to test the 154 
dependency of the voting score. The classification accuracy with imbalanced data, i.e., the ratio 155 
between the number of data for positive and negative feedbacks have not been addressed.  156 

Gamma coefficient is a well-known rank correlation measure that is frequently used to 157 
quantify the strength of dependency between two variables in ordinal scale (Ruiz and 158 
Hüllermeier, 2012). To increase the robustness of this measure in data with noise, Ruiz et al. 159 
(Ruiz and Hüllermeier, 2012) studied the generalization of the gamma coefficient based on 160 
fuzzy order relations. The fuzzy gamma has been shown to be advantageous in the presence of 161 
noisy data. However, the authors did not consider the imbalanced data issue for correlation 162 
analysis. 163 

In clinical studies, the linear correlation coefficient is frequently used to quantify the 164 
dependency between two variables, e.g., weight and height. The correlation can indicate if a 165 
strong dependency exists. However, in practice, clinical data consists of a latent variable with 166 
the addition of an inevitable measurement error component, which affects the reproducibility 167 
of the test. The correlation will be less than one even if the underlying physical variables are 168 
perfectly correlated. Francis et al. (Francis et al., 1999) studied the reduction in correlation due 169 
to limited reproducibility. The implications of experimental design and interpretation were also 170 
discussed. It is confirmed that with large measurement errors, the measured correlation for 171 
perfectly correlated variables cannot be equal to one but must be less than one (Francis et al., 172 
1999). Francis et al. (Francis et al., 1999) described a method which allows this effect to be 173 
quantified once the reproducibility of the individual measurements is known. However, the 174 
paper has not resolved the correlation inaccuracy problem and only provides an indication of 175 
the effect of noise on the correlation in an imbalanced dataset. The paper concludes that the 176 
designers of experiments can relieve the problem of attenuation of correlation in two ways. 177 
First, the random component of the error should be minimized, with the aim of improving 178 
reproducibility. Technical advances may allow this to occur, but relying on them is not always 179 
practical. Random measurement error can also be attenuated statistically but this requires care 180 
and logical judgement. Note that some variance errors in the data are inevitable, such as solar 181 
irradiance where unexpected phenomenon such as birds flying cannot be avoided. 182 

 183 

3. Impact of imbalanced ratio and uncertainty on correlation analysis 184 
 185 

Classes exist in various machine learning models and can be in the form of dichotomous 186 
variables. The features can be represented by binary classification, i.e., 0 or 1. For example, 187 
different weather conditions for solar irradiance prediction can be classified (0 for ‘Clear’ and 188 
1 for ‘Rain’). 189 

 190 
3.1. Correlation analysis for imbalanced dichotomous data with uncertainty introduced by 191 

noise 192 
 193 

In statistical analysis, dependency is defined as the degree of statistical relationship between 194 
two sets of data or variables. Dependency can be calculated and represented by correlation 195 
analysis. The most commonly used formula is parametric and known as the Pearson Product 196 
Moment Correlation (PPMC) coefficient. By definition, the PPMC coefficient has a range from 197 
the perfect negative correlation of negative 1.0 to the perfect positive correlation of positive 198 
1.0, with 0 representing no correlation (Mitra et al., 2002). 199 



 

 The following problem is used to describe this research issue. 200 

Assumption: Given two variables X and Y, where ܺ ൌ ሼݔ௔ǡ ௕ሽǡݔ ܻ א Թ଴ା . In the obtained 201 

sampling dataset, the number of samples in ݔ௔ is ݊ ௔ and the number of samples in ݔ௕ is ݊ ௕, 202 

with ݊௔ ൅ ݊௕ ൌ ܰǤ The noise, i.e., sampling error, occurs in Y. The relationship between each 203 

value of Y (ݕ௜ ) and each value of X ሺݔ௜ሻ is ݕ௜ ൌ ݂ሺݔ௜ሻ ൅ ௜ݎݎܧ , ݅ ൌ ሼܽǡ ܾሽ. Each noise ݎݎܧ௜ 204 

follows a certain distribution K with mean error ߤ௠௘. The square of noise error Erri
2 follows 205 

the distribution L with mean square error ߤ௠௦௘. 206 
Fig. 1 presents the PPMC correlation with a variable, i.e., weather being dichotomous. The 207 

regression line depicts a negative correlation between Clearness Index (CI) and the two weather 208 
conditions. This means the weather transition from ‘Clear’ to ‘Mostly Cloudy’ will reduce the 209 
amount of solar resources received. 210 

 211 

 212 
Fig. 1. Correlation analysis with a dichotomous variable. 213 

 214 
The PPMC coefficient is given in Equation (1) below: 215 
 216 

   217 
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For C to become zero, possible factors include ݊௔ ൅ ݊௕ ൌ Ͳ and all ݔ are zero. Based on Fig. 220 

1, if there is no data, i.e., ݊௔ ൅ ݊௕ and the sample size is zero, it is impossible to conduct the 221 

correlation. All ݔ equal to zero signifies there is no value in the variable. Similarly, for D to 222 

become zero, possible factors include  ݊ ௔ ൅ ݊௕ ൌ Ͳ and all y are zero. The average value of 223 
the sampling set is equal to the expectation of the distribution. Equation (2) depicts this 224 
relationship while Equations (3) and (4) are true. 225 

 226 

۔ە
ۓ ௠௘ߤ ൌ σ ௜ே௜ୀଵܰݎݎܧ

௠௦௘ߤ ൌ σ ௜ଶே௜ୀଵܰݎݎܧ                                                            ሺʹሻ 227 

 228 σ ௜௡ೌ௜ୀଵ݊௔ݎݎܧ ൌ σ ௜௡್௜ୀଵ݊௕ݎݎܧ                                                         ሺ͵ሻ 229 σ ௜ଶ௡ೌ௜ୀଵ݊ݎݎܧ ௔ ൌ σ ௜ଶ௡್௜ୀଵ݊ݎݎܧ ௕                                                         ሺͶሻ 230 

By considering yi = f(xi) + Erri in Equation (1), further expressions are presented in Equation 231 
(5). 232 

൞ ܣ െ ܤ ൌ ݊௔݊௕ሺݔ௔ െ ௔ሻݔ௕ሻሾ݂ሺݔ െ ݂ሺݔ௕ሻሿܥ ൌ ඥ݊௔݊௕ሺݔ௔ െ ܦ௕ሻଶݔ ൌ ඥ݊௔݊௕ሾ݂ሺݔ௔ሻ െ ݂ሺݔ௕ሻሿଶ ൅ ሺ݊௔ െ ݊௕ሻଶǤ ሺߤ௠௦௘ െ ௠௘ଶߤ ሻ                   ሺͷሻ 233 

 234 

By considering ݊௕ = Į * ݊௔, where Į is the number ratio between value ݔ௔ and value ݔ௕, 235 
Equation (5) can be transformed into Equation (6). 236 

۔ۖۖەۖۖ
௑௒ߩۓ ൌ ܣ െ ܥܤ כ ܦ ൌ ௔ݔ െ ௔ݔ௕ȁݔ െ ௕ȁݔ Ǥ ݂ሺݔ௔ሻ െ ݂ሺݔ௕ሻȁ݂ሺݔ௔ሻ െ ݂ሺݔ௕ሻȁ Ǥ ܴܴ ൌ ͳඨͳ ൅ ௠௦௘ߤ  െ ௔ሻݔ௠௘ଶሾ݂ሺߤ െ ݂ሺݔ௕ሻሿଶ Ǥ ቀͳߙ ൅ ߙ ൅ ʹቁ                                ሺ͸ሻ 237 

                 238 

If ݔ௔ ≠ ݔ௕ and f(ݔ௔) ≠ f(ݔ௕), the type of correlation can be expressed by Equation (7). 239 

௑௒ߩ 240  ቊ ܴǡ ൫ݔ௔ ൏ ௕ݔ ǡ ݂ሺݔ௔ሻ ൏ ݂ሺݔ௕ሻ൯െܴǡ ൫ݔ௔ ൏ ௕ݔ ǡ ݂ሺݔ௔ሻ ൐ ݂ሺݔ௕ሻ൯                                       ሺ͹ሻ 241 

 242 

Equation (6) shows the correlation may not be +1/-1 given there is an increasing/decreasing 243 
linear relationship between X and Y. It is also related to the Momentum Ratio R. For the case 244 ݂ሺݔ௔ሻ ൌ ݂ሺݔ௕ሻ, based on Fig. 1, this means the “actual” (excluding error variance) CI for 245 
‘Clear’ is the same as the actual CI for ‘Mostly Cloudy’. Since the variance of Y is zero, the 246 
denominator is zero which makes the correlation coefficient undefined. 247 

 248 
 249 
3.2. Impact of imbalanced ratio 250 

 251 
The imbalanced ratio in the dataset is presented by Į in Equation (7). Equation (8) extracts 252 

the section of R in Equation (7) as given below: 253 



 

ఈ݁݋ܿ ൌ ͳߙ ൅ ߙ ൅ ʹ                                                             ሺͺሻ 254 

In Equation (8), the minimum point occurs at Į = 1. This indicates R is maximized if the 255 

sampling dataset contains an equal number of ݔ௔ and ݔ௕. In this section, two functions are 256 

employed to study the imbalanced datasets and the correctness of Equation (7). Equation (9) 257 

introduces the two functions. The error of each sampling point is assumed to follow a standard 258 

normal distribution ܰ ሺͲǡͳሻǤ  The first function in Equation (9) establishes a negative 259 

relationship while the second function establishes a positive relationship. The correlation can 260 

be computed using two methods. Method 1 uses the derived Equation (7) and Method 2 uses 261 

the conventional Equation (1). 262 

 263 ൬ݔ௔ ൌ ͳݔ௕ ൌ ʹ൰ ቊ     ݂݊ݑଵǣ ݕ ൌ sin ቀగଶ ቁݔ ൅ ଶǣ݊ݑ݂ݎݎܧ ݕ ൌ lnሺݔሻ ൅ ݎݎܧ                      (9) 264 

 265 

Fig. 2 shows the simulation results for the two functions in Equation (9). ݊௕ is fixed at 100 266 

and a sensitivity analysis is conducted for ݊௔ from 1 to 3000. For Function 2, the correlation 267 

absolute value increases from 1 to 100 and decreases from 100 to 3000. This shows that 268 

Method 1 and Method 2 produce similar results. The simulations in Fig. 2 have proved that 269 

Equation (7) is valid. The maximum absolute value of the correlation occurs at ݊௔ = ݊௕  = 100, 270 

where Į = 1. 271 

 272 
Fig. 2. Correlation for the two functions with imbalanced dataset. 273 

 274 
Fig. 2 indicates that although variables X and Y have a confirmed dependence, the correlation 275 

may be distorted by imbalanced data. The reason the correlations obtained from Method 1 have 276 
more fluctuations than Method 2 is due to the assumption made with Equation (2). A general 277 
recognition of correlation with high dependency is usually between 0.7 and 1.0, neutral 278 
dependency is between 0.3 and 0.7, and low dependency is between 0 and 0.3. However, for 279 
Function 2 in Equation (9), the correlation reaches 0.12 when na is 3000 (Į = 30), which is far 280 
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from the maximum value 0.37. This may misinterpret the correlation from ‘neutral dependency’ 281 
to ‘low dependency’. The optimal correlation can be realized when the datasets have equal 282 
sizes. 283 

 284 
3.3. Impact of noise 285 

 286 
The contribution of noise to the correlation is presented by Equation (10). Noise represents 287 

an unconsidered impact that can cause deviation from the actual value of a variable, which 288 

contributes to variance error. It can be recognized as the inaccuracy of measured data. 289 

௡௢௜௦௘݁݋ܿ 290  ൌ ௠௦௘ߤ െ ௠௘ଶߤ                                                           ሺͳͲሻ 291 

As shown in Equation (7), correlation may be distorted by the imbalanced ratio, with an 292 

exceptional condition that ܿ݁݋௡௢௜௦௘ in Equation (10) is equal to zero. If all noise is rejected by 293 

a perfect sensor, Equation (7) indicates the correlation will not be influenced by an imbalanced 294 

ratio and the resultant Momentum Ratio becomes 1. A simulation is conducted with Equation 295 

(9) without noise. The correlation results without noise are presented in Fig. 2. The 296 

correlations of the two functions in Equation (9) are shown to be perfectly correlated, i.e., 1 297 

(or -1) when noise does not exist. As ݊௔ increases, the no-noise correlations maintain a value 298 

of 1 (or -1). This phenomenon indicates the imbalanced ratio does not influence correlation 299 

when noise is removed. Noise is one of the key factors that affect correlation with respect to 300 

the imbalanced ratio. 301 

 302 

3.4. Impact of output differences 303 
 304 

The contribution of the output difference to correlation is presented by Equation (11). 305 ܿ݁݋௢௨௧̴ௗ௜௙௙ ൌ ͳሾ݂ሺݔ௔ሻ െ ݂ሺݔ௕ሻሿଶ                                                  ሺͳͳሻ 306 

In Equation (9), ܿ݁݋௢௨௧̴ௗ௜௙௙  decreases and R in Equation (7) increases if the difference 307 

between ݂ ሺݔ௔ሻ and ݂ ሺݔ௕ሻ increases. This indicates that R can be controlled by the output 308 

difference. A larger output difference can counteract the effect of an imbalanced ratio. Similar 309 

to Equation (7), for the case ݂ሺݔ௔ሻ ൌ ݂ሺݔ௕ሻ, the correlation coefficient is undefined when the 310 

variance of Y is zero. 311 ൬ݔ௔ ൌ ͳݔ௕ ൌ ʹ൰ ൝݂݊ݑଵǣ ݕ ൌ ȾǤ sin ቀʹߨ ቁݔ ൅ ǡݎݎܧ Ⱦ ൌ ሼͳǡ͵ǡ͸ǡͻሽ݂݊ݑଶǣ ݕ ൌ ȾǤ lnሺݔሻ ൅ ǡݎݎܧ Ⱦ ൌ ሼͳǡ͵ǡ͸ǡͻሽ                         ሺͳʹሻ 312 

Fig. 3 presents the simulation results for Equation (12). Note that ሾ݂ሺݔ௔ሻ െ ݂ሺݔ௕ሻሿଶ 313 

increases as ȕ increases. In addition, the correlation at the same imbalanced ratio is closer to 314 

a strong correlation (1 or -1) with an increased ȕ. This indicates that a larger output difference 315 

may increase R and counteract the impact of imbalance. 316 

 317 



 

 318 
Fig. 3. Correlation on specified function with imbalanced dataset. 319 

 320 
4. Robust correlation analysis framework 321 

 322 
4.1. Framework 323 
This paper introduces a novel correlation analysis framework to alleviate the negative impact 324 

of imbalanced data with noise in correlation analysis. Fig. 4 presents the structure of the 325 

framework. In Fig. 4, X has two values (ݔ௔, ݔ௕) in the sampling dataset. The number of data 326 

points in ݔ௔  and ݔ௕  are ݊ ௔ and ݊ ௕ , respectively. Each x value and its corresponding y value 327 
construct a data pair (x, y). The correlation analysis framework consists of the following two 328 
main steps: 329 
 Step 1: Creating groups of balanced datasets: The first step is to determine which 330 

variable X has the largest amount of data. For example, ݔ௔ is selected if ݊௔ ൐ ݊௕, then, 331 

select ݊ ௕  amount of ݔ௔  and combine them into pairs with ݔ௕. In this dataset, the number of 332 

data points in ݔ௔ and ݔ௕ is equal to ݊௕. The procedure is repeated M times to construct a 333 

group of balanced sets. To prevent the loss of information from the removal of data and to 334 

fully utilize all the data, the method to determine M is shown in Equation (13). In the non-335 

repeated random selector, sampling without replacement is used for sampling purposes to 336 

prevent ‘tied’ data. The ceil function is used to round the value M towards positive infinity. 337 ܯ ൌ ݈ܿ݁݅ ൬݊௔݊௕൰                                                               ሺͳ͵ሻ 338 

 Step 2: Correlation integration: Corri, which is non-zero, is the correlation of a balance 339 

set ݅  calculated with Equation (1). Assume there are M balanced sets, the final correlation 340 

can be computed by Equation (14) as below: 341 ͳݎݎ݋ܥ௙௜௡௔௟ଶ ൌ ͳܯ ෍ ͳݎݎ݋ܥ௜ଶ
ெ

௜ୀଵ                                                    ሺͳͶሻ 342 

 343 

Table 1 presents the detailed algorithm for RCAF. The implementation and pseudocode were 344 
developed with MATLAB. 345 
 346 
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Table 1 347 

Algorithm for RCAF. 348 

As depicted in Table 1, the computational complexity (CC) for RCAF is relatively low. 349 

According to Equation (1), the CC for PPMC is linear (Liu et al., 2016) at ܱሺ݊ሻ with data size 350 ݊. Since RCAF consists of converting the majority class data into M datasets, with each dataset 351 

having the size of the minority class, the CC for RCAF is approximately ܱሺܯሺ௡ெሻሻ or ܱ ሺ݊ሻ. 352 

Although RCAF has a higher CC due to additional computations, e.g., Equations (13) and (14) 353 
and the requirement of more data storage, the improved correlation analysis under imbalanced 354 
data can justify the use of RCAF. 355 
 356 

 357 

 358 

 

Input: ݕ௔ ൌ ሺݕ௔ଵ ǡ ௔ଶǡݕ ௔ଷǡݕ ǥ ǡ ௕ݕ ௔௡ሻǢݕ ൌ ሺݕ௕ଵǡ ௕ଶǡݕ ௕ଷǡݕ ǥ ǡ ௕௡ሻǢ ݊௔ݕ ൌ sizeሺݕ௔ሻǢ ݊௕ ൌ sizeሺݕ௕ሻǢ ݔ௔ ൌ zerosሺ݊௔ǡ ͳሻ ൅ ͳǢ ݔ௕ ൌ zerosሺ݊௕ ǡ ͳሻ ൅ ͲǢ 
Output: corr̴finalǣ PPMC for ݔ and ݕ 
Algorithm: 
If ߩ௫௬ is negative            % Use Eq. (1) to determine if the correlation is positive or negative. 
    sign = -1; 
else 
    sign = +1; 
end 
If ݊௔ ൒ ݊௕ then ܯ ൌ ceilሺ݊௔Ȁ݊௕ሻǢ 

For counter ൌ ͳǣ posi ܯ ൌ randpermሺ݊௔ǡ ݊௕ሻǢ ݇ݔ ൌ ݇ݕ ௔ሺposiሻǢݔ ൌ ݔ ௔ሺposiሻǢݕ ൌ ሾ݇ݔǢ ݕ ௕ሿǢݔ ൌ ሾ݇ݕǢ ௕ሿǢ coriሺͳǡݕ counterሻ ൌ corrሺݔǡ ሻǢݕ    Ψ EqǤ ሺͳሻ coriሺͳǡ counterሻ ൌ ͳǤȀሺcoriሺͳǡ counterሻǤ ̰ʹሻǢ   
end 

else ܯ ൌ ceilሺ݊௕Ȁ݊௔ሻǢ 
For counter ൌ ͳǣ posi ܯ ൌ randpermሺ݊௕ ǡ ݊௔ሻǢ ݇ݔ ൌ ݇ݕ ௕ሺposiሻǢݔ ൌ ݔ ௕ሺposiሻǢݕ ൌ ሾ݇ݔǢ ݕ ௔ሿǢݔ ൌ ሾ݇ݕǢ ௔ሿǢ coriሺͳǡݕ counterሻ ൌ corrሺݔǡ ሻǢݕ    Ψ EqǤ ሺͳሻ coriሺͳǡ counterሻ ൌ ͳǤȀሺcoriሺͳǡ counterሻǤ ̰ʹሻǢ   
end 

end reg ൌ meanሺcoriሻǢ corr୤୧୬ୟ୪ ൌ sign כ ሺͳǤȀሺregǤ ̰ͲǤͷሻሻǢ    
 



 

 359 
Fig. 4. Robust correlation analysis framework. 360 

 361 

4.2. Proof of RCAF effectiveness 362 
 363 

The Momentum Ratio R should be maximized as explained above. In Step 2 of RCAF, R is 364 
calculated with correlations from all balanced sets, as shown in Equation (15). ȝmse_i denotes 365 
the ȝmse of each balanced set. ȝme_i denotes the ȝme of each balanced set. Įi is Į of each balanced 366 
set. 367 ͳ௙ܴ௜௡௔௟ଶ ൌ ͳܯ ෍ ቈͳ ൅ ௠௦௘̴௜ߤ െ ௔ሻݔ௠௘̴௜ଶሾ݂ሺߤ െ ݂ሺݔ௕ሻሿଶ Ǥ ൬ ͳߙ௜ ൅ ௜ߙ ൅ ʹ൰቉ெ

௜ୀଵ                        ሺͳͷሻ 368 

For each balanced dataset, since the number of data points in ݔ௔ and ݔ௕ are equal, ܽ௜  = 1. 369 
Equation (15) can be rewritten as Equation (16). 370 

 371 ͳ௙ܴ௜௡௔௟ଶ ൌ ͳ ൅ ͶܯǤ ሾ݂ሺݔ௔ሻ െ ݂ሺݔ௕ሻሿଶ ൭෍ ௠௦௘̴௜ெߤ
௜ୀଵ െ ෍ ௠௘̴௜ଶெߤ

௜ୀଵ ൱                       ሺͳ͸ሻ 372 

Assuming the sample size, i.e., ݊௔ is large, the noise terms in Equation (16) can be expressed 373 
as Equation (17). 374 

 375 
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 377 
By considering Equations (7), (16), and (17); Equation (18) gives the equations of R for the 378 

original correlation and the new correlation. Note that the term Į disappears in the Momentum 379 
Ratio under RCAF. 380 

۔ۖەۖ
ǣ ͳܴଶ݈ܽ݊݅݃݅ݎܱۓ ൌ ͳ ൅ ௠௦௘ߤ െ ௔ሻݔ௠௘ଶሾ݂ሺߤ െ ݂ሺݔ௕ሻሿଶ Ǥ ൬ͳߙ ൅ ߙ ൅ ʹ൰ܰ݁ݓǣ ͳ௙ܴ௜௡௔௟ଶ ൌ ͳ ൅ ௠௦௘ߤ െ ௔ሻݔ௠௘ଶሾ݂ሺߤ െ ݂ሺݔ௕ሻሿଶ Ǥ Ͷ  381 

׶ Ͷ ൏ ͳߙ ൅ ߙ ൅ ʹ                                                              ሺͳͺሻ 382 ׵ ͳ௙ܴ௜௡௔௟ଶ ൏ ͳܴଶ 383 ׵ ௙ܴ௜௡௔௟ ൐ ܴ 384 

 385 
4.3. Theoretical study stimulations 386 

 387 
Base on Equation (9), the correlations under RCAF are much more stable and slanting does 388 

not occur with respect to the increase of the imbalanced ratio. Fig. 5 shows the simulation 389 

results. The imbalanced ratio increases as ݊௔ increases. However, the correlations under RCAF 390 
do not have a large variation and the optimal value is maintained.  391 
 392 

 393 
Fig. 5. Correlation comparison between traditional approach and RCAF. 394 
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5. Real-life case study: correlation for weather conditions and clearness index 395 
 396 

5.1. Problem context and correlation analysis 397 
 398 

Weather condition is one of the major factors affecting the amount of solar irradiance 399 
reaching earth. As a consequence, one of the most important applications affected by solar 400 
irradiance due to weather perturbation is Photovoltaic (PV) system. Weather condition changes 401 
affect the electrical power generated by a PV system with respect to time. 402 

Using CI in Equation (19) is one method to evaluate the influence of weather conditions with 403 
respect to solar irradiance (Lai et al., 2017a). The analysis of these fluctuations with regard to 404 
solar energy applications should focus on the instantaneous CI (Kheradmanda et al., 2016; Liu 405 
et al., 2015a; Woyte et al., 2007; Woyte et al., 2006). CI can effectively characterize the 406 
attenuating impact of the atmosphere on solar irradiance by specifying the proportion of extra-407 
terrestrial solar radiation that reaches the surface of the earth. In Equation (19) for each time of 408 

the year, ܫ௣௬௥௔௡௢௠௘௧௘௥ is the irradiance on the surface of the earth measured with a pyranometer 409 

device and ܫ௠௢ௗ௘௟ is the clear-sky solar irradiance (Lai et al., 2017a). The CI value will be 410 
between 0 and 1, where 0 and 1 indicate no solar irradiance and the maximum amount of solar 411 
irradiance will arrive on the surface of earth, respectively. This index can be used to quantify 412 
the amount of atmospheric fluctuation based on different weather conditions. 413 

ܫܥ 414  ൌ ூ೛೤ೝೌ೙೚೘೐೟೐ೝூ೘೚೏೐೗                            (19) 415 

 416 
The commercial weather service website ‘Weather Underground’ 417 

(Weatherunderground.com, 2017) represents the weather condition using String, which is the 418 
most typically used data type. Due to the nature of climate and the hemisphere of the earth, the 419 
number of samples for each weather condition, e.g., ‘Overcast’ and ‘Heavy Rain’, is expected 420 
to be disproportional for a given location.  421 

The data structure for the correlation analysis is presented in Table 2. The data pairs in each 422 
row represent an observation. Column 1 represents the type of weather condition, i.e., 0 and 1 423 
for weather conditions 1 and 2, respectively. Column 2 is the CI value. 424 

 Solar irradiance data between 2009 to 2012 in Johannesburg, South Africa was collected 425 
with a SKS 1110 pyranometer sensor for the real-life case study. The solar data adopted in this 426 
work has been studied and used for solar energy system research in (Lai et al., 2017a; Lai et 427 
al., 2017b; Lai and McCulloch, 2017). The corresponding weather condition information for 428 
the solar irradiance data in Johannesburg was obtained from Weather Underground. There are 429 
41 types of weather conditions in Johannesburg from 2009 to 2012. The sampling size of all 430 
weather conditions in Johannesburg is listed in Table 5 in the appendix. The same weather 431 
conditions can results in different CI values due to other perturbation effects that are factored 432 

Table 2 
Typical representation of a dataset for the correlation analysis. 
 

Weather type (binary) 
X = 0 for weather type 1 
X = 1 for weather type 2 

Y = CI 

1 0.71 
1 0.69 
0 0.43 
1 0.61 
0 0.32 
1 0.54 



 

out by the weather. The solar altitude angle range studied is between 0.8 and 1. The correlation 433 
results under the traditional approach and the novel correlation framework are provided in Fig. 434 
6 and Fig. 7, respectively. The entire correlation matrix is a 41x41 square matrix.  435 

 436 
Fig. 6. Correlation matrix under traditional PPMC. 437 

 438 

 439 
Fig. 7. Correlation matrix under RCAF. 440 

 441 
The correlation between X and Y represents the variation of CI for the two weather 442 

transitions. A high correlation absolute value means the CI changes significantly with weather 443 
condition transitions. In contrast, if the absolute value of the correlation is low, CI changes 444 
slightly when the weather condition changes. 445 

 446 



 

5.2. Clearness index and weather conditions statistical analysis 447 
 448 

The following section of this paper examines the correlation results in Fig. 6 and Fig. 7. To 449 
understand the uncertainty and stochastic properties of CI with respect to weather conditions, 450 
it is crucial to provide statistical measures and a mathematical description of the random 451 
phenomenon for the variables.  452 

The mean and standard deviation with error bars are presented in Fig. 8 for the weather 453 
conditions and CI for a solar altitude angle between 0.8 and 1.0. Bootstrapping is used to 454 
quantify the error in the statistics. The bootstrapped 95% confidence intervals for the 455 
population mean and standard deviation are calculated. Eight weather conditions selected from 456 
the correlation matrix are studied. The mean and standard deviation are calculated using 457 

Equations (20) and (21), respectively, for the weather conditions. ݏ is the sample size of the 458 
weather condition. To compute the 95% bootstrap confidence interval of the mean and standard 459 
deviation, 2000 bootstrap samples are used. 460 ݓ௠௘௔௡ ൌ ͳݏ ෍ ௜௦ܫܥ

௜ୀଵ                                                               ሺʹͲሻ 461 

௦ௗݓ ൌ ඩͳݏ ෍ሺܫܥ௜ െ ௠௘௔௡ሻଶ௦ݓ
௜ୀଵ                                                       ሺʹͳሻ 462 

 463 
Fig. 8. Error bars for mean and standard deviation with eight types of weather conditions. 464 
 465 
A graphical representation of the distribution of variables is presented in the histograms in 466 

Fig. 9. This effectively displays the probability distribution of CI for the weather conditions. 467 
The histogram shows that different weather conditions result in different distributions. The 468 
‘Clear’ case is a monomodal distribution with a peak at 0.8 CI, whereas ‘Mostly cloudy’ has a 469 
peak at 0.3 CI. CIs are generally high for the ‘Clear’ weather condition due to the frequency of 470 
high CI occurrences. In contrast, ‘Mostly Cloudy’ has a high frequency of lower CI value 471 
occurrences. 472 
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 474 
 475 

Fig. 9. Histograms of CI with respect to different weather conditions. 476 
 477 
Due to the highly stochastic nature of CI, as shown in the histogram, it is impossible to use 478 

a parametric method where an assumption of the data distribution is made. Kernel Density 479 
Estimation (KDE) is a non-parametric method to estimate the probability density function (pdf) 480 
of a random variable. KDE is a data smoothing problem where inferences about the population 481 

are made, based on a finite data sample. Let ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ  be a sample drawn from 482 
distributions with an unknown density ƒ. The kernel density estimator is: 483 መ݂௛ሺݔሻ ൌ ͳ݊ ෍ ݔ௛ሺܩ െ ௜ሻݔ ൌ ͳ݄݊ ෍ ܩ ቀݔ െ ௜݄ݔ ቁ௡

௜ୀଵ
௡

௜ୀଵ                                      ሺʹʹሻ 484 

 485 

where n is the sample size. ܩሺȈሻ is the kernel function, a non-negative function that integrates 486 

to one and has a mean of zero. ݄ is a smoothing parameter called the bandwidth and has the 487 
properties of h > 0.  488 

The kernel smoothing function defines the shape of the curve used to generate the pdf. KDE 489 
constructs a continuous pdf with the actual sample data by calculating the summation of the 490 
component smoothing functions. 491 

The Gaussian kernel is: 492 
ሻݑሺܩ 493  ൌ ͳξʹߨ eିଵଶ௨మ                                                        ሺʹ͵ሻ 494 

 495 
Therefore, the kernel density estimator with a Gaussian kernel is: 496 መ݂௛ሺݔሻ ൌ ͳ݄݊ ෍ ͳξʹߨ eିଵଶቀ௫ೕି௫೔௛ ቁమ௡

௝ஷ௜                                                ሺʹͶሻ 497 

The aim is to minimize the bandwidth, h. However, there is a trade-off between the bias of 498 
the estimator and its variance. In this paper, the bandwidth is estimated by completing an 499 
analytical and cross-validation procedure. The bandwidth estimation consists of two steps: 500 

1. Use an analytical approach to determine the near-optimal bandwidth; 501 
2. Adopt log-likelihood cross-validation method to determine the optimal bandwidth. 502 
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This adopted method has the advantage of avoiding use of the expectation maximization 503 
iterative approach to estimate the optimal bandwidth. The near-optimal bandwidth can be 504 
calculated with the analytical approach and could be further improved by using the maximum 505 
likelihood cross-validation method. This simplifies the estimation process and could 506 
potentially reduce the computational effort as this method is not an iterative approach. 507 

 508 
a) Analytical method 509 
For a kernel density estimator with a Gaussian kernel, the bandwidth can be estimated with 510 

Equation (25), the Silverman's rule of thumb (Silverman, 1986). 511 
 512 ݄ ൌ ቆͶߪହ͵݊ ቇଵହ ൎ ͳǤͲ͸ି݊ߪଵହ                                                    ሺʹͷሻ 513 

 514 

where ߪ is the standard deviation of the dataset. The rule of thumb should be used with care 515 
as the estimated bandwidth may produce an over-smooth pdf if the population is multimodal. 516 
An inaccurate pdf may be produced when the sample population is far from normal distribution. 517 

 518 
b) Maximum likelihood 10-fold cross-validation method 519 
The maximum likelihood cross-validation method was proposed by Habbema (Habbema, 520 

1974) and Duin (Duin, 1976). In essence, the method uses the likelihood to evaluate the 521 

usefulness of a statistical model. The aim is to choose ݄  to maximize pseudo-likelihood 522 ς ௛݂෡ ሺݔ௜ሻ௡௜ୀଵ . 523 

A number of observations ݔ௄ ൌ ሼݔଵǡ ଶǡݔ ǥ ǡ ௞ሽݔ  from the complete set of original 524 

observations ݔ can be retained to evaluate the statistical model. This would provide the log-525 

likelihood log ቀ መ݂ି ௞ሺݔ௜ሻቁ. The density estimate constructed from the training data is defined in 526 

Equation (26). 527 
 528 መ݂ି ௞ሺݔ௜ሻ ൌ ͳ݊௧݄ ෍ ͳξʹߨ eିଵଶቀ௫೔ି௫೟௛ ቁమ௡೟

௧ஷ௜                                                       ሺʹ͸ሻ 529 

 530 

where ݊ ௧ ൌ ݊ െ ݊௞. Let ݊ ௧ and ݊ ௞ be the number of sample data for training and testing, 531 
respectively. The number of training data will be the number of the entire sample dataset minus 532 
the number of testing data. Since there is no preference for which observation is omitted, the 533 

log-likelihood is averaged over the choice of each omitted data sample, ݔ௄, to give the score 534 
function. The maximum log-likelihood cross-validation (MLCV) function is given as follows: 535 

ሺ݄ሻܸܥܮܯ 536  ൌ ቌ ͳ݊௞ ෍ log ቎෍ ͳξʹߨ eିଵଶቀ௫೔ି௫೟௛ ቁమ௡ೖ
௧ஷ௜ ቏௡ೖ

௜ୀଵ െ logሺ݊௞݄ሻቍ                          ሺʹ͹ሻ 537 

 538 

The bandwidth is chosen to maximize the function ܸܥܮܯሺ݄ሻ for the given data as shown in 539 
Equation (28).  540 

 541 ݄௠௟௖௩ ൌ argmax௛வ଴  ሺ݄ሻ                                                         ሺʹͺሻ 542ܸܥܮܯ

KDE has been applied to compute the continuous pdf of CI for different weather conditions. 543 
Fig. 10 shows the density estimation with the maximum log-likelihood cross-validation method 544 



 

for the ‘Clear’ weather condition. The top figure shows the histogram and the density function 545 
fitted on the histogram. The bottom left figure shows the shape variation of kernel density with 546 
various bandwidths shaded in grey. The best bandwidth is highlighted in red. The bottom right 547 
figure shows the log-likelihood plot with respect to the bandwidth. The red circle identifies the 548 
bandwidth with the highest log-likelihood. The cross-validated pdf has a good fit with the 549 
histogram and has been confirmed with the log-likelihood. The optimal bandwidth estimation 550 
approach is shown to be effective and the density function gives a good representation of the 551 
histogram. The optimal bandwidth for the weather conditions can be found in Table 3. 552 

 553 

 554 
Fig. 10. Kernel density estimation for ‘Clear’. 555 

 556 
The pdfs produced using KDE for the eight weather conditions are given in Fig. 11. Note 557 

that the pdf (such as for ‘Light rain’) could be in the range of negative CI due to the nature of 558 
a fitted function. In practice, CI cannot be negative as this means the irradiance will have a 559 
negative value. This will give a negative value for solar power estimation. Hence, negative CI 560 
values should not be considered. 561 

 562 
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Table 3 
Optimal bandwidth for PDFs. 
 

Weather condition Optimal bandwidth h 

‘Clear’ 0.0124 
‘Partly Cloudy’ 0.0132 

‘Scattered Clouds’ 0.0224 
‘Mostly Cloudy’ 0.0313 

‘Light Rain’ 0.0316 
‘Overcast’ 0.0291 

‘Light Rain Showers’ 0.1023 
‘Drizzle’ 0.0260 



 

 563 
 564 

Fig. 11. PDF for various weather conditions. 565 

 566 
5.3. Comparison of sampling techniques in correlation analysis 567 

 568 
To compare the proposed framework with previous sampling methods for correlation 569 

analysis, the prominent sampling techniques: Synthetic Minority Over-Sampling Technique 570 
(SMOTE) and Adaptive Synthetic (ADASYN) sampling are employed in this study. SMOTE 571 
(Chawla et al., 2002) was introduced in 2002 and is an over-sampling technique with K-Nearest 572 
Neighbours (KNN). First, the KNN is considered for a sample of the minority class. To create 573 
an additional synthetic data point, the difference between the sample and the nearest neighbour 574 
is calculated and multiplied with a random number between zero and one. The randomly 575 
generated synthetic data point will be within the two specific samples. In 2008, He et al. (He 576 
et al., 2008) introduced ADASYN for over-sampling of the minority class. ADASYN is an 577 
improved technique that uses a weighted distribution for individual minority class samples 578 
depending on their level of learning difficulty. As such, additional synthetic samples are 579 
generated for minority class samples that are more difficult to learn. SMOTE generates an 580 
equal number of synthetic data points for each minority sample. 581 

In this study, the number of nearest neighbours for SMOTE is produced according to the 582 
imbalanced ratio, as this suggests the number of data points needs to be generated. If the 583 
number of nearest neighbours for over-sampling is greater than five, under-sampling by 584 
randomly removing samples in the majority class will be similar; as the number of nearest 585 
neighbours would be too large for effective sampling (Chawla et al., 2002). In this work, the 586 
K-Nearest Neighbours for both ADASYN and SMOTE are considered to be five, which is the 587 
value used in the original work. 588 

The constructed pdfs in Fig. 11 are useful for studying PPMC with different sampling 589 
methods. A sensitivity analysis is conducted to provide comparisons of the traditional approach 590 
and the RCAF approach. Data are generated from the pdf with random sampling. The aim of 591 
this analysis is to understand the influence of the variation of dataset size on correlation results. 592 
The size of the dataset for each weather condition, at a solar altitude angle between 0.8 and 1.0, 593 
is given in Table 5 in the appendix. The dataset size for ‘Clear’ is determined to be 1993 data 594 
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points. A range of samples from 1 to 199γ is generated from the ‘Clear’ pdf to study the impact 595 
of imbalanced data on correlation. Seven weather conditions are studied for this purpose. The 596 
dataset size for the seven weather conditions is fixed throughout the analysis. As shown in Fig. 597 
12, the correlation calculated with one data point for RCAF, SMOTE-under sampling, and 598 
under sampling is at perfect correlation, i.e., 1. This can be explained by the fact that the 599 
correlation between two data points at two different classes (except for the case where the two 600 
data points are equal) will be a perfect positive or perfect negative correlation. 601 

As expected, the traditional PPMC and RCAF correlation at the end of the sensitivity analysis 602 
given in Fig. 12 can refer to the correlation of the correlation matrices in Fig. 6 and Fig. 7. The 603 
deviation between the correlation for all methods increases as the imbalanced ratio increases. 604 
This is also shown in Table 4. Additionally, the high standard deviation and mean error in Fig. 605 
8 can result in a larger sampling range, and consequently will result in increased correlation 606 
inaccuracy. 607 

 608 

 609 
 610 

Fig. 12. Sensitivity analysis of correlation with no sampling (traditional) and different 611 
sampling methods. 612 

 613 
The correlation reaches a steady state as the imbalanced ratio decreases, where the 614 

imbalanced ratio will have an insignificant effect on correlation in the traditional approach. 615 
The SMOTE-Under-sampling and ADASYN sampling methods are competitive with the 616 
proposed RCAF. However, SMOTE may generate data between the inliers and outliers. 617 
ADASYN focuses on generating more synthetic data points for difficult trained samples, and 618 
may focus on generating from the outlier samples and deteriorate the correlation. (Amin et al., 619 
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2016) suggests the previous sampling techniques should investigate outliers for optimal 620 
performance. 621 

To quantify the variation in correlation with imbalanced data, Table 4 presents the standard 622 
deviation of the correlations with respect to different methods, as presented in Fig. 12. The 623 
correlation with one sample data is excluded in the standard deviation calculation, since it can 624 
be considered an outlier as explained above. 625 

 626 
5.4. Cluster analysis of weather conditions 627 

 628 
Classes with high correlation should be separated and in contrast, classes with weak 629 

correlation should be clustered together. According to the rule of thumb, a correlation less than 630 
0.3 (Ratner, 2009) is considered a weak correlation. As shown in Fig. 6 and considering the 631 
case for ‘Clear’, i.e., column for ‘Clear’, most of the correlations under the traditional approach 632 
are in the range 0 - 0.3. This signifies they can be clustered as one weather group. However, 633 
the correlations computed with RCAF, as shown in Fig. 7, signify that only two other weather 634 
conditions, i.e., ‘Partly Cloudy’ and ‘Scattered Clouds’, are weakly correlated with ‘Clear’. 635 
The following section of the paper employs two clustering approaches, K-Means and Ward’s 636 
Agglomerative hierarchical clustering, to cluster weather conditions and understand the 637 
implications of the correlation results. However, since the number of data points is different 638 
for the weather conditions, the mean calculated with Equation (20) is used to duplicate an equal 639 
amount of data points to match the majority class, i.e., ‘Clear’, for cluster analysis. 640 

K-Means is an iterative unsupervised learning algorithm for clustering problems. The basis 641 
of the algorithm is to allocate the data point to the nearest centroid. The centroid is calculated 642 
as the mean value; based on the data in the cluster at the current iteration. The K-Means 643 
algorithm with Euclidean distance for time-series clustering can be referred to (Lai et al., 644 
2017a). The K-Means clustering results for weather conditions with K=2 is shown in Fig. 13. 645 
As shown, the CIs are generally higher for ‘Clear’, ‘Partly Cloudy’ and ‘Scattered Clouds’ 646 
conditions. Due to the insufficient amount of data in minority classes, e.g., ‘Partly Cloudy’, the 647 
values after the 740th data point will be denoted with the mean value of its dataset. The mean 648 
value will not deteriorate the clustering results since the K-Means algorithm calculates the 649 
centroid as the mean value. 650 

Table 4 
Standard deviation of correlation coefficients with imbalanced data. 

 Traditional 
Under-

sampling 
ADASYN 

SMOTE-
Under-

sampling 
RCAF 

Percentage 
difference 
between 

Traditional 
and RCAF 

(%) 
‘Partly Cloudy’ 0.040 0.026 0.049 0.036 0.027 32.50 

‘Scattered 
Clouds’ 0.047 0.030 0.035 0.035 0.023 51.06 

‘Mostly Cloudy’ 0.057 0.025 0.041 0.030 0.018 68.42 
‘Overcast’ 0.129 0.029 0.016 0.024 0.012 90.70 

‘Light Rain’ 0.095 0.029 0.051 0.026 0.020 78.95 
‘Light Rain 
Showers’ 0.122 0.066 0.069 0.050 0.048 60.66 
‘Drizzle’ 0.129 0.069 0.008 0.044 0.009 93.02 



 

 651 
Fig. 13. K-Means clustering results for weather conditions. 652 

 653 
In Ward’s Agglomerative hierarchical clustering (Murtagh and Legendre, 2014), the 654 

clustering objective is to minimize the error sum of squares, where the total within-cluster 655 
variance is minimized. At each iteration, pairs of clusters are merged which leads to a minimum 656 
increase in total within-cluster variance. The results for the hierarchical clustering of weather 657 
conditions are depicted in Fig. 13. The weather conditions can be separated into two major 658 
branches with ‘Scattered Clouds’, ‘Partly Cloudy’, and ‘Clear’ as one cluster. The results are 659 
consistent with the correlation results from RCAF. 660 

 661 

 662 
Fig. 14. Ward’s Agglomerative hierarchical clustering results for weather conditions. 663 
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6. Future work and conclusions 664 
 665 

6.1. Future work 666 
 667 

The absolute value of the correlation may be very high if the sample size is extremely low, 668 
such as the case for ‘Heavy drizzle’ in which only one data point is available. The correlation 669 
of ‘Heavy drizzle’ under RCAF becomes 1 while the coefficient is less than 0.1 using the 670 
traditional approach. Numerous small sample balanced datasets are created in RCAF. A 671 
challenging research question that remains is that a severe lack of data points can be an issue 672 
for the correlation analysis. The limitations of RCAF and methods to overcome such issues 673 
need to be investigated. 674 

The theoretical study of the imbalanced data effect on PPMC for continuous variables should 675 
be a focus in future work. This may provide a broader application in PPMC analysis and the 676 
method may be generalized.  677 

The study of imbalanced data and noise in rank-order correlations will greatly benefit 678 
exploring relationships involving ordinal variables. PPMC measures the linear relationship 679 
between two continuous variables (it is also possible for one variable to be dichotomous as 680 
studied in this research) and Spearman-Rank measures the monotonic relationship between 681 
continuous or ordinal variables. Additionally, rank correlations such as Kendall’s Ĳ, 682 

Spearman’s ߩ, and Goodman’s Ȗ will be explored. Since a dichotomous variable is a special 683 
form of continuous variable, i.e., by treating the continuous data as binary values, providing a 684 
mathematical deduction for the correlation measures with continuous variable is challenging 685 
and will be future work. 686 
 687 

6.2. Conclusions 688 
 689 

Uncertainty and imbalanced data can adversely affect correlation results. This paper presents 690 
a study on the effects of imbalanced data with variance error in Pearson Product Moment 691 
Correlation analysis for dichotomous variables. A novel Robust Correlation Analysis 692 
Framework (RCAF) is proposed and tested to minimize correlation inaccuracy. A detailed 693 
theoretical study is provided with simulation results to determine whether RCAF is a feasible 694 
solution for real correlation problems. Based on the current study with seven weather 695 
conditions under imbalanced data, the proposed correlation methodology can reduce the 696 
standard deviation in a range from 32.5% to 93% when compared to the traditional approach. 697 
Solar irradiance data were collected with a pyranometer, and the respective weather conditions 698 
were obtained from the weather station database to examine the correlation analyses. 699 
Comparison with prominent sampling techniques were made. RCAF is a generalized technique 700 
and can be applied to other dichotomous variables for Pearson product moment correlation. 701 
This will be useful for understanding the dependency of dichotomous variables and 702 
subsequently improve the course of pattern analysis and decision making. The practical case 703 
study conducted in this paper will be useful for solar energy system operation and planning, by 704 
learning the dependency between different weather conditions in the context of clearness index. 705 
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Appendix 716 
 717 

Table 5 
Complete list of weather conditions and number of samples (bad data rejection included). 
 

Weather condition 
Number of data points 

Full 
Solar altitude angle 
between 0.8 and 1 

Clear 32626 1993 
Partly Cloudy 5947 740 
Scattered Clouds 5373 716 
Mostly Cloudy 4631 470 
Haze 2350 0 
Unknown 1982 0 
Light Rain 1097 76 
Light Rain Showers 550 30 
Smoke 534 0 
Overcast 516 39 
Light Thunderstorms and Rain 476 21 
Mist 460 0 
Thunderstorms and Rain 335 19 
Rain 209 20 
Thunderstorm 181 18 
Fog 178 0 
Light Drizzle 169 10 
Rain Showers 120 6 
Drizzle 64 5 
Patches of Fog 56 0 
Light Thunderstorm 47 0 
Heavy Thunderstorms and Rain 20 2 
Heavy Fog 18 0 
Heavy Rain Showers 16 0 
Light Snow 15 2 
Partial Fog 12 0 
Shallow Fog 10 0 
Light Fog 8 0 
Heavy Drizzle 5 0 
Heavy Rain 4 0 
Blowing Sand 3 0 
Widespread Dust 3 0 
Thunderstorm with Small Hail 2 0 
Thunderstorms with Hail 2 0 
Heavy Thunderstorms with Small Hail 1 0 
Light Small Hail Showers 1 0 
Light Hail Showers 1 0 
Heavy Hail Showers 1 0 
Small Hail 1 0 
Light Ice Pellets 1 0 
Snow 1 0 
Light Snow Showers 1 0 
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