
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021 517

Cross-Subject Assistance: Inter- and
Intra-Subject Maximal Correlation for

Enhancing the Performance
of SSVEP-Based BCIs

Haoran Wang , Yaoru Sun , Fang Wang , Lei Cao , Wei Zhou, Zijian Wang, and Shiyi Chen

Abstract— Objective: The current state-of-the-art meth-
ods significantly improve the detection performance of the
steady-state visual evoked potentials (SSVEPs) by using the
individual calibration data. However, the time-consuming
calibration sessions limit the number of training trials and
may give rise to visual fatigue, which weakens the effec-
tiveness of the individual training data. For addressing this
issue, this study proposes a novel inter- and intra-subject
maximal correlation (IISMC) method to enhance the robust-
ness of SSVEP recognition via employing the inter- and
intra-subject similarity and variability. Through efficient
transfer learning, similar experience under the same task is
shared across subjects. Methods: IISMC extracts subject-
specific information and similar task-related information
from oneself and other subjects performing the same
task by maximizing the inter- and intra-subject correlation.
Multiple weak classifiers are built from several existing
subjects and then integrated to construct the strong clas-
sifiers by the average weighting. Finally, a powerful fusion
predictor is obtained for target recognition. Results: The
proposed framework is validated on a benchmark data set
of 35 subjects, and the experimental results demonstrate
that IISMC obtains better performance than the state of the
art task-related component analysis (TRCA). Significance:
The proposed method has great potential for developing
high-speed BCIs.

Index Terms— Brain–computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potentials
(SSVEP), inter- and intra-subject maximal correlation, trans-
fer learning.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) based on steady-
state visual evoked potentials (SSVEPs) have been inves-

tigated extensively due to high signal-to-noise ratio (SNR),
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high information transfer rate (ITR), reliability, and design
flexibility [1]–[3]. In a recent study, researchers proposed a
new joint frequency-phase modulation (JFPM) method to tag
40 characters in an SSVEP-based BCI speller, resulting in
achieving an ITR of 267 bits/min on average, the highest ITR
to date [3]. In the literature, the JFPM paradigm incorporated
phase coding into frequency coding, which could minimize
the correlation coefficient between adjacent frequency stimuli.
Besides, the SSVEP template signals obtained by averaging
across multiple trials in the calibration data for each stimulus
class were used to improve the classification performance of
demodulation paradigm.

Previous studies for SSVEP recognition focused on the
amplitude and spatial distribution of SSVEP responses, such as
power spectral density analysis (PSDA), where the frequency
corresponding to the peak value is taken as the visual stimulus
frequency. However, only the single-channel EEG data is used,
the PSDA is sensitive to background noises and requires a long
time window for improving recognition accuracy [4]. In recent
years, many spatial filtering techniques based on multiple
channel signals have been introduced to implement more
efficient SSVEP-based BCIs, such as canonical correlation
analysis (CCA) [5], minimum energy combination (MEC) [6]
and multivariate synchronization index (MSI) [7]. Among
them, the CCA has been most widely adopted and robust
enough in detecting SSVEPs.

Although the standard CCA is highly efficient for the
frequency detection of SSVEPs, the recognition accuracy
is not satisfactory because the simplified pre-constructed
sine-cosine waves are almost devoid of the abundant features
contained in the real EEG data. Currently, researchers have
been trying to extract the subject-specific and task-related
information from the individual calibration data and reduce
the effect of spontaneous background EEG activities. The
individual template-based CCA (IT-CCA) [8] method was
recently proposed to replace the sine-cosine reference signals
with individual template signals. Alternatively, another way
is to optimize the reference signals, such as the multi-way
CCA (MwayCCA) [9], the L1-regularized MwayCCA
(L1-MCCA) [4] and the multi-set CCA (MsetCCA) [10].
It has been proved that these calibration-data-based methods
significantly outperform the standard CCA method. In general,
the individualized template signals can better characterize
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subject-specific SSVEPs, compared to the optimized reference
signals. The combined CCA (Combined-CCA) incorporating
individual templates into the CCA leads to a higher per-
formance than the other existing CCA-based methods [11].
Recent state-of-the-art SSVEP decoders learn spatial filters
from the calibration data via maximizing the inter-trial cor-
relations, then calculate the correlation between the test data
and transformed individual templates, such as the task-related
component analysis (TRCA) [12], the correlated component
analysis (CORCA) [13] and the sum of squared correlations
(SSCOR) [14].

Previous studies depend on the assumption that task-related
information is stable and similar across trials, which means
that sufficient amounts of training data are required for extract-
ing essential features [3]. However, the time-consuming and
labor-intensive training procedure will hinder the practical
application of an SSVEP-based BCI speller. For address-
ing the issue, subject-independent training methods, which
require the training data from various subjects to extract
common features or generalize system parameters so that
the BCI application is suitable for a new user, have drawn
the attention of researchers [15]. Subject-independent training
methods adopt the cross-subject transfer-learning to provide
inter-subject similarity, e.g., transfer template-based canonical
correlation analysis (tt-CCA), online transfer template-based
CCA (ott-CCA) [16], transfer template-based Combined-CCA
(Combined-tCCA) and a unsupervised adaptive transfer vari-
ant of Combined-tCCA (Adaptive-C3A) [17]. These methods
establish transferred templates by averaging the training data
across all source subjects, and the transferred templates are
regarded as the alternative to individual templates. A recent
study extends the TRCA by maximizing reproducible com-
ponents across trials and a group of subjects, referred to
as group TRCA (gTRCA) [18]. The gTRCA exploits the
similarity between a new subject and the existing subjects
for recognizing stimuli, which offers an alternative to grand
averaging.

Although subject-independent training methods have out-
performed training-free methods, they are not comparable to
subject-dependent training methods requiring the individual
data to extract subject-specific information. For this reason,
the session-to-session transfer method has been proposed,
which transfers training data of the same subjects recorded
from different days [19]. Another recent study proposes
least-squares transformation (LST) that transforms the training
data from several existing subjects to fit individual data and
form a supplement to individual data [20]. When the num-
ber of individual trials is limited, the LST can significantly
enhance the SSVEP decoding performance. In fact, inherent
intra-subject variability may impede the inter-trial transfer-
ability. For example, visual fatigue and attention lapse often
result in varying amplitude of response, latency, and SSVEP
attend-to-ignore ratios (AIR) [21]–[24]. The inter-subject
associativity, based on transferring knowledge, can alleviate
intra-subject variability and reduce the necessity for calibration
sessions [25].

This study proposed a cross-subject assistance framework to
enhance the robustness of SSVEP recognition by maximizing

inter- and intra-subject correlation. Not only subject-specific
information but also, more importantly, the inter-subject sim-
ilarity is integrated into the method, and thus further can
improve the separability of the extracted features. In the
performance evaluation, the efficacy of the proposed frame-
work was evaluated on a 40-target SSVEP dataset recorded
from 35 subjects [26]. The results in this paper demon-
strated that the proposed method significantly enhanced
the recognition performance and outperformed the state
of the art TRCA, especially in the case of less training
data.

II. MATERIALS AND METHODS

A. Benchmark Dataset

The proposed framework was evaluated using the SSVEP
benchmark data provided by Wang et al. [26]. The dataset
was recorded from 35 healthy subjects (17 females, aged
17–34 years, mean age: 22 years). Among these subjects,
eight of them had experience of using the SSVEP-based
BCI speller, and others were naive to the SSVEP-based BCI.
The user interface of the BCI speller is a 5 × 8 stimulus
matrix containing 40 characters (26 English alphabet letters,
10 digits, and 4 other symbols). The 40 characters are coded
using linearly increasing frequencies and phases. The fre-
quency range is from 8 Hz to 15.8 Hz with an interval
of 0.2 Hz. The phase values start from 0, and the interval
is 0.5 π .

For each subject, the experiment consisted of six runs, each
containing 40 trials corresponding to all 40 characters. Each
trial started with a 0.5-s target cue, which prompted users to
shift their gaze to the target as soon as possible. After that,
all stimuli started to flicker on the monitor concurrently for
5 s. After the stimulus was rendered, there was a rest for
0.5 s to avoid visual fatigue. The EEG data were collected
from 64 electrodes positioned according to the international
extended 10-20 system, and the reference electrode was placed
at the vertex (Cz).

In the evaluation process, the EEG data was selected from
9 electrodes (OZ, O1, O2, PZ, POZ, PO3, PO4, PO5 and POZ)
and was extracted in [0.14 s (0.14 +d) s], where d is the data
length used in the analysis. The delay of 0.14 s was applied to
suppress the effect of visual latencies in the visual system [27].
All data epochs were downsampled to 250 Hz and then were
filtered via a band-pass IIR filter to pass signals between 7 Hz
and 90 Hz.

B. Task Related Component Analysis

Task related component analysis (TRCA) was employed to
extract task-related components by maximizing the inter-trial
covariances [12]. Assume that X i ∈ R

Nc×Ns and X j ∈
R

Nc×Ns are the i -th and j -th trial of one subject. Here, Nc

is the number of channels, Ns is the number of time samples.
The constrained optimization is given by the Rayleigh-Ritz
problem [14]:

w = arg max
w

wT Sw

wT Qw
(1)
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Here, S is the aggregated inter-trial covariances:

S =
Nt∑

i, j=1
i �= j

Cov(X i , X j ) (2)

Q is the aggregated auto-covariances:

Q =
Nt∑

i, j=1
i= j

Cov(X i , X j ) (3)

where Nt is the number of training trials. The optimal coef-
ficient vector w can be obtained as the eigenvector of the
matrix Q−1 S corresponding to the largest eigenvalue. Then,
wk , the spatial filter for the k-th stimulus frequency, can
be obtained. The correlation coefficients rk (i.e., the feature
λk for target identification) between projections of test trial
X t ∈ R

Nc×Ns and the averaged training data across trials
X̄k ∈ R

Nc×Ns can be calculated as follow:
λk = rk = ρ(XT

t wk, X̄
T
k wk) (4)

where ρ(a, b) indicates the correlation coefficient between a
and b. After that, the target frequency ft can be recognized
by the formula:

ft = max
fk

λk , k = 1, . . . , N f (5)

where N f is the number of stimuli used in SSVEP-based BCI.

C. Inter- and Intra-Subject Maximal Correlation (IISMC)

This study focuses on extracting subject-specific informa-
tion and similar task-related information from oneself and
other subjects performing the same task, that are inspired by
the TRCA and CORCA.

1) Inter-Subject Maximal Correlation: Assume that EEG sig-
nals of the i -th and j -th trial recorded from the subject S1
and S2 are denoted as X S1,i ∈ R

Nc×Ns and X S2, j ∈ R
Nc×Ns ,

respectively. And Nt1 and Nt2 are the numbers of training
trials. The objective of inter-subject maximal correlation is
to find a linear combination (i.e., spatial filter) of electrodes
that maximize the correlation between subjects [28]. Formally,
such a weight vector w is sought that the resulting linear
projections yS1,i = wT X S1,i and yS2, j = wT X S2, j exhibit
the maximal Pearson Product Moment Correlation Coeffi-
cient [29]. Therefore the optimization problem can be solved
as:

w = arg max
w

1

2

wT (R12 + R21)w√
wT R11w

√
wT R22w

(6)

Here, R12 and R21 are the inter-subject cross-covariances:

R12 = 1

Nt1 Nt2

Nt1∑
i=1

Nt2∑
j=1

(yS1,i − yS1,i )(yS2, j − yS2, j )
T (7)

R21 = 1

Nt1 Nt2

Nt1∑
i=1

Nt2∑
j=1

(yS2, j − yS2, j )(yS1,i − yS1,i )
T (8)

R11 and R22 are the intra-subject auto-covariances:

R11 = 1

Nt1

Nt1∑
i=1

(yS1,i − yS1,i )(yS1,i − yS1,i )
T (9)

R22 = 1

Nt2

Nt2∑
j=1

(yS2, j − yS2, j )(yS2, j − yS2, j )
T (10)

Assume that wT R11w and wT R22w are equal [13], [30],
[31], which yields the following equation:

√
wT R11w

√
wT R22w = 1

2
wT (R11 + R22)w (11)

Hence the equation (6) can be simplified to:

w = arg max
w

wT (R12 + R21)w

wT (R11 + R22)w
(12)

The optimal weight vector w can be obtained from the
eigenvector of (R11 + R22)

−1(R12 + R21), which is corre-
sponding to the largest eigenvalue.

2) Intra-Subject Maximal Correlation: Assume that X i ∈
R

Nc×Ns and X j ∈ R
Nc×Ns are the i -th and j -th trial of the

same subject. Same as above, a weight vector w̌ is sought
so that the resulting linear projections yi = w̌

T X i and
y j = w̌

T X j exhibit the maximal Pearson’s correlation. Hence
the optimization problem can be solved as:

w̌ = arg max
w̌

1

2

w̌
T (Ř12 + Ř21)w̌√

w̌
T Ř11w̌

√
w̌

T Ř22w̌

(13)

Here, Ř12 and Ř21 are the within-subject cross-covariances:
Ř12 = 2

Nt (Nt − 1
)

∑
i< j≤Nt

(yi − yi )(y j − y j )
T (14)

Ř21 = 2

Nt (Nt − 1
)

∑
i< j≤Nt

(y j − y j )(yi − yi )
T (15)

where Nt is the number of training trials belonged to the
subject. Ř11 and Ř22 are the within-subject auto-covariances:

Ř11 = Ř22 = 1

Nt

∑
i= j≤Nt

(yi − yi )(y j − y j )
T (16)

In the same way, the equation (13) can be simplified to:

w̌ = arg max
w̌

w̌
T (Ř12 + Ř21)w̌

w̌
T (Ř11 + Ř22)w̌

(17)

Similarly, w̌ can be obtained from the eigenvector of (Ř11+
Ř22)

−1(Ř12 + Ř21), which is corresponding to the largest
eigenvalue.

3) Combined Inter- and Intra-Subject Maximal Correlation:
Suppose SM is the set of selected subjects used for transfer,
while SI is the current individual whose test trials will be
recognized. For the k-th stimulus frequency fk , the template
signals of the transferred subjects are obtained by averaging
training trials:

X̄ Sm,k = 1

Ntm

Ntm∑
i=1

X Sm,k,i ,∀Sm ∈ SM (18)
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where X Sm,k,i is the i -th trial of the subject Sm corresponding
to fk , and Ntm is the number of training trials. The individual
template signals are obtained as follow:

X̄k = 1

Nt

Nt∑
i=1

Xk,i (19)

where Xk,i is the i -th trial of the current individual corre-
sponding to fk , and Nt is the number of individual training
trials. Then the inter-subject spatial filters {wSm,k |Sm ∈ SM }
between each pair {(Sm , SI )|Sm ∈ SM } of transferred subject
Sm and individual SI can be obtained via inter-subject maximal
correlation, i.e., the equation (12). The intra-subject spatial
filter w̌k can be obtained via intra-subject maximal correlation,
i.e., the equation (17).

By incorporating these template signals and spatial filters
in target identification, four different types of correlation
coefficients between projections of test trial X t and template
signals are implemented as follows: (i) ρ(XT

t w̌k, X̄
T
k w̌k)

with individual template and intra-subject spatial filter,
(ii) ρ(XT

t wSm,k, X̄
T
k wSm,k) with individual template and

inter-subject spatial filter, (iii) ρ(XT
t w̌k, X̄

T
Sm,kw̌k) with trans-

ferred subject’s template and intra-subject spatial filter, (iv)
ρ(XT

t wSm,k, X̄
T
Sm,kwSm,k) with transferred subject’s template

and inter-subject spatial filter.
In essence, for each transferred subject, (ii), (iii) and (iiii)

can be obtained, and they are all weak classifiers. Strong clas-
sifiers can be constructed by averaging their “votes” of weak
classifiers [32], [33]. Hence, for the k-th stimulus frequency,
a correlation vector rk is defined as follows:

rk =

⎡
⎢⎢⎣

rk(1)
rk(2)
rk(3)
rk(4)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ(XT
t w̌k, X̄

T
k w̌k)

1

|SM |
∑

Sm∈SM
ρ(XT

t wSm,k, X̄
T
k wSm,k)

1

|SM |
∑

Sm∈SM
ρ(XT

t w̌k, X̄
T
Sm,kw̌k)

1

|SM |
∑

Sm∈SM
ρ(XT

t wSm,k, X̄
T
Sm,kwSm,k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(20)

where
∑

Sm∈SM
represents the sum over all transferred sub-

jects. In the end, the four correlation values described in equa-
tion (20) are combined as the feature for target identification:

λk =
4∑

n=1

sign(rk(n)) · (rk(n))2 (21)

where sign() is used to keep discriminative information from
negative correlation coefficients. Then, the target frequency ft

can be recognized by the formula (5). Fig. 1 illustrates the
proposed IISMC-based method.

D. The Ensemble Strategy

For each subject, previous studies have demonstrated that
these spatial filters {w∗

1, . . . ,w
∗
N f

} obtained from different
stimuli are similar to each other because distributed local

sources of the SSVEP response are similar [34]. Combining
these spatial filters can further improve the performance of
methods [12]–[14]. The ensemble spatial filter is given as:

W = [w∗
1, . . . ,w

∗
N f

] (22)

Then the correlation coefficient for k-th visual stimulus
between a test data X t and the relevant template signal Y k

can be modified to be as:
r∗

k = ρ(XT
t W T , Y T

k W T ) (23)

Hereinafter, the ensemble TRCA-based and IISMC-based
methods were termed as e-TRCA and e-IISMC, respectively.

E. Filter-Bank Processing

The filter-bank technology decomposes SSVEPs into
sub-band components, and then extracts the high-SNR inde-
pendent information embedded in the harmonic components.
Hence the filter-bank technology can facilitate target classifica-
tion [35]. In this study, the lower and upper cut-off frequencies
were set to b×8 Hz and 90 Hz for the b-th sub-band, where
the range of b is from 1 to Nb . After that, the feature λ

(b)
k was

extracted from the b-th sub-band signals filtered by Chebyshev
Type I Infinite impulse response (IIR). A weighted sum of
squares of feature values from all sub-bands is obtained as
the final detection score:

�k =
Nb∑

b=1

v(b)(λ
(b)
k )2 (24)

where v(b) = b(−1.25) + 0.25 is the weight function. And the
target frequency ft can be recognized by the formula:

ft = max
fk

�k, k = 1, . . . , N f (25)

F. Performance Evaluation

The accuracy (%) and ITR (bit/min) comparisons between
the proposed IISMC-based methods and the state-of-the-art
TRCA-based methods were performed. The classification
accuracy was estimated using a leave-one-out cross-validation,
i.e., 5 blocks were used for training, and 1 block was used
for testing. In the IISMC-based methods, for each transferred
subject, all 6 blocks were used.

It is worth noting that the experienced group was reported
that it had a higher CCA classification accuracy [26], which
means that they could provide more useful task-related infor-
mation. Thus the IISMC-based methods based on two subject
groups (i.e., the experienced group and all 35 subjects) were
investigated, respectively. The former, termed as IISMC-EG,
randomly selected partial individuals from 8 experienced sub-
jects. The latter, termed as IISMC, was the general version and
randomly selected subjects from all 35 subjects. For statistical
significance, each random process was repeated 10 times and
the averaged results were reported.

To evaluate the discriminative ability and the similar-
ity of features extracted with the IISMC-based and the
TRCA-based methods, the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) technique was employed to map
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Fig. 1. Flowchart of the IISMC-based method for SSVEP frequency recognition. χ I,k denotes the individual training data at the k-th stimulus
frequency fk(k = 1, . . . ,Nf), and χS1,k, . . . ,χSm,k denote the training data recorded from transferred subjects S1, . . . ,Sm. Then the spatial filters
(e.g., w̌k, wS1,k, and wSm,k) can be found by the inter-subject maximal correlation (Inter-S MC) and the intra-subject maximal correlation (Intra-S
MC), and four different type of correlation coefficients between projections of the test trial Xt and various template signals (e.g., X̄k, X̄S1,k, and
X̄Sm,k) are calculated by the Pearson’s correlation ρ. These correlation coefficients are integrated by the formula (20). The SSVEP frequency for Xt
is finally recognized by formula (21).

original data in high dimensions onto low dimensions [36].
Specifically, the t-SNE establishes joint probabilities of
data points based on similarity and tries to minimize the
Kullback-Leibler divergence between the joint probabilities of
the low-dimensional and the high-dimensional data. In this
study, the t-SNE algorithm mapped 40-dimensional features
extracted with the IISMC-based and the TRCA-based methods
to a 2-dimensional vector so that the extracted features were
visualized in two dimensions. The data visualization technique
would provide a more intuitive interpretation and insight-
ful implication of the experimental findings. Meanwhile, for
quantifying the degree of (intra-cluster) compactness and
(inter-cluster) separation of cluster partitions formed by these
2-dimensional points, the mean silhouette coefficient over all
40 clusters was calculated. The larger value of silhouette
coefficient indicates that data points within the same cluster
are more closely aggregated, and the distance between adjacent
clusters is more longer [37], [38]. In this study, the distance
between points was calculated by the Euclidean distance.

III. RESULTS

A. Parameter Optimization

1) Transferred Subject Selection: Since the number of sub-
jects used for transfer |SM | would play an important role in the
IISMC method, we first explored the effects of varying |SM |
on the recognition performance. Fig. 2 showed the averaged
classification accuracy for the basic and ensemble versions of
the IISMC method using 600-ms long SSVEP data, where the
|SM | varied from 1 to 7. Clearly, the IISMC-EG outperformed
the general IISMC, indicating that the known experienced

Fig. 2. The averaged classification accuracy obtained by (a) the basic
and (b) the ensemble version of IISMC-based methods at different
numbers of transferred subjects with 600ms-long epochs. The dash
line indicates the baseline (i.e., the accuracy of TRCA). The asterisk
indicates the statistically significant differences (paired t-tests, *p < 0.05;
**p < 0.01; ***p < 0.001). The error bars indicate standard errors.

subjects who had a few training and experience of using the
SSVEP-based BCI speller would provide better guidance for
other subjects’ target identification. When the number of trans-
ferred subjects was more than 2, these IISMC-based methods
yielded better performance compared to the TRCA-based
methods. Overall, the accuracy obtained by the IISMC-based
methods increased with the number of transferred subjects
used in the calculation. However, the statistically significant
difference between adjacent values of |SM | was very small
when the number of transferred subjects was more than 4.
As a result, the setting |SM | = 5 was adopted for further
analysis, which was also the resource-accuracy trade-off.
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Fig. 3. The averaged classification accuracy obtained by (a) the basic
and (b) the ensemble versions of IISMC-based and TRCA-based meth-
ods at different numbers of sub-bands with 600ms-long epochs. The error
bars indicate standard errors. The asterisk indicates significant difference
between three methods by one-way repeated measures analysis of
variance (ANOVA) (*p < 0.05; **p < 0.01; ***p < 0.001).

2) Filter-Bank Analysis: For the 600-ms data length, the clas-
sification performances of the TRCA and IISMC with different
number of sub-bands were compared. As shown in Fig. 3,
the IISMC-based methods achieved higher accuracy than the
TRCA-based methods in all cases. Furthermore, the highest
accuracy was obtained when the numbers of sub-bands were
4 and 5 for the basic and ensemble versions of IISMC-based
and TRCA-based methods, which is consistent with the result
reported in the literature [3], [12]–[14]. For a fair comparison,
in the following computation, the number of sub-bands was
set to 4.

B. Target Identification Performance

1) Training Blocks: An important objective of the IISMC
method is to reduce the dependency on the individual calibra-
tion data. It means that the proposed method can be sensitive
enough to detect SSVEPs with adequate accuracy as the
number of individual training blocks is reduced. Fig. 4 showed
the average accuracies of the IISMC-based and TRCA-based
methods for different number of individual training blocks
at a 600-ms time window. For the IISMC-based methods,
the stacked bars were plotted for different numbers of trans-
ferred subjects’ training blocks, and darker colors represented
lower numbers. Overall, the classification accuracy increased
with the number of training blocks, and the IISMC-based
methods outperformed the TRCA-based methods. In particu-
lar, when the number of training blocks for both the individual
and other transferred subjects was 2, the IISMC-based methods
dramatically improved the detection accuracy (TRCA versus
IISMC versus IISMC-EG without filter bank: 40.79 ± 4.46%
versus 47.40 ± 4.29% versus 49.18 ± 4.22%; TRCA versus
IISMC versus IISMC-EG with filter bank: 43.29 ± 4.59%
versus 49.22 ± 4.41% versus 50.87 ± 4.33%; e-TRCA versus
e-IISMC versus e-IISMC-EG without filter bank: 60.89 ±
4.74% versus 62.68 ± 4.54% versus 64.32 ± 4.42%; e-TRCA
versus e-IISMC versus e-IISMC-EG with filter bank: 62.18 ±
4.90% versus 64.06 ± 4.48% versus 65.84 ± 4.29%). With
the increasing numbers of the individual calibration data,
the promotion was weakened, but the performance of IISMC
was still slightly better than the TRCA and did not deteriorate
to the same level.

Fig. 4. The performance comparison between IISMC and TRCA for dif-
ferent number of individual training blocks with 600ms-long epochs. The
stacked bars represent the number of training blocks from the transferred
subject, in which darker colors mean less amount. The subplots (a) and
(b) show the mean accuracy of the basic methods while subplots (c) and
(d) show the ensemble methods. The first and second columns depict
the results of these methods without and with the filter-bank (w/o FB and
w/ FB) technology, respectively. The error bars indicate standard errors.

2) Overall Performance: The average accuracies for the
IISMC-based and the TRCA-based methods were compared at
different time lengths (0.2-1 s). These results were presented in
Fig. 5. The IISMC-based methods yielded better performance
than the TRCA-based methods in case of both the basic and
the ensemble versions. By the statistical analysis with paired
t-tests, the proposed IISMC-based methods showed superi-
ority compared to the TRCA-based methods when the time
window was greater than 0.2 s. Furthermore, the IISMC-EG
method showed a significant improvement regardless of the
time-window length.

The performance of the proposed IISMC method using the
filter bank was further investigated. As shown in Fig. 6, for
the basic version, the IISMC-based methods outperformed the
TRCA-based methods in all situations. However, the clas-
sification accuracies of the ensemble IISMC method based
on the randomized group were nearly similar to those of
the ensemble TRCA method, with no statistically significant
difference between them via paired t-tests. But, as expected,
the ensemble IISMC method based on the experienced group
still had an apparent performance improvement compared with
the ensemble TRCA method. The differences were obvious
and statistically significant.

The difference between results obtained by the IISMC and
the IISMC-EG was caused by different groups of transferred
source subjects, which encouraged us to divide all subjects into
three groups (i.e., 8 experienced, 27 naive, and all 35 sub-
jects) and further investigate the accuracy of three groups.
Figure. 7 illustrated the average accuracies of three groups.
The window was set to 0.6 s, by the statistical analysis with
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Fig. 5. The average accuracies across all subjects obtained by the
IISMC-based methods and the TRCA-based methods at different data
length without filter-bank (w/o FB) preprocessing. The first and second
rows depict the results obtained by the IISMC method based on the
randomized group and the experienced group, respectively. The asterisk
indicates the statistically significant differences (paired t-tests, *p < 0.05;
**p < 0.01; ***p < 0.001). The error bars indicate standard errors.

paired t-tests, there was no statistically significant difference
for the experienced group between the IISMC-based and
the TRCA-based methods at all conditions. However, there
still was a statistically significant difference for the naive
group, which was basically conformable to the result of all
35 subjects. It demonstrated that the proposed method could
significantly enhance accuracy of the inexperienced subject
but have little impact on the experienced subject who usually
have high accuracy. On the contrary, the reliable experience
of the experienced group was obviously of great importance
for the IISMC method, which applied shared experience to
a target subject. For this reason, the accuracies and ITRs
of the ensemble IISMC methods based on the experienced
group were compared with those results from the ensemble
TRCA methods. As shown in Fig. 8, the ensemble IISMC
method with filter-bank preprocessing achieved the highest
ITR (e-IISMC w/ FB: 219.66 ± 10.20 bits/min, t = 0.5 s;
e-TRCA w/ FB: 217.02 ± 11.06 bits/min, t = 0.6 s; e-IISMC
w/o FB: 211.3 ± 8.61 bits/min, t = 0.6 s; e-TRCA w/o FB:
206.68 ± 9.32 bits/min, t = 0.7 s). These findings suggested
that inter-subject shared information can indeed significantly
enhance the recognition of SSVEPs.

C. The t-SNE Visualization

This study exploited the fundamental assumption of
evoked responses: reproducibility of task-related components
across trials and subjects [39]. The IISMC not only utilized
subject-specific information but also, more importantly,

Fig. 6. The average accuracies across all subjects obtained by the
IISMC-based methods and the TRCA-based methods at different data
length with filter-bank (w/ FB) preprocessing. The first and second
rows depict the results obtained by the IISMC method based on the
randomized group and the experienced group, respectively. The asterisk
indicates the statistically significant differences (paired t-tests, *p < 0.05;
**p < 0.01; ***p < 0.001). The error bars indicate standard errors.

explicitly integrated the inter-subject similarity into the
model, thus further improving the separability of features
for different stimulus classes. To further investigate the
discriminative ability and the similarity of features extracted
by these compared methods, the 2-dimensional t-SNE of
the 40-dimensional features was implemented and visualized
in Fig. 9. Fig. 9 illustrated the t-SNE projections of the
feature vectors from the IISMC-based and the TRCA-based
methods for an example subject (S22). Obviously, these
two-dimensional points obtained by the IISMC-based methods
were more tightly aggregated within the clusters, and these
formed clusters were well-separated, when compared with the
TRCA-based methods. These observations were quantified
using the silhouette coefficient: 0.322 for TRCA, 0.512 for
IISMC, 0.553 for IISMC-EG, 0.345 for e-TRCA, 0.557 for
e-IISMC, 0.643 for e-IISMC-EG. The average silhouette
coefficient of all 35 subjects was also calculated, and the
paired t-tests showed significant differences between all
pairs of these methods (TRCA: -0.060 ± 0.048, IISMC:
0.082 ± 0.049, IISMC-EG: 0.101 ± 0.049, e-TRCA:
0.000 ± 0.045, e-IISMC: 0.156 ± 0.046, e-IISMC-EG:
0.174 ± 0.046). Therefore, inter-subject similarity and
variability can contribute to capturing the inter-subject
common features and the inter-class discriminative
information.

D. The Computational Time

Fig. 2 showed that the performance of the IISMC was
improved as the number of transferred subjects increased.
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Fig. 7. The average accuracies of three groups (i.e., 8 experienced,
27 naive, and all 35 subjects) obtained by the IISMC-based methods
and the TRCA-based methods at a 600ms-long data length. The first
and second rows depict the results of these methods without and with
the filter-bank (w/o FB and w/ FB) technology, respectively. The asterisk
indicates the statistically significant differences (paired t-tests, *p < 0.05;
**p < 0.01; ***p < 0.001). The error bars indicate standard errors.

Fig. 8. The averaged ITRs obtained by the ensemble IISMC-based and
TRCA-based methods at various time windows without or with filter-bank
preprocessing (w/o FB and w/ FB). The ensemble IISMC-based methods
selected subjects from the experienced group. The asterisk indicates the
statistically significant differences (paired t-tests, *p < 0.05; **p < 0.01;
***p < 0.001). The error bars indicate standard errors.

However, such improvement came at the expense of more
computational cost. Fig. 10 showed the computational time
of the training stage (i.e., calculated the spatial filters and
template signals for each frequency) and the prediction stage
(i.e., calculated the correlation vectors and output the recog-
nition result) for each method. The evaluation process was
carried out on a computer with the configuration of Intel(R)
Core(TM) i7-7820X CPU @3.60GHz, 8-core, 64 GB RAM,
64-bit CentOS. The results indicated that the training and
prediction time grew linearly with the number of transferred

Fig. 9. Two-dimensional t-SNE visualization of the 40-dimensional
features obtained by (a) the basic and (b) the ensemble versions of
IISMC-based and TRCA-based methods using a 0.6 s time window for
an example subject (S22). Each two-dimensional point represents a trial
of the 240 total trials and each color represents a stimulation condition.

Fig. 10. The computational time of (a) the training stage and (b) the
prediction stage for the IISMC and the TRCA with different number of
transferred subjects. In the training stage, the spatial filters and template
signals were calculated. In the prediction stage, the correlation vectors
were calculated, and the final recognition result was obtained. The data
length was set to 0.6 s.

subjects. Meanwhile, the training time accounted for a larger
proportion of overall computational time than the prediction
time, which inspired us to enable the training stage to run in
parallel. Therefore, we assigned one process to each subject
involved in the calculation and then investigated the train-
ing time of the parallel IISMC, a parallel version of the
IISMC. As shown in Fig. 10(a), data-parallel with multiple
processes led to less training time. When there was only
one transferred subject, intra- and inter-subject correlation
analyses were performed concurrently, resulting in a short
training time similar to TRCA’s. Although the training time
still increased with the number of transferred subjects, a dis-
tributed cooperative computing environment could be expected
to tackle this problem, which will be investigated in our future
work.
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IV. DISCUSSION

A typical BCI system requires time-consuming calibration
sessions to collect an adequate amount of labeled individ-
ual data. Then, the subject-specific and task-related informa-
tion is extracted as the features from them [40]. However,
the cumbersome calibration procedure restricts the application
of SSVEP-based BCIs in the real world. Hence how to
reduce training time while maintaining the good BCI per-
formance is one of the main research directions [15]. The
previous study, LST [20], developed a cross-subject trans-
ferring method to reduce the dependency on the individual
calibration data. Similarly, as demonstrated in Fig. 4, when
the number of training trials was small, the IISMC-based
methods achieved significant improvements in target recog-
nition over the TRCA-based methods. But as the number of
training trials increased, the improvements decreased, which
emphasizes the importance of individual calibration data for
providing subject-specific information [20]. Still, as a whole,
the proposed method has the promising potential to reduce
dependency on the calibration data as well as shorten the
calibration time.

In fact, knowledge transfer between task domains has
been proven to be truly beneficial in many cases. In this
paper, the IISMC aims to extract the task-related knowledge
from several subjects and apply the knowledge to a target
subject [41]. Obviously, the experienced group who have
experience of using the SSVEP-based BCI speller can provide
more useful knowledge and experience. Perhaps the reason is
that they can indeed deploy overt attention to the task-relevant
stimuli and focus on them [42], which highlights the impor-
tance of training in advance. On the other hand, when it is not
clear who has the experience, one alternative way is to select
subjects with higher accuracy as the ideal transferred subjects
(i.e., the experienced group), which has been verified in our
previous study [43].

Recently, the collaborative multi-user BCIs have attracted
the growing attention of researchers and engineers, which are
considered to have potential benefits to improve the overall
BCI performance, compared to individual BCIs [44], [45].
In this study, the performance evaluation of the proposed
method on the offline dataset suggested that IISMC is a
promising cross-subject assistance framework for developing
the collaborative BCIs by combining brain signals of multiple
subjects who perform the same task. Meanwhile, the coop-
erative computing architecture will provide optimization for
the time consumption of the IISMC algorithm. Therefore,
the online collaborative SSVEP-based BCI based on the
IISMC method will be investigated in our future work.

V. CONCLUSION

This study proposed a novel IISMC-based cross-subject
assistance framework to enhance the performance of
SSVEP-based BCI. Experimental results on 35 subjects
showed that the proposed method yielded higher detec-
tion accuracies and outperformed the state-of-the-art TRCA
method, especially for the IISMC method based on the expe-
rienced group. Our experimental results suggested that IISMC

has the potential to develop more convenient and practical
SSVEP-Based BCI applications.
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