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Summary. 

       This paper is concerned with the study of a class of methods for solving 
second and fourth-order two-point boundary-value problems. The methods under 

consideration are modifications of the standard cubic and quintic spline 
collocation techniques, and are derived by making use of recent results con- 
cerning the a posteriori correction of cubic and quintic interpolating splines. 
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1. Introduction. 

This paper is concerned with the study of a class of methods for computing smooth 

cubic and quintic spline approximations to solutions of second and fourth-order boundary- 

value problems for ordinary differential equations. This study has been motivated by 

the work of Daniel and Swartz [6] who proposed and analyzed a 0(h4) ) cubic spline 

collocation scheme, the so-called extrapolated collocation method, for the solution          

of second-order problems. Here, we consider the problem of deriving a class of similar 

collocation schemes of high order, by making use of the results of Lucas [ 9] and our 

recent results [11], concerning the a posteriori correction of cubic and quintic inter-

polator splines. 

Our specific objectives are as follows: 

(i) To extend the work of [6] to a wider class of methods by making full use     of 
the results of [9, 11], which were not available to the authors of [6]. 

(ii) To present a unified convergence analysis based on that of the extrapolated 
collocation method of [6], but covering the wider class of methods. 

 

(iii) To show that the results of [9, 11] can also be used for computing derivative 

approximations of further increased accuracy, at any point of the interval under 

consideration. 

The following notation will be used throughout the paper: 

 (i) nπ  will denote a uniform partition,  
                                      ,n.....1,0i;n/)ab(h,ihaix:nπ =−=+=   (1.1) 

of a bounded interval [a,b]. 

(ii) Sm ( nπ ), m ≥  1, will denote the space of all smooth splines on [a,b], of 
degree m and with equally spaced knots (1.1), i.e. 

{ ],b,a[1mcs:s:)n(mS −∈=π , and on each of the 

subintervals of nπ   s is a polynomial 

of degree at most m. .    (1.2) 

(iii) | | . | |  will denote either the function norm || . | | ]b,a[L∞
 or the infinity 

v e c t o r  a n d  ma t r i x  n o r ms .  
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 (iv) ,s,y )j(
i

)j(
i e.t.c. will denotes c.t.e),x(s),x(y i

)j(
i

)j(  

2. Preliminary results. 

The purpose of this section is to summarize the results of [11], on which much   
of the subsequent analysis is based. These results concern the a posteriori correction 
of non-periodic cubic and quintic splines, and are based on earlier results for odd 
degree periodic splines due to Lucas [9]. 

 With r = 2 or r = 3, let s be a S2r - 1 )π( n -interpolate of a sufficiently smooth 
function y defined on [a,b]. That is, s is either a cubic (r = 2) or quintic (r = 3) 
spline, satisfying the n + 1 interpolation conditions si =yi ; = 0,1,...,n, and an 
appropriate set of 2r - 2 end conditions. Also, let )j(

MY  denote the corrected spline 

approximation to )j(y  , obtained as indicated in [11: Theor.2.2] by adding M )3M1( ≤≤  

correction terms to )j(s   . That is, for 1 ≤  M ≤  3, 0≤ μ ≤ 1 and 0 ≤  j ≤  2r, 

    ,1n,...,1,0i;)μ()j(
mP)mr

id
)!mr2(

mjrh
m

)hμx(s)hμx(Y 2(
M,

21M

0
i

)j(
i

)j(
M −=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +

+

+−
∑++=+
−

=
 (2.1) 

where Pm; m = 0,1,2, are the polynomials listed in (2.2)-(2.3) below, and )mr(
M,id 2 +  

are spline approximations to the derivatives )mr2(
iy +  of y. These approximations 

are given by linear combinations of the spline derivatives )2r2(
is −  as indicated in 

(2.4)-(2.5) below. 

The polynomials Pm ; m = 0,1,2, in (2.1) are as follows: 

 (i) When r = 2, i.e. when s is a cubic spline, 

 .)(P,
3
2

3
5)(P,2)(P 26

2
35

1
234

0 μ−μ=μμ+μ−μ=μμ+μ−μ=μ  (2.2) 

 (ii) When r = 3, i.e. when s is a quintic spline, 

 
 

)3.2(.26478)(P

3
2
75

2
77)(1P,2

2
14

2
5536)(0P

2
⎪
⎭

⎪
⎬

⎫

μ+μ−μ=μ

μ−μ+μ−μ=μμ−μ+μ−μ=μ  
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 Let 

  { } .1n,...2,1i;ss2s
h
1:y 2r222222 (

1i
r(

i
)r(

1i2
)r(

i
~ −=+−= −

+
−−

−    (2.4) 

  
Then, the values )r(

M,i
2d  in (2, 1) are as follows: 

(1)  ,1n,...,2,1i;yddd ~ )r2(
i

)r2(
3,i

)r2(
2,i

)r2(
1,i −====    (2.5a) 

 
and 
 
           .y~y~3y~3d,y~y~2d,y~d )r2(

3
)r2(

2
)r2(

1
)r2(

3,0
)r2(

2
)r2(

1
)r2(

2,0
)r2(

1
)r2(

1,0 +−=−==  (2.5b)  

 
The remaining values ,3M2,d )r2(

M,i
1 ≤≤+ and )r2(

3,i
2d +  are given in terms of the       

expressions (2.5a, b) and the three additional expressions 
 
 ,y~y~3y~3d,y~y~2d,y~d )r2(

3n
)r2(
2n

)r2(
1n

)r2(
3,n

)r2(
2n

)r2(
1n

)r2(
2,n

)r2(
1n

)r2(
1,n −−−−−− +−=−==   (2.5c) 

 
as indicated in (ii),   (iii) below: 
 

 (ii)  { } ,1n,...2,1i;3M2,dd
h2
1d )r2(

M,1i
)r2(
M,1i

)1r2(
M,i −=≤≤−= −+
+  (2.6a) 

 and 
   .dd2d,dd )1r2(

3,2
)1r2(

3,1
)1r2(

3,0
)1r2(

2,1
)1r2(

2,0
+++++ −==    (2.6b) 

 

 (iii)  { } ,1n,...,2,1i;dd2d
h
1d )r2(

3,1i
)r2(

3,i
)r2(
3,1i2

)2r2(
3,i −=+−= +−
+  (2.7a) 

 and 
    .dd )2r2(

3,1
)2r2(

3,0
++ =      (2.7b) 

 

Remark 2.1 As was previously remarked the values )mr2(
M,id + , given by (2.4)-(2.7), 

are approximations to the derivatives y.  )mr2(
iy + , of y. For the order of these 

approximations see Remark 2.4 below. 
   

Remark 2.2 It is important to observe that for i = 1,2,... ,n-1, the values )r2(
M,id  

in (2.1) are independent of the number M of correction terms used i.e., from 
(2.5a), 

{ } .1n,...,2,1i;ss2s
h
1ddd )2r2(

1i
)2r2(

1i
)2r2(

1i2
)r2(

3,i
)r2(

2,i
)r2(

1,i −=+−=== −
+

−
+

−
−  

(2.8)
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Similarly, from (2.6a) and (2.7a),  

   { };isis2is2is
h2
1

idid )22(
2

)22(
1

)22(
1

)22(
23

)12(
3,

)12(
2,

rrrrrr −
+

−
+

−
−

−
−

++ +−+−==  

         i =2,3,…,n –    (2.9) 

and 

 { };isis4is6is4is
h
1

id )22(
2

)22(
1

)22()22(
1

)22(
24

)22(
3,

rrrrrr −
+

−
+

−−
−

−
−

+ +−+−=  

              i =2,3,…,n – 2.  (2.10) 
Therefore, the subscript M is needed only because the values ( )rd 2

,0 M  and 

;id )12(
,
r
M
+  i = 0,1, n-1, which approximate respectively the "end" derivatives )2(

0
ry  

and )12( r
iy + ; i = 0,1,n-1, depend on the number of correction terms used. 

We can now state the main result concerning the corrected spline approxi- 
mations )( jYM  as follows; see [11: Theor.2.2] and also [9: Theor.4].  

Theorem 2.1. Let )(
0
jY  : = )( js  and let ,jY )(

M  3M1 ≤≤ ,  be the corrected 

spline approximations defined by equations (2.1)-(2.7). Then, for 0≤  M≤  3, 0≤  μ≤ 1  

and 0 ≤  j ≤  2r, 
                    ,1n,....,1,0i);Mjh(0)μhix()j(

MY)μhix()j(y r2 −=+−++=+  (2.11) 

provided that M2rCy +∈  [a,b],   and the end conditions of s are of  order 

p ≥  2+M in the sense of Definition 2.1 of [11:  p.491]. 

          

We end this section by making several remarks concerning the correction 

formula (2.1) and the result (2.11) of Theorem 2.1. 

 

Remark 2.3.  The assumption concerning the order p of the end conditions of the 

spl ine s  is  necessary for  Theorem 2.1 to  hold and,  in  this  sense,  i t  i s  a lso 

necessary  for the analysis of the collocation methods considered in the present 

paper. However, as will  become apparent later,  the actual end conditions of s 

do not play an explicit role in the analysis or the implementation of the methods. 

For this reason, there is  no need for us to repeat here the cri teria used in [  

for determining the order of end conditions. 
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Remark 2.4. Let M2rcy +∈  [a,b],  1 ≤  M ≤  3,  and let the end conditions of s be 
of order p ≥ 2 +M.  Then,  for  i = 0,1,... ,n-1,   the values ( )m2

M,

r
id +   in (2.1) satisfy 

the following: 
 

( ) ( ) ,3M1),h(0idiy Mrr 2
M,

2 ≤≤+=    (2.12) 
 

( ) ( ) ,3M2),h(0idiy 1Mrr 12
M,

12 ≤≤+= −++   (2.13) 
and 

   ( ) ( ) ;3M),h(0idiy 22
M,

22 rr =+= ++    (2.14) 
 
see   [11:   p.p.  492-93] and also [9: Theor.3].  
 
 
Remark 2.5.     With M = 0,   (2.11)   shows  that  if  ]b,a[cy r2∈    and  the end conditions 

of s are of order p ≥  2,    then 

 ( ) ( ) 1r2j0),h(0||ys|| j2rjj −≤≤=− − ||   (2.15) 

In addition, (2.11) gives the points in ]x,x[ 1ii +
  where the derivatives of s 

display superconvergence. Thus, if  ]b,a[cy 1r2 +∈  and the end conditions of s 

are of order p ≥  3,  then it  follows from (2.11) that 
 

       ( ) ( ) ,1n,.....,1,0i;1r2j0),h(0)hjix(s)hjix(y 1jrjj 2 −=−≤≤+μ+=μ+ +−  (2.16) 
 
where the  jμ  denote respectively the zeros of the polymomials ( ) ,1r2,.....,2,1j;p j

0 −=  

in [0,1]  These zeros are as follows: 
  

 (i)  If r=2, i .e.  if s is a cubic spline, then 

       .,3,1,,0 2
1

36
1

2
1

2
1

21 =μ±=μ=μ    (2.17) 

 (ii)  If r=3, i .e.  if s is a quintic spline, then 

⎪⎭

⎪
⎬
⎫

=±=

=−±==

.μ,3μ

1,,0,μ)30(μ1,,0μ

2
1

56
1

2
1

4

2
1

32
1

12
1

1 30
1

4
1

  (2.18) 

We note in particular that the odd derivatives ( ) ,2rj0,s 1j2 −≤≤+   display 

superconvergence at the knots,  i .e.  
( ) ,n,....,1,0i;2rj0),h(0sy jr

i
j

i
221j212 =−≤≤+= −++    (2.19) 
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whilst the best order of convergence which can be achieved by the even derivatives 

at the knots  is  that given by  (2.15),   i.e. 

 
( ) ( ) .1n,.....,1,0i;rj1),h(0sy jrj

i
j

i
2222 −=≤≤+= −    (2.20) 

  
Remark 2.6  In both the cubic (r = 2) and quintic (r=3) cases, the first r-1 odd 

derivatives of P0 (μ), the first r even derivatives of P1(μ) and the first r odd 

derivatives of P2(μ) are zero when μ = 0. Thus, Theorem 2.1 implies the following: 

 (i)  If  y Є  C2 r+ 2 [a,b] and the end conditions of s are of order p≥4, then 

for 1≤j≤r,  

 ,1n,....,1,0i);h(0d)0(p
)!r2(

hsy 2222(
2,

2(
0

22
)j2(2( jr)r

i
)j

jr

i
)j

i −=++= +−
−

  (2.21a) 

i.e., 
  ,1n,....,1,0i);h(0)x(Yy 2222(

*1
2( jr

i
)j)j

i −=+= +−    (2.21b) 
 
where 

*1y  denotes the corrected spline approximation Y1 but with the value ( )r
0
2

1,d  

replaced by  ( )r2
2,0d   ; see Remark 2.2. 

  
 (ii) If y Є C2r+3 [a,b] and the end conditions of s are of order p ≥  5, then 

for 1 ≤ j ≤ r -1, 

 );h(0d)0(p
)!1r2(

hsy 422)1r2(
3,

)12(
1

22
)12()12( jr

i
j

jr
j

i
j

i
+−+−

+−2
−− +

+
+=    (2.22a) 

               i = 0,1,….,n-1,  
i.e., 

1n...., ,,1,0i);h(0)x(yy 422)12(
*2

)12( jr
i

jj
i −=+= +−−−  

where 
*

y2 denotes the corrected spline approximation Y2 but with the values 
( )12

2,
r

id +  ; i = 0,1,n-1,  replaced respectively by  ( )12
3,
r

id +  ; i=0,1,n-1. 
 
Remark 2.7.  If  42rcy +∈  [a,b] and the end conditions of s are of order p ≥ 6, 

then it can be shown that for 1 ≤ j ≤ r, 

   ,1n,....,3,2i;)h(0)x(yy jk
i

)j)j
i

22(
3

2( −=+=    (2.23)  

 
where  4j2r2k j2

+−=  rather than 3j2r2k j2
+−=  as predicted by Theorem 2.1; 
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see  [11:  Remark 2.3  (ii)].     Since 

,d)θ(p
)!2r2(

hd)0(p
)!r2(

hs)x(y )22(
3,

2(
2

222
2(
3,

2(
0

22
2(2(

3
r

i
)j

jr
)r

i
)j

jr
)j

ii
)j +

+−−

+
++=   (2.24) 

it follows easily from (2.23)   that for  1 ≤ j ≤ r, 

  ,1n,....,1,0i);h(0)x(yy 4222(
3

2( jr
i

)j)j
i −=+= +−    (2.25) 

where *3Y denotes the corrected approximation Y3, given by (2.1)-(2.7), but with 

the expressions )r)r 2(
3,n

2(
3,0 d,d  and )2r2(

3,0d +  in (2.5b), (2.5c) and (2.7b) replaced 

respectively by the following more "accurate" expressions: 

   ( ) ( ) ( ) ( ) ( ),y~y~4y~6y~4d rrrrr 2
4

2
3

2
2

2
1

2
30 −+−=     (2.26) 

   ( ) ( ) ( ) ( ) ( ) ,y~y~4y~6y~4d r
n

r
n

r
n

r
n

r
n

2
4

2
3

2
21

2
1

2
3, −−−− −+−=     (2.27) 

   ( ) ( ) ( );dd2d 22
3,2

22
3,1

22
3,0

rrr +++ −=      (2.28) 

see the discussion in p.494 of   [11]. 
  

Remark 2.8. Because the values ( )m2
M,
r

id +  are given by the expressions (2.4)-(2.7), 

the "corrections" under the summation sign in (2.1) are in terms of the spline 

derivatives ( )22r
is −  ;  i .e.  in terms of the second derivatives ( )2

is    in the cubic 

case, and the fourth derivatives  ( )4
is    in the quintic case. However, it follows 

easily from the analysis of [9] and [11] that the corrections can also be expressed 

in terms of other spline derivative values.  This can be done by replacing the 

expressions (2.4) for ( )r2
iy~ , and (2.5) for ( )r2

i M,d , by other suitable approximations 

to ( )r2
iy .  The essential requirement for such alternative representations is that 

the new approximations ( )r2
M,id  also satisfy (2.12), under the hypotheses of Remark 2.4. 

For example, in the quintic (r = 3) case the two corrections in Y2 can be expressed 

in terms of second derivatives, by replacing (2.4) and the formulae for )6(
2,id  in 

(2.5) respectively by : 

 ( ) ( ) ( ) ( ) ( ) ( ){ } 2n,....,3,2i;ss4s6s4s
h
1y 2

2i
2
1i

2
i

2
1i

2
2i4

6
i −=+−+−= ++−−    (2.29) 
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    ( ) ( ) ,2n,...,3,2i;y~d 6
i

6
2,i −==    (2.30a) 

    ( ) ( ) ( ) ( ) ( ) ( ),y~y~2d,y~2y~3d 6
3

6
2

6
2,o

6
3

6
2

6
2,o −=−=    (2.30b) 

and 

   ( ) ( ) ( ) ( ) ( ) ( ) .y~y~3d,y~y~2d 6
3n

6
2n

6
2,n

6
3n

6
2n

6
2,1n −−−−− −=−=   (2.30c) 

 
3. A class of modified collocation methods for linear problems. 

In this section we describe in general terms a class of collocation-type methods 

for the solution of second and fourth-order two-point boundary-value problems of the 

form: 

  [ ] ( ) ( ) ( ) ( ) [ ]∑ ∈=+=
−

=

− 3r2

0j

)(
j

)22( b,ax,xfxyxexy:y jr    (3.1a) 

     By = 0,      (3.1b) 

where either r = 2 or r = 3, and where (3.1b) denotes a set of 2r - 2 linearly 

independent boundary conditions of the form 

  ( ) ( ) ( ) ( ){ } .3r2i0,3,2r,0byay
3r2

0j

j
ij

j
ij −≤≤==+∑

−

=

βα   (3.1b) 

Our main purpose is to provide a motivation for such methods, and to set up suitable 
notation for use in subsequent sections. 

Let nπ   be the uniform partit ion (1.1) of the interval [a.b],  and let  s be 

a  s2 r - 1 (π n ) - interpolate  of  the  solut ion y of  (3 .1) .   (That  is ,   s   i s  e i ther  a  

cubic or a quintic spline depending on whether (3.1) is a second-order (r =2) or 

fourth-order (r =3) problem.)  Also, let y and  s  satisfy the smoothness and 

continuity requirements of Remark 2.5 for the result (2.15) to hold.  Then, it 

follows from the equations 

  [ ]( ) ( ) ( ) ( ) ,n,...,1,0i);h(0fyxey:xy 2
i

j
i

3r2

0j
ij

2r2
ii =+=∑+=

−

=

−   (3.2) 

and the boundary conditions (3.1b) that 

  ( ) ( ) ( ) ( ) ,n,...,1,0i;h0fsxes 2
i

3r2

0j

j
iij

2r2
i =+=∑+

−

−

−     (3.3) 
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and 

    Bs = 0(hk), k ≥ 3;    (3.4) 

see Remark 2.5. The above two results lead naturally to the well-known 

collocation method, where spline s~  approximating the solution of (3.1) is 

obtained from (3.3) and (3.4) by simply dropping the 0(h2) and 0(hk ) terms. 

That is, s~  is defined by the n + 2r - 1 linear equations 

 ( ) ( ) ( ) ,n,...,1,0i;fs~xes~ i
j

i

3r2

0j
ij

2r2
i ==∑+

−

=

−      (3.5a) 

and 

    0s~ =       (3.5b) 

The "extrapolated collocation method" of Daniel and Swartz [6] is similar 

to the above collocation method, but the approximating spline s~  is defined by 

a different linear system. More precisely, the defining equations consist of the 

same 2r - 2 "boundary equations" (3.4), but in this case the n + 1 equations approxi-

mating the differential equation at the knots are obtained from (3.2) as follows: 

(a) The values yi and the derivatives ( ) ,3r2j1,y j
i −≤≤  are replaced by is~  

and the corresponding spline derivatives  ( ) ,3r2j1,s~ j
i −≤≤  (That is the replace-

ment of  ( ) ,3r2j1,y j
i −≤≤  is the same as in the collocation method.) 

(b) The derivatives ( ) ,n,...,1,0i;y 2r2
i =−  are replaced by linear combinations 

of the spline derivatives  ( )2r2
is

~ −  as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ){ },s~s~4s~5s~2s~y 2r2
3

2r2
2

2r2
1

2r2
012

12r2
0

2r2
0

−−−−−− −+−+→   (3.6a) 

 ( ) ( ) ( ) ( ) ( ){ } 1n,....,2,1i;s~s~2s~s~y 2r2
1i

2r2
i

2r2
1i12

12r2
0

2r2
i −=+−→ −

+
−−

−
−− , 

(3.6b) 
( ) ( ) ( ) ( ) ( ) ( ){ }2r2

n
2r2

1n
2r2

2n
2r2

3n12
12r2

n
2r2

n s~2s~5s~4s~s~y −−
−

−
−

−
−

−− +−+−+→    (3.6c) 

Remark 3.1.  The method proposed in [6 ] is for the case r = 2 only, and is based on 

the observation that the linear combinations (3.6) with r = 2 and with s~  replaced 

by s ,  are 0(h4) approximations to ( ).y 2
i   In other words, the paper of Daniel 

and Swartz is concerned only with the cubic spline solution of second order
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problems.  However, as will become apparent in Section 5.2, their method can be 

extended trivially to the case r=3, by making use of the a posteriori correction 

results of Section 2. 

 

Both the collocation and the extrapolated collocation methods may be 

regarded as special cases of a more general class of methods, in which the 

replacement of the derivatives ( )j
iy   in (3.2) is performed by using formulae of 

the type 

( ) ( ) { } ( )[ ] ( ) ,n,....,1,0i;2r2j1,h0ssy j2r2j
i

j
i

j
i =−≤≤++= − lL  (3.7) 

where the notation { }[ ]gj
iL  has the following meaning: "Given a function g 

defined on [a,b],  { }[ ]gj
iL  denotes a linear combination of values of g at a small 

number of points of the subdivision ,πn  near the point xi " For example, in the 

collocation method 

{ }[ ] ,n,....,1,0i;2r2j1,0gj
i =−≤≤=L  (3.8) 

whilst in the extrapolated collocation method of [6], 

{ } ,n,....,1,0i;3r2j1,0]g[j
i =−≤≤=L      (3.9a) 

 { } { },gg4g5g2]g[ 321012
1j

0 −+−=L       (3.9b) 

{ } { } ,1n,...,2,1i;gg2g]g[ 1ii1i12
12r2

i −=+−= +−
−L     (3.9c) 

and 

{ }.g2g5g4g
12
1]g[ n1n2n3n

2-2r
n +−+−= −−−
{L     (3.9d) 

More generally, the corrected spline approximations, defined by (2.1)-(2.7), give 

 ,n,...,1,0i);h(0)x(Yy Mjr2
i

)j(
M

)j(
i =+= +−   (3.10) 

and these formulae are of the type (3.7), 

 The equations (3.7) can be expressed more compactly as 

 ,2r2j1),h(0ssy j)2r2(
j,n

)j()j( −≤≤+Λ+= − l   (3.11) 
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where )j(y  and )j(s are the (n +1)-dimensional column vectors 

 { } { }n 0i
)j(

i
)j(n

0i
)j(

i
)j( ssandyy ==

==  

is an (n + 1) x (n + 1) matrix whose form depends on the coefficients of the 

linear combinations [ ].{j}
iL , and )h(0 jl  is an (n + 1 )-dimensional column vector 

whose components are all 0 )h( jl . With this notation, the substitution of the 

expressions (3.7) into the equations (3.2) gives an (n + 1) × (n + 1) linear system 

of the form 

     },{min),h(0fss j
j

)j(
j,n

3r2

0j

)2r2(
n lll =+=Δ∑+Α

−

=

−  (3.12a) 

where: 

(a) ,3r2j0,j,n −≤≤Δ are the (n + 1) × (n + 1) diagonal matrices 

        { }.)x(e),....x(e),x(ediag nj1j0jj,n =Δ    (3.12b) 

(b) nA  is the (n +1) × (n + 1) matrix 

    .I j,nj,n
3r2

1j
2r2,nn ΛΔ∑+Λ+=

−

=
−A    (3.12c) 

 (c) f  is the (n + 1 )-dimensional column vector 

        { } .ff n
0ii ==      (3.12d) 

In what follows, a method where the approximating spline s~  is determined 

from (3.4) and a set of equations of the form (3.12), by dropping the )h(0 k  and 

)h(0 l terms, will be referred to as a "modified collocation method". That is, in 

such a method the spline s~  will be defined by a set of n + 2r-1 linear equations 

of the form 

   ,fs~s~ )j(
,n

3r2

0j

)2r2(
n =Δ∑+

−

=

−A     (3.13a) 

and 

   .0s~ =       (3.13b) 
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Remark 3.2. It is important to observe that in the class of methods defined by 

(3.13), the derivatives in the boundary conditions (3.1b) are always replaced by 

the corresponding derivatives of s~ . 

 

Remark 3.3. In the standard collocation method, all the matrices j,nΛ  in (3.12c) 

are null.  Thus, (3.13a) simplifies to 

         ,fs~s~ )j(
j,n

3r2

0j

)2r2( =Δ∑+
−

=

−     (3.14) 

which is the matrix form of equations (3,5). 

 

4. Convergence for linear problems. 

This section is concerned with the method of analysis used by Daniel and 

Swartz [6: §4], for establishing the convergence of the extrapolated collocation 

method. Our purpose here is to show that the same method can be used, more 

generally, for the analysis of modified collocation methods defined by linear systems 
of the form (3.13). 

We first make the following three assumptions concerning the boundary value 

problem (3.1): 

A4.1. The functions 3r2j0,e j −≤≤ , and f in the differential equation (3.1a) 

are at least continuous on [a,b]. 

A4.2. The boundary value problem (3.1) has a unique solution mCy∈  [a,b], 
where m ≥  2r. 

A4.3. The equation  0y )2r2( =−  with boundary conditions (3.1b) has only the 

trivial solution. 

The above assumptions guarantee the existence of a Green's function G(x,t) associated 

with the differential operator 2r2D −  and the boundary conditions (3.1b), so that if 

        )2r2(y:v −= ,     (4.1) 

then 

  .3r2j0,dt)t(v
x

)t,x(G)x(y j

j
b
a

)j( −≤≤
∂

∂
∫=    (4.2) 
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Similarly, if 

    ,s~:v )2r2(
n

−=      (4.3) 

where s~  is the approximating spline defined by the linear system (3.13), then 

     .3r2j0,dt)t(v
x

)t,x(G)x(s~ nj

j
b
a

)j( −≤≤
∂

∂
∫=   (4.4) 

       Proceeding as in [6], we next introduce the following three operators: 

    (i)      ,IR]b,a[C: 1nn +→D     (4.5a) 

where for any Cg ∈ [a, b], 

    .n,....1,0i)x(g)g( iin ==D     (4.5b) 

   (ii)     ),(SIR: n11nn π→+M    (4.6a) 

via piecewise linear interpolation at the points { }n
0iix =   . That is, for any vector 

,IRz 1n+∈  

       { } ,z)xx(z)xx(
h
1z 1iii1in ++ −+−=M  

              .1n,...1,0i];x,x[x 1ii −=∈ +  (4.6b) 

   (iii)    ]b,a[C]b,a[C: →K     (4.7a) 

where for any Cg ∈ [a,b], 

   .dt)t(g
x

)t,x(G)x(e)x()g( j

jb

aj

3r2

0j ⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

= ∫∑
−

=

k   (4.7b) 

Then, solving the boundary value problem (3.1) for y is equivalent to solving 

for )2r2(yv −=  in 

         (I+K) v = f.      (4.8) 

Similarly, solving for s~  in equations (3.13) is equivalent to solving for 
)2r2(

n s~v −=  in  

           ,fvv nnnnnn DKDDA =+     (4.9) 

where nA  is the matrix (3.12c). We make the following two assumptions regarding 

this matrix: 

  A4.4 nA  is uniformly bounded and there exists n0 > 0 so that, for n0 ,nn A≥  

possesses a uniformly bounded inverse 1
nA− .
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A4.5 For each fixed Cu ∈  [a,b] 

    .0uulim nnn
n

=−
∞→

DAD  

The operators nD and nM  defined by (4.5) and (4.6) are respectively the restriction 

and prolongation operators involved in the analysis of Daniel and Swartz; see 

[6: Defs (4.1), (4.2)]. Also, when r=2 the operator K coincides with the 

corresponding operator in [6: Def. (4.3)]. Finally, because of the assumptions- A4:4 

and A4.5, the matrix  nA  can take the place of the matrix nQ  involved in [ 6 ]. Thus, 

the three results stated below can be deduced immediately from the analysis of [6: 

p.p.166-168]. 

(i) For ,nn 0≥ , equation (4.9) can be written as 

(I + Pn K)vn = Pn f ,    (4.10) 

where 

,: n
1

nnn DAMP −=     (4.11) 

defines a sequence of operators converging strongly to the identity operator on 

C[a,b]. 

(ii) For sufficiently large n, 1
n )( −+ KPI  exists and is uniformly bounded. 

Thus, equation (4.10), or equivalently equation (4.9), has a unique solution vn. 

(iii) The solution vn of (4.10) converges uniformly to the solution v of (4.8). 

In other words, if the assumptions A4.1 -A4.5 hold then the modified collocation 

method corresponding to the equations (3.13) is well-defined, and the derivative 
)2r2(s~ − the resulting approximating spline s~  converges uniformly to )2r2(y − . 

Furthermore, by modifying in an obvious manner the analysis of [6; p. 168], it is 

easy to show that 

,2r2j0),h(0s~s )j()j( −≤≤=− β    (4.12a) 

with 

  ,},k{min l=      (4.12b) 

where s is the )(S n1r2 π− -interpolate of y defined in Section 3, and k, l  are 

respectively the orders of approximation of the spline replacements (3.4) and 

(3.12). Hence, 
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,2r2j0),h(0ys~ )j()j( −≤≤=− γ    (4.13a)  

where 

    }.,k,jr2min{ l−=γ      (4.13b) 

This last result is obtained from (4.12) by use of the triangle inequality, 

because the continuity assumption A4.2 implies that 

     .1r2j0,)h(0ys jr2)j()j( −≤≤=− −   (4.14) 

5. Examples of modified collocation methods. 

In this section we illustrate the use of the a posteriori correction results 
of Section 2 and of the analysis of Daniel and Swartz [ 6 ] outlined in Section 4, 
for deriving and analyzing modified collocation methods of the type described in 

Section 3.  In particular, we show that the cubic spline extrapolated collocation 

method of [ 6] extends immediately to a 0(h4) quintic spline method for fourth-order 

problems, and we also derive a new 0(hG) method for such problems.  In addition, we 

explain how the results of Section 2 can be used to provide derivative approximations 
of further increased accuracy at any point of the interval [a,b]. 

In the examples that follow we always assume that the conditions A4.1-A4.3 

concerning the boundary value problem (3.1) are satisfied and, with reference to 
A4.2, we indicate the required continuity class of y. Then, in order to establish 
the convergence of a particular modified collocation method we need only show that 
the conditions A4.4 and A4.5 concerning the corresponding matrix nA  hold; see 
Section 4.  That is, for convergence we need only prove that: 

 (i) nA  is uniformly bounded and, for 0nn ≥ , it possesses a uniformly bounded 

inverse .1
n
−A  

 (ii) For each fixed ,0uDAuDlim],b,a[Cu nnnn
=−∈

∞→
 where nD is the restriction 

operator defined by (4.5). 

5.1  Standard collocation. 

Here we assume that ],b,a[y c r2∈  and that the end conditions of s are of order 

2p ≥ , so that 
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,1r2j0),h(0ys jr2)j()j( −≤≤=− −    (5.1) 

and in particular 

.n,...,1,0i);h(0sy 2)2r2(
i

)2e2(
i =+= −−    (5.2) 

Thus, the exponents k and l  in (4.13b) are respectively k ≥  3 and l  = 2; see 

equations (3.3) and (3.4). Also, as we indicated in Section 3, in this case the 

matrix nA  is the identity matrix.  Therefore, the conditions A4.4 and A4.5 are 

satisfied trivially, and (4.13) gives 

          ,2r2j0,)h(0ys~ 2)j()j( −≤≤=−   (5.3) 

which is one of the results established by Russell and Shampine [13]. 

5.2 The extrapolated collocation method of Daniel and Swartz [6], 

Here we assume that 2r2Cy +∈   [a,b] and that the end conditions of s are of 

order p ≥  4. Then, 

    ,1r2j0),h(0sy jr2)j()j( −≤≤− −    (5.4) 

and, because ,2rj0,s)x(y )1j2(
ii

)1j2(
1 −≤≤= ++ , the odd derivatives of s display 

superconvergence at the knots in the sense that 

 ;2r2j1),h(0sy j2r2)1j2(
i

)1j2(
i −≤≤+= −++    (5.5) 

see Remark 2.5. Thus, 

 ,3r2j1),h(0sy kj)j(
i

)j(
i −≤≤+=     (5.6) 

where 4k j ≥  for both r = 2 and r = 3. This means that in this case  4k j ≥  in (3.4). 

Also, because )2r2(
iP −  (0) = 0, Theorem 2,1 gives 

     ,1n,...,1,0i);h(0)x(Yy 4
i

)2r2(
*1

)2r2(
i −=+= −−    (5.7) 

where Y1* denotes the corrected spline approximation Y1 with  )r2(
1,0d  replaced by 

)r2(
2,0d ; see Remark 2.6 (i). 

In the extrapolated collocation method of Daniel and Swartz [6] the approximating 

spline 's' is obtained by replacing the derivatives ≤≤ j1,y )j(
i 2r-2, in (3.2) by the 

approximations contained in (5.6) and (5.7). This follows from the discussion of 

Section 3, by observing that the approximations (5.7) give precisely the replacements 

(3.6). In other words the method of [6] may be regarded as a collocation scheme, 

where the collocation is performed by means of the corrected spline approximation Y1* 
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It follows that in (3.12a) l = 4 and that the matrix (3.12c) is 

     ,IA 22, rnn −Λ+=      (5.8a) 

where 22, rn −Λ  has the partitioned form 

  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Λ −

2a0

bTb

0a2

12
1

T
R

Rn

T

22, rn     

 (5.8b) 
with RR ,,, baba  and Tn as described below: 

(i) a  and b  are respectively the (n - 1)-dimensional column vectors 
T)0,...,0,1,4,5( −−=a  and b  = (1,0,…0)T. 

(ii) Ra  and Ra   are the vectors a  and b  with their components written down 

in the reverse order,  (Throughout the paper, if  ( )T1n21 v,....,v,vv −=  we use  Rv  

to denote the vector  ( ) ).v,....,v,vv T
1n21R −=  

(iii) ]ijt[Tn =  is the ( ) ( )1n1n −×−  tri-diagonal matrix with 2iit −=  and 

.11i,it1i,it =+=−  

Clearly, the matrix nA  given by (5.8) is uniformly bounded. Also, it can be 

shown easily that ,86.11
nA ≤−   and that for each fixed ]b,a[cu∈  

0unnunn
lim =−

∞→
DAD  where Dn is the restriction operator (4.5); see [6: pp 166-167] 

Therefore, the conditions A4.4 and A4.5 hold, and (4.13) gives 

   2r2j0,h0
j

y
j

s~ −≤≤⎟
⎠
⎞

⎜
⎝
⎛=−

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ γ    (5.9a) 

where 
   }.4,jr2min{γ −=  

As we indicated in Section 4, the above method of analysis leading to the 
result (5.9) is due to Daniel and Swartz [ 6 ], who proposed and analyzed the 
extrapolated collocation method for the case r = 2 only; i.e. the cubic spline 
solution of second-order problems. For the case r=2, Daniel and Swartz also 
proved that the derivatives of the cubic spline s~  display superconvergence at 
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the points (2.17), and described a method for computing improved approximations 

to ,4j1,y )j( ≤≤  at any point in [a,b]. This method of [ 6 ] consists of construc-

ting a piecewise quartic, q , given in terms of the values ( ) ( ) ,1n,....,1,0i;is
~,is

~ 11
2
1 −=+  

and having breakpoints in 
n

0i2
1i,i xx

=
+ ⎭

⎬
⎫

⎩
⎨
⎧

 , so that || q (J) - y (J) || = 0(h 5-J), 1 ≤ j ≤4; 

see [6: Cor. 4.15]. Alternatively, improved approximations to ( )jy  can be obtained 

as indicated below, by constructing corrected approximations of the form (2.1) - (2.7). 

 Let My~  denote the corrected approximations obtained from (2.1) by replacing 

s~bys and ( )mr2
M,id +  by ( )mr2

M,id~ + , where  ( )mr2
M,id~ +  denote the derivative approximations 

(2.4)-(2.7)corresponding to the spline  s~ . Then , it follows from Theorm 2.1 

that, for 1 ≤ M ≤ 2, 

 )j(
M

)j(
M

)j(
M

)j()j(
M

)j( y~yyyy~y −+−=−   

 ( ) ,r2j0,h0y~y Mjr2)j(
M

)j(
M ≤≤+−= +−     (5.10a) 

Where 

 ( )
( ) ( )

∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

−=−
−

=

+−+
+

+−
+

1M

0m

)j(
mpmr2

M,id~mr2
M,id

!mr2

mjr2h
)j()j()j(

M
)j(

M s~sy~y  (5.10b) 

and where we used the abbreviations )j(
My  for )j(

My , e.  t .  c.  Also, since 
β  = min{k, l } = 4, (4.12) gives 

 ( ) ,2r2j0,h0s~s 4)j()j( −≤≤=−     (5.11a) 

and hence 
( ) ( ) ( ).h0s~s 31r21r2 =− −−     (5.11b) 

Furthermore, (5.11a) and the definitions of ( )mr2
M,id +  and ( )mr2

M,id~ +  imply that 

( )mr2
M,id +  = ( )mr2

M,id + and  ( )mr2
M,id +  = ( )mr2

M,id +  +0(h) ;  i=0,1,….,n-1. (5.12) 

Finally, by combining the results   (5.10) - (5.12) we find that for 1 ≤ M ≤ 2, 0 ≤ μ ≤ 1 
and 0 ≤ j ≤ 2r, 

( )( ) ( )( ) ( ) 1n,....,1,0i;h0μhxy~μhxy i
jj

Mi −=++=+ ν ,    (5.13a) 
Where 

{ }4,Mjr2minν +−=       (5.13b) 
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This implies the following: 

 (i)  In the case r = 2, the best order of approximation to y is that given 

by (5.9),  i .e.  

].b,a[x),h(0)x(s~)x(y 4 ∈+=     (5.14) 

For the derivatives of y however improved orders of approximation can be obtained 

by using one or two correction terms as follows: 

 (a) For 0 ≤ μ ≤ 1, 

 1n,.....,1,0i);h(0)μhix(y~)μhix(y 4)1(
1

)1( −=++=+   (5.15) 

 (b) For 0 ≤  μ ≤1   and  2 ≤ j ≤ 4, 

 . 1n,.....,1,0i);h(0)μhix(y~)μhix(y j6)j(
2

)j( −=++=+ − ) (5.16) 

 (ii) In the case r=3, the best orders of approximation to y, ( )1y    and  ( )2y   

are those given by (5.9), i.e. for 0 ≤ j ≤  2 
( ) ( ) ]b,a[x),h(0)x(s~)x(y 4jj ∈+=    (5.17) 

But, for higher derivatives improved orders of approximation can be obtained as 

follows: 

 (a) For 0 ≤ μ ≤ 1, 

 . 1n,.....,1,0i);h(0)μhix(y~)μhix(y 4)3(
2

)3( −=++=+  (5.18) 

 (b) For 0 ≤  μ  ≤  1  and 4 ≤  j  ≤  6,  

 . 1n,.....,1,0i);h(0)μhix(y~)μhix(y j8)j(
2

)j( −=++=+ −  (5.19) 

5.3 A 0(h6) quintic spline method for fourth-order problems. 

Here we consider only the case r = 3, and assume that the boundary conditions  

(3.1b) involve only function values and first derivatives.  That is we consider 

the use of quintic splines for the solution of fourth-order linear boundary-value 

problems with homogeneous boundary conditions of the form 

.0)b(y)a(y)b(y)a(y:y )1()1( =====B    (5.20) 

We also assume that ]b,a[cy 10∈  and that the end conditions of the interpolating 

quintic spline s are of order p ≥  6.   Then 

 ,5j0),h(0sy j6)j()j( ≤≤=− −     (5.21) 
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and 

;n,.....,1,0i);h(0isiy 6)1()1( =+=    (5.22) 

see Remark 2.5.  This implies that Bs = 0(h6),  i .e.  k=6 in (3.4).   In addition,  

our continuity and end-condition assumptions imply the following: 

 (i) 1n,....,1,0i);h(0)ix(1yiy 6)2()2( −=+=   (5.23) 

where Y1* denotes the corrected quintic spline approximation in equation (2.21) 

of Remark 2.6(i). 

 (ii) 1n,....,1,0i);h(0)ix(1yiy 6)3()3( −=+=    (5.24) 

where Y2* denotes the corrected quintic spline approximation in equation (2.22) of  

Remark 2.6 (ii) .  

 (iii) 1n,....,1,0i);h(0)ix(1yiy 6)4()4( −=+=    (5.25) 

where Y3* denotes the corrected quintic spline approximation in equation (2.25) 

of Remark 2.7 . 

In the method under consideration, the approximations contained in (5.22) and 

(5.23)-(5.25) are used to replace respectively the derivatives )1(
iy  and )j(

iy , 

4j2 ≤≤  (3 .2) .  (The approximations needed for  replacing the der ivat ives  

,ny )j(  2 ≤ j ≤ 4 can of course be deduced immediately from the corresponding approxi-

mations to )j(
0

y  Then, the exponent in (3.12a) is 6=l ,  and the matrix nA  has 

the form 

+=InA �
4,n

+
3,n

Δ
3,n

Δ +
2,n

Δ  � ,
2,n

   (5.26a) 

where: 

 (i) 2,nΔ  and 
3,n

Δ  are the diagonal matrices defined by (3.12b). 

 (ii) The matrix 
4,n

Δ  has the partitioned form 

4,n
Δ =  

240
1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

− 7726600
183100

003118
0012677

T
R

T
R

RRn

T

T

c
d

ee
d
c

gg Q      (5.26b)
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Where e,d,c  and g  are the (n - 3)-dimensional column vectors, c  = (374,-276,109,-18, 

0,...,0)T, d  =  (4,14,-6,1,0,...,0)T, e  = (-1,0,....,0)T, g  = (24,-1,0,...,0)T, and 

]ijq[Qn =  is the (n-3) - (n - 3) quindiagonal matrix with ijq  =  -46, ijq = 24 for 

|i-j| = 1, and ijq = -for |i-j|=2. 

 (iii) The matrix �
3,n

 has the partitioned form 

3,n
Δ =  

480
h

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−

−

51800

31000

00103

00185

T
R

T
R

RRn

T

T

u

v

xUx

v

u

yy     (5.26c) 

Where u , v , x  and y  are the (n - 3)-dimensional column vectors u  = (-24,14,-3,0,.., ,0)T, 

v  = (-12,6,-1,0,...,0)T,  x  = (-1,0,...,0)T,  y  = (2,-1,0,...,0)T, and Un = [u.i j] is 

the (n-3) x (n-3) quindiagonal matrix with ,2u,2u,0u 1i,i1i,iii −=== +−  

1uand1u 2i,i2i,i =−= +−  

 (iv) The matrix  �
2,n

  is a scalar multiple of the matrix (5.8b), i.e. 

∆
2,n

=
60
h2

−  ∆ ,
2r2,n −

   (5.26d) 

where  ∆
2r2,n −

 is the matrix defined by (5.8b). 

The matrix nA   given by (5.26) is clearly uniformly bounded.  Therefore, in 

order to establish the convergence of the method we have to show that, for 

sufficiently large n, nA  has a uniformly bounded inverse 1
n
−A  , and that for each 

fixed u � c[a,b] 

 ,0unDnAunD
n

lim =−
∞→

    (5.27) 

where nD  is the restriction operator (4.5). The first of these can be proved as 

follows. 

 Let 

Bn = I + ∆
4,n

       (5.28) 
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Then, by performing a number of elementary row operations it is easy to show that 

nB  is invertible and that .25.6nB 1 ≤−  This means that the matrix nA  can be 

written as 

{ } { },nn)n,nnn(nInn 2233 ,,,
1 CIBBBA +=ΔΔ+ΔΔ+= −   (5.29a) 

Where   

 ( )2,n2,n3,n3,n
1

nn Bc ΔΔ+ΔΔ≤ −   

 ).60/||e||h60/||e||h8(25.6 2
2

3 +≤     (5.29b) 

Thus,  for sufficiently large n ,  1nC <  and hence,  from (5.29a),  the matrix 

nA  possesses a uniformly bounded inverse 1
n
−A . 

To prove (5.27), let 

   

{ }

{ }( )n
0

n

n

iiz

unDnAunD:z

=
=

−=
    (5.30) 

Then, 
{ }

, 720/uu4u5u2)a(eh

480/u3u24u18u5)a(eh

240/u18106u376u266u77z

32102
2

43103

543100
n

++−+

++−+

+−−+−≤

 

i.e. 
{ } ( ) ( ) ( ){

} 60/)h3;u(ω)a(eh

h4ulaeh8280z

2
2

30
n

+

+≤ ωu;5hω
    (5.31) 

where ω (u ;  h) denotes the modulus of continuity of u over an interval of 

width h. Therefore, 

 { } .0iz
n

lim n =
∞→

 

In exactly the same manner it can be shown that 

{ } .n,.....,2,1i;0iz
n

lim n ==
∞→
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Thus, the conditions A4.4 and A4.5 hold, and (4.13) gives 

.4j0),h(0ys~ j6)j(J )( ≤≤=− −   (5.32) 

Also, by modifying in an obvious manner the analysis leading to the result 

(5.13) , it is easy to show that for 1 ≤ M ≤ 3, 0 ≤ μ ≤ 1 and 0 ≤ j ≤ 6, 
( ) ,1n,...,1,0i);h(0)μhix(Y~)μhix(y ν)(

M
j j −=++=+   (5.33a) 

where 

   { },6,j6min +−=ν      (5.33b) 

and where MY~  denote the corrected approximations corresponding to the quintic 

spline S~ . 

Remark 5.1 The requirement that the boundary conditions are of the form (5.20) is 

needed for the application of the convergence analysis of Section 4. However, it 

is reasonable to expect that the same convergence results will hold when the boundary 

conditions are of the general form (3.1b), provided that the second and third 

derivatives in (3.1b) are replaced by the appropriate corrected approximations 

given by (5.23) and (5.24).  This conjecture is supported by the results of Example 

8.3 considered in Section 8. 

6.  A 0(h6) quintic spline method for linear second-order boundary-value problems. 

In this section we describe a 0(h6) modified collocation method for the 

solution of second-order boundary-value problems of the form 

],b,a[x),x(f)x(y)x(e)x(y)x(e)X(y:]y[ 0
)1(

1
)2( ∈=++L   (6.1a) 

 By = 0,      (6.1b) 

where (6.1b) denotes two boundary conditions of the form 

1,0i;0)b(yi)b(yiβ)a(yi
)1(

100
==++ αα     (6.1b) 

That is the problems under consideration are of the form (3.1) with r = 2. Here 

however the approximating spline  s~ s  is taken to be quintic rather than cubic. 

For this reason, the resulting method is not of the type described in Section 3. 

Assume that the conditions A 4.1 -A4.3, concerning the functions f,e,e 10  and 

the solution y of (6.1) hold with m = 8 in A4.2, and let s be a ),π(S n5 -interpolate 
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of  y .  Assume also that  the end condi t ions of  s  are  of  order  p  > 4,  and le t  

}it{  denote the following n +3 points: 

 .2/hxt,1n,....,2,1i;xt,2/hxt n2n1ii00 −=+==+= +−  (6.2) 

Then, our assumptions that 8Cy∈  [a,b]  and p ≥  4  imply that: 

 ,5j0),h(0ys j6)j()j( ≤≤=− −    (6.3) 

        ,2n,...,1,0i);h(0)t(s)t(y 6
i

)1(
i

)1( +=+=    (6.4) 

and 

        ;2n,...,1,0i);h(0)t(Y)t(y 6
i

)2(
2i

)2( +=+=    (6.5) 

see Theorem 2.1 and Remark 2.5. 

        The method of this section is based on substituting the derivatives in the 

boundary conditions (6.1b) and in the n + 3 equations 

       ,2n,...,1,0i);t(f)t](y[ ii +==L    (6.6) 

by the approximations given by (6.4) - (6.5). Here however, we express the two 

cor rec t ions  in  Y 2  in  te rms  of  the  second der iva t ives  )2(
is  o f  s .  (That  i s  we  

take the values )6(
2,id  and )7(

2,id  involved in the corrected approximation Y2 to be 

those given by (2.29) - (2.30) and (2.6); see Remark 2.8.) The above replacements 

then lead to the equations: 

           ),h(0s 6=B      (6.7) 

and 

    ),h(0fsss 6
,n

)1(
1,n

)2(
n +=Δ+Δ+A     (6.8a) 

where j,n
)j( ,f,s Δ  and An are as follows; 

 (i) )1()2( s,s  and f  are the (n +3)-dimensional column vectors,  

 { } { } 2n
0ii

2n
0ii

)j()j( )t(ffand,2j1,)t(ss +
=

+

= =≤≤=    (6.8b) 

 (ii) ,1j0,j,n ≤≤Δ  are the (n + 3) ×  (n + 3) diagonal matrices 

   { }.)t(e),...t(e),t(ediag 2nj1j0jj,n +=Δ     (6.8c)
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(i i i)  The matrix An has the partit ioned, form 

where e,c,b,a  and g  are the (n - 3)-dimensional column vectors 

,6,14,16(c,)0,...0,2,11,24,26(b,)0,...,21,119,266,294(
16
1a TT −−=−−=−=  

−−−=−= )3n(theiso,)0,....,0,1,4(gand)0,....,0,1(e,)0,....0,1 TTT  

dimensional null vector, and ]q[Q ijn =  is the (n-3) x (n-3) quindiagonal matrix 

with .2jifor1qand,1jifor4q,714q ijijii =−−==−==  

 By analogy with the work of the previous sections, we consider now the problem 

of determining an approximating quintic spline s~  by simply dropping the )h(0 6  

terms from the equations (6,7) and (6.8), That is, we consider a modified collo-

cation method for the solution of problems of the form (6.1), where the approxi-

mating quintic spline s~  is defined by the equations 

       ,fs~s~s~ 0,n
)1(

1,n
)2(

n =Δ+Δ+A     (6.9a) 

     .0s~ =B      (6.9b) 

It turns out that the convergence of this method can also be established by the    

analysis of Daniel and Swartz [6: §4], provided that their restriction and prolongation 

operators (4.5) and (4.6) are re-defined as follows: 

(i)    ,IR]b,a[C: 3nn +→D                                             (6.10a) 

where for any ,]b,a[Cg ∈  

 
(6.8d) 
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.2n,....,1,0i);t(g)g( iin +==D    (6.10b) 

(ii)     ),(sIR: n33nn π→+M    (6.11a) 

where for any vector z,IRz n3n M+∈  is the cubic spline )(Sw n3 π∈  satisfying the 

(n+3) interpolation conditions 

        .2n,...,1,0i;z)t(w ii +==     (6.11b) 

(It is well-known that w: = znM exists uniquely for any vector 3nIRz +∈ ; see e.g. 

[5], [8: p.577] and [12: p.25].) 

With these new definitions of D and M we can proceed exactly as in [6: §4], 

and thus conclude that the modified collocation method (6.9) is well-defined, and 

that the second derivative )2(s~ of the resulting quintic spline s~ converges 

uniformly to .y )2( More precisely, the above results can be deduced immediately 

from the analysis of [6: pp.167-68], by observing the following: 

(a) The boundary value problem (6.1) and the approximating equations (6.9) can 

be written in equivalent operator forms as 

     ,y:v,fv)( )2(==+ KI     (6.12) 

and 

   ,s~:v,fvv )2(
nnnnnnn ==+ DKDDA    (6.13) 

where An is the matrix (6.8d), Dn is the restriction operator (6.10), and K  is 

the operator (4.7) with r = 2. 

(b)  The prolongation operator Mn defined by (6.11) is uniformly bounded.  This 

can be proved easily by using standard cubic spline results. 

(c)  ,nnn IMD =  where In is the identity operator In : IRn+3 .IR 3n+→  

(d)  The matrix An is uniformly bounded.  It is also strictly diagonally dominant, 

and hence invertible with .09.1A 1
n ≤−  

(e) For each fixed .0uulim],b,a[Cu nnnn
=−∈

∞→
DAD  This can be established 

as indicated in Section 5.3, by letting uu:z nnn
}n{ DAD −=  and showing that 

≤}n{
iz const, ×  ω  (u; 5h) ; i = 0,1,... ,n + 2. 

(f)  Because of (d) and (e), the matrix An can take the place of the matrix Qn 

involved in the analysis of [6]. 
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 The above observations also imply that 

 ,2j0),h(0ss~ 6)j()j( ≤≤=−    (6.14a) 
and hence that 

 .5j3),h(0ss~ j8)j()j( ≤≤=− −    (6.14b) 
This can be proved by modifying in an obvious manner the analysis of [6: p.168], 

Therefore, from (6.3) and (6.14) we have that 

   .5j0,)h(0ys~ j6)j()j( ≤≤− −     (6.15) 
Finally, improved approximations to the derivatives of y can be obtained from 

the corrected approximations ,2M1,Y~M ≤≤  corresponding to the quintic spline s~  

in exactly the same manner as in Section 5.  The precise result in this case is 

that, for ,6j0and10,2M1 ≤≤≤≤≤≤ μ  

  ,1n,....,1,0i);h(0)hx(Y~)uhx(y i
)j(

Mi
)j( −=++=+ νμ   (6.16a) 

Where 

     }.6,Mj6min{ +−=ν     (6.16b) 
Remark 6.1 Let 6Cy∈ [a,b], assume that the end conditions of the interpolating 

quintic spline  s  are of order p ≥  2, and let the corresponding approximating 

spline s~  be determined by standard collocation at the n + 3 points (6.2).  Then, 

the equations (6.7), (6.8), (6.9a) and (6.9b) simplify respectively as follows: 

 ,5k),h(0s k ≥=B      (6.17) 
 )h(0fsss 4

0,n
)1(

1,n
)2( +=Δ+Δ+     (6.18) 

 ,fs~s~s~ 0,n
)1(

1,n
)2( =Δ+Δ+      (6.19a) 

and 
 .0s~B =       (6.19b) 

That  is,  the 0(h6) terms in (6.7) and (6.8) are replaced respectively by 

,5k),h(0 k ≥ and 0(h4),  and the matrix An   in (6.7) and (6.9a) is  replaced by  

the identity matrix.   Because of this,  the convergence of the collocation method 

defined by (6.19) can be deduced immediately from the analysis outlined above.  

The precise result in this case is that 

 ,5j0),h(0ys~ )j()j( ≤≤=− γ     (6.20a) 

where 

    };4,j6min{ −=γ      (6.20b) 

see [10] and [12: p.21]. 
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7. Nonlinear problems. 

 

In this section we indicate how some of the results of the previous sections 

can be extended to nonlinear problems of the form 

],b,a[x)),x(y),....x(y,x(f)x(y )3r2()2r2( ∈= −−    (7.1a) 

 { } ,3r2i0,0)b(y)a(y:y
3r2

0j

)j(
ij

)j(
ij −≤≤=β+α= ∑

−

=

B    (7.1b) 

where as before r = 2 or r = 3. 

As is well-known a solution of (7.1) is not necessarily unique.  For this 

reason, we only consider modified collocation methods when applied to a sufficiently 

small neighbourhood of an isolated solution.  Furthermore, for the purposes of the 

analysis we only consider modified collocation methods in which the derivatives     

,3r2j1,y )j( −≤ in the nonlinear part of (7.1a) are replaced by the corresponding 

spline derivatives. That is, we assume that the approximating spline )(ss~ n1r2 π−∈  

is defined by a nonlinear system of the form 

         ,0s~,fs~ )2r2(
n ==− BA      (7.2a) 

where f  is the (n +1)-dimensional column vector 

    ( ){ } ,s~,....,s~,xff n
0i

)3r2(
iii =

−=    (7.2b) 

and 

     ,2r2,nn −Λ+= IA                                              (7.2c) 

where the matrix 2r2,n −Λ  has the same meaning in Section 3.  (Of course, we 

also assume that (7.2) is derived by dropping the  )h(0 l and )h(0 k  terms from the 

equations 

   ),h(0s),h(0fs k)2r2(
n =+=− BA l    (7.3) 

corresponding to  the interpolatory spl ine ).)(Ss n1r2 π−∈  Then,  the analysis  

reduces essentially to that of Daniel and Swartz  [6 : §5], which in turn is based 

closely on the convergence analysis of Russell and Shampine [13 : §4],  The main 

details are as follows. 
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In place of the assumptions A4.1-A4.3, we now assume the following in 

connection with the boundary value problem (7.1): 

A7,1.  The boundary value problem (7.1) has at least a solution mCy∈ [a,b], 

m ≥ 2r,  and the function f   is  sufficiently smooth near y in the sense that    

],N[Cf 2∈ where N  i s  a  ne ighbourhood  of  the  "curve" { :)]x(y),...,x(y,x[ T)3r2( −    

}]b,a[x ∈   see [4 : p.590]. 

A7.2   The equation 0)x(u )2r2( =−  with boundary conditions Bu - 0 has only 

the trivial solution. 

A7.3   The equation 

  ,0)x(u
z

)y,...y,x(f)x(u )j(

j

)3r2(3r2

0j

)2r2( =
∂

∂
−

−−

=

− ∑    (7.4) 

subject to the boundary conditions Bu = 0, has only the trivial solution.  (Here 

y stands for the solution referred to in A7.1.) 

Regarding the matrix An in (7.2), we assume that this matrix satisfies 

precisely the same conditions A4.4 and A4.5 as in the linear case.  Then, the 

following results can be proved by modifying in an obvious manner the analysis 

of [6: §5]. 

(i)  There exists 0a >σ  such that there is no other solution ŷ  of 

(7.1) satisfying 

        .ŷy )2r2()2r2( σ≤− −−      (7.5) 

(Here also y stands for the solution referred to in A7.1). 

( i i )   For  suff ic ien t ly  la rge  n  there  ex is t s  a  un ique  sp l ine   )(Ss~ n1r2 π−∈  

solving the equations (7.2) and satisfying 

         σ≤− −− )2r2()2r2( s~y      (7.6) 

(iii) The spline s~  satisfies 

         ,2r2j0);h(0ys~ )j()j( −≤≤=− γ    (7.7a) 

where as in (4.13), 

          },,k,jr2{min l−=γ      (7.7b) 
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and l ,k, are the orders of approximation in (7.3). 

We end this section by making the following remarks concerning the application 

of specific modified collocation methods to nonlinear boundary value problems. 

Remark 7.1.  Standard collocation 

        In this method all the derivatives )j(
iy  are replaced by the corresponding 

spline derivatives )j(
is  Therefore,  the analysis outlined above applies and, as 

in the linear case, the result (5.3) holds;  see [13 : §4]. 

 

Remark 7.2    The extrapolated collocation method of Daniel and Swavts [6]. 

Since only the derivatives )1r2(
iy −  are replaced by linear combinations of 

the ,s~ )2r2(
i

−  the analysis also applies directly to this method.  Therefore, the 

result (5.9) holds for nonlinear problems of the general form (7.1).  Furthermore, 

the result (5.13) concerning the quality of the corrected approximations )j(
MY~  can 

be established exactly as in the linear case. 

 

Remark 7.3 The 0( 6h ) quintic spline method of Section 5.3. 

In this case the analysis applies directly to fourth-order nonlinear problems 

of the form 

   ],b,iax)),x(y),x(y,x(f)x(y )1()4( ∈=    (7.8a) 

   0)b(y)a(y)b(y)a(y )1()1( ====    (7.8b) 

This shows that the results (5.32) and (5.33) also hold for nonlinear problems of 

the form (7.8).  In fact ,  i t  is  easy to see that,  the same convergence results 

hold for problems of the more general form, 

 ],b,a[x)),x(y),x)(y,x(f)x(y)x(e)x(y)x(e)x(y )1()2(
2

)3(
3

)4( ∈=++  (7.9a) 

 .0)b(y)a(y)b(y)a(y )1()1( ====       (7.9b) 

 

Remark 7.4. The  0( 6h ) quintic spline method of Section 6. 

The analysis does not apply directly in this case. However, by modifying the 

arguments in the manner indicated in Section 6, it is easy to show that the results 
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(6.15) and (6.16) hold for second-order boundary value problems of the general 

form 

       ].b,a[x)),x(y),y,x(f)x(y )1()2( ∈=    (7.10a) 

         .0y =B         (7.10b) 

 

Remark 7.5 Although the operators Pn defined by (4.11) are not projectors, the 

convergence results of this section can also be established by modifying the 

analysis contained in Section 3 of the paper by de Boor and Swartz [4];  see the 

remarks in p.606 of [ 4 ] and p.170 of [ 6 ].  This alternative analysis can also be 

used to show that the Newton iterative method applied to the equations (7,2) 

converges locally to )2r2(s~ −  at a quadratic rate.  The application of the iter- 

ative method for computing successive approximations ,...1,0k;s~ )k( =  to s~    

may be described as follows: 

"Given ,s~ )k(  find the modified collocation approximation )1k(s~ +  to the solution 

ω  of the linear boundary value problem 

 

  
( ) )j(

j

)3r2(
)k()k(

3r2

0j

)2r2(

z
s~,...,s~,xf

ωω
∂

∂
−

−−

=

− ∑  

         ( ) ,s~
z

s~,....,s~,x
s~....,s~,xf )j(

)k(
j

)3r2(
)k()k(

3r2

0j

)3r2(
)k()k( ∂

−=
−−

=

− ∑    (7.11a) 

          Bω =0;         (7.11b) 

See [4; p.594]." 
 

8.    Numerical examples 

In this section we present the results of several numerical examples, 

illustrating the theory of previous sections. These results were computed on    

an Eclipse MV/8000 computer, using programs written in double-precision Fortran; 

i.e. a precision of between 16 and 17 significant figures.  Our programs were based 

on representing the approximating spline s~  in terms of B-splines, and made ex- 

tensive use of the B-spline subroutines of de Boor [ 2]; see also [ 3 ]. 
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As before, let ,0M,Y~M > denote the corrected approximations corresponding    

to the sp l ine  s~ Also ,  l e t  ,s~:Y~0 =  i . e .  l e t  0Y~  denote  the  modi f ied  co l loca t ion  

solution of the boundary-value problem under consideration.  Then, the results 

listed in the tables are estimates of the uniform norms ,0M,Y~y )j(
M

)j( ≤−  

obtained by sampling the errors at a set σ  of 160 equally spaced points on   

[a ,b] .  We denote  these estimates by ),n(e }j{
M  i.e. 

   ,)x(Y~)x(ymax)n(e )j(
M

)j(

x

}j{
M −=

∈σ
 

and in each table we also list the computed values 

   { },)n2(e/)n(elogr }j{
M

}j{
M2

}j{
m =  

giving the observed rates of convergence of .ytoY~ )j()j(
M  

Example 8.1 ( [6: p.172]) 

  
⎪⎭

⎪
⎬
⎫

==

∈=
+

+
+

+

.2.0)1(y,1)0(y

],1,0[x,0)x(y
x41

8)x(y
x41
x16)x(y 2

)1(
2

)2(

  (8.1) 

Exact solution: y(x) = .
x41

1
2+

 

Numerical results: The results corresponding to the use of the extrapolated 

collocation method of [6] and to the quintic spline method of Section 6 are 

listed respectively in Tables 8.la and 8.1b. 

Example 8.2  ( [15 :p.210] ) 

     
⎪⎭

⎪
⎬
⎫

====

∈++−=+

.e)1(y,1)0(y,0)1(y)0(y
]1,0[x,e)xx78()x(xy)x(y

)1()1(

x3)4(

            (8.2) 

Exact solution: y(x) = x(1-x) .ex  

Numerical results: The results corresponding to the extrapolated collocation 

method of [6] and to the 0(h6) method of Section 5.3 are listed respectively 

in Tables 8.2a and 8.2b. 
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Example  8.3 

   
⎪⎭

⎪
⎬
⎫

==−==−

−∈=+

0)1(y)1(y)1(y)1(y
],1,1[x,1)x(y4)x(y

)2()2(

)4(

   (8.3) 

Exact solution: y(x) = 0.25{1-2(sin sinh sinxsinhx + cos cosh cosxcoshx)/(cos2+cosh2)}. 

Numerical results: The results corresponding to the use of the 0(h6) method of 

Section 5.3 are listed in Table 8.3; see Remark 5.1. 

□ 

Example 8.4 ([4: p.603], [13 : p.25]) 

( ) ⎭
⎬
⎫

==
∈=

.01y)0(y
],1,0[x,))x(yexp()x(y )z(

    (8.4) 

Exact solution:  y(x) = 2 ℓ n{csec[0.5c(x-0.5)]} - ℓ n2, where c is the unique 

solution of the equation c = ( ).c25.0cos2  

Numerical results: The results corresponding to the use of the extrapolated 

collocation method of [ 6 ] and to the quintic spline method of Section 6 are 

listed respectively in Tables 8.4a and 8.4b. In both cases, the approximating 

spline s  was determined, as indicated in Remark 7.5, by using Newton's method 

with initial approximation s 0 = 0. The iteration was terminated when the co-

efficients of the B-spline representation of  s (k+1) agreed with those of s (k) to 

sixteen decimal places.  In both cases this required five iterations. 
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TABLE 8.1a 

Example 8.1 - Extrapolated collocation method of [6 ];  see Section  5.2 

   

    

 

 

 

 

 

 

 

 

Top entries: Values of { }( )64e j
M  Bottom entries: values of  { }( )64r j

M   

Theoretical rates:  { } { }4,Mj4minr j
M +−=  

 

TABLE 8.1b 

Example 8.1 - 0(h6) quintio spline method; see Section 6. 

 

 

 

 

 

 

 

 

 

 

Top entries: Values of { }( )64e j
M   Bottom entries: Values of   { }( )64r j

M  

Theoretical rates: { } { }M,6j6minr j
M +−=  

 

 M=0 M=1 M=2 

   j = 0         
8.48E-8 

4.1 

7.04E-8 

4.1 

6.76E-8 

4.0 

   j = 1 
1.18E-5 

3.0 

1.54E-6 

4.0 

9.16E-7 

4.8 

   j = 2 
8.00E-3 

2.0 

5.65E-4 

3.4 

9.42E-5 

4.0 

   j = 3 
3.01E-0 

1.0 

2.52E-1 

2.4 

3.72E-2 

3.0 

 M=0 M=1 M=2 

   j = 0 
4.55E-10 

6.1 

4.36E-10 

6.1 

1.12E-10 

6.1 

   j = 1 
1.16E-8 

5.3 

5.34E-9 

6.0 

9.80E-10 

6.1 

   j = 2 
4.31E-6 

4.1 

7.49E-7 

5.4 

7.18E-8 

5.8 

  j = 3 
1.51E-3 

3.1 

2.12E-4 

4.2 

9.65E-5 

4.8 
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TABLE 8.2a 

Example 8.2 Extrapolated collocation method of [6]; see Section 5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top entries: Values of { }( )64e j
M  Bottom entries: Values of  { }( )64r j

M  

Theoretical rates:  { } { }M,4j6minr j
M +−=  

 

 M=0 M=1 M=2 

j = 0 
6.14E-11 

4.0 

6.14E-11 

4.0 

6.14E-11 

4.0 

j = 1 
2.10E-10 

4.1 

1.97E-10 

4.0 

1.96E-10 

4.0 

j = 2 
9.14E-9 

4.0 

2.21E-9 

4.0 

2.21E-8 

4.0 

j = 3 
2.96E-6 

3.0 

4.57E-8 

4.0 

1.54E-8 

4.0 

j = 4 
1.95E-3 

2.0 

2.30E-5 

3.4 

3.62E-7 

4.0 

j = 5 
7.51E-1 

1.0 

1.03E-2 

2.2 

9.31E-5 

3.3 

j = 6 
—— 

—— 

1.85E0 

1.1 

2.87E-2 

2.1 
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TABLE 8.2b 

Example 8.2 - 0(h6) quintic spline method; see Section 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top entries: Values of { }( )32e j
M  Bottom entries: Values of  { }( )16r j

M  

Theoretical rates:  { } { }M,6j6minr j
M +−=  

 

  M = 0 M = 1 M = 2 M = 3 

   j = 0 
7.55E-12 

6.0 

3.47E-12 

6.1 

3.36E-12 

6.1 

3.36E-12 

6.1 

   j =1 
5.84E-10 

5.1 

4.34E-11 

6.0 

2.40E-11 

6.0 

2.43E-11 

6.0 

   j = 2 
1.24E-7 

4.0 

5.55E-9 

5.0 

1.89E-10 

6.0 

1.02E-10 

6.0 

  j = 3 
2.36E-5 

3.0 

7.69E-7 

4.0 

2.32E-8 

5.0 

1.01E-9 

6.3 

  j = 4 
7.63E-3 

2.0 

1.85E-4 

3.4 

7.37E-6 

4.4 

2.57E-7 

5.3 

  j = 5 
1.48E-0 

1.0 

4.82E-2 

2.2 

1.44E-3 

3.2 

5.09E-5 

4.1 

  j = 6 
— 

— 
3.66E0 

1.1 

1.39-1 

2.1 

5.72E-3 

3.1 
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TABLE 8.3 

Example 8.3 - O(h6) quintic spline method; see Remark 5.1 of Section 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top entries: Values of { }( )64e j
M  Bottom entries: Values of  { }( )32r j

M  

Theoretical rates:  { } { }M,6j6minr j
M +−=  

 

  M = 0 M = 1 M = 2 M = 3 

   j = 0 
1.63E-12 

5.8 

1.63E-12 

5.8 

1.63E-12 

5.8 

1.63E-12 

5.8 

   j = 1 
7.33E-12 

5.2 

3.80E-12 

5.9 

3.41E-12 

5.9 

3.43E-12 

5.9 

   j = 2 
1.57E-9 

4.0 

1.14E-10 

5.0 

6.06E-12 

6.0 

4.02E-12 

6.0 

  j = 3 
2.89E-7 

3.0 

1.56E-8 

4.0 

7.31E-10 

4.9 

2.39E-11 

5.5 

  j = 4 
9.62E-5 

2.0 

6.72E-6 

3.0 

2.94E-7 

4.0 

7.17E-9 

5.0 

  j = 5 
1.85E-2 

1.0 

1.07E-3 

2.0 

4.45E-5 

3.0 

1.07E-6 

4.0 

  j = 6 
—— 

—— 

8.28E-2 

1.0 

3.81E-3 

2.0 

9.86E-5 

3.0 
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TABLE 8.4a 

Example 8.4 - Extrapolated collocation method of [6];  see Section  7, Remark 7.2 

 

 

 

 

 

 

 

 

 

 

 

 

Top entries: Values of { }( )64e j
M  Bottom entries: Values of  { }( )32r j

M  

Theoretical rates:  { } { }M,4j4minr j
M +−=  

 

 M=0 M=1 M=2 

   j = 0 
1.84E-10 

4.0 

6.28E-11 

4.0 

6.27E-11 

4.0 

   j = 1 
3.96E-8 

3.0 

9.18E-10 

4.0 

3.16E-10 

4.1 

   j = 2 
2.47E-5 

2.0 

5.78E-7 

3.0 

1.30E-8 

4.0 

  j = 3 
9.45E-3 

1.0 

1.90E-4 

1.9 

5.11E-6 

2.9 

  j = 4 
—— 

—— 

2.96E-2 

0.9 

1.24E-3 

1.9 
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TABLE 8.4b 

Example 8.4 - 0(h6) quintic spline method; see Section 7, Remark 7.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top entries: Values of { }( )64e j
M  Bottom entries: Values of  { }( )32r j

M  

Theoretical rates:  { } { }M,6j6minr j
M +−=&  

 M=0 M=1 M=2 

 j = 0 
2.84E-14 

5.8 

2.85E-14 

5.8 

2.85E-14 

5.8 

 j = 1 
1.27E-12 

5.1 

1.72E-13 

5.8 

1.26E-13 

5.8 

 j = 2 
5.27E-10 

4.0 

2.29E-11 

4.9 

2.02E-12 

5.8 

 j = 3 
1.92E-10 

3.0 

6.24E-9 

4.3 

2.14E-9 

4.8 

 j = 4 
1.31E-4 

2.0 

6.01E-6 

3.0 

7.62E-7 

3.9 

 j = 5 
4.97E-2 

1.0 

1.84E-3 

2.0 

1.62E-4 

2.9 

 j = 6 
— 

— 
2.80E-1 

1.0 

2.22E-2 

1.9 
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9. Discussion 

 We make the following three concluding remarks: 

 (i) The numerical results of Section 8 confirm the theory, and indicate                             

that the methods of the present paper are capable of producing approximations of                         

high accuracy. In particular, the results illustrate the substantial improvements                               

in the accuracy of the approximations to y (j) , j >0, that can be achieved by the                                                 

a posteriori correction of the approximating spline. 

 (ii) In the present paper we dealt only with the derivation and convergence               

theory of modified collocation methods.  Thus, although the methods appear to be 

competitive, there is a clear need for a proper evaluation of their computational                 

efficiencies. Such an evaluation will require a comparison analysis of the type                             

carried out by Russell and Varah [14] and Russell [12], and will involve the                        

study of computational aspects concerning, for example, the choice of representation                   

for the approximating spline and the stability of the resulting matrix problems. 

 (iii) It will be of interest to investigate the possibility of extending                               

some of the results f the present paper to partial differential equations. With                             

reference to this, the methods of Archer [ 1 ] for quasilinear parabolic problems                            

and of Houstis et al [ 7 ] for second order elliptic problems may be regarded as                             

modified collocation methods. They correspond to the use of the corrected cubic                         

spline approximation Y1 of Remark 2.6(i), and can be considered to be extensions                            

of the extrapolated collocation method of [ 6 ]. 
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