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Abstract—This paper is concerned with the multi-task multi- 1) from the tasks’ viewpoint, task allocations can be didide
agent allocation problem via many-objective optimizationfor into single-task and multi-task assignments; 2) in terms of
multi-agent systems (MASS). First, a novel layered MAS mode the agents (more generally robots), there are single-rahot

is constructed to address the multi-task multi-agent alloation lti-robot allocati - and 3) b f . esty]
problem that includes both the original task simplification and the multi-robot allocations; and 3) by means of assignmenesty

many-objective allocation. In the first layer of the model, he deep task allocations can be grouped into instantaneous and time
Q-learning method is introduced to simplify the prioritization extended ones. Based on the aforementioned classification-

of the original task set. In the second layer of the model, the g the two most important assignments, namely, single-task
modified shift-based density estimation (MSDE) method is pu 1, iti-robot tasks and instantaneous assignment (ST-MR-IA

forward to improve the conventional Strength Pareto Evoluion- . . .
ary Algorithm 2 (SPEA2) in order to achieve many-objective [48] as well as multi-task and multi-robot allocation (MTM-

optimization on task assignments. Then, an MSDE-SPEA2-bed RA), have attracted persistent research attention coimgern
method is proposed to tackle the many-objective optimizatin the task allocation issue for MASs.

problem with objectives including task allocation, makes@n, The purpose of the ST-MR-IA problem is to establish a
agent satisfaction, resource utilization, task completio, and task unique agent coalition for every task. It is worth notingttha

waiting time. As compared with existing allocation methods the f h task t tioi th lt
developed method in this paper exhibits an outstanding feare Or each task, one agent cannot join more than one coaliion a

that the task assignment and the task scheduling are carriedut @ time. Accordingly, it is crucial to find an ideal coalitioarf
simultaneously. Finally, extensive experiments are condied to mation algorithm [52]. So far, a number of coalition fornoeati

1) verify the validity of the proposed model and the effectieness algorithms have been developed (see e.g. [53]) and appilied i
of two main algorithms; and 2) illustrate the optimal solution for many areas such as disaster response [26] and urban search
task allocation and efficient strategy for task scheduling nder with rescue environment [43]. Nevertheless, existing itioal
different scenarios. ) i . s ’ ; )
formation algorithms might be incapable of dealing with the
MTMRA problem due mainly to the complexity of constraints
[47], [49].
In order to cope with the foregoing complexity issue, a
number of approaches have been put forward in the literature
8 INTRODUCT'_ON to tackle the MTMRA problem. Generally, the MTMRA pro-
T HE past two decades have witnessed a great deal of gy re in MASSs can be carried out within noncooperative or
search attention devoted to multi-agent systems (MASs)operative environments. In the noncooperative circants,
[7], [8], [13], [16], [19], [31], [55], [57]. Task allocatio in  gelfish agents pursue their own profits by providing resaurce
MASs aims at finding appropriate agents who can indepefs sejler agents or consuming resources as consumer agents,
dently or cooperatively conduct specific tasks [2], [25]. IRegardless of others’ rewards in the process of task assighm
the existing literature, task allocation has been classif€0 44 such a behavior is referred to as the market-based task
various categories according to three different perspesti giocation. This kind of allocation method, as mentioned in
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as the complex-dependency-induced constraints on paaction the constrained task allocation problem by developing an
task assignments. Fortunately, the nowadays deep learn@wglutionary many-objective optimization algorithm.

algorithms are well known for their capabilities of handilin Motivated by the above discussions, the main aim of this

complicated situations, and therefore are well suited to E%per is to design an evolutionary many-objective optitioza

applied to deal with allocation issues for MASs. Some u Igorithm for task allocation of MASs. This problem appears

g)—date dNeetp Ieirnggﬁezhzodscmcluld?_, bUtI ilre noltll:mtmed fo be especially difficult as we are inevitably confrontedhwi
eep Q-Network (DQN) [42], Convolutional Neura ekat?e following three essential challenges: 1) how to design

E\?]’t Feekdfcl)rwarr]q rl:leura_IdNeltworI;_[dSi] anld Rtehcurr?nt ]I:l;tl;]r% dedicated encoding scheme for the operations of crossing
INetwor [1], w Ich are ideal canciaate algoritnms for and mutating in accordance with a series of performance
improving the efficiency of task allocation and executio8][3 requirements on the task allocation? 2) how to improve, to

These networks n deep-learning process usua_IIy Comb'ng(%reat extent, the traditional EAs and EMO algorithms via
with back-propagation [22], and Stochastic Gradient DI&)S(:E"designing strict density estimation methods? and 3) how to

(SGD) [3] methods. Espemally,_deep Q-Iear_nmg meth(_)d Ib|suﬁeal with the complex dependency relationships (amongstask
ly gets excelle_nt perfo_rmance n c_zleahng W'th uncertaitusia ;.\ ,q original task database) which would bring in substnt
and exponential solution searching space in task a”mat'aifﬁcultiesin designing evolutionary many-objective iopiza-

problem. On the one hand, for the exponential searchi s e . .
space of the task dividing problem, deep Q-learning hasﬂgr:nilgtotrggrghalltl(le?gtgserefore, the main purpose of thipgra

deep Q-network to training and searching, which help to
accelerate finding the optimal solution. On the other hamd, f This paper is concerned with multi-task multi-agent al-
the uncertain status in task dividing, the complex comjinat location problem via many-objective optimization for MAS,
in every iteration can be solved by the approximate calimriat Where the five objectives include admissible makespan,tagen
in the Q-network of deep Q-learning method. satisfaction, resource utilization, task completion, aagk

In addition to the allocation, scheduling serves as anoth&giting time in the task allocations. It is worth noting that
crucially important aspect for task allocation for MASs [17 agents are purposely divided into two layers with aim to
So far, a variety of scheduling methods have been develogewrove the allocation efficiency. The main contributiorfs o
for task allocation in order to ensure short makespan, hi§is paper are highlighted as follows:
success rate and few conflicts [34]. Unfortunately, the-allo
cation and scheduling issues have seldom been taken intd) A novel layered MAS model is designed for two main
simultaneousconsideration and, so far, the relevant results  allocation purposes: the first layer is established to éivid

have been scattered in the literature. For MASs, the task alll tasks and simplify prioritizations, and the second layer
cation is essentially a multi/many-objective issue thabives is constructed for task allocation and scheduling.
multiple yet possibly conflicting performance requirensent 2) A deep Q-learning algorithm is, for the first time, to
on makespan, agent satisfaction, resource utilizatiogk ta deal with the task dividing problem so that the task
completion, and task waiting time, etc. Clearly, it is dific prioritization can be effectively simplified to facilitate

to meet all the requirements via solving a single-objective  the subsequent assignment.

assignment problem and, therefore, there is a practical tee 3) A modified shift-based density estimation (MSDE) s-

study the multi/many-objective assignment issues for MASs  trategy is designed for the Strength Pareto Evolutionary
in the context of optimization. Over the past few decades, Algorithm 2 (SPEAZ2) for the purpose of implementing

the evolutionary algorithms (EAs) have shown superiority =~ many-objective optimization in the task assignments
in dealing with multi/many-objective optimization probie with aim to a) play an adequate trade-off between the
s and stirred a great deal of research attention [39]. As addressed five objectives; b) maintain the diversity of
such, a seemingly natural idea is to utilize the latest EAs  allocation solutions in the elite selection process; and c)

to cope with the typically multi-objective multi-constrdi achieve a satisfactory overall accuracy.

allocation/scheduling issues with MASs. 4) The proposed MSDE-SPEA2-based method enables us
In fact, the evolutionary multi-objective optimizationN©) to simultaneously conduct task assignments and task

algorithms have begun to receive some initial researcheste scheduling for the entire task set, where the assignment

in accommodating different task requirements in MASs. For  results include not only the specific agent groups for
example, in [51], a novel EA-based classification algorithm every task but also the execution order for the task set.
has been explored to develop an agent decision-making strat

egy. In [5], multi-objective optimization methods have bee The rest of this paper is organized as follows. Section Il
introduced to optimize the prioritized tasks in MASs. A highr discusses the related work of optimization algorithms é&skt
EMO algorithm has been applied in [18] for the stochastic floallocation and assignment problems for MASs. The problem
shop scheduling problem with aim to minimize the makespdoarmulation is given in Section Ill. In Section 1V, the model
and the total tardiness. Unfortunately, the EMO algorithmend the proposed algorithms for the task allocation protdém
themselves might be unable to effectively handle optinorat MASs are provided. Section V presents the experiment igsult
problems withmore than three objectivesvhich are custom- related analysis, and the comparisons with some otheratate
arily referred to as thenanyobjective optimization problems. the-art approaches. We draw conclusions and point outdutur
As such, it makes practical sense to initiate an investigatiresearch topics in Section VI.
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1. RELATED WORK learning (DQL) algorithms, which combine the merits of deep
learning and reinforcement learning, are particularlytale
In recent years, the multi-task allocation problem has begs} addressing the complicated task allocation problems. |
extensively investigated for MASs from various aspectiuidlc_ fact, the importance of DQL algorithms has already begun to
ing rewards of agents [11], searching efficiency of soluiorhe recognized from both industry and academy with respect
[50] and specific allocation of applications [23]. The pfity, general optimization problems. For example, a DQL-based
dividing issue has been paid particular attention withie thegource assignment method has been put forward in [4] to
task allocation framework especially in the noncoopeﬁati\(mpro\,e the ultra-reliable low-latency communicationvéee
environment. For example, the auction algorithms [45] hayg the industrial wireless network, where the proposed oeth
been applied to deal with the market-based assignmentsisspgy|d overcome the difficulty resulting from the dynamic and
with no agent cooperation, and satisfactory results haea bQ:ompIex variations of network nodes. In [60], a DQL-based
obtained. Nevertheless, a single point of failure in thetiauc t3nsmission mechanism has been proposed to maximize the
algorithms could result in a broken system and, in order Ystem throughput by a suitable strategy on buffer transmis
prevent such a single point of failure from happening, thgon. very recently, a deep reinforcement learning algarit
negotiation-based methods have been introduced to deal Wiks been developed [41] on the agent communication learning

the multi-task allocation problem. Negotiation-basedinels  proplem with hope to reduce redundant message sending.
(e.g. uncertain deadline negotiation [20], time-constraie-

gotiation [29] and game theory-based negotiation [12]) are
known to be capable of effectively avoiding breaks or cottlic

In available literature, the self-organization behavidr o In this section, the task allocation problem is formulated
agents has been considered in some task allocation metith detailed descriptions on the task, the agent and the
ods in the noncooperative environment. For instance, it halfocation targets. Let us start by describing some key con-
been shown in [54] that agents can find suitable tasks atepts required for formulating the evolutionary many-chje
services according to self-incentive rules. In the cooera optimization problem for task allocation on layered MASs.
circumstance, most game-theory-based task allocatio8l [5 Task: Theith task, denoted af, is a 7-tuple given by
have focused on the collective profits dividing, see e.g} @2
the proposed Shapley principle for collective profits dirig (IDy,,TYy,, I Fy,,CTy,, RTy,, Vi,, T Dy,)
in task aIIocatio_n_. With the growing size Of. th_e database, tr\'/vhere I1D;, is the identification of the task (i.d.D;, = i),
number of coalition structures of agents is increased at ‘ ‘

. L ) 1, represents the task type,
exponential rate which, in turn, leads to low searching dpee "
In this regard, the Iatgst EAs.(_:ouId be explqited to acceerg f, — {{idv P(es ts) b {02 Pti tiay) b -+ > (s Dt b0, )
the process of searching coalition structures in task aions.

Due to their distinct merits of strong robustness, widstands for the prioritization of,, CT;, = {ct’, cty, ... ct]'}
applicability and rapid searching capability, the EAs havéescribest;’s requirement vectors of capabilityRT;, =
shown tremendous potential in dealing with the global mult{rt{’,rt5', ..., rt';} denotest;’s requirement vectors of re-
agent optimization problems in practical applications][Ebr  source, V;, means the maximum reward of finishing task
example, in [6], the task deadlock problem (caused by agént and T'D;, indicates the maximum duration time ofs
decision) has been avoided through dynamic and varialeplementation.
pheromone placement methods. In [24], heuristic initalon To be more specific, the task types include the dependent
rules and repair strategy mechanisms have been appliedye 7'Y;, = 0 and the independent tygeY;, = 1. A task in
a genetic algorithm with a fast convergence. Neverthelegse dependent type requires more than one agent to finish the
traditional EAs alone might be unable to simultaneouslikiac task, while the independent task requires only one ageetyEv
the multiple objectives in task allocation. In order to adionte task has its prioritization which is denoted as the vedt®y,.
the competitive and possibly conflicting objectives, the @MWhen t; has been divided:; will have a positive influence
algorithms have been introduced to address the agent taskeverytq, (£ = 1,2,...,m) by different probabilities.
allocation problems. One distinguished feature of the EM@d1,ids, ..., id,,) includes m identifications of tasks that
algorithms is their ability to obtain a Pareto approximatiet must be executed aftef; is finished. {ide, p(, 1, )} (€ =
with fast convergence and superior diversity, therebyrofte 1,2,...,m) reflects the probability of the positive influence
a set of optimal solutions [15]. On this account, the EM@om taskt; on taskt;q. because of;'s dividing. Here, the
algorithms have been widely applied in MASs, see e.g. [5ppsitive influence means that, whénhas been divided, it is
for the optimization of the agent decision making process, asuccessful to combing’s subtask;;_x with #;4,. Furthermore,
other applications include mobile tracking [44], agentSropl CT:, has! kinds of capabilities andRT;, hasn kinds of
path searching [27] and agent cooperation with automatesbources. IriTask, if a task has no requirement for thg"
negotiation [28]. kind of capability or resource, the correspondimg and rtf;

As discussed previously, deep learning methods are in il be “0”.
ideal position to be deployed to tackle the task allocation First-Layer Agent: The jth-agenta; on the first-layer is
problems that are complicated by the sophisticated piriori 3-tuple (ID,;,IF,;,LD,;), where ID,; is the identifi-
zation and dependency among tasks. Furthermore, deepc@tion of the agent/D,,= j), IF,, = {{idl,p(ahaidl)},

IIl. PROBLEM FORMULATION
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{idQ,p(a27aid2)}, o5 {idim; Plas,aia, )} COpIES the informa-  Definition 4: The resource utilizatio®U;, of the coalition
tion of I'F;, and LD,, is a flag reflecting whether the taskC; for taskt; is defined as follows:
is divided or not, that isLD,, = 1 (respectively,LD,, = 0)

L . 17 n tli
means that the task is divided (respectively, not divided). RU,, = 1 3 + ()
Second-Layer Agent: The kth-agenta, on the second- no= ‘Tl‘ Y opoq ray”

layer is a 4-tuple(ID,, , RO,,,CA,,, RA,,), whereID,,

ti a 1 1 -
represents the identification of the agéfiD,, — k), ROq, wherert;; and rag are defined inTask and Second-layer

agent, respectively.

is the role of agenti,, CA,, = {cai*,ca5", ..., ca;*} and I _ . .

RA,, = {ra®,ras*,...,ra% Y} indicate agent;’s capability . pe(l;ln]lyor:jSt; The task allocation success ratio of a task set
vector and resource vector, respectively. Specificélly,,, = IS defined Dy: 1SU|

0 means that agent; is a dependent agent which must SRy = (6)

cooperate with at least one agent, aRd,, = 1 indicates 171

that a;, is independent. An independent agent means thatwihere|SU| is the number of successfully allocated tasks, and

can finish one task by cooperating with others or not. |T| indicates the size of the task set. An assignment is said
The following definitions are useful in quantifying the reto be successful if 1) the corresponding agent coalitiontsnee

guirements/objectives for the addressed allocationthdivegy the task’s requirements; 2) there is no conflict among agents

problem. and 3) the sum of;’s waiting time andt;’s execution time
Definition 1: The execution time of the task, which is does not exceed the maximum duration tiffi&,,.

allocated to the agent coalitio@’;, is denoted byr,, and Definition 6: The total task waiting time is defined as

defined as follows: follows: -
1
Tt = TDtim 1) WT = Zwm )
iy i=1
with wherewr;, represents the waiting time of tagk
B Z;Zl(ctf;’ —&“)(mgi —zah) ) In the second-layer_ moo_lel, we will design the scheduling
Pt;,C; = — (2)  order for all tasks which gives a sequence number for every
VS et~ 5 7 o to the
n=1Cn =€ n=1\Cly" —Ca task. Tasks can be executed according to their sequence num-

ber. Without loss of generality;’s sequence number is marked
I : as SN,,. The waiting timewT;, of ¢; can be calculated when
(e.ct” =+ ctti), zai is the average value of alfi" L 9 Tt O b

L. Leem=17mm o there are more than one task whose sequence number equals
capab|‘llty| requirements in the agent coalitioh (i.e. ca; * = to SN,, — 1, otherwise,wr, — 0. For example, ifSN,, — 5

C; —C; _ 1 —C, i 1 ’ i . H ! i
cll. Dk COy" andea® = %Zn:1 caﬁ ), andpy, ¢, denotes and SN,, = SN,, = SN,. = 4, the waiting time can be
[Cs] £k X . i 1 2 3 g
the al:_nll_ty evaluation of agent membgrs in coalitioh calculated bywr,, = max{r,, Ty, 7ty } — min{7,, 7y, Tty -

Defln_|t|on 2: _The agent satisfaction |nd_ex represents ag_ent’s-rhiS paper aims to find an optimal allocation for tasks and

evaluation of its reward. Agent,'s satisfaction index in design an ideal task scheduling to coordinate the following

wherect"” is the average value @f’s capability requirements

coalition C; for taski; is defined as five objectives: 1) the makespan, 2) the agent satisfac8pn,
(Vi — costc,) — (Vi, — cost(c,\far})) the resource utilization, 4) the task completion, and S)ds&
Sar = Vi, — o8t (ay 1) ®) waiting time in the task allocation.
i Ak ,ti

wheres,, denotes ageni,’s satisfaction index¢ostc, indi-

cates the cost for all agents in the coaliti6h to complete _ _ _ _

the taskt;, andcost o, (a, ) represents the cost for the agents In th|s_sect|0n, a two-layer MASs model is _estabhshed fo_r

exceptay, in the coalitionC; to complete the task. task assignments, followed by the presentation of the main
Task allocation problem in this paper is focused on baflgorithms.

ancing the five objectives in task allocation as mentioned,

and the coalition cost is a part of the calculation in agen{ Task Allocation Procedure Model of Layered MASs

satisfaction. Hence, the complex calculation of coalitimst . .
AR The assignment procedure of task allocation on the layered
for every agent combination is replaced by data genera{gr

IV. MAIN RESULTS

programming. The data generated by the data generator o eASS is displayed in Fig. 1, which includes two main steps. In
the superadditivity principle. When calculating the cos$t

first step, the deep Q-learning method is introducedier t
every task, the related data will be accessed in the expan’met'rSt'layer agents to simplify the prioritization of the ginal
database.

ask set. In this step, the prioritization of tasks is reduas
much as possible. In the second step, the MSDE-SPEA2-based

Definition 3: The makesparof a task sefl” is defined by method is applied to harmonize the five objectives under the

7| constraints.
makespan = Zm —T0 (4) It is worth noting that the information of first-layer agents
i=1 relies on the task sef’, and thus the number of first-layer

wherer, is the taskt,;’s execution time andy refers to all agents equals tdl'|. Different from the first-layer agent, the
overlapping execution time of tasks. second-layer agents are given in the agent 4etand the
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Fig. 2. An example of task dividing and prioritization sirifipihg

' )

Output: allocation solutions

and execution schedulings
\ J successfully or not. When all subtasksigfare tackled, the

prioritizations oft; is simplified. Similar situation applies to
t3 andts. In this caset;’s dividing can lead to 7 different
results. According to the result of’s dividing, the combined
tasks can be divided but the others cannot. Based on this rule
whether a task can be divided is dependent on the situation
Fig. 1. Task allocation procedure model of layered MASs of the last task and the corresponding probability of pesiti
influence. Thus, in order to find out a task dividing &6
to simplify prioritization as much as possible, Algorithm<?
introduced into this step.
In order to make Algorithm 2 easily understandable, we first
introduce some notations involved in the Q-learning method
as follows:

. Statesthe task queue of the current dividing 985’ is
defined as a state. New tasks will be added ibt§ and
DS will update the queue during every iteration step.

. erat_e a ne(;/v tT]Sde?t/ r?n the firstkla>é/err1 of thhe Lnodel. The terminal state means that no task can be divided.
2: Assign and schedule the new task’sethrough the agent | ations an action means that new tasks are added into
set A by means of MSDE-SPEA2-based algorithm under the setDS’

the constraln.ts on tht_a_second layer of the quel. » Rewardsthe rewards rely on the latest action. According
Output: Allocation coalition setAC and scheduling order to the action, several new tasks have been added into
0. DS’. The reward of this action is the extent of simplified

prioritization caused by these new tasks.
« Policy. according to the greedy policy, the task which has

number of second-layer agents /. According to the layered
allocation procedure in Fig. 1, our main algorithm is predd
in Algorithm 1 as follows.

Algorithm 1 Main Algorithm
Input: An agent setd and a task set’
1. Simplify the prioritization ofT" by task dividing to gen-

B. Algorithms for the Task Allocation the maximum rewards will be chosen in every iteration.
In this section, the corresponding algorithms for the task Next, let us introduce the deep Q-learning dividing algo-
allocation problem are presented. rithm in Algorithm 2. Q-network calculates the approximate

1) First-layer agents: task dividing and prioritizationnst  action-value functions by initializing the replay memomst,s
plifying: The task dividing and prioritization simplifying prob-the two value functions, and the first vector inputting. Ac-
lem is an uncertain problem, which is shown in Fig.t2. cording to the greedy policy, the best action will be exedute
t3 and ty can be executed whety finishes.t; has three and the replay memory set and the value of action-value func-
different probabilities of positive influence an, t3 andt,. tions will be updated. Through the gradient backpropagatio
To be specific, ift; is divided, subtask; ; will be combined on Q-network, the parameters are updated. Thus, when the
with taskt, with probabilityp, .,), and if the combination is maximum iteration is reached, the algorithm can output the
successful, the new task is marked@asThen the prioritization task dividing set.
of (¢1,t2) is simplified. It should be mentioned th&at can The optimal dividing setDS can be obtained by deep Q-
be divided successfully, while, the success of tasks’ cambi learning dividing algorithm. Then, we can divide the tasks i
tion is uncertain because of the corresponding probatsliti DS and obtain the new task sé&t. We introduce an auxiliary
Therefore, it is an uncertain task dividing problem. Reflegarameterp to facilitate the implementation of the dividing
this uncertain problem to our experiments, and there wilabeprocess. If task; is to be divided ang > p, ; ), the subtask
parameter to indicate the current probability of the twdsast; » of ¢; will be combined witht,, successfully. If task; is
which will be combined. The parameter has a random valuiyided and ifp < p(s, +,), the subtask will fail to be combined
and according to this value, the combinations can be tackleith taskt,. The dividing rules of; are set as:
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Algorithm 2 Deep Q-learning Dividing Algorithm
Input: The set of first-layer agents, the iteration number 1 IT| Z'_C:i‘ Sa
tmaz, action setAC, decay factory, budgetB. f3(54) =1/ @l > ﬁ (10)
1: Initialize the replay memory seM = ¢, initialize Q- =1
network, initialize action valu€) and target action value wheres,, can be calculated by Equation (3).

Q. The task completion functiori, is defined as:
2: for i=1 to B do 7]
3: Initialize DS with an agenta;, calculate its eigen- fa(SRr) = ST (11)
vector ¢(D.S) |SU|
4: for i=1 to t,,4, dO The resource utilization functioffi is:
5: Input ¢(DS") into Q-network and choose a best -
action AC' which has the maximund)-value by greedy 1
idea Js(RU) = 1/{77 >_ RU.} (12)
6: Execute the actioniC' and updateDS’, calculate =t )
the new eigenvectop(DS’) and the reward? where RU,, can be calculated by Equation (5).
7- Update the replay memory s&f by ¢(DS’), AC, Considering the five objective functions given above, our
R, ¢(DS'), and updateDS = DS’ optimization function is
& Sample randomly frond/ and calculate the target minimize F(OS)
action valueQ
o: if the current state is terminal statteen where F(OS) £ (f1(7), f2(WT), fs(SA), f1(SR), f5(RU))
10: Q=R and OS denotes a solution of the task allocation.
11: elseQ + R+ ymax Q(¢(DS'), AC") Next, the constraints of task allocation are set as follows.
12: end if Type constraintaccording to the task type and agent role
13: Execute the gradient descent with respect to tiitefined inTask and Second-Layer Agent every assignment
Q-network, then update the network parameters should not violate the requirements of the task type andtagen
14: end for type, that is, there is a type constraint given as
15: end for
. . 91(0S) =0, (13)
Output: The optimal dividing setDS.
where
|| |4]
A
a) if p > pg,.,), every non-zeraty’ in RT;, will be 9:1(08) = Z;bti +;bak'

updated byrtﬁ" = rtﬁ" +p(ti,tn)7°t?, and the rule of
the vectorCT;, is same askT;,, i.e. ctﬁ" = ctf—" +
p(tmtj)Ct?;

b) it p > pu,eyy Vi, = Pitit)Ves + Vi, adTDy, =
P(ti,t,) T Dy, +T Dy, ; and

c) if p < p,,) and et =0, we havect’: = 0, and if

Here,b,, reflects whether the allocation coalition violates the
requirements ot;’s type. If the requirements of;’s type is
violated, b;, = 1, otherwiseb;, = 0. b,, reflects whether the
allocation coalition violates the;’'s type. If the requirements

of a;’s type is violatedp,, = 1, otherwiseb,, = 0.

. » o Time constraints The sum of¢;’s waiting time andt;’s

P < P, t,) @ndrts" = 0, we havert; = 0. By dividing  execution time cannot be longer than the maximum duration

all tasks inDS, a new task sef” is obtained. time. Thus, for every task, we have the following condition:
2) Second Layer Agents: Task Allocation and Scheduling:
With the new task sef” and the second-layer agent sét Wy, + 7, < TDy, (14)

the MSDE-SPEA2-based algorithm is proposed to deal Wi%erewni, 7, andT Dy, indicate the waiting time, execution

many-objective optimization problem for task allocatiomda tjme and the maximum duration time of task respectively.
scheduling. First, the five objective functions are defined ghen, one has the constraint function as follows:

follows.

The makesparfunction f; is formulated by: 92(0S) =0 (15)
|7 where g2 (0S) £ 251 ety,, in which et;, reflects if taskt;
fi(r) = thi =0 (8) satisfies (14). If (14) is violatedt;, = 1, otherwisegt;, = 0.
i=1 Agent constraint An agent cannot join more than one
where = {7, 71y, .., Teyp ) - coalition at a time, and therefore we have the agent constrai
The task waiting time functiorfs is given by: as
T 93(0S5) =0 (16)
F(WT) = wr, (9)  wheregs(05) 2 "1 ¢,., in which ¢;, indicates the number
i=1 of agent conflicts of task;.
whereWT = {wr, , Wiy, . .o, WTy .y | - Resource constraintf one task is assigned to one coalition,

The agent satisfaction functiofy is as follows: the coalition should satisfy the requirement that at leas o
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agent can meet the conditiom?* > rt'i (n =1,2,...,n). Algorithm 3 MSDE-SPEA2-based Algorithm
Therefore, we have Input: An agent setd, a task setl” and the maximum

91(08) >0, Vt; € T (17) ParametetV o _
. \Ci] ) ] 1: Initialize populationS with random solutions and empty
where g,(0S) = ), s7a,, in which OS denotes one  the external nondominated sst.
solution of the task allocation ang-,, reflects if the agent . Copy nondominated members §fto S'.

can meet the task’s resource requirements; Idoes‘g(‘)t meet 3. Remove dominated solutions withisf by solutions also
t

the requirementssr,, = 0, otherwise,sr,, = 1. Y, srq, in .
actually refers to the number of agents which can meet thg: if the number of nondominated solutionsdhbeyond the
task’s resource requirements. maximumW then

According to above constraint conditions, the constraint. prunes’ by k — neighbor of clustering with the shift-
violation value can be calculated as based density estimation methddSDE

) 6: end if
CV(0S) = g1(08) + g2(0S) + g3(0S) + (18)  7: Calculate the fitness values on five objective functions for
( (08) + ol ( 94(0S5) each individual inS and S’.

In order to solve the task allocation problem under thes: Select individuals fromS + S’ to fill the mating pool
enforced constraints by the MSDE-SPEA2-based algorithm, through binary tournament selection.
the dominance relations among solutions obey the following: Do the crossover and mutation operators on task allocation
rule: individual rules.
OS; dominatesDS;, 10: if reach the maximum iteration numbigen

0S; is a feasible solution an@s; is not 11 stop

0S; and0s; are not feasible solutions ;g 123 els(;a _ng to Line 2
if andCV(0S;) < CV(0S,); 13: ena i - .
0S; andOS; are feasible solutions Output: The optimal solution seDSS.

andOS; Pareto dominate®.s;.
It is worth noting that a Pareto solution set

055 ={081,08,..., 05w} In Fig. 3, for the middle axis, according to the target node

can be obtained by MSDE-SPEA2-based algorithm. “A”, other nodes move by obeying the first two rules in

To implement the many-objective optimization of task allogquation (20). To demonstrate the satisfactory resulésntw
cation under constraints in the second layer, MSDE-SPEAgssitions are represented by hollow circles. In the riglis,ax
based algorithm is shown in Algorithm 3. according to the target nodeB™, other nodes move to the

In Algorithm 3, the modified shift-based density eStimatiOBorresponding positions of the hollow circles by followitig
(MSDE) method (before the clustering step in the MSDEsame rules in Equation (20). As can be seen easily, ndde
SPEA2-based algorithm) is realized in line 5. In the MSDRas a better clustering evaluation value than noBe& ‘The
method, the individual's moving distance can be decided Ryiminations of those nodes which have bad performance are
the weight parameter of every objective function. For ex@mp marked by “«”. The MSDE method ensures the efficiency and
as shown in Fig. 3, it is assumed thats weightw, is larger accuracy of individual density evaluation.

than f>'s weightw,. Then, the moving of every node ofi-  \yhen it comes to the specific task allocation, the chromo-

axis will follow the basic SDE method, that is, the value 0f, e encoding plays a significant role in the crossover and
every node ory;-axis is equals to the target nodg’s value. , yation operators. In order to tackle the task allocatind a

After that, t.he value of every node gfg-axis will be the value task scheduling issue simultaneously, a feasible soluiion
of w?/,wl, times .thef2 _val_ug of the target node. To be morgy,q encoding is shown in Fig. 4. The crossover and mutation
specific, in the first axis, it is easy to see tIfa_(A) >_f1(B) processes are displayed in Fig. 5 and Fig. 6, respectively.
Emd F2(4) h< fQ(B.)‘dThgs' I'geredare no (r)]bV|ousfd|ffe_rence§n Fig. 4, every individual includes two chromosomes. One
Etweerr]l the two md vidua o an F ondtbe two unctlor:\s(.j chromosome represents the coalition combinations foryever
Then, these two nodes can be eva uqte yMS_DE.met_o ?QQ( and the other one denotes the scheduling order for the
the process of the!r shlfF-based density estimation is ShOW \hoe task set. First, in order to unify the length of the two
the second and third axis. For the second axis, the targe NQfl;,mosomes, the length is set|@%. In the first chromosome,
is A and thg nodeB is the target nodg in the third axis. Iny, o range of values for each bitfis 2!/], which can be seen
order to estimate target nodé™= (i, jo)", the other nodes ;¢ 5 pinary representation. This binary representatidodes
marked by P ~ (Z’j)_ should be moved to ' = (7', j")" 4 kinds of agent coalitions. Then, the second chromosome
by the following rules: indicates the scheduling order of the corresponding tasines
(i, jo) it i >0 & j < jo & wi > w of the values of each bit might be the same because some tasks
3 J0 ) 0 0 1 2 .
L (2o, ), if i <io & > jo & wn > wn could be executed simultaneously. _ o
(@,5) = (i, %jo), ifi>ido & j <jo & wi < ws (20) The crossover operator of chromosomes is shown in Fig. 5.
(i0,7), if i <io& j>jo& wi<ws According to the cut-off position, which is chosen randomly
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Algorithm 4 Crossover Operator

il o fi N — r
o > :o Input: Two individual codings:I and.J.
i 1: Randomly choose a cut-off positianpos.
° ! ind -
., . . 2: for i=0 .tO c_pos do
°g . o8 < g ) g g 3: for j=1 to 2do
° ° B e o i o
- ‘ 4: Exchangel;, andJ;,.
fz &ﬁ# f i—? 7 g Ji i
- A e 5: end for
;vi
4 f(8) 6: end for
7: for the second chromosome in every exchanged individual
Fig. 3.  An example of MSED individual moving for density @sétion encodingdo
8: Add the missing numbers of this chromosome in set
[1, 2141 M
o S e fori=1to |7 d
The first chromosome: |:|:|:| |:|:|:| IIDDI' o: or .I_ Y | | Y . . )
(coalition set for tasks) — 10: if the number of bits (which equal &) > 1 then
1T/ bits, equals to the task number, 4] bits, 11 Randomly chose one bit among the bits equal
equals to the to q.
- 1711 agentnumber. 5. Replace the value of this bit by a random
The second chromosome: |:|:|:| |:|:|:| member ini.
(scheduling order for tasks) 13: Delete the random member .
— .
[T| bits, equals to the task number. 14: end if
15: end for
Fig. 4. The encoding details for one feasible solution 16: end for

Output: Two exchanged individual coding$’ and.J’.

the first 7 bits of chromosomes are exchanged in Fig. 5. The
crossover operator includes not only coalition informatmt
also the corresponding scheduling sequence. Therefor@, ¢ i
result, the exchanged chromosomes’ scheduling informati
might be messy because of the missing sequence numb
Because of the number of tasks is fixed, the scheduli
sequence numbers before crossover are fixed and consecu
After the crossover operator, the numbers in exchangedslec T i g by & s T vl ar o & s
chromosomes may not be consecutive, because some num i 1 iSing seins e g seenes
are missing. For example, in Fig. 5, the scheduling sequeihce
individual 7 has the missing number “3, 5, 7", and individuafig- 5. The details of crossover operator
j has no “1, 2.
To deal with this issue, we should supplement the missin ) _
sequence numbers. First, in the second chromosome, onec%ﬁsen randomly, and its value will replace the value of the
will be chosen randomly among the bits with the same valu@it that should be mutated. For coalition-scheduling pair m
Next, the chosen bit replace the missing sequence nump@fion, the coalition part obeys the coalition mutationd dme
The corresponding crossover algorithm is demonstrated Sfheduling part is replaced by a different scheduling secgie
Algorithm 4. In line 4, I; indicates thei'" bit of the number. _T_he mutat|_0n process is exh|b|t_ed in Algorlth_nj 5.
jt" chromosome. The exéhanging process is implementedTiHe coz?\htlon .mutatlo.n, scheduling mutatlo_n, .and coatlitio
lines 2-6, and the replacing process is shown in lines 7-¥6. gchedu_hng pair mutation are demonstrated in lines2-@slin
the process described in Algorithm 4, in Fig. 5, three bits & @nd lines10-12, respectively.
individual i are chosen randomly and replaced by a randomAn optimal solution seDSS can be obtained by Algorith-
one among the missing sequence numbers of individugtie M 3, while, it is indeed that only one solution can be executed
similar operator applies to individugl fo_r a _spe_zgific task gllocation problem finally. Ther_eforei,s!t
The process of mutation is demonstrated in Fig. 6. TIsdill ;lgnmcant to flgure out a method of choosing a final
mutation includes coalition mutation, scheduling mutatiand Solution. The specific screening steps are as follows:
coalition-scheduling pair mutation. According to the nticta 1) For the first screening, the evaluation of every so-

|T| bits, equals to the task number. |T| bits, equals to the task number.
L L

Individual i’ Individual j*:

probabilityd, choose)|T'| bits randomly in every chromosome. lution s; in OSS can be calculated by F(s1) =
For example, in Fig. 6, one bit is chosen for coalition matai 0.8 % f1(s1) + 0.5 % fo(s2) + 0.75 x f3(s3) + 0.6 *
one bit for scheduling mutation, and two coalition-schéetul fa(sa) + 0.5 % f5(s5). Then, put the solutions which
pairs for couple mutation. As for coalition mutation, first, have the biggest evaluation value into one g#t. If
the value of the chosen bit is translated into a binary queue. |FL| > 0.05x%(the number of initialize population),
Then, add “1” to any bit. Finally, convert the resultant iina the setF'L. needs second screening, else go to 4).

gueue into decimal. For the scheduling mutation, one bit is2) For the second screening, the calculation is changed into
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Algorithm 5 Mutation Operator to prove the effectiveness of the whole task allocationesyst
Input: One individual coding1. The whole framework is implemented in C++ and Python, and
1: Randomly choosé|T| bits on every chromosome includ-run in the environment of the TensorFlow 2.0 CPU vision.
ing at least one coalition-scheduling pair.

2: for each single bit which is chosen in the first chromosomg  Experiments on the First-layer-agent
do

3 Change the bit’s value into a binary queue.

4: Randomly choose one position in this queue and
the “NOT” operator.

This subsection focuses on the results of task dividing and
rioritization simplifying. The experiment is implemedtgia
Ro steps. The first step is to copy the task’s prioritization
and probability information to the first-layer agents, ahd t

5: Char!ge this queue ir_1t0 a decimal number and replaggcond step is to execute Algorithm 1.
the previous value of this bit. 1) Experimental settingsThe task prioritization is gener-

6: end for . . o . ated for the task graph instances (inspired by the Wiki-Vote
7. for each single bit which is chosen in the second Chr(('fi'atabase which avoids the circle in the topology graph). The
mosomedo . . " values of the probabilities of positive influence are ranjom
8: dthange its value into another random bit’s value. produced by our data generator.

9: end for

In the deep Q-learning algorithm, we set the maximum time
S tmax = 1000, decay factory = 0.7, learning rater =
0.001, greedy explore rate = 0.1, and sample numbern =
30. In the MSDE-SPEA2-based algorithm, the weights of the

10: for each bit in coalition-scheduling pair which is chose
in the second chromosontk®
11: Replace its value by a random sequence number.

12: end for five objective functions are chosen 8s,0.5,0.75,0.6,0.5,
Output: One mutated individual coding”’. respectively. The whole experiments are implemented in an
offline environment.
[T bits, equals to the task number. 2) Performance of deep Q-learning based on MASSs:
dividual & ' H:H: H: 1, 241 We run the experiment 30 times for different_ qumbers of
[, 7] tasks in our database. Fig. 7 shows the statistical data on
15 0.1 average reduced prioritization and the reduced percertfge
T 1 [R‘D]] divided task population. By comparing with the traditional
Individual i Chane it by P_SQ algor!thm and Greedy Heuristic (GH) method, .I'[ is not
the other difficult to find that the adopted deep Q-learning algorithas h
value @ or ). a perfect performance in reducing the prioritization, vihis
Chose a different Sequence independent of task size. Such an approach reds@ed0%
number randomly (o replace the of the task prioritization. As the number of tasks increases
the amount and complexity of the prioritization increase ex
Fig. 6. The details of mutation operator ponentially, and classic PSO and GH method cannot satisfy

the requirement of searching ability and related calcoitesti
Note that these two methods only reddee20% and4~11%
EF(s1) = 0.8+ f1(s1)+0.5% fa(s2)+0.75x f3(s3) +0.6%  of the task prioritization, respectively.
fa(s4). Then, updated’L with the solutions which have  On the other hand, the running time plays an important role
the biggest evaluation value in the second calculation.iif performance evaluation. The normalized running timehef t
|F'L| > 0.05% (the number of initialize population), three algorithms is shown in Fig. 8. In contrast to PSO and
the setF'L needs third screening, else go to 4). GH algorithms, DQN has exhibited a distinct advantage in
3) For the third screening, calculate the evaluation bysk dividing calculation, especially when the number skta
EF(s1) = 0.8 fi(s1) +0.75 % f3(s3) + 0.6 * fa(s4), increases. It can be seen in Fig. 8 that the PSO and GH both
then update'L. have a steep increasing tendency. Based on the Q-Network,
4) Choose a solution i’ randomly as the final solution. the approximate calculation of) — value accelerates the
Due to our experiment data, no more than three screeningkgjorithm, which becomes obvious when the task population
the size of 'L can be decreased. exceeds 150.

V. EXPERIMENTS AND ANALYSIS B. Experiments on the Second-layer agent

In this section, the proposed procedure of many-objectiveThe experiment results are shown in Fig. 9-11. Fig. 9
optimization for MASs is tested to show the effectiveness diisplays the average values of the five objective functicteun
the developed algorithm by evaluating the task allocatitin e different task numbers with fixed 500 agents. Fig. 10 present
ciency. In the first layer, the experiment results on tasiditg the results under different agent numbers with fixed 80 tasks
and prioritization simplifying are given by exploiting tlideep by running the MSDE-SPEA2-based algorithm 200 times. As
Q-learning method. In the second layer, the performande teshown in Fig. 9, the average percentage of the makegfian
are shown for many-objective optimization of task allosati under the fixed number of tasks increases as the number of
from two aspects. Finally, comprehensive evaluations meng task increases. The reason is that the increase in taslesids |
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120

(f5). Once the number of agents is out of this range, much
ol / more agents are assigned to one task, which results in low
- / satisfaction and low resource utilization. On the otherdhan
% o o the high diversity of the coalition (caused by the large agen
£ / size) provides diverse choices for tasks, which reduces the
§ — e conflicts among coalitions effectively. Furthermore, ghli of
; - better coalitions for tasks, the optimized scheduling can b
g conducted, as evidenced by the decline tendencyf@j in
< ) oo Fig.10.
2L ——bon In order to further show the effectiveness of the proposed
MSDE method, the performance of MSDE-SPEA2-based al-

50 100 S s 250 300 gorithm and SPEA2 for the task allocation with 50 tasks and
100 agents is shown in Fig. 11. By running MSDE-SPEA2-
Fig. 8. The performance of deep Q-learning method on difietask numbers based algorithm and SPEA2 algorithm 50 times, respectively
it is obvious that MSDE-SPEA2-based algorithm has an ad-
vantage on population selection, which leads to an exdellen
to a decrease in the number of tasks that can be schedufsult on the two objective functionsf,( and f, here for
simultaneously. In other words, in the case that the numberexplanation purposes).
agents is fixed, the smaller the task size is, the less time thé'he final results of the MSDE-SPEA2-based method are
total scheduling would cost. It is not difficult to find thateth presented in Fig. 12. Three kinds of task allocation data are
success rate of the allocation of different task sets haatdest set for testing the convergence of the MSDE-SPEA2-based
range (i.e.96~98%), which shows that the developed MSDEmethod. It is obvious that the solutions can converge inéo th
SPEA2-based algorithm has an advantage in improving tRareto front. In Fig. 12, a good balance between convergence
accuracy. In addition, the agent satisfaction and the resouand diversity is achieved by the MSDE-SPEA2-based method.
utilizations stay within a suitable range, which means that It should be noticed that, some of the lines are a little messy
method has a merit in keeping the balance between the ageetause the solutions are discrete. The task allocatidsigo
satisfaction and the resource utilizations for differasktsets. is a complex combination problem between agents and tasks,
As we can see in Fig. 10, the performance fefimplies Which means the solutions are not continuous.
that the makespan has a decreasing tendency with the iecreadn order to evaluate the performance of the MSDE-SPEA2-
in the number of agents. The reason is that available agebésed method, the inverted generational distance (IGDjenet
cooperate with each other to finish one task for obtainirigintroduced to test the method. IGD is a metric which redlect
efficient results, and this reduces the execution time ofigisi combined information about convergence and diversity of a
task while increasing the number of tasks that can be exécuselution set. IGD measures the average distance from the
simultaneously. Similar to Fig. 9, the success rate in Big.points in the Pareto front to their the closest solution ia th
also stays at a relatively high level. In addition, we cantea¢ obtained set. The results of the MSDE-SPEA2-based method
the agent satisfaction increases at the beginning episotle &re presented in Table. | on various task allocation sedting
decreases when the agent amount breaks 200. As such, weGwaparing with the other four algorithms, PESA-II, SPEA-II
a perfect balance between the coalition size and the numB&EA2 and SPEA2+SDE, the MSDE-SPEA2-based method
of tasks withina certain rangeof the number of agents, achieves a better performance with the smallest values tin bo
which means that coalitions can produce high rewards foonvergence and diversity.
higher satisfactior{ f3) as well as higher resource utilization The HV metric is introduced to calculate the volume of
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C. Comprehensive Evaluations on Layered MASs Task Allo-
cation

The integrated task allocation on the basis of our layered
model includes two parts. In the first layer, we focus on the
step of task dividing and prioritization simplifying, wliiic
serves as the basis of the overall task allocation and aéso th
preprocessing stage for the second layer. To demonstrate th
significance and effectiveness of the task dividing in tht fir
layer, the results are presented in Fig. 13. Fig. 13 includes
the allocation evaluations with task dividing but withoask
dividing. It can be found that, with the prioritization sitifyp-
ing in the first layer, the makespan saves much time and the
scheduling becomes efficient.

VI. CONCLUSION

In this paper, the MTMRA issue has been addressed via
many-objective optimization of MASs. In order to greatly
improve the efficiency of the MTMRA algorithm, a novel
layered MASs model has been proposed with respect to many-
objective optimization. To be specific, in the first-layer 9%,
the DQN-based deep Q-learning algorithm has been adopted to
address the defined task dividing problem, which simplifies t
complicated prioritization process of the original taskeféec-
tively. In the second-layer MASs, an MSDE approach has been
applied in the step of SPEA2’s population selection to handl
multi-task allocation and task scheduling, simultanepui$l
should be pointed out that the proposed MSDE-SPEA2-based
algorithm has shown powerful capability in balancing many
objectives, which can search the optimal allocation sohiin
terms of five objectives including makespan, agent satisiac
resource utilization, task completion and task waitingetim
under the different experiment settings. Finally, the getrf
performance of the developed algorithms has been verified by
extensive experiments for different parameters undeeicifft
scenarios.

To summarize, the proposed DQN-based deep Q-learning
and MSDE-SPEA2-based algorithms have presented excellent

the objective space between the obtained solution set andugeriority in simplifying the complex task prioritizaticand
reference point. The reference point is chosen by 1.2 timésal with the many-objective optimization issue. Inspitsd
the biggest value of every objective. Table. Il shows theltes deep learning methods, it is worth exploring related athons

of HV among the five algorithms. The MSDE-SPEA2-baseoh distributed MASs to achieve an efficient calculation meth
method achieves the best performance in different datagett on many realistic problems included task allocation issue.

with the largest HV values.

Thus, further research topics include 1) the distributedSdA
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PERFORMANCECOMPARISON(IGD) OF FIVE EAS ON DIFFERENT TASK ALLOCATION SETTINGS

TABLE |

12

Task allocation settings

PESA-II

SPEA-II

SPEA2

SPEA2+SDE

PE&2+MSDE

50 tasks & 50 tasks
50 tasks & 75 tasks
50 tasks & 150 tasks
100 tasks & 100 tasks
200 tasks & 200 tasks
300 tasks & 300 tasks

3.056E-2 (L4E-2)
5.794E-1 (6.4E-2)
7.115E+0 (4.4E-2)
4.827E-1 (4.1E-2)
5.186E+1 (2.7E+0)
8.235E+0 (5.4E-2)

1.813E-1 (6.0E-1)
7.293E-1 (1.0E-1)
3.781E-1 (2.0E-3)
2.813E+0 (5.1E-1)
8.454E+1 (6.2E+0)
7.327E-1 (3.4E-2)

5.219E-2 (2.4E-2)

1852 (1.3E-3)

6.201E-2 (1.98E-2) 612E-2 (1.9E-3)

4.251E-1 (2.4E-3)
3.293E-1 (3.8E-2)
5.429E+0 (9.4E-2)
7.824E-1 (8.2E-2)

1852 (7.3E-4)
87222 (6.2E-2)
26590 (9.2E-2)
1201 (7.1E-3)

1.781E-2 (L.1E-3)
2.772E-2 (1.4E-3)
1.211E-2 (4.1E-4)
5.862E-2 (3.0E-2)
4.253E+0 (7.1E-2)
1.362E-1 (3.6E-3)

PERFORMANCECOMPARISON(HV) OF FIVE EAS ON DIFFERENT TASK ALLOCATION SETTINGS

TABLE Il

Task allocation settings

PESA-II

SPEA-II

SPEA2

SPEA2+SDE

PE&2+MSDE

50 tasks & 50 tasks
50 tasks & 75 tasks
50 tasks & 150 tasks
100 tasks & 100 tasks
200 tasks & 200 tasks
300 tasks & 300 tasks

3.382E+6 (6.4E+5)
4.923E+6 (3.7E+5)
4.713E+6 (1.6E+5)
3.143E+6 (4.2E+5)
6.612E+6 (5.1E+5)
5.513E+6 (2.6E+5)

T.923E+6 (5.0E+5)
5.632E+6 (6.0E+5)
3.631E+6 (7.1E+5)
4.161E+6 (7.3E+5)
2.782E+7 (4.12E+6)
3.024E+6 (1.3E+5)

5.820E+6 (7.3E+5)
2.947E+6 (1.2E+5)
4.928E+6 (3.1E+5)
3.928E+6 (5.2E+5)

7357 (2.1E+6)
9B+5 (6.8E+5)

74526 (8.3E+5)
74E27 (3.3E+5)

4.018E+6 (4.7E+5) 274E+7 (3.2E+6)

5.228E+6 (3.0E+5)

14E16 (8.3E+5)
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Fig. 13. The optimal makespan comparison between two kifdsethods
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deep learning vithin i on e g
eep learning within different cooperation environment a
various agent types for various targets [6], [25]; 2) salvihe
uncertain task allocation problem in a dynamic environngnt
using some novel optimization methods [2], [10], [35]—[38][14]
[53]; and 3) the task allocation problem on MASs subject to
engineering-oriented complexities [40], [46], [59], [6284].
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