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Abstract 1 

Background: During the last decade, the use of mobile electroencephalography (EEG) 2 

devices has furthered understanding of the mechanisms that underlie psychophysical and 3 

affective responses during the execution of gross movements (e.g., walking and cycling). 4 

Such devices can also be used to shed new light on the mechanisms that underlie attention 5 

allocation, fatigue-related symptoms, emotional reactions, and behavioural outcomes to 6 

physical activity programmes. This advancement could, potentially, herald a new era for the 7 

field of sport and exercise psychology, wherein researchers will be able to investigate athletic 8 

performance and exercise behaviour from a different perspective. Objective: In this review, 9 

we explore some of the most recent approaches used to measure electrical activity in the 10 

brain during exercise. Practical Recommendations: We provide an overview of the practical 11 

issues that researchers face in this field, such as dealing with artefacts elicited by body and 12 

cable movements and how to process the biological signal. We also review methods that 13 

researchers can employ to prevent electrical artefacts from compromising the fidelity of data. 14 

We make a case for assessing psychological and psychobiological parameters in tandem with 15 

EEG in order to arrive at a fuller understanding of exercise-related phenomena. 16 

Keywords: cerebral cortex, electroencephalography, neuropsychology, physical activity, 17 

psychophysiology 18 

  19 
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Measuring Electrical Activity in the Brain During Exercise:  1 

A Review of Methods, Challenges, and Opportunities 2 

 In recent years, researchers in the field of sport and exercise sciences have begun to 3 

assess brain function as a means by which to understand the mechanisms that underlie 4 

complex psychophysiological phenomena during the execution of movements (Broelz et al., 5 

2019). This is due to the widely-held notion that the brain holds the answers to some of the 6 

most intriguing questions that pervade the realm of sport and exercise sciences (e.g., de 7 

Morree, Klein, & Marcora, 2012). What causes volitional exhaustion? What are the 8 

implications of fatigue-related symptoms? How does one’s motivational state influence 9 

perceptions of physical exertion? Why do most people disengage from physical activity 10 

programmes? This is but a small selection of pertinent questions and despite recent advances 11 

in psychology and physiology, we lack neurophysiological explanations that enable us to 12 

“connect the dots”. This is the reason why brain assessment techniques have attracted a great 13 

deal of interest in the last two decades (e.g., Jain, Gourab, Schindler-Ivens, & Schmit, 2013; 14 

Scanlon, Sieben, Holyk, & Mathewson, 2017). 15 

 There are numerous techniques available that facilitate assessment of the brain (e.g., 16 

functional magnetic resonance imaging [fMRI]); nonetheless, head movements that 17 

commonly occur during the execution of gross movements tend to compromise the quality of 18 

the biological signal. Accordingly, mobile technology has recently been developed to enable 19 

assessment of the brain during real-life situations. Functional near-infrared spectroscopy 20 

(fNIRS) and electroencephalography (EEG) are the techniques that currently show the most 21 

promise in relation to sport- and exercise-related tasks. In this short review article, we will 22 

discuss some of the most recent approaches used to measure electrical activity in the brain 23 

during exercise. We begin with a brief review of the main parameters and origins of the EEG 24 

signal. Thereafter, we address the general strengths and limitations of EEG as a technique. 25 
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We then proceed to expound the special considerations that pertain to the application of EEG 1 

in the realm of exercise psychophysiology. In addition, we provide guidance on dealing with 2 

artefacts elicited by body and cable movements, and on how to process the biological signal.  3 

Measuring Electrical Activity in the Brain 4 

 The selection of techniques to assess the brain is based primarily on considerations 5 

that pertain to the level of temporal and spatial resolution (Liu, Ding, & He, 2006). EEG and 6 

electrocorticography (ECoG; i.e., invasive EEG) present a high level of temporal resolution 7 

(i.e., it captures the synchronised activity of neurons); however, such techniques provide a 8 

low degree of spatial resolution. EEG is often applied as a means by which to detect temporal 9 

events such as attention allocation; when an individual shifts her or his attention from one 10 

source of information to another (e.g., Luck, Woodman, & Vogel, 2000). Cognitive 11 

mechanisms such as attention allocation occur over brief epochs. Identifying this rapid 12 

response represents a significant challenge when employing techniques with poor temporal 13 

resolution such as positron emission tomography (PET). Along similar lines, EEG is not 14 

recommended as a tool with which to localise activity arising from deep areas of the brain 15 

such as the anterior cingulate cortex or the superior colliculus; rather signals that emanate 16 

from superficial areas are stronger and more spatially distinguishable (e.g., prefrontal cortex; 17 

Dickter & Kieffaber, 2013). Given that EEG activity is recorded using a two-dimensional 18 

array of electrodes, the three-dimensional location of deep sources of electrical activity 19 

cannot be accurately determined. This is a mathematical phenomenon known as the inverse 20 

problem that concerns inference of the precise location of brain activity through use of 21 

surface electrodes positioned on the scalp (Lopez Rincon & Shimoda, 2016). Nonetheless, 22 

source reconstruction analysis can be used to estimate the sources of brain activation and 23 

provide researchers with greater detail in terms of spatial location (see Luck, 2014).  24 
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EEG was first recorded non-invasively from the human scalp in 1924 by the German 1 

psychiatrist Hans Berger. The early EEG studies adopted the use of brain waves to identify a 2 

patient’s arousal state and the delineation of sleep stages (e.g., Loomis, Harvey, & Hobart, 3 

1936; Ray & Cole, 1985). Brain waves have also been investigated extensively in the fields 4 

of neurology and psychophysiology to further understanding of a range of disorders and 5 

traumas, such as epilepsy and cerebral injuries. The EEG signal derived from brain activity 6 

encompasses a range of frequencies. These frequencies are stratified according to different 7 

band waves by use of frequency-domain analyses such as Fast Fourier Transform (FFT). 8 

Delta (0.5–4 Hz), theta (4.5–8 Hz), alpha (8.5–13 Hz), beta (13.5–30 Hz), and gamma (30.5–9 

100 Hz) are the most commonly designated brain wave bands. In this context, power is the 10 

square of the EEG magnitude, and magnitude is the integral average of the EEG signal (Keil 11 

et al., 2014). The power of brain frequencies in different wavebands as well as the amplitude 12 

(measured in microvolts) of the electrical signal at a particular timepoint can be influenced by 13 

sensory stimuli (e.g., Daly et al., 2014; Spring, Tomescu, & Barral, 2017), cognitive tasks 14 

(e.g., Bing-Canar, Pizzuto, & Compton, 2016; Twomey, Murphy, Kelly, & O’Connell, 2015), 15 

movement execution (e.g., Scanlon et al., 2017; Thompson, Steffert, Ros, Leach, & 16 

Gruzelier, 2008), and psychological responses (e.g., Jadhav, Manthalkar, & Joshi, 2017; Lee 17 

& Hsieh, 2014).  18 

The Neural Origins of the EEG Signal 19 

EEG is generated in neural tissue by flows of current in the extracellular space. This 20 

current may be influenced by the activity of many thousands of neurons, and can produce 21 

effects by volume conduction at a recording electrode distant from the source (Dickter & 22 

Kieffaber, 2013). In a wire, electrical current flows in one direction; however, in volume 23 

conduction, the current spreads in all directions. The generators of the extracellular current 24 

flows are intracellular postsynaptic potentials (Avitan, Teicher, & Abeles, 2009). Both 25 
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excitatory and inhibitory postsynaptic potentials contribute to EEG, but there is no simple 1 

relationship between negative and positive EEG voltages and neural excitation and inhibition. 2 

Electrodes placed on the scalp record EEG predominantly from the underlying 3 

cerebral cortex, and the largest contribution to the EEG signal comes from the summed 4 

synaptic potentials of pyramidal cells (Olejniczak, 2006). These are the largest cortical cells 5 

with their axons forming the main outputs to other cortical and subcortical areas. Their 6 

orientation is perpendicular to the cortical surface spanning most of the depth of the grey 7 

matter. The bodies of pyramidal cells are typically found in cortical layer 5, close to the base 8 

of the grey matter, and their apical dendrites (i.e., the apex of the branched extension of a 9 

nerve cell) stretch up to layer 1, close to the outer surface of the cortex. Furthermore, they 10 

receive their main synaptic inputs in two main regions: thalamic inputs in layer 4 (towards 11 

the base), and transcortical inputs in layers 2-3 (nearer the surface). The pyramidal cell tends 12 

to act as a switchable electrical dipole, meaning that the end of the cell that receives an 13 

excitatory input is negative, and the other end is positive. For example, consider a small patch 14 

of cortex such as 5 × 5 mm. All the pyramidal cells in that patch will be similarly oriented 15 

and receive related inputs, so it is likely that the dipoles will be similarly oriented and show 16 

some synchronisation, producing a strong EEG signal (Dickter & Kieffaber, 2013; 17 

Olejniczak, 2006). Conversely, other types of cortical cells have a weak effect on EEG. They 18 

are oriented more randomly, and their dipoles will thus point in many different directions, so 19 

that the net current flow for a cluster of active stellate neurons would probably tend to zero, 20 

even if they were stimulated synchronously. Thus, the cortical generator for an EEG signal 21 

may be modelled as a set of columns of cortical tissue, each acting as a single dipole source. 22 

From an exterior viewpoint, the most striking feature of the human cortex is that it is a 23 

continuous but much-folded surface, consisting of furrows (sulci) and convoluted ridges 24 

(gyri). Gyri located beneath an electrode will contribute most strongly to the EEG signal, but 25 
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owing to volume conduction, remote sources will also contribute. This contribution, however, 1 

is moderated by distance from the electrode (Olejniczak, 2006).  2 

Electrical Activity in the Brain During Exercise 3 

 EEG has been used in numerous scientific domains including the sport and exercise 4 

sciences. Schneider, Askew, Abel, Mierau, and Strüder (2010) examined brain function 5 

before and after an exhaustive running task. The incremental treadmill test caused an 6 

immediate increase in alpha 1 (7.5–10 Hz) activity after exercise. Alpha 1 increase was 7 

mainly localised in the left frontal regions of the brain by use of source estimation analysis. 8 

The researchers postulated that this increase in low-frequency alpha waves was associated 9 

primarily with emotional processing. Their postulate was based on the long-held view that 10 

left-hemisphere regions of the brain are linked to positive feelings such as happiness and joy, 11 

and that the right hemisphere is associated with negative affect (cf. The Valence Model; 12 

Demaree, Everhart, Youngstrom, & Harrison, 2005). Moreover, increases in alpha activity 13 

may be indicative of decreases in cortical arousal. Hence, psychological and peripheral 14 

physiological responses to exercise (e.g., affective valence and muscle electrical activity) 15 

may be investigated in tandem with EEG (Gutmann et al., 2015), as a means by which to 16 

elucidate the effects of exercise-related interventions on bodily reactions.  17 

 The use of brain assessment techniques during exercise is usually limited to isometric 18 

modes of contraction (i.e., when the joints are static) because head and body movements 19 

cause artefacts that compromise the quality of the raw data (Bigliassi et al., 2016a). To 20 

address this limitation, researchers have developed EEG systems based on wireless 21 

connections, which improve the range of motion and reduce electrical artefacts (for a 22 

pioneering study, see Hughes & Hendrix, 1968; for contemporary applications, see Losonczi, 23 

Márton, Brassai, & Farkas, 2014; Szu, Hsu, Moon, Yamakawa, & Tran, 2013). Nonetheless, 24 

wireless systems are limited in real-life situations; for example, where there are walls present 25 
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or when a participant needs to travel beyond ~200 m from the signal receiver. Moreover, 1 

brisk contractions (e.g., jumping) may generate more artefacts than repetitive movement 2 

patterns such as walking. In such instances, EEG devices can be integrated with 3 

electromyography (EMG) systems in order to identify and discard movement-related artefacts 4 

after data collection. Moreover, new EEG devices such as Muse (Krigolson, Williams, 5 

Norton, Hassall, & Colino, 2017) and Emotiv (Duvinage et al., 2013) are attached to triaxial 6 

accelerometers that quantify body movements and apply compensatory methods as a form of 7 

online correction that protects the biological signal.  8 

Bigliassi, Karageorghis, Wright, Orgs, and Nowicky (2017) investigated the effects of 9 

music on brain activity and motor unit recruitment during cycle exercise performed at 10 

moderate-to-light intensity. They found that the EEG frequency (i.e., synchronisation of 11 

alpha rhythm; Peper, 1971) over the sensorimotor cortex controlling the working muscles 12 

was reduced in the presence of music. The authors postulated that this psychophysiological 13 

response could have influenced the electrical activity in the quadriceps given the inference 14 

that fewer signals per unit time were reaching the musculature (i.e., a suppression of EEG 15 

resynchronisation). The researchers also processed the electromyographic (EMG) activity in 16 

the time-domain (i.e., examining the amplitude of the signal) and identified that more motor 17 

units (Farina, Fosci, & Merletti, 2002) were recruited in the presence of music. This 18 

physiological response could potentially indicate that a compensatory mechanism takes place 19 

as a means by which to sustain a given exercise intensity (i.e., a reduction in EEG frequency 20 

is compensated by increases in EMG amplitude). 21 

The analysis of EEG extends beyond the identification of brain frequencies. For 22 

example, the event-related potential (ERP) technique facilitates examination of brain 23 

response to sensory stimuli, motor tasks, or cognitive demands (Light et al., 2010). The 24 

synchronous samples (i.e., time-locked signals) display a characteristic shape, meaning that 25 
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modification of the curve profile is indicative of a different phenomenon having occurred 1 

over time. Such phenomena are usually introduced by researchers as a means by which to 2 

identify the effects of sensory stimuli or cognitive processes on brain responses (e.g., 3 

Scanlon, Sieben, Holyk, & Mathewson, 2017). In addition, neuropathological conditions can 4 

elicit changes in ERPs. Such changes can be identified through the comparison of diseased 5 

and healthy individuals or between dissimilar experimental conditions (see Groppe, Makeig, 6 

& Kutas, 2008 for a review).  7 

  A variety of sensory stimuli such as music and video have been used to induce ERPs 8 

(e.g., Tervaniemi, Just, Koelsch, Widmann, & Schröger, 2005). The modulation of ERP 9 

components such as P1 (positive peak that occurs at ~100 ms after the stimulus onset) and N1 10 

(negative peak that occurs at ~100–200 ms after the stimulus onset) varies in accord with the 11 

type of stimulus used. It has been proposed that attention allocation modulates the curve 12 

design of P1 and N1 during visual tasks (Luck et al., 2000). Interestingly, similar effects are 13 

evident during auditory stimulation (Coch, Sanders, & Neville, 2005). Thus, by examining 14 

the curve profile of the brain’s electrical activity, researchers are able to identify cerebral 15 

responses to different cognitive processes. This technique has been applied extensively in the 16 

area of cognitive neuroscience (Landa, Krpoun, Kolarova, & Kasparek, 2014; Sur & Sinha, 17 

2009), and affords a high level of reliability when the guidelines for the application of EEG 18 

are followed judiciously (see Keil et al., 2014). 19 

Recording Clean EEG Data 20 

Scientists with experience in EEG techniques are well aware of the need for a 21 

systematic approach to noise reduction and elimination. It is possible to remove various types 22 

of noise from the EEG signal after recording by use of software algorithms such as digital 23 

filtering, averaging, threshold-based artefact rejection, and independent components analysis 24 

(ICA; Keil et al., 2014). However, each of these methods is characterised by some loss or 25 
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distortion of the signal. There is really no substitute for recording a clean EEG signal and 1 

eliminating artefacts, as far as is possible, at source. We shall consider some of these sources 2 

of noise and how they can be reduced or eliminated. 3 

Electrode-related noise. The most critical element in the EEG recording system is 4 

the electrode-scalp interface. Good electrical contact with the scalp is essential to obtain clean 5 

EEG recordings. Electrodes should be nonpolarizing, which means that they should not build 6 

up electrochemical charges in contact with saline fluids, as reactive metals do. Gold (Au), tin 7 

(Sn) and silver coated with silver chloride (Ag/AgCl) are considered to be suitable electrode 8 

materials (Keil et al., 2014). Laboratories using Ag/AgCl electrodes and conductive gel will 9 

generally aim for electrode-scalp impedances of around 5 KΩ. However, good quality 10 

modern EEG amplifiers have high input impedances and noise cancelation, and this means 11 

that it is possible to record EEG with an electrode impedance of ~50 KΩ, albeit noise risks 12 

are increased. 13 

A factor that has a bearing on electrode impedance is the condition of the participant’s 14 

scalp. The outer epidermis consisting of dead cells is an electrical insulator, plus the skin 15 

secretes oils that are nonconducting. Therefore, participants are asked to wash their hair the 16 

night or morning before the recording, and avoid products such as hair gel, spray, or wax. 17 

Brushing the hair vigorously can help in terms of removing loose epidermis. Also, most 18 

proprietary electrode gels contain mild detergents that can break up oily films, and pumice 19 

powder to help remove dead skin. Perhaps, surprisingly, it is possible to record good EEG 20 

data from participants with thick and voluminous hair. Calibrated syringes allow 21 

experimenters to determine the optimal amount of gel to fill a disc-type electrode. Electrodes 22 

should be filled by continuously extruding gel, starting at the scalp surface and gradually 23 

withdrawing the needle towards the top of the electrode. It is essential to monitor all electrode 24 

impedances prior to initiating a recording, and to remedy all electrodes with out-of-range 25 
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impedances. Before resorting to applying more gel (which can cause bridging between 1 

electrodes) an out-of-range electrode should be gently pressed onto the scalp and rocked. This 2 

is usually sufficient to establish good contact. It is also important to highlight that recent EEG 3 

devices have been designed to measure electrical activity in the brain using dry electrodes, 4 

meaning that gel is not required in capturing the biological signal. Gel-free systems are 5 

largely available and active electrode systems can tolerate input impedances up to 100 KΩ. 6 

Such devices have been used in a wide variety of contexts and are deemed suitable for 7 

research-related purposes (see Lopez-Gordo, Sanchez Morillo, & Pelayo Valle, 2014). 8 

Mechanical instability of the cap. This problem is largely avoided in a geodesic net, 9 

where local tensions automatically adjust the fit of the net to the head. However, the 10-20 10 

style caps come in standard sizes with limited flexibility, so a good fit is not guaranteed, and 11 

some electrodes may tend to lift away from the scalp. Tubular elastic netting can also be 12 

applied to the outside of the cap to improve contact pressure. If mechanical problems are 13 

solved, and gel or electrolyte is correctly applied, then recording properties will generally 14 

improve over the initial 15–20 min after fitting the cap as the gel or electrolyte acts on the 15 

epidermis. It is a good idea, therefore, to ask participants to complete any necessary 16 

preliminary questionnaires or other non-EEG data collection while the cap is stabilising. 17 

External electrical noise. The high-gain amplifiers used in EEG will magnify any 18 

tiny voltages present at the scalp regardless of their source. Moreover, the human body, when 19 

connected to such an amplifier acts as an excellent aerial that will pick up any radio-20 

frequency electromagnetic signals that are broadcast through the air. The human environment 21 

is awash with such signals that emanate from electrical devices. Prominent components of 22 

such electromagnetic noise are 50/60Hz mains frequency waves and switching transients 23 

(spikes) originating from nearby electrical equipment and lighting.  24 
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It is impossible to record clean EEG unless such electrical interference is eliminated. 1 

There are three main approaches to eliminating these sources of noise. The first of these is 2 

screening; an EEG room should ideally be electrically and acoustically screened. Electrical 3 

screening is achieved by a conductive metal mesh embedded in the walls, floor, and ceiling, 4 

and connected to the ground (earthed). This Faraday cage will prevent any broadcast 5 

electrical interference from outside the room reaching the EEG participant, cap, and 6 

amplifiers. If your laboratory budget will not stretch to a purpose-built EEG room, then an 7 

effective Faraday cage can be built from steel tubes and connectors, covered in 1-cm steel 8 

mesh. The second approach is through amplifier design. EEG amplifiers are differential 9 

amplifiers that use three electrodes to record activity: an active electrode (A), a reference 10 

electrode (R) and a (virtual) ground electrode (G) placed participant’s head, thus they will 11 

subtract the difference from ground of the active and reference voltage (AG - RG). Since 12 

external noise sources will tend to affect AG and RG similarly, this arrangement reduces 13 

noise (Luck, 2014). Modern amplifiers can have active noise cancelation and amplifiers that 14 

are placed in a headbox as close to the participant as possible. This eliminates cable loss of 15 

the unamplified signal. The third approach is to identify and switch off or move possible 16 

sources of interference (e.g., fluorescent lights, air conditioning units, or fridges). Some 17 

equipment such as computer monitors might, however, need to be placed inside the Faraday 18 

cage to present stimuli, and are thus an obvious source of noise. This is particularly a problem 19 

with computer screens, which contain large transformers. In such instances, a possible 20 

solution is to surround them with a Faraday cage-within-a-cage. Finally, it is important to 21 

also ensure that there is no path from the participant to the ground other than via the 22 

amplifier. A ground loop system (i.e., a loop created when two parts of the system are 23 

connected by a conducting path) can be a safety issue as well as creating mains-frequency 24 

interference. 25 
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Physiological noise. The main sources of physiological noise are: eye blinks and eye 1 

movements (electro-oculogram: EOG), skin conductance changes (variously known as 2 

galvanic skin response: GSR or skin conductance level/response: SCL/SCR), muscle activity 3 

(electromyogram: EMG) and heart activity (electrocardiogram: EKG). Participants should be 4 

instructed to blink as little as possible and to keep as still as possible while data are collected; 5 

although our experience shows that participants vary greatly in the ability or willingness to 6 

suppress blinks. All should be given breaks between blocks of trials in which they can blink, 7 

talk, and move. Additionally, vertical and horizontal EOG should be recorded in order to 8 

monitor eye movements and blinks, and to assist with the elimination of eye-related artefacts 9 

by PCA/ICA methods. GSR can be reduced by good electrode stability and low impedance. 10 

EMG interference originates mainly from neck and facial muscles. A relaxed state and 11 

comfortable position helps in reducing EMG and given that the dominant frequencies are 12 

higher than those of EEG, low-pass filtering is usually sufficient to remove such noises 13 

(Kline, Huang, Snyder, & Ferris, 2015). EKG is rarely a problem, but it can also be recorded 14 

for purposes of pattern-based artefact reduction. 15 

Dealing with Body and Cable Movements 16 

 Dealing with electrical interference caused by external influences such as body and 17 

cable movements can present researchers with complications during movement-based 18 

protocols (Kline et al., 2015). Some of these electrical noises cannot be removed while 19 

processing the data offline, which means that researchers need to reduce the amplitude of 20 

electrical artefacts prior to commencement of data collection (Park, Fairweather, & 21 

Donaldson, 2015). Notably, recent technological developments have served to reduce the 22 

influence of body and cable movements on the EEG signal (Bigliassi, Karageorghis, 23 

Nowicky, Wright, & Orgs, 2018). Mobile EEG devices such as eego™sports make use of 24 

active shielding technology to protect the core components of the cables. Consequently, 25 
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extraneous noise caused by body and cable movements is reduced, which allows researchers 1 

to collect EEG data during challenging situations such as outdoor walking and cycling. 2 

However, it is important to emphasise that active shielding technology only appears to reduce 3 

electrical artefacts during repetitive moments performed at light and light-to-moderate 4 

intensities (Bigliassi et al., 2017). This is due to the fact that moderate- and severe-intensity 5 

exercise manifests contractions of neck muscles (e.g., trapezius) that are extremely difficult 6 

to remove when processing the data; this EMG artefact mainly affects temporal and occipital 7 

electrodes.  8 

Some wireless systems reduce movement artefacts by mechanically decoupling the 9 

EEG recording cap from the main amplification and recording system, and substituting a 10 

radio link from a small transmitter attached to the cap (Losonczi et al., 2014; Szu et al., 11 

2013). Besides portability and accessibility (Mihajlovic, Grundlehner, Vullers, & Penders, 12 

2015), the number of available channels, amplified signal quality, and accessibility of 13 

software are salient factors in the choice of a portable system.  14 

It is noteworthy that brisk muscular contractions, even if executed at a moderate-15 

intensity, can severely compromise the quality of the electrical signal (Jiang, Bian, & Tian, 16 

2019). This occurs because some of the artefacts generated by body and cable movements 17 

exhibit a similar frequency and amplitude to EEG activity, which means that identification 18 

methods such as independent component analysis cannot differentiate artefacts from real 19 

brain activity. In such instances, researchers are encouraged to design experimental protocols 20 

that prioritise closed kinetic chain exercises (e.g., handgrip and ankle-dorsiflexion tasks) 21 

performed at relatively light-intensity with a focus on frontal, central, and parietal electrode 22 

sites. Modern EEG devices such as Muse and Emotiv can be used for tasks that better 23 

represent what people typically do during exercise bouts (e.g., cycling at intensities above the 24 
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ventilatory threshold). However, the number of electrodes is reduced, which presents a 1 

limitation in terms of data processing (e.g., source reconstruction) and interpretation. 2 

Future research and developmental work is necessary to establish new methods that 3 

will mitigate the influence of external factors on the fidelity of EEG data. Offline procedures 4 

can only partially remove extraneous noises and should be applied carefully in order to 5 

preserve the information carried in the raw signal (see Dickter & Kieffaber, 2013). 6 

Researchers are also encouraged to collect EMG signals from facial muscles and the 7 

trapezius during movement-based EEG experiments. Analogue triggers can also be created 8 

subsequently during the offline data processing stage to identify the very onset of muscle 9 

contractions (Bigliassi et al., 2017). This approach facilitates the removal of muscle bursts 10 

from the EEG signal and enhances the internal validity of an experiment. 11 

Methods Used to Analyse Electrical Activity in the Brain 12 

 In order to process the biological signal extracted from the electrical activity of the 13 

brain, a series of offline procedures need to be conducted in a sequential manner (Olejniczak, 14 

2006). The workflow should be described in the methods section of an EEG-based research 15 

study with sufficient detail to permit study replication (Picton et al., 2000; Tadel et al., 2019; 16 

Tivadar & Murray, 2019). The influence of artefacts (e.g., facial muscles and eye blinks) on 17 

the electrical signal, filtering processes, epoching, averaging, time-frequency analysis (e.g., 18 

wavelet transformations), source reconstruction, and brain connectivity are described herein 19 

to provide readers with sufficient background to enable them to interpret the results of EEG 20 

experiments in sport and exercise sciences.  21 

 Data correction. Firstly, researchers must import the data into computer programs 22 

and toolboxes such as Brainstorm (Franois Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) 23 

and EEGLab (Delorme & Makeig, 2004) in order to perform offline analytical procedures. 24 

These computer programs represent open source platforms for EEG analysis with active 25 
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communities to provide support and ongoing development. Secondly, the signal needs to be 1 

re-referenced using consistent reference electrodes across trials and participants (e.g., average 2 

mastoid reference, using electrode sites [M1 and M2] or common average reference). In 3 

EEG, the signal amplitude recorded at each electrode is compared to voltages recorded at 4 

reference electrodes. The choice of reference electrode(s) influences the shape of ERPs 5 

recorded at different electrode positions, but referencing may be changed in software during 6 

offline processing. After recording, the data are visually checked to identify bad electrodes 7 

and bad time-segments (e.g., Wright, Gobet, Chassy, & Ramchandani, 2013). This procedure 8 

is normally conducted via a check of the signal amplitude of all electrodes (e.g., using a 2-D 9 

layout map). Figure 1 provides an example of a bad electrode that has been visually identified 10 

at O1 (red signal). This electrode needs to be discarded from further analyses; otherwise its 11 

inclusion might compromise final topographical results, estimated sources, and data 12 

interpretation. EEG artefacts can also be identified through the application of high-order 13 

statistics, frequency decomposition, and ICA; a technique used to separate linearly mixed 14 

sources (see Delorme, Sejnowski, & Makeig, 2007). 15 

***Figure 1*** 16 

 Eye blinks and eye movements. The vertical electro-oculogram (VEOG) recorded 17 

from electrodes above and below the eye scans vertical eye movements and blinks. Blink-18 

related activity needs to be removed from EEG signals in order to negate the influence of 19 

orbicular muscular contraction on the activity of frontal electrodes (e.g., Girges, Wright, 20 

Spencer, & O’Brien, 2014). Independent component analysis is usually applied by modelling 21 

blink activity in the VEOG and removing the correlated waveforms of electrical activity from 22 

EEG electrodes. This approach possibly represents one of the most necessary methods to be 23 

applied during offline EEG procedures (Dickter & Kieffaber, 2013; Keil et al., 2014). This is 24 

because signals from both blinks and eye movements are mixed in with the EEG recorded 25 
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from frontal and frontal-central electrodes. Moreover, ERPs may be confounded by any EOG 1 

signals, which have a tendency to occur systematically over time (e.g., where a stimulus trial 2 

requires a change in fixation point to complete the task). Consequently, such contractions are 3 

epoched and are therefore fully represented in averaged signals. This means that the averaged 4 

signals have the potential to indicate false peaks. Similar considerations apply to saccadic eye 5 

movements, from both horizontal (HEOG) and vertical (VEOG) eye movements. The 6 

solution requires care at the experimental design stage to eliminate any tendency for stimuli 7 

to provoke synchronised eye movements or blinks.  8 

Raw EEG data. The continuous biological signal is imported into the database then 9 

broken into smaller time samples (i.e., epochs). These samples can be asynchronous (event-10 

unrelated signals) or event-related windows (epoched by triggers; i.e., time-locked). Pre-11 

processing of the raw (or epoched) EEG data includes DC-offset correction in order to 12 

prevent the influence of voltage imbalance problems (i.e., baseline variations). Offline filters 13 

(e.g., band-pass filters) are usually applied to exclude artefacts such as muscular contractions 14 

and electrical interference from external devices (e.g., computers and smartphones). Methods 15 

of independent component analysis and signal space projection have also been developed to 16 

remove cardiac and respiratory artefacts (e.g., Castellanos & Makarov, 2006). 17 

 Averaging. The preprocessed EEG signal usually needs to be averaged in time and/or 18 

frequency domains. The time-locked signal can be successfully averaged in time; in this case, 19 

amplitude is summed across different samples (Picton et al., 2000). However, event-unrelated 20 

samples, referred to as asynchronous samples, need to be averaged in the frequency-domain 21 

(i.e., FFT is conducted for each segment), otherwise, the time-amplitude average of all the 22 

samples will tend towards zero volts because the stimulus onset is random in relation to the 23 

EEG signal. In such instances, the brain does not “know” the times at which the samples were 24 

taken. This is the mathematical fact that underpins the principle of ERP averaging (Picton et 25 
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al., 2000). Time-locked signals can be easily averaged using grand average methods; 1 

conversely, asynchronous samples are required to be processed in the frequency-domain 2 

through the application of methods that decompose the power spectrum into different band 3 

waves. It is also important to make clear the main differences between FFT and wavelet 4 

transformations. FFT methods provide the size of the component of frequency but no detail 5 

regarding the spatial duration. Conversely, wavelet transformations can derive a characteristic 6 

time and frequency. For example, time-frequency decomposition methods such as Morlet 7 

Complex Wavelets can indicate not only whether the power of theta waves were up-/ 8 

downregulated but also precisely when this modulation occurred (Bigliassi et al., 2014). 9 

 Topography and source estimation. Asynchronous samples can only be processed 10 

in the frequency-domain and present changes in different band frequencies over the cortex 11 

surface. Two-dimensional topographical maps are usually generated to illustrate the 12 

distribution of various frequencies at different electrodes (Pfurtscheller & Lopes Da Silva, 13 

1999). Time-locked signals are directly linked to triggered stimuli/cognitive processes. When 14 

averaged, time-locked signals can be processed in both time- and frequency-domains and 15 

allow the reconstruction of estimated sources. Source reconstruction is more accurate for 16 

focal sources in the superficial regions of the cortex than it is for extended sources 17 

(Wennberg & Cheyne, 2013) or for sources in medial or subcortical regions (Koessler et al., 18 

2014). The source of the brain’s electrical signal can subsequently be reconstructed by 19 

applying different methods, such as the Minimum Norm Method (wMNE; i.e., an inverse 20 

solution method; Grech et al., 2008) or Standardized Low Resolution Brain Electromagnetic 21 

Tomography (sLORETA; Pascual-Marqui, 2002). sLORETA is based on current source 22 

density (i.e., a current flowing towards the electrode is a source, and a current flowing away 23 

from the electrode is a sink; see Kamarajan, Pandey, Chorlian, Porjesz, & Begleiter, 2016). In 24 

addition, researchers are required to select the neural orientation of the reconstructed sources. 25 
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Source orientation is a biophysical postulate that suggests that each vertex of the cortex 1 

surface contains one, two, or three dipoles with orthogonal directions. This anatomical 2 

observation is based on the fact that neurons are organised in different macro-columns that 3 

are perpendicular to the cortex surface. Unconstrained sources are recommended during 4 

EEG-related studies given its poor spatial resolution and the considerable challenge 5 

associated with the estimation of precise source locations. 6 

***Figure 2*** 7 

 Brain atlas. The final step in identifying the sources of an event-related potential 8 

entails the application of atlases to identify the brain regions that exhibit an increase in signal 9 

amplitude (e.g., Bigliassi et al., 2018; Jain et al., 2013). Brain atlases are subdivisions of the 10 

cortex surface that were created to explore the anatomy of the brain (i.e., brain labelling; see 11 

Klein & Hirsch, 2005) and its activation patterns. Computer programs such as Brainstorm 12 

provide users with numerous atlases that can be applied to extract amplitude and frequency 13 

changes from specific brain regions (see Figure 3). 14 

***Figure 3*** 15 

 Brain connectivity. Analyses of brain connectivity by statistical methods (e.g., 16 

correlation) have been used extensively in the fields of psychophysiology and neuroscience to 17 

further understanding of the neural networks that connect different brain regions (Jovanović, 18 

Perović, & Borovčanin, 2013). Spectral coherence analysis represents one of the most 19 

common methods to analyse brain connectivity and is applied to further understanding of the 20 

relationship between two electrical signals in the frequency-domain (Friston, 2011). Signal 21 

coherence is usually applied to estimate the means by which different brain regions/electrode 22 

sites respond in tandem. The magnitude of signal coherence varies from 0 to 1 and similar to 23 

correlational approaches, 1 represents a maximal level of coherence between electrical 24 

sources. Other methods such as Bivariate Granger causality analysis have been applied in the 25 
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field of neuroscience to estimate not only the relationship between two brain regions but also 1 

the in-and-out connectivity between two electrical sources (Haufe, Nikulin, & Nolte, 2011). 2 

Put another way, this method has been used to indicate the influence of one electrode site on 3 

another (see Figure 4). Cortico-muscular coherence (EEG–EMG) is another approach widely 4 

used in the field of exercise sciences. By calculating the degree of connectivity between the 5 

electrical activity in the brain and muscles, researchers are able to indirectly assess the neural 6 

control of working muscles (e.g., Petersen, Willerslev-Olsen, Conway, & Nielsen, 2012). 7 

Partial directed coherence (Baccalá & Sameshima, 2001) and directed transfer 8 

function (Kamiński & Blinowska, 1991) are also methods developed to investigate 9 

information flow in the brain structures and can be used for very similar purposes in the field 10 

of human movement sciences. For example, Mierau et al. (2017) demonstrated how different 11 

brain regions communicate during a balance control task through the use of partial directed 12 

coherence, which is a time-variant, frequency-selective and directed functional connectivity 13 

analysis tool. The authors suggested that balance control is primarily supported by functional 14 

networks. In the alpha network, the occipital lobe acts as a source, and the communication 15 

with other brain regions propagate towards parietal and central areas. This study 16 

demonstrates the way in which brain connectivity analysis can be used to explore how 17 

different brain regions are connected during complex physical tasks. Moreover, it puts 18 

forward a conceptual framework that is well supported by neurophysiological data. 19 

***Figure 4*** 20 

Interpreting the EEG Data 21 

 Interpretation of the EEG data depends primarily on the design of a study and the 22 

information available in the extant literature. Correlational analysis can also be implemented 23 

at this juncture as a means by which to identify whether changes in the brain’s electrical 24 

activity are associated with psychological responses (e.g., enjoyment or perceived activation) 25 
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and/or peripheral physiological reactions (e.g., changes in heart rate variability or muscle 1 

electrical activity). It is noteworthy that the temporal resolution of the measures included in a 2 

correlational analysis can be slightly different, meaning that strong or weak relationships 3 

might not be particularly meaningful. For example, 1-s EEG epochs collected during the 4 

execution of movements are unlikely to correlate well with changes in affective valence that 5 

were measured immediately after an exercise bout. This is because the 1-s synchronous 6 

samples will be potentially linked to the neural control of working muscles, whereas affective 7 

responses will be indicative of a much longer time-frame. In such instances, decomposing the 8 

electrical signal by use of frequency-domain analysis appears to be a suitable approach in 9 

detecting changes in brain activity associated with psychophysical (e.g., perceived exertion; 10 

(Bigliassi, Karageorghis, Nowicky, Orgs, & Wright, 2016b) and psychological (e.g., 11 

motivation; (Bigliassi et al., 2016a; Bigliassi, Karageorghis, Hoy, & Layne, 2019) responses.  12 

Brain connectivity analysis can also be used as a complementary method to test 13 

theoretical propositions. For example, Bigliassi et al. (2017) found that when participants 14 

exercised in the presence of music they reported more positive affective responses and felt 15 

less fatigued than when they exercised in a no-music control condition. In order to identify 16 

which brain mechanisms might be associated with such differences, the authors decided to 17 

test the corollary discharge model (see Pageaux, 2016). Accordingly, they calculated the 18 

spectral coherence level among electrodes positioned over the central motor command and 19 

somatosensory regions. The results indicated that music reduced the communication across 20 

somatosensory regions, which could have reduced exercise consciousness and thus led to a 21 

more positive affective state and amelioration of fatigue-related sensations. 22 

Safety Issues 23 

When used properly, EEG is a very safe and non-invasive technique. All EEG 24 

equipment should meet current safety standards for use with human participants, be properly 25 
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maintained and installed, and tested for electrical safety. Operators should ensure that 1 

participants are protected from ground loops. Particular risk of ground loops may occur if the 2 

participant is physically connected to more than one recording and/or stimulating system. 3 

Other potential risks to be controlled for include skin irritation or cross-infection from gels 4 

and caps. The laboratory environment and cap storage area should be kept clean and tidy at 5 

all times. All electrode caps and electrodes should be washed meticulously after use. Water 6 

and antibacterial detergent should be used, as recommended by the manufacturer, to gently 7 

remove gel residues from electrodes. Blunt needles should always be sterilised. Gel should be 8 

hypoallergenic and transferred to a separate container for exclusive use with each participant. 9 

Operators should wash hands thoroughly for each testing session and use antibacterial hand 10 

gel.  11 

Conclusions and Future Perspectives 12 

In this short review article, we proposed a series of simple and efficient strategies 13 

pertaining to the collection of EEG data and reduction of the influence of electrical artefacts 14 

typically caused by body and cable movements. We also delineated some of the methods 15 

used to process the biological signal and extract meaningful information. This paper has been 16 

written to encourage researchers in exercise psychology to look at the brain with different 17 

eyes, and perhaps see a possibility to explore complex psychophysiological phenomena 18 

during the execution of gross movements. Accordingly, researchers should attempt to 19 

measure psychological and psychobiological (e.g., cortisol levels) parameters in tandem with 20 

EEG, in order to arrive at a fuller understanding of exercise-related phenomena. 21 

Although collecting EEG data had never been possible during complex modes of 22 

exercise until just a decade ago, researchers can now use mobile devices to design 23 

experiments that are far better representative of real-life situations. There remains a need to 24 

prioritise the removal of artefacts given that the quality of the biological signal is of 25 
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paramount importance. However, “mobile Faraday cages” would allow researchers to 1 

reproduce complex social situations and recreate experiences in the real world that were 2 

never previously imagined. Mobile EEG devices can be used to shed new light on the 3 

mechanisms that underlie attention allocation, fatigue-related symptoms, affective changes, 4 

and behavioural outcomes associated with physical activity programmes (e.g., exercise 5 

adherence). Looking forward, researchers might attempt to use stimulation methods to alter 6 

brain activity (e.g., repetitive transcranial magnetic stimulation [TMS], transcranial direct-7 

current stimulation [tDCS], and transcranial alternating current stimulation [tACS]), 8 

manipulate bodily sensations, and ultimately change exercise behaviour. 9 

The main advantages of EEG include its non-invasive nature, close connection to 10 

neural activity, superb temporal resolution, as well as relative inexpensiveness and 11 

convenience for use with human participants. Furthermore, a very substantial body of 12 

research has developed and refined the interpretation of EEG measures, particularly ERP and 13 

frequency-related measures, as correlates or indices of cognitive function both in normal and 14 

clinical populations. The disadvantages of EEG methods arise from the inverse problem (i.e., 15 

source reconstruction analysis), indeterminate source separation, and insufficient signal in 16 

relation to noise. A substantial research effort has been devoted to the development of new 17 

methods to address such problems. This has facilitated developers’ rapid progress in terms of 18 

overcoming the limitations of EEG in areas such as multimodal imaging, time-frequency 19 

analysis, and single-trial ERPs. As these new methods enter the mainstream, we can expect 20 

the full promise of EEG, as an imaging modality, to be realised by the research community. 21 
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Figure Captions 

Figure 1. Diagrammatic representation of a bad electrode in a 2-D layout, 62-channel EEG 

map. 

 

Figure 2. Time-locked EEG signals and source reconstruction analysis through the use of the 

wMNE method. 

 

Figure 3. An example of source reconstruction (wMNE) and localisation (Mindboggle).  

Note. An increase in signal amplitude can be identified in the left superior parietal gyrus and 

adjacent areas, such as the left superior parietal, left supramarginal, and left postcentral gyri. 

The signal amplitude threshold was set at 60% as a means by which to only present the 

highest values (cf. Jain et al., 2013). 

 

Figure 4. Examples of brain connectivity analyses across 62 electrode sites.  

Note. The left figure presents the signal coherence method, while the right figure presents the 

Bivariate Granger Causality analysis method. The blue areas of the link between two regions 

represent the electrical output from one electrode site; conversely, the red area represents the 

electrical input from other electrode sites (i.e., being influenced by other regions).
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