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Aims To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease
(CHD) using multiple instrumental variables for Mendelian randomization.

Methods
and results

We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with
HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). Foreach trait, we constructed two scores. The first
was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (thresh-
old P , 2 × 1026); and the second a restricted score, filtered to remove any SNPs also associated with either of the other
two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 partici-
pants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively)
associatedwithCHD.ForHDL-C, theunrestrictedallele score (48SNPs)wasassociatedwithCHD(OR:0.53;95%CI: 0.40,
0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the
unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a
robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs)
were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit in-
crement. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of
1.01 (95% CI: 0.59, 1.75).

Conclusion The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible,
remains less certain.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Introduction
The association of elevated low-density lipoprotein cholesterol
(LDL-C) with coronary heart disease (CHD) events in observational
studies has been established as causal based on randomized trials of
LDL-C-lowering drugs.1,2 In contrast, uncertainty existson the causal
relevance of high-density lipoprotein cholesterol (HDL-C) and trigly-
cerides. Whereas observational studies indicate unambiguous asso-
ciations of triglycerides and HDL-C with CHD (the association
being positive for triglycerides and inverse for HDL-C),3 randomized
trials of HDL-C or triglyceride modifying drugs have not, so far,
shown the anticipated benefit.4– 6

These inconsistent findings may have arisen because the observa-
tional studies are affected by reverse causality7 or by confounding
(the latter would arise if HDL-C or triglyceride levels mark another
causal risk factor without being causal themselves). Alternatively,
the negative findings from clinical trials may have arisen from inad-
equate selection of drug targets or drug molecules.6,8 Given this un-
certainty, it remains unclear whether elevating HDL-C or reducing
triglycerides by different means may still have utility for prevention
of CHD events.

A further approach to evaluating the causal relevance of biomar-
kers that addresses these limitations is to exploit the natural rando-
mized allocation of allelic variation in genes affecting their level
(Mendelian randomization, outlined in Supplementary material
online, Figure S1).9,10 Unlike the directly observed associations of a
risk factor with CHD events, genetic associations are protected
from reverse causation because genotype is an invariant characteris-
tic determined at conception and unmodified by the development of
disease. Moreover, at a population level the randomized allocation of
parental alleles at conception tends to balance confounding factors
among groups of differing genotypes.9,10 Where a polymorphism is
associated with both risk factor concentration and CHD risk, this
supports a causal role for the risk factor, providing certain other
assumptions are met.9

Several Mendelian randomization studies have investigated the
role of LDL-C,11,12, HDL-C,13–16 and triglycerides17 in CHD. Most
have used a single nucleotide polymorphism (SNP) from a single
locus with weak, non-exclusive effects on the target lipid,13–15,17

apart from a recent investigation of HDL-C.16 For example, the asso-
ciation of SNPs in the APOA5 gene with CHD risk has been interpreted
as implying a causal role for triglycerides;17 however, it is more
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informative on apolipoprotein A5 as a potential therapeutic target and
the association of SNPs in the same gene with HDL-C and LDL-C
leaves room for uncertainty.18 Mendelian randomization analyses
based on a single SNP with a non-exclusive association with a biomark-
er of interest may also lack generalizability. As one of several potential
examples, the null association with CHD of an apparently
HDL-C-specific SNP in the LIPG gene16 only provided evidence that
endothelial lipase (encoded for by LIPG) may not be a suitable drug
target for CHD prevention, but it does not rule out the possibility
that elevating HDL-C through a different drug target might reduce
CHD risk.

Recent genetic association studies based on genotyping arrays that
capture variation across many thousands of genes, or the whole
genome, have indicated that SNPs associated with the major blood
lipid fractions are distributed across many genetic loci, each inherited
independently and affecting lipid levels approximately additively.19–21

This provides a new opportunity to undertake Mendelian randomiza-
tion analyses using multiple SNPs as instrumental variables (described
in Supplementary material online, Figure S2). This should increase
power, because each additional SNP contributes incrementally to
the explained variance in the lipid fraction of interest and reduces
the lack of specificity often observed with single SNPs, because the
effects on traits other than the lipid fraction of interest should be
small, non-systematic, and attenuate with the addition of SNPs to the
instrument.22

In this study, we used multiple independent SNPs as instrumental
variables in a Mendelian randomization approach. SNP selection
was based on a previous study that we conducted to discover
SNPs robustly associated with each blood lipid trait using the
ITMAT Broad Institute CARe consortium (IBC) CardioChip
array.21,23 We summed values for individual SNPs to construct
two types of allele scores. First, unrestricted allele scores were gen-
erated that included all SNPs that were associated with the target
lipid trait at a pre-specified P-value threshold of P , 2.4 × 1026.
Secondly, restricted allele scores were generated in which SNPs
were excluded if they were also associated with either of the
other two lipid traits beyond a pre-specified P-value threshold of
P ≤ 0.01. Our study incorporates individual participant data, inves-
tigates all three lipid traits, and use of lipid-lowering medication in
the same data set for their associations with clinically defined and
validated CHD events, compares and contrasts associations of
both unrestricted and restricted allele scores, which has different
underlying assumptions, and applies newly developed methods
for instrumental variables meta-analysis that enables inclusion of
case–control studies and adjustment for other covariates in the
analysis.22,24

Methods

Included studies
We analysed data from 17 studies including 62 199 individuals of
European origin: 13 longitudinal population studies, 1 case-cohort study,
1 nested case–control study, and 2 case–control studies. Characteristics
of the study participants are provided in Supplementary material online,
Table S1. Altogether there were 12 099 incident or prevalent CHD cases
in the study sample.

Single nucleotide polymorphism selection and
construction of the allele scores for Mendelian
randomization
We based SNP selection on a large-scale gene-centric discovery
meta-analysis of blood lipid traits that included 66 240 individuals21 gen-
otyped with the IBC CardioChip array.23 We identified all SNPs that met
the pre-defined array-wide threshold value of P , 2.4 × 1026 for the
target lipid in the original report.21 To avoid co-linearity between
SNPs, if more than one SNP was present at a gene locus, only the SNP
with the lowest P-value for the target lipid trait was included in the
allele score.

All SNPs passing the P-value threshold in the discovery analysis that
were in unique loci were incorporated into the analysis. These selected
SNPs were used to generate allele scores (summed values of genetic var-
iants, also termed ‘genetic instruments’) for each individual in the partici-
pating studies for the blood lipid traits HCL-C, triglycerides, and LDL-C.
We followed this process in order to be able to conduct a Mendelian ran-
domization analysis of blood lipid traits. The advantage of our approach
for the identification of SNPs for the genetic instruments was that iden-
tified SNPs would be hypothesis-free rather than being selected on a
candidate basis through biological understanding. Combining multiple
SNPs together increases power of the Mendelian randomization ana-
lysis,25 but additionally helps to address questions of causality for
traits that are not directly encoded by any particular gene. Weweighted
SNPs in each allele score by the published summary beta coefficients
from the discovery gene-centric meta-analysis21 and selected the
‘risk’ allele such that the associations with the target lipid trait were
directionally concordant. The use of weighting was to increase preci-
sion of the genetic instrument with the intermediate trait.25 The
weighted values of SNPs were summed to generate an allele score
value for each individual.

Blood lipid traits share common genetic variants resulting in overlap of
the SNPs identified in the discovery analysis (Supplementary material
online, Figure S3). This means that allele scores generated for, e.g.
HDL-C using all identified SNPs from the discovery analysis would also
include SNPs that associate with LDL-C and triglycerides. This could
be interpreted as non-specificity of the genetic instrument for the
target blood lipid trait. To try and resolve this issue, we took the following
approach. First, we generated what we termed an ‘unrestricted allele
score’ that included all SNPs that were associated with the target lipid
trait, regardless of any association with other blood lipid traits. Secondly,
we generated a ‘restricted’ allele score that included SNPs exhibiting an
association with the target lipid trait but which did not show an associ-
ation with the other two lipid traits at P , 0.01. We compared the esti-
mates derived from Mendelian randomization analysis using unrestricted
and restricted allele scores as instrumental variables in order to try and
decipher the individual role of blood lipid traits in CHD pathogenesis.
The analytical pipeline for construction of the allele scores is outlined
in Supplementary material online, Figure S4.

For HDL-C, 48 SNPs in 48 independent genes/loci showed association
with HDL-C, 29 of which also showed association with triglycerides or
LDL-C. The unrestricted score for HDL-C therefore consisted of all
48 SNPs and the restricted allele score comprised the 19 SNPs that did
not associate with either triglycerides or LDL-C. Sixty-seven SNPs asso-
ciated with triglycerides, of which 40 also showed association for LDL-C
or HDL-C. The unrestricted triglyceride allele score therefore consisted
of 67 SNPs and the restricted allele score contained 27 SNPs that did not
associate with HDL-C or LDL-C. Forty-two SNPs associated with
LDL-C, of which 23 also associated with triglycerides or HDL-C. The un-
restricted LDL-C allele score therefore consisted of 42 SNPs and the
restricted LDL-C allele score 19 SNPs. Full details of the SNPs used in
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each of the unrestricted and restricted lipid scores are presented in
Supplementary material online, Table S2 and the allele frequencies are
displayed inSupplementarymaterial online, Figures S5–7. Allele scoredis-
tributions were normal in each study (Supplementary material online,
Figure S8 and Table S3).

Platforms used for genotyping
In 13 of the 17 studies, genotyping was conducted with the IBC Cardio-
Chip array and the four remaining studies were genotyped using the
MetaboChip26 (Supplementary material online, Table S1). In these
studies, we used Metabochip SNPs in linkage disequilibrium (LD)
(R2 . 0.8) with those derived from the IBC CardioChip using pair-wise
LD calculated from the European subset of the 1000 Genomes
Project27 (http://www.1000genomes.org). Suitable proxies were identi-
fied for 135 of 157 total SNPs used to construct the allele scores (Supple-
mentary material online, Table S2).

Outcomes
The principal outcome of interest for Mendelian randomization analysis
was the combination of incident or prevalent CHD events, but we con-
ducted a subsidiary analysis limited to incident CHD cases (i.e. cases
accrued during the follow-up, predominantly after the measurement of
blood lipid traits). As a secondary endpoint measure, we analysed
carotid intima media thickness (cIMT), which is associated with CHD
risk and has been used as a surrogate endpoint in phase II randomized
trials of lipid-lowering therapies.28 Details on outcome ascertainment
for each study are provided in Supplementary material online, Table S4.

Data handling
Non-normally distributed traits (e.g. triglycerides and cIMT) were log
transformed prior to analysis and summary estimates were exponen-
tiated and converted to a percentage difference in the geometric mean.
Missing values for genotype or phenotype data were not imputed.

Analysis
The analysis was standardized and run in individual participant data in all
contributing studies (Supplementary material online, Figure S9 for the
data analysis pipeline).

Quantifying the association of the allele scores with blood
lipid traits
In the 11 general population cohorts that were genotyped using the IBC
CardioChip array (Supplementary material online, Table S1), to quantify
the magnitude of the association between the allele scores and lipid traits,
the mean difference and standard error for each lipid trait was estimated
comparing the top quintile of each allele score to the bottom quintile.
The proportion of variance (R2) of the allele scores for each lipid trait
was estimated within each study, with the 95% confidence interval (CI)
of the R2 obtained through bootstrapping. Estimates were pooled using
fixed-effects meta-analysis.

Multiple single nucleotide polymorphism instrumental
variable analysis
Instrumental variable analysis is a statistical method used to obtain un-
biased estimates between an exposure and an outcome, which exploits
the characteristic of the instrument, which is assumed to be free from
common confounding. Use of SNPs as instrumental variables is an estab-
lished technique termed Mendelian randomization that has been used to
investigate the causal relationship between many biomarkers and out-
comes (outlined in Supplementary material online, Figure S1). Our ana-
lysis here extends this to incorporate multiple SNPs in combination, an

emerging approach that is gaining traction as a means of investigating
non-protein traits and to increase power (described in Supplementary
material online, Figure S2).

Our instrumental variable analysis took two forms:

(1) Instrumental variable analysis: incorporating data from all studies

For the main analysis, weused an approach that allowed us to incorporate
data to maximize power from all 17 studies: 15 prospective studies with
measures of blood lipid traits and 16 studies (including two case–control
studies) with CHD events (one study, CARDIA, did not contribute to
CHD events, Supplementary material online, Table S1). For this, we inves-
tigated the association of the allele scores for each target lipid trait. This
was limited to the 15 prospective cohort studies in which blood lipids
were measured at baseline, when most individuals were free from estab-
lisheddisease (since thedisease process may distort the associationof the
allele scoreswith blood lipid levels). Wepooled theestimatesof the allele
scores with blood lipid traits across studies using fixed-effects
meta-analysis and used this pooled summary estimate for the second
stage of the instrumental variable analysis. This technique assumed a con-
stant effect of the allele score on the target lipid trait. For the second
stage, we generated associations between each allele score and CHD
in each study. The instrumental variable estimate was then obtained by
dividing the allele score–CHD association by the pooled allele score–
lipid estimate.29 This analysis took into account the uncertainty in both
the allele score–CHD and allele score–lipid associations using the
delta method to estimate standard errors of instrumental variable ratio
estimates.30 These values were then pooled across studies using
fixed-effects meta-analysis. This approach was conducted using both
unrestricted and restricted allele scores as the instrumental variables
for the lipid traits.

(2) Instrumental variable analysis with sequential adjustments using
longitudinal cohorts.

Separately, we conducted another Mendelian randomization analysis in
an additional attempt to address the lack of specificity of the unrestricted
allele scores. For this, we conducted an instrumental variable Mendelian
randomization analysis using the logistic control function estimator24 in
each study using the unrestricted allele scores as the instrumental vari-
able. The logistic control function estimator is a two-stage process:
first, a linear regression analysis is conducted with the target lipid trait
as the dependent variable and the unrestricted allele score as the inde-
pendent variable. The residuals from this first step, along with the
target lipid trait, are then incorporated into a logistic regression model
in the second stage in which incident/prevalent CHD is the dependent
variable. Robust standard errors are specified in the second stage to in-
corporate the uncertainty in the first-stage residuals. We pooled study-
specific instrumental variable estimates across studies using fixed-effects
meta-analysis.

Initially, the instrumental variable analyses using this method were con-
ducted unadjusted. We then made sequential adjustments for non-target
lipid traits (e.g. for LDL-Cweadjusted forHDL-C, triglycerides, and statin
use). This approach required that contributing studies had the
co-variables of interest, so case–control studies or longitudinal studies
without this information were not included, meaning that the sample
size was reduced. Thus, the analysis was limited to 14 longitudinal studies.

For cIMT (measured in four prospective cohorts, Supplementary ma-
terial online, Table S4), we used two-stage least squares analysis using the
unrestricted and restricted allele scores as instrumental variables in sep-
arate models. We pooled study-specific instrumental variable estimates
across studies using fixed-effects meta-analysis.

The summary instrumental variable estimates for both the main and
subsidiary Mendelian randomization analyses provided an odds ratio

M.V. Holmes et al.542

http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://www.1000genomes.org
http://www.1000genomes.org
http://www.1000genomes.org
http://www.1000genomes.org
http://www.1000genomes.org
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/eht571/-/DC1


(OR) for CHD or percentage difference in cIMT per 1 unit increase in a
genetically instrumented blood lipid trait (i.e. per 1 mmol/L increase in
HDL-C or LDL-C, which both have a normal distribution and for a 1
log-unit increase in triglycerides which has a log-normal distribution).

Fasting status was noted for blood lipid measures (Supplementary ma-
terial online, Table S5). To investigate the influence of fasting status on the
association of the allele scores with the lipid traits, we conducted a sen-
sitivity analysis by stratifying on fasting status. Furthermore, we excluded
non-fasting studies from the first stage of the instrumental variable ana-
lysis to examine whether this influenced the instrumental variable esti-
mates for CHD.

Analyses were conducted using Stata v13.1 (StataCorp, TX, USA).
We took two-sided P-values ≤0.05 to denote evidence against the null
hypothesis.

Results
Across 17 studies with 62 199 individuals of European ancestry, there
were 12 099 combined incident and prevalent CHD events of which
7339 were incident, and 9942 measures of cIMT, a non-invasive

measure of atherosclerosis (Supplementary material online, Table S1).
For the prospective cohorts, mean values of blood lipid traits, the pro-
portion of individuals receiving lipid-lowering therapy, and whether
samples were obtained when individuals were fasting are reported in
Supplementary material online, Table S5. As expected, each SNP in
the allele scores was associated individually with directionally concord-
anteffectsonthetarget lipid inprospectivecohortsgenotypedusing the
IBCCardioChip (Supplementarymaterial online,FigureS10).Therewas
a partial overlap of SNPs among the three unrestricted allele scores
(Supplementary material online, Figure S3). By definition, SNPs in the
restricted allele scores were non-overlapping.

The associations of each allele score for the target and non-target
lipid traits are shown in Figure 1. The unrestricted allele scores con-
sistently showed a larger magnitude of effect and explained more
variance for the target lipid than the corresponding restricted allele
scores. For example, the HDL-C unrestricted allele score was asso-
ciated with higher HDL-C by 0.23 mmol/L (95% CI: 0.22, 0.24, com-
paring top to bottom quintiles of the allele score), explaining 3.8% of
its variance. The comparable difference for the restricted HDL-C

Figure 1 Meta-analysis pooled estimates of the association of the unrestricted and restricted allele scores with target and non-target lipid traits.
Estimates were obtained from prospective cohorts genotyped using the ITMAT Broad Institute CARe consortium CardioChip array (detailed in
Supplementary material online, Table S1). A lower limit of 0 was imposed on the R2 values. Mean diff, mean difference comparing top to bottom
quintile of each allele score. R2 ¼ proportion of variable of the lipid traits explained by each allele score. TG, triglycerides.
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allele score was 0.08 mmol/L (95% CI: 0.07, 0.10), explaining only
0.3% of the variance. Corresponding values for triglycerides and
LDL-C allele scores are presented in Figure 1. In addition to the asso-
ciation with the target lipid traits, each of the three unrestricted allele
scores also showed association with non-target lipid traits (values
reported in Figure 1). In contrast, the restricted allele scores consist-
ently explained a smaller proportion of variance for non-target lipid
traits. Stratification of the association of the allele scores with
blood lipid traits by fasting status did not show heterogeneity in the
estimates with the exception of the values for the restricted allele
score for LDL-C; however, this did not influence the overall estimate
(Supplementary material online, Figure S11).

For LDL-C, in 16 cohort/case–control studies with 11 826 com-
bined incident/prevalent CHD cases, a 1 mmol/L genetically instru-
mented increment in LDL-C gave an OR for CHD of 1.78 (95% CI:
1.58, 2.01) for the unrestricted, and 1.92 (95% CI: 1.68, 2.19) for the
restricted allele score (Figure 2). For HDL-C, using the unrestricted
allele score a 1 mmol/L genetically instrumented increment in
HDL-C yielded an OR for CHD of 0.53 (95% CI: 0.40, 0.70),
but the comparable estimate for the restricted allele score was
0.91 (95% CI: 0.42, 1.98). For triglycerides, a genetically instrumen-
ted 1 log-unit increment in triglycerides yielded similar estimates
for CHD events: an OR of 1.62 (95% CI: 1.24, 2.11) for the unre-
stricted score and 1.61 (95% CI: 1.00, 2.59) for the restricted
score. Estimates derived from instrumental variable analysis using
incident-only CHD cases were comparable in effect size and
direction to those from the analyses incorporating the combined
incident and prevalent events (Figure 2). There was a similar incon-
sistency in the effect estimate of the unrestricted allele score for
HDL-C and risk of incident-only CHD (OR: 0.68 per 1 mmol/L
lower HDL-C; 95% CI: 0.47, 0.97) and that for the restricted
HDL-C allele score with incident-only CHD (OR: 1.33; 95% CI:
0.49, 3.59).

For each of the restricted and unrestricted allele scores, no differ-
ence was identified when the analysis was limited to fasted samples
for the first stage of the instrumental variable analysis (Supplemen-
tary material online, Figure S12).

Sequential adjustment of the unrestricted LDL-C allele score for
HDL-C, triglycerides, and statin use only moderately diminished the
estimate for the association with CHD events (Figure 3), but com-
parable adjustments had more marked effects on the estimates
for the HDL-C allele score. The association of the unrestricted
HDL-C allele score with incident/prevalent CHD was shifted
from an OR for CHD of 0.55 (95% CI: 0.38, 0.79) on unadjusted ana-
lysis to an OR of 0.79 (95% CI: 0.47, 1.32) with adjustment for trigly-
cerides alone (Figure 3). In contrast, adjustment for LDL-C alone did
not influence the estimate (OR: 0.52; 95% CI: 0.34, 0.78). When
adjusted for triglycerides, LDL-C, and statin therapy, the OR for
the association of the unrestricted HDL-C allele score with incident
and prevalent CHD was 0.81 (95% CI: 0.44, 1.46), which was com-
parable with the estimates derived from the restricted allele score
(OR: 0.91; 95% CI: 0.42, 1.98, Figure 2). For triglycerides, adjustment
for HDL-C diminished the estimate for CHD risk from an OR of
1.38 (95% CI: 0.98, 1.94) for the unadjusted allele score to an OR
of 0.97 (95% CI: 0.64. 1.49). Adjustment for LDL-C produced
only a small alteration in the summary estimate for CHD risk: OR:
1.31 (95% CI: 0.86, 1.98). With adjustment for HDL-C, LDL-C,

and statin use the OR estimate for the unrestricted triglyceride
allele score with incident and prevalent CHD was 1.01 (95% CI:
0.59, 1.75).

Only the LDL-C allele scores showed association with cIMT. A
1 mmol/L genetically instrumented increment in LDL-C was asso-
ciated with higher cIMT by 2.49% (95% CI: 0.45, 4.57) and 3.81%
(1.48, 6.19) for the unrestricted and restricted allele scores, respect-
ively. Estimates for other lipid traits are provided in Figure 4.

Discussion
This Mendelian randomization analysis was based on individual par-
ticipant level data including 62 199 individuals from 17 studies and
used a multiple SNP instrumental variable meta-analysis approach.
We reconfirmed the causal role of LDL-C in CHD risk and provided
additional support for a causal role of triglycerides in CHD. The
causal association of HDL-C with CHD remains possible, but less
certain.

A key problem in trying to understand the causal relevance of
HDL-C and triglycerides in CHD risk has been the close epidemio-
logical and biological interrelationship between the two. Both associ-
ate with CHD events in observational studies, yet statistical
adjustment for one attenuates the association of the other.3 In-
complete biological understanding makes interpretation of this
observational evidence challenging. Multiple instrument Mendelian
randomization studies utilizing SNPs affecting the levels of these
two traits offer a new route to understand their causal relevance
and many such SNPs have been identified by recent genome-wide
and gene-centric association studies,19,21 including the set of SNPs
used in the present analysis.21 Although, multiple instruments Men-
delian randomization analysis reduces the non-specificity, it does
not abolish it. For this reason, we generated two different allele
scores. First, an unrestricted score that includes all genetic determi-
nants of each lipid trait, which can be conceived as being more com-
prehensive in biological terms, as well as more powerful (e.g. R2 of
unrestricted score for HDL-C was 3.8%). In contrast, the restricted
score, though substantially increasing specificity for the target lipid,
is both less biologically comprehensive and statistically less powerful
(e.g. R2 of restricted score for HDL-C was 0.3%). Owing to these lim-
itations, we also undertook instrumental variable analyses using the
unrestricted scores in which adjustments were made for the non-
target lipids. We then compared the effect estimates from these dif-
ferent approaches to draw inferences on the causal role of HDL-C
and triglycerides using LDL-C, whose aetiological role in CHD is
established, as a positive control. This strategy, comparing the con-
sistency of potentially causal estimates derived from instrumental
variable analysis that used three different approaches, each of them
with different underlying assumptions, in individual participant data
sets, we believe has not been employed before and thus represents
a novel aspect of the current analysis.

The estimates of LDL-C from instrumental variable analysis
showed that a long-term genetically increased LDL-C, regardless of
the analytical strategy used (unrestricted, restricted, or unrestricted
score plus sequential adjustments) resulted in an increased causal OR
for CHD, which is similar in magnitude to that reported in rando-
mized trials of statin-lowering therapies in individuals at low risk of
vascular disease1 and is further evidence of the validity of our
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Figure 2 Meta-analysis pooled estimates for the effect of a 1 unit increase in blood lipid traits on coronary heart disease risk using instrumental variable analysis incorporating data from all studies.
Estimates were derived incorporating data on the association between the allele scores and blood lipid traits only from prospective cohorts (in which most individuals were free from disease when lipid
traits were measured) and applying this estimate to all studies with data on the association between the scores and coronary heart disease (including case–control studies). See Methods for further
details. TG, triglycerides.
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various analytical approaches. The instrumental variable analysis of
LDL-C on cIMT is also in keeping with recent findings,31 and supports
the use of cIMT as an appropriate surrogate marker of therapies that
modulate LDL-C.

For triglycerides, the findings for the unrestricted and restricted
allele scores were concordant, with both showing association with
CHD. However, the unrestricted score adjusted for HDL-C dimin-
ished the association to null. Thus, two out of the three approaches
provided evidence of a causal role of triglycerides in CHD, making it
likely that triglycerides arecausally related toCHD. It is intriguing that
the association of the unrestricted score for triglycerides with CHD
events diminished to null when adjusted for HDL-C. This could mean
that a treatment that targets a triglyceride pathway that has no effect
on HDL-C may not be beneficial, whereas a treatment that targets a
triglyceride pathway that both reduces triglycerides and increases
HDL-C couldhavea role inpreventionof CHDevents.Analternative
explanation is that HDL-C could mark long-term triglyceride con-
centrations, but this hypothesis requires further investigation. As
recently suggested by Wurtz et al.32 in response to a Mendelian

randomization analysis of remnant cholesterol by Varbo et al.,33

access to metabolomics data will enable partitioning of triglyceride
containing lipoproteins according to size and composition (e.g. apo-
lipoprotein B content) and facilitate investigation of the role of these
subcomponents individually in CHD pathogenesis.

For HDL-C, only one of the approaches provided evidence that
genetic determinants of HDL-C are causally related to CHD. The un-
restricted HDL-C allele score (which did not impose constraints on
the pathways that the genes in the allele score encode for) showed
strong evidence of an association with CHD. But this unrestricted
HDL-C allele score also showed association with triglycerides (and
to a lesser extent LDL-C). In contrast, the restricted HDL-C allele
score did not show an association with CHD. The restricted
HDL-C allele score was more selective for HDL-C (showing only a
very weak association with triglycerides and no effect on LDL-C),
but also explained less of the variance of the index trait, HDL-C
(evenwhencompared with other restricted scores), so it remainsun-
certain if this attenuation in the effect estimate implies that an inter-
vention that solely modifies HDL-C would not reduce risk of CHD,

Figure 3 Meta-analysis pooled estimates for the effect of a 1 unit increase in blood lipid traits on combined incident/prevalent coronary heart
disease risk using instrumental variable analysiswith theunrestricted allele score, adjusted fornon-target traits and statin use. Analysis wasconducted
in prospective cohorts with instrumental variables regression analysis. TG, triglycerides.
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or whether it is due to a reduction in statistical power. This former
interpretation is in agreement with findings from our unrestricted
allele score adjusted for triglycerides, and with a previous multiple
SNPs Mendelian randomization analysis that, using different genetic
instruments (Supplementary material online, Figure S13), also failed
to identify a clear causal role of HDL-C in CHD.16

Our study has a number of possible limitations. First, of the 17 con-
tributing studies, 13 were a subsample of the 32 studies that contribu-
ted towards the gene-centric discovery meta-analysis on blood lipid
traits.21Thus, it is theoreticallypossible thatusingapartiallyoverlapping
set of studies for the discovery and Mendelian randomization analysis
may potentially result in model over-fitting. Secondly, our allele
scoresweredesignedtoproxytotal levelsofbloodlipidand lipoprotein
traits, and therefore do not address whether there are subtypes of
these traits (e.g. HDL subparticles)34 that could play contrasting roles
in vascular disease. For example, we cannot exclude the possibility
that the restricted HDL-C allele score may have lacked genes that
are present in the unrestricted allele score that encode subparticles
of HDL that do have a causal role in CHD. This requires further inves-
tigation with Mendelian randomization using SNPs or allele scores that
arespecific forHDLsubtypes.Thirdly, it ispossible that someofthenull
findings could be due to limited power, including the analysis for cIMT.
Examination of these findings in other data sets is therefore warranted.

In conclusion, the findings froma multiple SNP Mendelian random-
ization analysis in over 62 000 participants with .12 000 CHD
events support a causal effect of triglycerides but evidence on the
causal role, if any, of HDL-C on CHD risk remains uncertain.

Supplementary material
Supplementary material is available at European Heart Journal online.
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