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An Alternative Development of Basic Functions

The concept of a limit presents considerable problems to many students, yet
often the derivative is defined and limits taken with little thought given
to the consequences by the instructor, let alone by the student. In this
paper we investigate, in a simple problem, the consequence of not
proceeding to the limit. Our example indicates how Calculus reduces the
range of expressions that occur, yet masks important processes that are of
interest and should be returned to later. It reveals a little of the rich
area of Mathematics, known as 'basic' functions, a topic which is so
frequently dismissed in a few mutterings about taking the limit. The price
that has to be paid for taking the limit occurs when reversing the limit
process, then difficulties can arise.

'Basic' function arise when solving equations involving q-differences, the
q-difference of the function f(x) being defined historically as

Af(x) fgx) —f(x).

(a-1)x
So for example Ax" =[n]x"" where the basic number [n] = ! _11 .
q_
. . df
Setting qx = x+h and letting q — 1 Af(x)—)d— .
X
However, in studying the simple q-difference equation Ay(x)=%
+ X

it became apparent that the results could be obtained more easily if a
fundamental change was made. Considerable symmetry and simplicity is
achieved if we define

o

To avoid confusion we will call this the Q-difference, it is closely
associated with the gq-difference, and it has similer properties, in

Af(x) =






-

particular as Q —>1 Af(x)—)j—f However, a number of the changes are
X

significant. As before Ax" —[n]x"" but now the basic number

1
Q" -
_ Qn — n-1 n-3 L
[n] —Q_l Q" +Q +"'+Q"’3+Q“’l'
Q

We develop the 'basic' functions that arise in solving the simple Q-

difference equation Ay(x) :%; in the limit as Q — 1 these functions
+ X

become /n(l1+x). We will obtain an explicit expression for the periodic

function that relates the two forms of the solution. The resulting
relation is both interesting and simple. Moreover the relation could be
used to introduce a more advanced topic, elliptic functions.

The solutions of basic equations corresponding to many important
differential  equations have been investigated. @ A  recent paper by
H. Exton [3] examines a basic analogue of Hermite's equation, q-difference
equations have attracted the attention of many mathematicians and in
particular the Rev. Frank H. Jackson [4]. A useful review paper is that by
C. R. Adams [1] which in turn refers to N. E. Norlund's bibliography [5].

The Q-difference Operation.

An interesting extension of many of the fundamental functions that arise in
Calculus called 'basic' functions was studied at the turn of the -century,
notably by Frank H. Jackson. Jackson's papers are listed in his obituary
by T. W. Chaundy [2], 'Basic' functions strictly arise when solving
equations involving the g-difference operator.

Af(x) = L@ =T
(@-Dx

However, we propose to extend the term basic function to include the
closely related solutions of equations involving our Q-difference operator






Af(x)= === (1)
Q
|
Q o i
On writing [n] = — which equals Q"' +Q"” +—+ o~ + o
Q-——
Q
for integer n and tends to n as Q — 1, we readily verify that
Ax" =[n]x""
1 1 1
ALl -t |ogoxt=1 2
{2[(2 Q} gQ } " (2)
X X
Now the differential equation, ﬂ:L,y(O)zo has solution
dx 1+x
x> x’
y:En(l—i-x): x—7+?— ——— for |x|<1 (3)
= 6nx+l— -+ ——— for |x|>1.
X 2x
The corresponding Q-difference equation is
Ay(x):Lzl—x+x2—x3+ ——— for |x|<1 (4.1)
1+x
1 1 1 1
=———+——F+ ——— for [x|>1. 4.2
X XZ X3 X4 | | ( )
The solution suggested by the expansion (4.1) is
2 3 4
f(x) X
[2] [3] [4] (5)

which is convergent for |x| <é when 0 <Q <1 or |x| < Q when Q > 1.

While the solution suggested by the expansion (4.2) is

lQ—ilogx+l— : + 1 + ——=
2 Q) °Y x R B [4Kx’

1 1 1
= E{Q —a}logox +f{;}

which is convergent for [x| > Q when Q <1 or |x| > é when Q > 1.

Thus the regions in which these two expansions converge overlap. It is the
interrelation between them that we will investigate in this paper.

Solutions of Ay(x) = % can of course differ by more than a constant.
+X






Because Ay(x) = 0 when

y(Qx)= y{%}

2u

Setting x = Q
y [Q2u+1] _ y[QZu—l]

we see that the solutions may differ by a function periodic in u and with
period 1.

Consideration of the value x = 1 leads us to write

f(x)= l{Q—l}logQX L D(x,Q). (7)

2 Q X
This function D(x,Q) will turn out to be periodic and we will deduce an
interesting consequence of this relation.
Iterative Solutions
The Q-difference equation Af(x) Z%, f(O) =0 (8)
+ X

X 1 X
ie. f -fl=|=1Q-—
@) M [Q Q} T+x
can be solved iteratively for both Q<1 and Q>1. We will deal first

with the case Q < 1.

f(x)=—[Q—ij Q4 r(o)

Q) 1+xQ
1 * XQ2n+1
=‘[Q‘—} 2 T (9)
1+ n+
QI = 1+xQ
which on expansion
2 3 4
S N N S — (10)

[2] [3] [4]

The radius of convergence R=Q" results from the pole at X=—l in (9).

The relation (7) becomes

Q X + Q2n+1

n=0 n=0

© XQ2n+l _ *® 2n+l1
_ {Q _é}z 1+xQ™ _%{Q _é}lOng _ {Q _i}zQ— + D(X,Q)






Giving
® Q2n+l i XQ2n+] 1
z — =—log,x +D,(x) (11)
X + 2n+l 1+ x 2n+1 2 Q Q
n=0 Q n=0 Q
where DQ(X)ZK’?).
Q-—
Q

This function D,(x) is remarkably small for Q in the interval % <Q<1;

some computed values of its maximum value for real x are given in the

table, these behave as ‘2(1(1‘“‘ where a = L.
/nQ
Maximum Value of Do(x)
u=.75x= Q'"’
2

T Do)

.9 5.15 E-80

.8 2.15 E-37

7 3.25 E-23

.6 4.06 E-16

5 7.77 E-12

4 6.04 E-09

3 7.91 E-07

2 3.68 E-05

N 1.03 E-03

.05 5.77 E-03
.01 3.75 E-02
The error involved in omitting from (11) Dq(X) is thus quite small unless

Q<.5.

Interesting approximations to logQx are obtained by taking a finite number
of terms from the left hand side of (11).
Further it is readily shown that

D, {QZ(u+1)}: D, {Q2u }
So that when treated as a function of u, DQ(X) is a function periodic in u

with period 1. It can be expressed as a Fourier sine series
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o0

w)_ 1 ~ 1\ Sin2n7n
DQ(Q )_EnQ ( 1) sinhnp (12)

n=l

where B =

. Noting that B is negative for Q < 1, this sum can be

rearranged to give
0

n sin2mi
mQ <~ cosh(2r + 1) + cos2mo”

DQ[QQU]:

T

0

T 2e"P gin 21ty
= . 13
/nQ ;‘ 1+2e* ¥ cos 27u +¢22 1P (13)

In the case Q > 1, equation (8) can be solved iteratively by writing

X
(o_1).Q (xj
f(x)=|Q-—= fl — |.
(X) [Q Qj1+x+ Q2
Q
B X
1 Q2n+1
= Q——j >y (14)
( Q n=0 1+ ii—l
Q

which on expansion

3 4
X X

2
X
=X—t=+1t5—1t5+ ———
2] Bl 4]
The relation corresponding to (11) is

o0 o0 1

X 1
—_— — s re— =—10 X +D,(x 15
nZ:OanH +x ~ XQ2n+1 +1 2 gQ Q( ) ( )

and the effect is simply to replace Q by é, since D, (x) = -Dq(x).
Q
In fact formula (12) for DQ[QZU] still holds.

Integral Result
With x = Q" the relation (11) can clearly be integrated.
Consider the function ?
0 1
(P — 7;[0(1 + Q2n+lxX1 + Q2n+l _j

X

0

- (1+Q2n+lQ2uX1+Q2n+lQ—2u) (16)

n=0
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d Q2n+1Q2u Q2n+1Q—2u
[logQ(/)]_ Z 1+Q2n+lQ2u 21+Q2n+1Q2u

Hence, with x = Q?", the relation (11) becomes
d u u
"4 [IOgQ(p] = logoQ’ +2DQ(Q2 )

= 2u+2D,(Q™)
and on integrating using the form (13) for Do (Q*")
—log, p=u’ —log, 6+consant (17)

where the function 0 == [1+2e
r=0

(@B 05070 4022+ B ]

2

and B = T
/mQ
The significance of this result is clarified if we define q = e”,
0=n [1+2q2r+1 cos2mu +q*™** ] (18)
r=0
a Jacobi theta function . Then from (17), with ¢nq./mQ=n’
0=AQ"¢- (19)

An examination of the zeros of 0 and of ¢ will disclose the nature of the

relation between the two sides of this equation.
On putting u = 0, the constant A is given by

T

A=t — (20)
T [1 + Q2n+1 ]2
n=0

whenq=Q=¢",A=1.
Infinite Product form of Q“z

When Q < 1 the infinite products in (16) for ¢ are absolutely convergent

and because /nq./nQ=mn" it follows q < 1.

o0

0= 1 (1+q2r+1 12nu)(1+q2r+1 ﬂzf:u) ’

r=0

and again both infinite products in 0 are absolutely convergent.
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Q“zcan thus be expressed as the ratio of these infinite products
forOand ¢. By suitably changing the variable u, formula (19) provides

a useful method of calculating all four of Jacobi's theta functions
especially for q near 1.

For Q > 1 we simply replace Q byé and q by 1 and (19) becomes
q

0=AQ " 0. (21)

In particular when Q = e and q =e™

: (1 4o (2t g2 Xl " e—(2n+1)ezu)
¢! =A— o=t (22)

- (1 n e—(2r+l)nzei2n2 Xl n e—(2r+l)nze—i2n2)

r=0

with

o0

T (1 +e )z
A — r=0

o0

T (1 e 2l )2

n=0

2

In this expression for ¢" there appear to be finite poles and zeros,
However, they all cancel and there are in fact none.

The solution of q- difference equations or Q- difference equations such as
(8) seem to be used surprisingly little in Mathematics. [Although elliptic
functions and partition function theory certainly are used]. The reason
could be due to a lack of awareness of ‘basic’ functions by mathematicians,
especially Numerical Analysts and Engineers; it could be the development of
the theory was stunted by the lack of computing facilities. Certainly
there are useful basic functions that tend to each of the elementary
functions of Calculus.
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