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An Alternative Development of Basic Functions 

 
The concept of a limit presents considerable problems to many students, yet 
often the derivative is  defined and l imits taken with l i t t le thought given 
to the consequences by the instructor, let alone by the student. In this         
paper we investigate, in a simple problem, the consequence of not 
proceeding to the limit. Our example indicates how Calculus reduces the 
range of expressions that occur, yet masks important processes that are of     
interest and should be returned to later. It reveals a little of the rich                   
area of Mathematics, known as 'basic' functions, a topic which is so          
frequently dismissed in a few mutterings about taking the limit. The price                    
that has to be paid for taking the limit occurs when reversing the limit          
process, then difficulties can arise. 
 
'Basic' function arise when solving equations involving q-differences, the   
q-difference of the function f(x) being defined historically as 
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it became apparent that the results could be obtained more easily if a 
fundamental change was made. Considerable symmetry and simplicity is 
achieved if we define 
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To avoid confusion we will call this the Q-difference, it is closely  
associated with the q-difference, and it has similer properties, in 
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particular as 
dx
dff(x)       1Q →∆→  However, a number of the changes are 
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We develop the 'basic' functions that arise in solving the simple Q- 

difference equation ;
x1

1)x(y
+

=∆  in the limit as  these functions 1Q →

become . We will obtain an explicit  expression for the periodic )x1(n +l

func t ion  tha t  r e l a t e s  the  two  fo rms  o f  the  so lu t ion .  The  resu l t ing  
relation is  both interesting and simple.  Moreover the relation could be 
used to introduce a more advanced topic, elliptic functions. 
 
The solutions of basic equations corresponding to many important                     
differential equations have been investigated. A recent paper by                        
H. Exton [3] examines a basic analogue of Hermite's equation, q-difference            
equations have attracted the attention of many mathematicians and in                   
particular the Rev. Frank H. Jackson [4]. A useful review paper is that by                       
C. R. Adams [1] which in turn refers to N. E. Norlund's bibliography [5]. 
 
 

The Q-difference Operation. 
 
An interesting extension of many of the fundamental functions that arise in           
Calculus called 'basic' functions was studied at the turn of the century,                    
notably by Frank H. Jackson. Jackson's papers are listed in his obituary                        
by T. W. Chaundy [2], 'Basic' functions strictly arise when solving                       
equations involving the q-difference operator. 
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However, we propose to extend the term basic function to include the                      
closely related solutions of equations involving our Q-difference operator 
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for integer n and tends to n as Q → 1, we readily verify that 
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Now the differential equation, 0y(0),
x1

1
dx
dy

=
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=  has solution 

 ( ) 1xfor             
3
x

2
x   xx1ny

32

<−−−−+−=+= l  (3) 

 1xfor         
2x

1
x
1nx   2 >−−−+−+= l . 

The corresponding Q-difference equation is 
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The solution suggested by the expansion (4.1) is 
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which is convergent for |x| <
Q
1  when 0 <Q < l or |x| < Q when Q > 1. 

While the solution suggested by the expansion (4.2) is 
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which is convergent for |x| > Q when Q < 1 or |x| > 
Q
1  when Q > 1. 

Thus the regions in which these two expansions converge overlap. It is the 
interrelation between them that we will investigate in this paper. 

Solutions of ∆y(x) = 
x1

1
+

  can of course differ by more than a constant. 
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Because ∆y(x) = 0 when 
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Setting x = Q2u

 y [ ] [ ]1u21u2 QyQ −+ =  
we see that the solutions may differ by a function periodic in u and with 
period 1. 
 
Consideration of the value x = 1 leads us to write 
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This function D(x,Q) will turn out to be periodic and we will deduce an 
interesting consequence of this relation. 
 
Iterative Solutions 

The Q-difference equation  ∆f(x) = ( )0f,
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 = 0 (8) 
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can be solved iteratively for both 1Q <  and .   We will  deal first      1Q >
with the case Q < 1.
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which on expansion 
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The radius of convergence  results from the pole at 1QR −=
Q
1X −=  in (9).  

The relation (7) becomes 
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Giving 
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This function  is remarkably small for Q in the interval (x)DQ 2
1  <Q<1;  

some computed values of its maximum value for real x are given in the  

table, these behave as απ2αα  where α = 
nQ
π
l

. 

Maximum Value of DQ(x) 
u = .75, x = Q1.5

   D
2Q

Q(x)    
  .9  5.15 E-80  
  .8  2.15 E-37  
  .7  3.25 E-23   
  .6  4.06 E-16 
  .5  7.77 E-12 
  .4  6.04 E-09 
  .3  7.91 E-07   
  .2  3.68 E-05 
  .1  1.03 E-03 
  .05 5.77 E-03 
  .01 3.75 E-02 
The error involved in omitting from (11) DQ(X) is thus quite small unless 
Q<.5. 
 
Interesting approximations to logQx are obtained by taking a finite number 
of terms from the left hand side of (11). 
Further it is readily shown that 
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Q
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So that when treated as a function of u, ( )xDQ  is a function periodic in u 
with period 1. It can be expressed as a Fourier sine series 
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In the case Q > 1, equation (8) can be solved iteratively by writing 
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which on expansion 
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The relation corresponding to (11) is 
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and the effect is simply to replace Q by 
Q
1 , since 

Q
1D (x) = -DQ(x). 

In fact formula (12) for DQ[Q2u] still holds. 
 
Integral Result 
With x = Q2u the relation (11) can clearly be integrated. 
Consider the function  ϕ
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Hence, with x = Q2u, the relation (11) becomes 
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and on integrating using the form (13) for DQ (Q2u)                          
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The significance of this result is clarified if we define q = , βe
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a Jacobi theta function . Then from (17), with  2nQ.nq π=ll
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An examination of the zeros of θ  and of ϕ  will disclose the nature of the            
relation between the two sides of this equation. 
On putting u = 0, the constant A is given by 
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when q = Q = , A = 1. 
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Infinite Product form of . 

2uQ
 
When Q < 1 the infinite products in (16) for ϕ  are absolutely convergent 
and because  it follows q < 1. 2nQ.nq π=ll
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and again both infinite products in θ  are absolutely convergent. 
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2uQ can thus be expressed as  the rat io  of  these inf ini te  products  
for and .  By sui tably  changing the  var iab le  u ,  formula  (19)  provides  θ ϕ
a useful method of calculating all four of Jacobi's theta functions 
especially for q near 1. 

For Q > 1 we simply replace Q by
Q
1  and q by 

q
1  and (19) becomes 
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In this expression for  there appear to be finite poles and zeros, 
2ue

However, they all cancel and there are in fact none. 
 
The solution of q- difference equations or Q- difference equations such as 
(8) seem to be used surprisingly little in Mathematics. [Although elliptic 
functions and partition function theory certainly are used]. The reason 
could be due to a lack of awareness of ‘basic’ functions by mathematicians, 
especially Numerical Analysts and Engineers; it could be the development of 
the theory was stunted by the lack of computing facilities. Certainly       
there are useful basic functions that tend to each of the elementary  
functions of Calculus. 
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