
FINAL VERSION 1

Task Allocation on Layered Multi-Agent Systems:
When Evolutionary Many-Objective Optimization

Meets Deep Q-Learning
Mincan Li, Zidong Wang,Fellow, IEEE, Kenli Li, Xiangke Liao, Kate Hone, and Xiaohui Liu

Abstract—This paper is concerned with the multi-task multi-
agent allocation problem via many-objective optimization for
multi-agent systems (MASs). First, a novel layered MAS model
is constructed to address the multi-task multi-agent allocation
problem that includes both the original task simplification and the
many-objective allocation. In the first layer of the model, the deep
Q-learning method is introduced to simplify the prioritiza tion
of the original task set. In the second layer of the model, the
modified shift-based density estimation (MSDE) method is put
forward to improve the conventional Strength Pareto Evolution-
ary Algorithm 2 (SPEA2) in order to achieve many-objective
optimization on task assignments. Then, an MSDE-SPEA2-based
method is proposed to tackle the many-objective optimization
problem with objectives including task allocation, makespan,
agent satisfaction, resource utilization, task completion, and task
waiting time. As compared with existing allocation methods, the
developed method in this paper exhibits an outstanding feature
that the task assignment and the task scheduling are carriedout
simultaneously. Finally, extensive experiments are conducted to
1) verify the validity of the proposed model and the effectiveness
of two main algorithms; and 2) illustrate the optimal solution for
task allocation and efficient strategy for task scheduling under
different scenarios.

Index Terms—Evolutionary computation, many-objective opti-
mization, multi-agent systems, task allocation, deep Q-learning.

I. I NTRODUCTION

T HE past two decades have witnessed a great deal of re-
search attention devoted to multi-agent systems (MASs)

[7], [8], [13], [16], [19], [31], [55], [57]. Task allocation in
MASs aims at finding appropriate agents who can indepen-
dently or cooperatively conduct specific tasks [2], [25]. In
the existing literature, task allocation has been classified into
various categories according to three different perspectives:

This work was supported in part by the the National Key Research and
Development Program of China under Grant 2020YFB2104000, the National
Natural Science Foundation of China under Grants 61625202,61751204 and
61860206011, the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 820776 (INTEGRADDE), the Royal Society of the
UK, and the Alexander von Humboldt Foundation of Germany. (Correspond-
ing author: Kenli Li.)

M. Li and K. Li are with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, Hunan 410082, China; and also
with the National Supercomputing Center in Changsha, Changsha, Hunan
410082, China. (emails:limc@hnu.edu.cn; lkl@hnu.edu.cn)

Z. Wang, K. Hone and X. Liu are with the Department of
Computer Science, Brunel University London, Uxbridge, Middlesex,
UB8 3PH, United Kingdom. (emails:Zidong.Wang@brunel.ac.uk;
Kate.Hone@Brunel.ac.uk; Xiaohui.Liu@brunel.ac.uk)

X. Liao is with the Collaborative Innovation Center of High Performance
Computing, National University of Defense Technology, Changsha 410073,
China. (e-mail:xkliao@nudt.edu.cn).

1) from the tasks’ viewpoint, task allocations can be divided
into single-task and multi-task assignments; 2) in terms of
the agents (more generally robots), there are single-robotand
multi-robot allocations; and 3) by means of assignment style,
task allocations can be grouped into instantaneous and time-
extended ones. Based on the aforementioned classification-
s, the two most important assignments, namely, single-task
multi-robot tasks and instantaneous assignment (ST-MR-IA)
[48] as well as multi-task and multi-robot allocation (MTM-
RA), have attracted persistent research attention concerning
the task allocation issue for MASs.

The purpose of the ST-MR-IA problem is to establish a
unique agent coalition for every task. It is worth noting that,
for each task, one agent cannot join more than one coalition at
a time. Accordingly, it is crucial to find an ideal coalition for-
mation algorithm [52]. So far, a number of coalition formation
algorithms have been developed (see e.g. [53]) and applied in
many areas such as disaster response [26] and urban search
with rescue environment [43]. Nevertheless, existing coalition
formation algorithms might be incapable of dealing with the
MTMRA problem due mainly to the complexity of constraints
[47], [49].

In order to cope with the foregoing complexity issue, a
number of approaches have been put forward in the literature
to tackle the MTMRA problem. Generally, the MTMRA pro-
cedure in MASs can be carried out within noncooperative or
cooperative environments. In the noncooperative circumstance,
selfish agents pursue their own profits by providing resources
as seller agents or consuming resources as consumer agents,
regardless of others’ rewards in the process of task assignment,
and such a behavior is referred to as the market-based task
allocation. This kind of allocation method, as mentioned in
[14], has advantages in improving the allocation efficiencyand
enhancing the agent cooperation with satisfactory total utility.
In the cooperative case, breaks and conflicts often occur in
the assignment process. In order to mitigate the occurrenceof
undesired breaks and conflicts, many negotiation-based allo-
cation methods have been proposed with examples including
bilateral negotiation [20], time-constrained negotiation in dy-
namic open grid environments [29], and resource negotiation
in manufacturing systems [30].

The aforementioned allocation algorithms (i.e. market- and
negotiation-based allocation methods) have proven to be ef-
fective in certain circumstances for MASs. Nevertheless, using
these traditional algorithms alone would not be of much helpin
dealing with the increasingly demanding requirements as well

FINAL VERSION 2

as the complex-dependency-induced constraints on practical
task assignments. Fortunately, the nowadays deep learning
algorithms are well known for their capabilities of handling
complicated situations, and therefore are well suited to be
applied to deal with allocation issues for MASs. Some up-
to-date deep learning methods include, but are not limited to,
Deep Q-Network (DQN) [42], Convolutional Neural Network
[9], Feedforward Neural Network [56] and Recurrent Neural
Network [1], which are ideal candidate algorithms for further
improving the efficiency of task allocation and execution [33].
These networks in deep-learning process usually combined
with back-propagation [22], and Stochastic Gradient Descent
(SGD) [3] methods. Especially, deep Q-learning method usual-
ly gets excellent performance in dealing with uncertain status
and exponential solution searching space in task allocation
problem. On the one hand, for the exponential searching
space of the task dividing problem, deep Q-learning has a
deep Q-network to training and searching, which help to
accelerate finding the optimal solution. On the other hand, for
the uncertain status in task dividing, the complex computation
in every iteration can be solved by the approximate calculation
in the Q-network of deep Q-learning method.

In addition to the allocation, scheduling serves as another
crucially important aspect for task allocation for MASs [17].
So far, a variety of scheduling methods have been developed
for task allocation in order to ensure short makespan, high
success rate and few conflicts [34]. Unfortunately, the allo-
cation and scheduling issues have seldom been taken into
simultaneousconsideration and, so far, the relevant results
have been scattered in the literature. For MASs, the task allo-
cation is essentially a multi/many-objective issue that involves
multiple yet possibly conflicting performance requirements
on makespan, agent satisfaction, resource utilization, task
completion, and task waiting time, etc. Clearly, it is difficult
to meet all the requirements via solving a single-objective
assignment problem and, therefore, there is a practical need to
study the multi/many-objective assignment issues for MASs
in the context of optimization. Over the past few decades,
the evolutionary algorithms (EAs) have shown superiority
in dealing with multi/many-objective optimization problem-
s and stirred a great deal of research attention [39]. As
such, a seemingly natural idea is to utilize the latest EAs
to cope with the typically multi-objective multi-constraint
allocation/scheduling issues with MASs.

In fact, the evolutionary multi-objective optimization (EMO)
algorithms have begun to receive some initial research interest
in accommodating different task requirements in MASs. For
example, in [51], a novel EA-based classification algorithm
has been explored to develop an agent decision-making strat-
egy. In [5], multi-objective optimization methods have been
introduced to optimize the prioritized tasks in MASs. A hybrid
EMO algorithm has been applied in [18] for the stochastic flow
shop scheduling problem with aim to minimize the makespan
and the total tardiness. Unfortunately, the EMO algorithms
themselves might be unable to effectively handle optimization
problems withmore than three objectives, which are custom-
arily referred to as themany-objective optimization problems.
As such, it makes practical sense to initiate an investigation

on the constrained task allocation problem by developing an
evolutionary many-objective optimization algorithm.

Motivated by the above discussions, the main aim of this
paper is to design an evolutionary many-objective optimization
algorithm for task allocation of MASs. This problem appears
to be especially difficult as we are inevitably confronted with
the following three essential challenges: 1) how to design
a dedicated encoding scheme for the operations of crossing
and mutating in accordance with a series of performance
requirements on the task allocation? 2) how to improve, to
a great extent, the traditional EAs and EMO algorithms via
designing strict density estimation methods? and 3) how to
deal with the complex dependency relationships (among tasks
in the original task database) which would bring in substantial
difficulties in designing evolutionary many-objective optimiza-
tion algorithm? It is, therefore, the main purpose of this paper
to meet the challenges.

This paper is concerned with multi-task multi-agent al-
location problem via many-objective optimization for MAS,
where the five objectives include admissible makespan, agent
satisfaction, resource utilization, task completion, andtask
waiting time in the task allocations. It is worth noting that
agents are purposely divided into two layers with aim to
improve the allocation efficiency. The main contributions of
this paper are highlighted as follows:

1) A novel layered MAS model is designed for two main
allocation purposes: the first layer is established to divide
tasks and simplify prioritizations, and the second layer
is constructed for task allocation and scheduling.

2) A deep Q-learning algorithm is, for the first time, to
deal with the task dividing problem so that the task
prioritization can be effectively simplified to facilitate
the subsequent assignment.

3) A modified shift-based density estimation (MSDE) s-
trategy is designed for the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) for the purpose of implementing
many-objective optimization in the task assignments
with aim to a) play an adequate trade-off between the
addressed five objectives; b) maintain the diversity of
allocation solutions in the elite selection process; and c)
achieve a satisfactory overall accuracy.

4) The proposed MSDE-SPEA2-based method enables us
to simultaneously conduct task assignments and task
scheduling for the entire task set, where the assignment
results include not only the specific agent groups for
every task but also the execution order for the task set.

The rest of this paper is organized as follows. Section II
discusses the related work of optimization algorithms for task
allocation and assignment problems for MASs. The problem
formulation is given in Section III. In Section IV, the models
and the proposed algorithms for the task allocation problemof
MASs are provided. Section V presents the experiment results,
related analysis, and the comparisons with some other state-of-
the-art approaches. We draw conclusions and point out future
research topics in Section VI.

FINAL VERSION 3

II. RELATED WORK

In recent years, the multi-task allocation problem has been
extensively investigated for MASs from various aspects includ-
ing rewards of agents [11], searching efficiency of solutions
[50] and specific allocation of applications [23]. The profits
dividing issue has been paid particular attention within the
task allocation framework especially in the noncooperative
environment. For example, the auction algorithms [45] have
been applied to deal with the market-based assignment issues
with no agent cooperation, and satisfactory results have been
obtained. Nevertheless, a single point of failure in the auction
algorithms could result in a broken system and, in order to
prevent such a single point of failure from happening, the
negotiation-based methods have been introduced to deal with
the multi-task allocation problem. Negotiation-based methods
(e.g. uncertain deadline negotiation [20], time-constraint ne-
gotiation [29] and game theory-based negotiation [12]) are
known to be capable of effectively avoiding breaks or conflicts.

In available literature, the self-organization behavior of
agents has been considered in some task allocation meth-
ods in the noncooperative environment. For instance, it has
been shown in [54] that agents can find suitable tasks and
services according to self-incentive rules. In the cooperative
circumstance, most game-theory-based task allocations [58]
have focused on the collective profits dividing, see e.g. [32] for
the proposed Shapley principle for collective profits dividing
in task allocation. With the growing size of the database, the
number of coalition structures of agents is increased at an
exponential rate which, in turn, leads to low searching speed.
In this regard, the latest EAs could be exploited to accelerate
the process of searching coalition structures in task allocations.

Due to their distinct merits of strong robustness, wide
applicability and rapid searching capability, the EAs have
shown tremendous potential in dealing with the global multi-
agent optimization problems in practical applications [21]. For
example, in [6], the task deadlock problem (caused by agent
decision) has been avoided through dynamic and variable
pheromone placement methods. In [24], heuristic initialization
rules and repair strategy mechanisms have been applied to
a genetic algorithm with a fast convergence. Nevertheless,
traditional EAs alone might be unable to simultaneously tackle
the multiple objectives in task allocation. In order to coordinate
the competitive and possibly conflicting objectives, the EMO
algorithms have been introduced to address the agent task
allocation problems. One distinguished feature of the EMO
algorithms is their ability to obtain a Pareto approximation set
with fast convergence and superior diversity, thereby offering
a set of optimal solutions [15]. On this account, the EMO
algorithms have been widely applied in MASs, see e.g. [51]
for the optimization of the agent decision making process, and
other applications include mobile tracking [44], agents optimal
path searching [27] and agent cooperation with automated
negotiation [28].

As discussed previously, deep learning methods are in an
ideal position to be deployed to tackle the task allocation
problems that are complicated by the sophisticated prioriti-
zation and dependency among tasks. Furthermore, deep Q-

learning (DQL) algorithms, which combine the merits of deep
learning and reinforcement learning, are particularly suitable
for addressing the complicated task allocation problems. In
fact, the importance of DQL algorithms has already begun to
be recognized from both industry and academy with respect
to general optimization problems. For example, a DQL-based
resource assignment method has been put forward in [4] to
improve the ultra-reliable low-latency communication service
in the industrial wireless network, where the proposed method
could overcome the difficulty resulting from the dynamic and
complex variations of network nodes. In [60], a DQL-based
transmission mechanism has been proposed to maximize the
system throughput by a suitable strategy on buffer transmis-
sion. Very recently, a deep reinforcement learning algorithm
has been developed [41] on the agent communication learning
problem with hope to reduce redundant message sending.

III. PROBLEM FORMULATION

In this section, the task allocation problem is formulated
with detailed descriptions on the task, the agent and the
allocation targets. Let us start by describing some key con-
cepts required for formulating the evolutionary many-objective
optimization problem for task allocation on layered MASs.

Task: The ith task, denoted asti, is a 7-tuple given by

(IDti , TYti , IFti , CTti , RTti , Vti , TDti)

whereIDti is the identification of the task (i.e.IDti = i),
TYti represents the task type,

IFti = {{id1, p(ti,tid1)}, {id2, p(ti,tid2)}, . . . , {idm, p(ti,tidm)}}

stands for the prioritization ofti, CTti = {ct
ti
1 , ct

ti
2 , . . . , ct

ti
l }

describesti’s requirement vectors of capability,RTti =
{rtti1 , rt

ti
2 , . . . , rt

ti
n } denotesti’s requirement vectors of re-

source,Vti means the maximum reward of finishing task
ti, and TDti indicates the maximum duration time ofti’s
implementation.

To be more specific, the task types include the dependent
typeTYti = 0 and the independent typeTYti = 1. A task in
the dependent type requires more than one agent to finish the
task, while the independent task requires only one agent. Every
task has its prioritization which is denoted as the vectorIFti .
When ti has been divided,ti will have a positive influence
on every tidξ

(ξ = 1, 2, . . . ,m) by different probabilities.
(id1, id2, . . . , idm) includes m identifications of tasks that
must be executed afterti is finished.{idξ, p(ti,tidξ)} (ξ =

1, 2, . . . ,m) reflects the probability of the positive influence
from task ti on tasktidξ

because ofti’s dividing. Here, the
positive influence means that, whenti has been divided, it is
successful to combineti’s subtaskti λ with tidξ

. Furthermore,
CTti has l kinds of capabilities andRTti has n kinds of
resources. InTask, if a task has no requirement for theηth

kind of capability or resource, the correspondingcttiη andrttiη
will be “0”.

First-Layer Agent: The jth-agentaj on the first-layer is
a 3-tuple (IDaj

, IFaj
, LDaj

), where IDaj
is the identifi-

cation of the agent(IDaj
= j), IFaj

= {{id1, p(a1,aid1
)},

FINAL VERSION 4

{id2, p(a2,aid2
)}, . . . , {idm, p(ai,aidm)}} copies the informa-

tion of IFti and LDaj
is a flag reflecting whether the task

is divided or not, that is,LDaj
= 1 (respectively,LDaj

= 0)
means that the task is divided (respectively, not divided).

Second-Layer Agent: The kth-agentak on the second-
layer is a 4-tuple(IDak

, ROak
, CAak

, RAak
), whereIDak

represents the identification of the agent(IDak
= k), ROak

is the role of agentak, CAak
= {caak

1 , caak

2 , . . . , caak

l } and
RAak

= {raak

1 , raak

2 , . . . , raak
n } indicate agentak’s capability

vector and resource vector, respectively. Specifically,ROak
=

0 means that agentak is a dependent agent which must
cooperate with at least one agent, andROak

= 1 indicates
that ak is independent. An independent agent means that it
can finish one task by cooperating with others or not.

The following definitions are useful in quantifying the re-
quirements/objectives for the addressed allocation/scheduling
problem.

Definition 1: The execution time of the taskti, which is
allocated to the agent coalitionCi, is denoted byτti and
defined as follows:

τti = TDti

1

1 + ρti,Ci

(1)

with

ρti,Ci
=

∑l
η=1(ct

ti
η − ct

ti)(caCi
η − caCi)

√∑l
η=1(ct

ti
η − ct

ti)2
√∑l

η=1 (ca
Ci
η − caCi)2

(2)

wherect
ti is the average value ofti’s capability requirements

(i.e. ct
ti = 1

l

∑l
η=1 ct

ti
η), caCi

η is the average value of allηth

capability requirements in the agent coalitionCi (i.e. caCi
η =

1
|Ci|

∑|Ci|
k=1 ca

ak
η andcaCi = 1

l

∑l
η=1 ca

Ci
η), andρti,Ci

denotes
the ability evaluation of agent members in coalitionCi.

Definition 2: The agent satisfaction index represents agent’s
evaluation of its reward. Agentak ’s satisfaction index in
coalitionCi for task ti is defined as

sak
=

(Vti − costCi
)− (Vti − cost(Ci\{ak}))

Vti − cost(ak,ti)
(3)

wheresak
denotes agentak ’s satisfaction index,costCi

indi-
cates the cost for all agents in the coalitionCi to complete
the taskti, andcost(Ci\{ak}) represents the cost for the agents
exceptak in the coalitionCi to complete the task.

Task allocation problem in this paper is focused on bal-
ancing the five objectives in task allocation as mentioned,
and the coalition cost is a part of the calculation in agent
satisfaction. Hence, the complex calculation of coalitioncost
for every agent combination is replaced by data generator
programming. The data generated by the data generator obey
the superadditivity principle. When calculating the cost of
every task, the related data will be accessed in the experiments
database.

Definition 3: The makespanof a task setT is defined by

makespan =

|T |∑

i=1

τti − τ0 (4)

whereτti is the taskti’s execution time andτ0 refers to all
overlapping execution time of tasks.

Definition 4: The resource utilizationRUti of the coalition
Ci for task ti is defined as follows:

RUti =
1

n

n∑

η=1

rttiη
1

|Ci|

∑|Ci|
k=1 ra

ak
η

(5)

where rttiη and raak
η are defined inTask and Second-layer

agent, respectively.
Definition 5: The task allocation success ratio of a task set

T is defined by:

SRT =
|SU |

|T |
(6)

where|SU | is the number of successfully allocated tasks, and
|T | indicates the size of the task set. An assignment is said
to be successful if 1) the corresponding agent coalition meets
the task’s requirements; 2) there is no conflict among agents;
and 3) the sum ofti’s waiting time andti’s execution time
does not exceed the maximum duration timeTDti .

Definition 6: The total task waiting time is defined as
follows:

WT =

|T |∑

i=1

wτti (7)

wherewτti represents the waiting time of taskti.
In the second-layer model, we will design the scheduling

order for all tasks which gives a sequence number for every
task. Tasks can be executed according to their sequence num-
ber. Without loss of generality,ti’s sequence number is marked
asSNti . The waiting timewτti of ti can be calculated when
there are more than one task whose sequence number equals
to SNti − 1, otherwise,wτti = 0. For example, ifSNti = 5
and SNt1 = SNt2 = SNt3 = 4, the waiting time can be
calculated bywτti = max{τt1 , τt2 , τt3} −min{τt1 , τt2 , τt3}.

This paper aims to find an optimal allocation for tasks and
design an ideal task scheduling to coordinate the following
five objectives: 1) the makespan, 2) the agent satisfaction,3)
the resource utilization, 4) the task completion, and 5) thetask
waiting time in the task allocation.

IV. M AIN RESULTS

In this section, a two-layer MASs model is established for
task assignments, followed by the presentation of the main
algorithms.

A. Task Allocation Procedure Model of Layered MASs

The assignment procedure of task allocation on the layered
MASs is displayed in Fig. 1, which includes two main steps. In
the first step, the deep Q-learning method is introduced for the
first-layer agents to simplify the prioritization of the original
task set. In this step, the prioritization of tasks is reduced as
much as possible. In the second step, the MSDE-SPEA2-based
method is applied to harmonize the five objectives under the
constraints.

It is worth noting that the information of first-layer agents
relies on the task setT , and thus the number of first-layer
agents equals to|T |. Different from the first-layer agent, the
second-layer agents are given in the agent setA, and the

FINAL VERSION 5

Fig. 1. Task allocation procedure model of layered MASs

number of second-layer agents is|A|. According to the layered
allocation procedure in Fig. 1, our main algorithm is provided
in Algorithm 1 as follows.

Algorithm 1 Main Algorithm
Input: An agent setA and a task setT

1: Simplify the prioritization ofT by task dividing to gen-
erate a new task setT ′ on the first layer of the model.

2: Assign and schedule the new task setT ′ through the agent
setA by means of MSDE-SPEA2-based algorithm under
the constraints on the second layer of the model.

Output: Allocation coalition setAC and scheduling order
O.

B. Algorithms for the Task Allocation

In this section, the corresponding algorithms for the task
allocation problem are presented.

1) First-layer agents: task dividing and prioritization sim-
plifying: The task dividing and prioritization simplifying prob-
lem is an uncertain problem, which is shown in Fig. 2.t2,
t3 and t4 can be executed whent1 finishes. t1 has three
different probabilities of positive influence ont2, t3 and t4.
To be specific, ift1 is divided, subtaskt1 1 will be combined
with taskt2 with probabilityp(t1,t2), and if the combination is
successful, the new task is marked ast′2. Then the prioritization
of (t1, t2) is simplified. It should be mentioned thatt1 can
be divided successfully, while, the success of tasks’ combina-
tion is uncertain because of the corresponding probabilities.
Therefore, it is an uncertain task dividing problem. Reflect
this uncertain problem to our experiments, and there will bea
parameter to indicate the current probability of the two tasks
which will be combined. The parameter has a random value,
and according to this value, the combinations can be tackled

Dividing

task 1

 !

 "

 #

 $
p(%&,%')

p(%&,%*)p(%&,%+)

 !_! $

 !_$

Other 5 situations

�

combine
 !_! $ = -$

 !_"

 "

 #

 !_$ "

 #

 !_$

 !_! $

 "

 #

combine
 !_! $ = -$

 !_$ " = -"

 !_" # = -#

Fig. 2. An example of task dividing and prioritization simplifying

successfully or not. When all subtasks oft1 are tackled, the
prioritizations oft1 is simplified. Similar situation applies to
t3 and t4. In this case,t1’s dividing can lead to 7 different
results. According to the result oft1’s dividing, the combined
tasks can be divided but the others cannot. Based on this rule,
whether a task can be divided is dependent on the situation
of the last task and the corresponding probability of positive
influence. Thus, in order to find out a task dividing setDS
to simplify prioritization as much as possible, Algorithm 2is
introduced into this step.

In order to make Algorithm 2 easily understandable, we first
introduce some notations involved in the Q-learning method
as follows:

• States: the task queue of the current dividing setDS
′

is
defined as a state. New tasks will be added intoDS

′

and
DS

′

will update the queue during every iteration step.
The terminal state means that no task can be divided.

• Actions: an action means that new tasks are added into
the setDS

′

.
• Rewards: the rewards rely on the latest action. According

to the action, several new tasks have been added into
DS

′

. The reward of this action is the extent of simplified
prioritization caused by these new tasks.

• Policy: according to the greedy policy, the task which has
the maximum rewards will be chosen in every iteration.

Next, let us introduce the deep Q-learning dividing algo-
rithm in Algorithm 2. Q-network calculates the approximate
action-value functions by initializing the replay memory set,
the two value functions, and the first vector inputting. Ac-
cording to the greedy policy, the best action will be executed,
and the replay memory set and the value of action-value func-
tions will be updated. Through the gradient backpropagation
on Q-network, the parameters are updated. Thus, when the
maximum iteration is reached, the algorithm can output the
task dividing set.

The optimal dividing setDS can be obtained by deep Q-
learning dividing algorithm. Then, we can divide the tasks in
DS and obtain the new task setT ′. We introduce an auxiliary
parameterp to facilitate the implementation of the dividing
process. If taskti is to be divided andp > p(ti,tη), the subtask
ti λ of ti will be combined withtη successfully. If taskti is
divided and ifp < p(ti,tj), the subtask will fail to be combined
with task tη. The dividing rules oftj are set as:

FINAL VERSION 6

Algorithm 2 Deep Q-learning Dividing Algorithm
Input: The set of first-layer agents, the iteration number

tmax, action setAC, decay factorγ, budgetB.

1: Initialize the replay memory setM = φ, initialize Q-
network, initialize action valueQ and target action value
Q̂.

2: for i=1 to B do
3: Initialize DS

′

with an agentaj , calculate its eigen-
vectorφ(DS)

4: for i=1 to tmax do
5: Input φ(DS

′

) into Q-network and choose a best
action AC which has the maximumQ-value by greedy
idea

6: Execute the actionAC and updateDS
′

, calculate
the new eigenvectorφ(DS

′

) and the rewardR
7: Update the replay memory setM by φ(DS

′

), AC,
R, φ(DS

′

), and updateDS = DS′

8: Sample randomly fromM and calculate the target
action valueQ̂

9: if the current state is terminal statethen
10: Q̂ = R
11: elseQ̂← R+ γmaxQ(φ(DS′), AC′)
12: end if
13: Execute the gradient descent with respect to the

Q-network, then update the network parameters
14: end for
15: end for
Output: The optimal dividing setDS.

a) if p > p(ti,tη), every non-zerorttης in RTtη will be
updated byrttης = rt

tη
ς + p(ti,tη)rt

ti
ς , and the rule of

the vectorCTtη is same asRTtη , i.e. cttης = ct
tη
ς +

p(ti,tj)ct
ti
ς ;

b) if p > p(ti,tη), Vtη = p(ti,tη)Vti + Vtη and TDtη =
p(ti,tη)TDti + TDtη ; and

c) if p ≤ p(ti,tη) and ct
tη
ς = 0, we havecttiς = 0, and if

p ≤ p(ti,tη) andrttης = 0, we haverttiς = 0. By dividing
all tasks inDS, a new task setT ′ is obtained.

2) Second Layer Agents: Task Allocation and Scheduling:
With the new task setT ′ and the second-layer agent setA,
the MSDE-SPEA2-based algorithm is proposed to deal with
many-objective optimization problem for task allocation and
scheduling. First, the five objective functions are defined as
follows.

The makespanfunction f1 is formulated by:

f1(τ) =

|T |∑

i=1

τti − τ0 (8)

whereτ = {τt1 , τt2 , . . . , τt|T |
} .

The task waiting time functionf2 is given by:

f2(WT) =

|T |∑

i=1

wτti (9)

whereWT = {wτt1 , wτt2 , . . . , wτt|T |
} .

The agent satisfaction functionf3 is as follows:

f3(SA) = 1
/

1

|T |

|T |∑

i=1

∑|Ci|
j=1 sak

|Ci|

 (10)

wheresak
can be calculated by Equation (3).

The task completion functionf4 is defined as:

f4(SRT) =
|T |

|SU |
(11)

The resource utilization functionf5 is:

f5(RU) = 1/{
1

|T |

|T |∑

i=1

RUti} (12)

whereRUti can be calculated by Equation (5).
Considering the five objective functions given above, our

optimization function is

minimize F (OS)

whereF (OS) , (f1(τ), f2(WT), f3(SA), f4(SR), f5(RU))
andOS denotes a solution of the task allocation.

Next, the constraints of task allocation are set as follows.
Type constraint: according to the task type and agent role

defined inTask andSecond-Layer Agent, every assignment
should not violate the requirements of the task type and agent
type, that is, there is a type constraint given as

g1(OS) = 0, (13)

where

g1(OS) ,

|T |∑

i=1

bti +

|A|∑

k=1

bak
.

Here,bti reflects whether the allocation coalition violates the
requirements ofti’s type. If the requirements ofti’s type is
violated,bti = 1, otherwise,bti = 0. bak

reflects whether the
allocation coalition violates theak’s type. If the requirements
of ak ’s type is violated,bak

= 1, otherwise,bak
= 0.

Time constraints: The sum ofti’s waiting time andti’s
execution time cannot be longer than the maximum duration
time. Thus, for every taskti, we have the following condition:

wτti + τti ≤ TDti (14)

wherewτti , τti andTDti indicate the waiting time, execution
time and the maximum duration time of taskti, respectively.
Then, one has the constraint function as follows:

g2(OS) = 0 (15)

whereg2(OS) ,
∑|T |

i=1 etti , in which etti reflects if taskti
satisfies (14). If (14) is violated,etti = 1, otherwise,etti = 0.

Agent constraint: An agent cannot join more than one
coalition at a time, and therefore we have the agent constraint
as

g3(OS) = 0 (16)

whereg3(OS) ,
∑|T |

i=1 cti , in which cti indicates the number
of agent conflicts of taskti.

Resource constraint: If one task is assigned to one coalition,
the coalition should satisfy the requirement that at least one

FINAL VERSION 7

agent can meet the conditionraak
η ≥ rttiη (η = 1, 2, . . . , n).

Therefore, we have

g4(OS) > 0, ∀ti ∈ T (17)

where g4(OS) ,
∑|Ci|

k=1 srak
, in which OS denotes one

solution of the task allocation andsrak
reflects if the agent

can meet the task’s resource requirements. Ifak does not meet
the requirements,srak

= 0, otherwise,srak
= 1.

∑|Ct|
k=1 srak

actually refers to the number of agents which can meet the
task’s resource requirements.

According to above constraint conditions, the constraint
violation value can be calculated as

CV (OS) = g1(OS) + g2(OS) + g3(OS) +
1

g4(OS)
(18)

In order to solve the task allocation problem under the
enforced constraints by the MSDE-SPEA2-based algorithm,
the dominance relations among solutions obey the following
rule:

OSi dominatesOSj ,

if

OSi is a feasible solution andOSj is not;
OSi andOSj are not feasible solutions

andCV (OSi) < CV (OSj);
OSi andOSj are feasible solutions

andOSi Pareto dominatesOSj .

(19)

It is worth noting that a Pareto solution set

OSS = {OS1, OS2, . . . , OSW }

can be obtained by MSDE-SPEA2-based algorithm.
To implement the many-objective optimization of task allo-

cation under constraints in the second layer, MSDE-SPEA2-
based algorithm is shown in Algorithm 3.

In Algorithm 3, the modified shift-based density estimation
(MSDE) method (before the clustering step in the MSDE-
SPEA2-based algorithm) is realized in line 5. In the MSDE
method, the individual’s moving distance can be decided by
the weight parameter of every objective function. For example,
as shown in Fig. 3, it is assumed thatf1’s weightw1 is larger
thanf2’s weightw2. Then, the moving of every node onf1-
axis will follow the basic SDE method, that is, the value of
every node onf1-axis is equals to the target node’sf1 value.
After that, the value of every node onf2-axis will be the value
of w2/w1 times thef2 value of the target node. To be more
specific, in the first axis, it is easy to see thatf1(A) > f1(B)
and f2(A) < f2(B). Thus, there are no obvious differences
between the two individualsA andB on the two functions.
Then, these two nodes can be evaluated by MSDE method and
the process of their shift-based density estimation is shown in
the second and third axis. For the second axis, the target node
is A and the nodeB is the target node in the third axis. In
order to estimate target node “T = (i0, j0)”, the other nodes
marked by “P = (i, j)” should be moved to “P ′ = (i′, j′)”
by the following rules:

(i′, j′) =

(i, j0), if i > i0 & j < j0 & w1 > w2

(w2

w1
i0, j), if i < i0 & j > j0 & w1 > w2

(i, w1

w2
j0), if i > i0 & j < j0 & w1 < w2

(i0, j), if i < i0 & j > j0 & w1 < w2

(20)

Algorithm 3 MSDE-SPEA2-based Algorithm

Input: An agent setA, a task setT ′ and the maximum
parameterW

1: Initialize populationS with random solutions and empty
the external nondominated setS′.

2: Copy nondominated members ofS to S′.
3: Remove dominated solutions withinS′ by solutions also

in S′.
4: if the number of nondominated solutions inS′ beyond the

maximumW then
5: pruneS′ by k−neighbor of clustering with the shift-

based density estimation methodMSDE
6: end if
7: Calculate the fitness values on five objective functions for

each individual inS andS′.
8: Select individuals fromS + S′ to fill the mating pool

through binary tournament selection.
9: Do the crossover and mutation operators on task allocation

individual rules.
10: if reach the maximum iteration numberthen
11: stop
12: else go to Line 2
13: end if
Output: The optimal solution setOSS.

In Fig. 3, for the middle axis, according to the target node
“A”, other nodes move by obeying the first two rules in
Equation (20). To demonstrate the satisfactory results, the new
positions are represented by hollow circles. In the right axis,
according to the target node “B”, other nodes move to the
corresponding positions of the hollow circles by followingthe
same rules in Equation (20). As can be seen easily, node “A”
has a better clustering evaluation value than node “B”. The
eliminations of those nodes which have bad performance are
marked by “×”. The MSDE method ensures the efficiency and
accuracy of individual density evaluation.

When it comes to the specific task allocation, the chromo-
some encoding plays a significant role in the crossover and
mutation operators. In order to tackle the task allocation and
task scheduling issue simultaneously, a feasible solutionto
the encoding is shown in Fig. 4. The crossover and mutation
processes are displayed in Fig. 5 and Fig. 6, respectively.
In Fig. 4, every individual includes two chromosomes. One
chromosome represents the coalition combinations for every
task, and the other one denotes the scheduling order for the
whole task set. First, in order to unify the length of the two
chromosomes, the length is set as|T |. In the first chromosome,
the range of values for each bit is[1, 2|A|], which can be seen
as a binary representation. This binary representation includes
all kinds of agent coalitions. Then, the second chromosome
indicates the scheduling order of the corresponding task. Some
of the values of each bit might be the same because some tasks
could be executed simultaneously.

The crossover operator of chromosomes is shown in Fig. 5.
According to the cut-off position, which is chosen randomly,

FINAL VERSION 8

%

&

Fig. 3. An example of MSED individual moving for density estimation

[1,]

|T| bits, equals to the task number.

The first chromosome:

(coalition set for tasks)

[1,]

|T| bits, equals to the task number.

The second chromosome:

(scheduling order for tasks)

{0, 1}

|A| bits,

equals to the

agent number.

Fig. 4. The encoding details for one feasible solution

the first 7 bits of chromosomes are exchanged in Fig. 5. The
crossover operator includes not only coalition information but
also the corresponding scheduling sequence. Therefore, asa
result, the exchanged chromosomes’ scheduling information
might be messy because of the missing sequence numbers.
Because of the number of tasks is fixed, the scheduling
sequence numbers before crossover are fixed and consecutive.
After the crossover operator, the numbers in exchanged second
chromosomes may not be consecutive, because some numbers
are missing. For example, in Fig. 5, the scheduling sequenceof
individual i has the missing number “3, 5, 7”, and individual
j has no “1, 2”.

To deal with this issue, we should supplement the missing
sequence numbers. First, in the second chromosome, one bit
will be chosen randomly among the bits with the same value.
Next, the chosen bit replace the missing sequence number.
The corresponding crossover algorithm is demonstrated in
Algorithm 4. In line 4, Iji indicates theith bit of the
jth chromosome. The exchanging process is implemented in
lines 2-6, and the replacing process is shown in lines 7-16. By
the process described in Algorithm 4, in Fig. 5, three bits of
individual i are chosen randomly and replaced by a random
one among the missing sequence numbers of individuali. The
similar operator applies to individualj.

The process of mutation is demonstrated in Fig. 6. The
mutation includes coalition mutation, scheduling mutation, and
coalition-scheduling pair mutation. According to the mutation
probabilityδ, chooseδ|T | bits randomly in every chromosome.
For example, in Fig. 6, one bit is chosen for coalition mutation,
one bit for scheduling mutation, and two coalition-scheduling
pairs for couple mutation. As for coalition mutation, first,
the value of the chosen bit is translated into a binary queue.
Then, add “1” to any bit. Finally, convert the resultant binary
queue into decimal. For the scheduling mutation, one bit is

Algorithm 4 Crossover Operator
Input: Two individual codings:I andJ .

1: Randomly choose a cut-off positionc pos.
2: for i=0 to c pos do
3: for j=1 to 2 do
4: ExchangeIji andJji .
5: end for
6: end for
7: for the second chromosome in every exchanged individual

encodingdo
8: Add the missing numbers of this chromosome in set

M
9: for i=1 to |T | do

10: if the number of bits (which equal toi) > 1 then
11: Randomly chose one bit among the bits equal

to i.
12: Replace the value of this bit by a random

member inM .
13: Delete the random member inM .
14: end if
15: end for
16: end for
Output: Two exchanged individual codings:I ′ andJ ′.

[1,]

|T| bits, equals to the task number.

[1,]

|T| bits, equals to the task number.

Individual i: Individual j:

Individual i’: Individual j’:

Three bits are chosen randomly then

their values are replaced by a random

one among the missing sequence

numbers.

Three bits are chosen randomly then

their values are replaced by a random

one among the missing sequence

numbers.

1 5 2 2 5 1 3 5 7 7 7 5 3

3 5 7 2 5 1 1 5 2 7 7 5 3

Fig. 5. The details of crossover operator

chosen randomly, and its value will replace the value of the
bit that should be mutated. For coalition-scheduling pair mu-
tation, the coalition part obeys the coalition mutation, and the
scheduling part is replaced by a different scheduling sequence
number. The mutation process is exhibited in Algorithm 5.
The coalition mutation, scheduling mutation, and coalition-
scheduling pair mutation are demonstrated in lines2-6, lines7-
9 and lines10-12, respectively.

An optimal solution setOSS can be obtained by Algorith-
m 3, while, it is indeed that only one solution can be executed
for a specific task allocation problem finally. Therefore, itis
still significant to figure out a method of choosing a final
solution. The specific screening steps are as follows:

1) For the first screening, the evaluation of every so-
lution si in OSS can be calculated byEF (s1) =
0.8 ∗ f1(s1) + 0.5 ∗ f2(s2) + 0.75 ∗ f3(s3) + 0.6 ∗
f4(s4) + 0.5 ∗ f5(s5). Then, put the solutions which
have the biggest evaluation value into one setFL. If
|FL| > 0.05∗(the number of initialize population),
the setFL needs second screening, else go to 4).

2) For the second screening, the calculation is changed into

FINAL VERSION 9

Algorithm 5 Mutation Operator
Input: One individual coding:I.

1: Randomly chooseδ|T | bits on every chromosome includ-
ing at least one coalition-scheduling pair.

2: for each single bit which is chosen in the first chromosome
do

3: Change the bit’s value into a binary queue.
4: Randomly choose one position in this queue and do

the “NOT” operator.
5: Change this queue into a decimal number and replace

the previous value of this bit.
6: end for
7: for each single bit which is chosen in the second chro-

mosomedo
8: Change its value into another random bit’s value.
9: end for

10: for each bit in coalition-scheduling pair which is chosen
in the second chromosomedo

11: Replace its value by a random sequence number.
12: end for
Output: One mutated individual coding:I ′.

[1,]

[1,]

|T| bits, equals to the task number.

Individual i:

Individual i’:

Chose a different sequence

number randomly to replace the

value.

{0, 1}

Change it by

the other

value (0 or 1).

Fig. 6. The details of mutation operator

EF (s1) = 0.8∗f1(s1)+0.5∗f2(s2)+0.75∗f3(s3)+0.6∗
f4(s4). Then, updatedFL with the solutions which have
the biggest evaluation value in the second calculation. If
|FL| > 0.05∗(the number of initialize population),
the setFL needs third screening, else go to 4).

3) For the third screening, calculate the evaluation by
EF (s1) = 0.8 ∗ f1(s1) + 0.75 ∗ f3(s3) + 0.6 ∗ f4(s4),
then updateFL.

4) Choose a solution inFL randomly as the final solution.

Due to our experiment data, no more than three screenings,
the size ofFL can be decreased.

V. EXPERIMENTS AND ANALYSIS

In this section, the proposed procedure of many-objective
optimization for MASs is tested to show the effectiveness of
the developed algorithm by evaluating the task allocation effi-
ciency. In the first layer, the experiment results on task dividing
and prioritization simplifying are given by exploiting thedeep
Q-learning method. In the second layer, the performance tests
are shown for many-objective optimization of task allocation
from two aspects. Finally, comprehensive evaluations are given

to prove the effectiveness of the whole task allocation system.
The whole framework is implemented in C++ and Python, and
run in the environment of the TensorFlow 2.0 CPU vision.

A. Experiments on the First-layer-agent

This subsection focuses on the results of task dividing and
prioritization simplifying. The experiment is implemented via
two steps. The first step is to copy the task’s prioritization
and probability information to the first-layer agents, and the
second step is to execute Algorithm 1.

1) Experimental settings:The task prioritization is gener-
ated for the task graph instances (inspired by the Wiki-Vote
database which avoids the circle in the topology graph). The
values of the probabilities of positive influence are randomly
produced by our data generator.

In the deep Q-learning algorithm, we set the maximum time
as tmax = 1000, decay factorγ = 0.7, learning rater =
0.001, greedy explore rateǫ = 0.1, and sample numberm =
30. In the MSDE-SPEA2-based algorithm, the weights of the
five objective functions are chosen as0.8, 0.5, 0.75, 0.6, 0.5,
respectively. The whole experiments are implemented in an
offline environment.

2) Performance of deep Q-learning based on MASs:
We run the experiment 30 times for different numbers of
tasks in our database. Fig. 7 shows the statistical data on
average reduced prioritization and the reduced percentageof
divided task population. By comparing with the traditional
PSO algorithm and Greedy Heuristic (GH) method, it is not
difficult to find that the adopted deep Q-learning algorithm has
a perfect performance in reducing the prioritization, which is
independent of task size. Such an approach reduces30∼40%
of the task prioritization. As the number of tasks increases,
the amount and complexity of the prioritization increase ex-
ponentially, and classic PSO and GH method cannot satisfy
the requirement of searching ability and related calculations.
Note that these two methods only reduce7∼20% and4∼11%
of the task prioritization, respectively.

On the other hand, the running time plays an important role
in performance evaluation. The normalized running time of the
three algorithms is shown in Fig. 8. In contrast to PSO and
GH algorithms, DQN has exhibited a distinct advantage in
task dividing calculation, especially when the number of task
increases. It can be seen in Fig. 8 that the PSO and GH both
have a steep increasing tendency. Based on the Q-Network,
the approximate calculation ofQ − value accelerates the
algorithm, which becomes obvious when the task population
exceeds 150.

B. Experiments on the Second-layer agent

The experiment results are shown in Fig. 9-11. Fig. 9
displays the average values of the five objective function under
different task numbers with fixed 500 agents. Fig. 10 presents
the results under different agent numbers with fixed 80 tasks
by running the MSDE-SPEA2-based algorithm 200 times. As
shown in Fig. 9, the average percentage of the makespan(f1)
under the fixed number of tasks increases as the number of
task increases. The reason is that the increase in task size leads

FINAL VERSION 10

50 100 150 200 250 300

Task number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 th

e
re

du
ce

d
pr

io
rit

ie
s

DQN PSO GH

Fig. 7. The performance of deep Q-learning method on different task numbers

50 100 150 200 250 300

Task number

0

20

40

60

80

100

120

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(m

in
)

GH
PSO
DQN

Fig. 8. The performance of deep Q-learning method on different task numbers

to a decrease in the number of tasks that can be scheduled
simultaneously. In other words, in the case that the number of
agents is fixed, the smaller the task size is, the less time the
total scheduling would cost. It is not difficult to find that the
success rate of the allocation of different task sets has a stable
range (i.e.,96∼98%), which shows that the developed MSDE-
SPEA2-based algorithm has an advantage in improving the
accuracy. In addition, the agent satisfaction and the resource
utilizations stay within a suitable range, which means thatour
method has a merit in keeping the balance between the agent
satisfaction and the resource utilizations for different task sets.

As we can see in Fig. 10, the performance off1 implies
that the makespan has a decreasing tendency with the increase
in the number of agents. The reason is that available agents
cooperate with each other to finish one task for obtaining
efficient results, and this reduces the execution time of a single
task while increasing the number of tasks that can be executed
simultaneously. Similar to Fig. 9, the success rate in Fig.10
also stays at a relatively high level. In addition, we can seethat
the agent satisfaction increases at the beginning episode but
decreases when the agent amount breaks 200. As such, we see
a perfect balance between the coalition size and the number
of tasks within a certain rangeof the number of agents,
which means that coalitions can produce high rewards for
higher satisfaction(f3) as well as higher resource utilization

50 100 150 200 250 300

Task number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 a
ve

ra
ge

 o
bj

ec
tie

 fu
nc

tio
n

va
lu

es

f
1
/ms

max
f
2
/WT

m
ax 1/f

3
1/f

4
1/f

5

Fig. 9. The objective values through SPEA2 + MSDE with fixed agent set

(f5). Once the number of agents is out of this range, much
more agents are assigned to one task, which results in low
satisfaction and low resource utilization. On the other hand,
the high diversity of the coalition (caused by the large agent
size) provides diverse choices for tasks, which reduces the
conflicts among coalitions effectively. Furthermore, in light of
better coalitions for tasks, the optimized scheduling can be
conducted, as evidenced by the decline tendency of(f2) in
Fig.10.

In order to further show the effectiveness of the proposed
MSDE method, the performance of MSDE-SPEA2-based al-
gorithm and SPEA2 for the task allocation with 50 tasks and
100 agents is shown in Fig. 11. By running MSDE-SPEA2-
based algorithm and SPEA2 algorithm 50 times, respectively,
it is obvious that MSDE-SPEA2-based algorithm has an ad-
vantage on population selection, which leads to an excellent
result on the two objective functions (f1 and f2 here for
explanation purposes).

The final results of the MSDE-SPEA2-based method are
presented in Fig. 12. Three kinds of task allocation data are
set for testing the convergence of the MSDE-SPEA2-based
method. It is obvious that the solutions can converge into the
Pareto front. In Fig. 12, a good balance between convergence
and diversity is achieved by the MSDE-SPEA2-based method.
It should be noticed that, some of the lines are a little messy
because the solutions are discrete. The task allocation problem
is a complex combination problem between agents and tasks,
which means the solutions are not continuous.

In order to evaluate the performance of the MSDE-SPEA2-
based method, the inverted generational distance (IGD) metric
is introduced to test the method. IGD is a metric which reflects
combined information about convergence and diversity of a
solution set. IGD measures the average distance from the
points in the Pareto front to their the closest solution in the
obtained set. The results of the MSDE-SPEA2-based method
are presented in Table. I on various task allocation settings.
Comparing with the other four algorithms, PESA-II, SPEA-II,
SPEA2 and SPEA2+SDE, the MSDE-SPEA2-based method
achieves a better performance with the smallest values on both
convergence and diversity.

The HV metric is introduced to calculate the volume of

FINAL VERSION 11

f1/MS
max

f2/WT
max

1/f3 f4 1/f5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
bj

ec
tiv

e
V

al
ue

(a) 100 agents VS 50 tasks

f1/MS
max

f2/WT
max

1/f3 f4 1/f5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
bj

ec
tiv

e
V

al
ue

(b) 200 agents VS 200 tasks

f1/MS
max

f2/WT
max

1/f3 f4 1/f5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
bj

ec
tiv

e
V

al
ue

(c) 250 agents VS 300 tasks

Fig. 12. The final results of the MSDE-SPEA2-based method on different agent sizes

50 100 150 200 250 300

Agent number

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 a
ve

ra
ge

 o
bj

ec
tie

 fu
nc

tio
n

va
lu

es

f
1
/ms

max
f
2
/WT

m
ax 1/f

3
1/f

4
1/f

5

Fig. 10. The values of objective function through SPEA2 + MSDE with
fixed task set

0 0.2 0.4 0.6 0.8 1

f
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 2

SPEA2+MSDE
SPEA2

Fig. 11. The comparison between SPEA2+MSDE and SPEA2 onf1 andf2

the objective space between the obtained solution set and a
reference point. The reference point is chosen by 1.2 times
the biggest value of every objective. Table. II shows the results
of HV among the five algorithms. The MSDE-SPEA2-based
method achieves the best performance in different data settings
with the largest HV values.

C. Comprehensive Evaluations on Layered MASs Task Allo-
cation

The integrated task allocation on the basis of our layered
model includes two parts. In the first layer, we focus on the
step of task dividing and prioritization simplifying, which
serves as the basis of the overall task allocation and also the
preprocessing stage for the second layer. To demonstrate the
significance and effectiveness of the task dividing in the first
layer, the results are presented in Fig. 13. Fig. 13 includes
the allocation evaluations with task dividing but without task
dividing. It can be found that, with the prioritization simplify-
ing in the first layer, the makespan saves much time and the
scheduling becomes efficient.

VI. CONCLUSION

In this paper, the MTMRA issue has been addressed via
many-objective optimization of MASs. In order to greatly
improve the efficiency of the MTMRA algorithm, a novel
layered MASs model has been proposed with respect to many-
objective optimization. To be specific, in the first-layer MASs,
the DQN-based deep Q-learning algorithm has been adopted to
address the defined task dividing problem, which simplifies the
complicated prioritization process of the original task set effec-
tively. In the second-layer MASs, an MSDE approach has been
applied in the step of SPEA2’s population selection to handle
multi-task allocation and task scheduling, simultaneously. It
should be pointed out that the proposed MSDE-SPEA2-based
algorithm has shown powerful capability in balancing many
objectives, which can search the optimal allocation solutions in
terms of five objectives including makespan, agent satisfaction,
resource utilization, task completion and task waiting time
under the different experiment settings. Finally, the perfect
performance of the developed algorithms has been verified by
extensive experiments for different parameters under different
scenarios.

To summarize, the proposed DQN-based deep Q-learning
and MSDE-SPEA2-based algorithms have presented excellent
superiority in simplifying the complex task prioritization and
deal with the many-objective optimization issue. Inspiredby
deep learning methods, it is worth exploring related algorithms
on distributed MASs to achieve an efficient calculation method
on many realistic problems included task allocation issue.
Thus, further research topics include 1) the distributed MASs

FINAL VERSION 12

TABLE I
PERFORMANCECOMPARISON(IGD) OF FIVE EAS ON DIFFERENT TASK ALLOCATION SETTINGS

Task allocation settings PESA-II SPEA-II SPEA2 SPEA2+SDE SPEA2+MSDE
50 tasks & 50 tasks 3.056E-2 (1.4E-2) 1.813E-1 (6.0E-1) 5.219E-2 (2.4E-2) 2.516E-2 (1.3E-3) 1.781E-2 (1.1E-3)
50 tasks & 75 tasks 5.794E-1 (6.4E-2) 7.293E-1 (1.0E-1) 6.201E-2 (1.98E-2) 4.612E-2 (1.9E-3) 2.772E-2 (1.4E-3)
50 tasks & 150 tasks 7.115E+0 (4.4E-2) 3.781E-1 (2.0E-3) 4.251E-1 (2.4E-3) 2.516E-2 (7.3E-4) 1.211E-2 (4.1E-4)
100 tasks & 100 tasks 4.827E-1 (4.1E-2) 2.813E+0 (5.1E-1) 3.293E-1 (3.8E-2) 7.284E-2 (6.2E-2) 5.862E-2 (3.0E-2)
200 tasks & 200 tasks 5.186E+1 (2.7E+0) 8.454E+1 (6.2E+0) 5.429E+0 (9.4E-2) 6.926E+0 (9.2E-2) 4.253E+0 (7.1E-2)
300 tasks & 300 tasks 8.235E+0 (5.4E-2) 7.327E-1 (3.4E-2) 7.824E-1 (8.2E-2) 2.917E-1 (7.1E-3) 1.362E-1 (3.6E-3)

TABLE II
PERFORMANCECOMPARISON(HV) OF FIVE EAS ON DIFFERENT TASK ALLOCATION SETTINGS

Task allocation settings PESA-II SPEA-II SPEA2 SPEA2+SDE SPEA2+MSDE
50 tasks & 50 tasks 3.382E+6 (6.4E+5) 1.923E+6 (5.0E+5) 5.829E+6 (7.3E+5) 2.073E+7 (2.1E+6) 2.517E+7 (3.2E+6)
50 tasks & 75 tasks 4.923E+6 (3.7E+5) 5.632E+6 (6.0E+5) 2.947E+6 (1.2E+5) 8.29E+6 (6.8E+5) 1.132E+7 (7.6E+5)
50 tasks & 150 tasks 4.713E+6 (1.6E+5) 3.631E+6 (7.1E+5) 4.928E+6 (3.1E+5) 7.274E+6 (8.3E+5) 7.632E+6 (9.1E+5)
100 tasks & 100 tasks 3.143E+6 (4.2E+5) 4.161E+6 (7.3E+5) 3.928E+6 (5.2E+5) 1.274E+7 (3.3E+5) 2.143E+7 (4.1E+5)
200 tasks & 200 tasks 6.612E+6 (5.1E+5) 2.782E+7 (4.12E+6) 4.018E+6 (4.7E+5) 1.274E+7 (3.2E+6) 3.362E+7 (7.1E+6)
300 tasks & 300 tasks 5.513E+6 (2.6E+5) 3.024E+6 (1.3E+5) 5.228E+6 (3.0E+5) 6.114E+6 (8.3E+5) 8.351E+6 (8.6E+5)

50 100 150 200 250 300

Task number

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 o
pt

im
al

 m
ak

es
pa

n

Two-layer
Without task dividing

Fig. 13. The optimal makespan comparison between two kinds of methods

deep learning within different cooperation environment and
various agent types for various targets [6], [25]; 2) solving the
uncertain task allocation problem in a dynamic environmentby
using some novel optimization methods [2], [10], [35]–[38],
[53]; and 3) the task allocation problem on MASs subject to
engineering-oriented complexities [40], [46], [59], [62]–[64].

REFERENCES

[1] M. E. Akintunde, A. Kevorchian, A. Lomuscio and E. Pirovano, “Verifi-
cation of rnn-based neural agent-environment systems,” inProceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6006–
6013, 2019.

[2] S. Amador, S. Okamoto and R. Zivan, “Dynamic multi-agenttask
allocation with spatial and temporal constraints,” in:Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 1384–1390, 2014.

[3] S. Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[4] S. Bhardwaj, R. R. Ginanjar and D.-S. Kim, “Deep Q-learning based
resource allocation in industrial wireless networks for URLLC,” IET
Communications, vol. 14, no. 6, pp. 1022–1027, 2020.

[5] M. J. Blondin and M. Hale, “An algorithm for multi-objective multi-
agent optimization,”arXiv preprint arXiv: 2003.01745, 2020.

[6] E. Borzello and L. D. Merkle, “Multi-agent cooperation using the ant
algorithm with variable pheromone placement,” in2005 IEEE Congress
on Evolutionary Computation, vol. 2, pp. 1232–1237, 2005.

[7] J. Cao, Z. Bu, Y. Wang, H. Yang, J. Jiang and H.-J. Li, “Detecting
prosumer-community group in smart grids from the multiagent perspec-
tive”, IEEE Transactions on Systems Man Cybernetics: Systems, vol. 49,
no. 8, pp. 1652–1664, Aug. 2019.

[8] Z. Bu, G. Gao, H.-J. Li and J. Cao, CAMAS: “A cluster-aware
multiagent system for attributed graph clustering”,Information Fusion,
vol. 37, pp. 10–21, Sept. 2017.

[9] C. Chen, K. Li, S. G. Teo, X. Zou, K. Li and Z, Zeng, “Citywide Traffic
Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional
Neural Networks,”ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 4, no. 14, pp. 1–23, 2020.

[10] H. Cheng, Z. Wang, Z. Wei, L. Ma and X. Liu, “On adaptive learning
framework for deep weighted sparse autoencoder: A multiobjective
evolutionary algorithm”,IEEE Transactions on Cybernetics, in press,
DOI: 10.1109/TCYB.2020.3009582.

[11] J. Contreras, M. Klusch and J. Yen, “Multi-agent coalition formation
in power transmission planning: A bilateral shapley value approach,”
in: Proc. International Conference on Artificial IntelligencePlanning
Systems, pp. 19–26, 1998.

[12] R. Cui, J. Guo and B. Gao, “Game theory-based negotiation for multiple
robots task allocation,”Robotica, vol. 31, no. 6, pp. 923, 2013.

[13] Y. Cui, Y. Liu, W. Zhang and F. E. Alsaadi, “Sampled-based consensus
for nonlinear multiagent systems with deception attacks: The decou-
pled method”,IEEE Transactions on Systems, Man, and Cybernetics:
Systems, in press, DOI: 10.1109/TSMC.2018.2876497.

[14] R. K. Dash, P. Vytelingum, A. Rogers, E. David and N. R. Jennings,
“Market-based task allocation mechanisms for limited-capacity supplier-
s,”IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems
and Humans, vol. 37, no. 3, pp. 391–405, 2007.

[15] K. Deb, Multi-objective optimization using evolutionary algorithms,
vol. 16, 2001.

[16] D. Ding, Z. Wang and Q.-L. Han, “Neural-network-based consensus con-
trol for multiagent systems with input constraints: The event-triggered
case”,IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3719–3730,
2020.

[17] F. Fellir, A. E. Attar, K. Nafil and L. Chung, “A multi-Agent based model
for task scheduling in cloud-fog computing platform,” in:Proc. 2020
IEEE International Conference on Informatics, IoT, and Enabling Tech-
nologies (ICIoT), pp. 377–382, 2020.

[18] Y. Fu, H. Wang, G. Tian, Z. Li and H. Hu, “Two-agent stochastic flow
shop deteriorating scheduling via a hybrid multi-objective evolution-
ary algorithm,” Journal of Intelligent Manufacturing, vol. 30, no. 5,
pp. 2257–2272, 2019.

[19] C. Gao, Z. Wang, X. He and Q.-L. Han, “On consensus of second-order
multiagent systems with actuator saturations: A generalized-Nyquist-
criterion-based approach”,IEEE Transactions on Cybernetics, in press,
DOI: 10.1109/TCYB.2020.3025824.

[20] N. Gatti, F. Di Giunta and S. Marino, “Alternating-offers bargaining
with one-sided uncertain deadlines: An efficient algorithm,” Artificial
Intelligence, vol. 172, no. 8-9, pp. 1119–1157, 2008.

[21] P. Garcı́a-Sánchez, A. Tonda, A. J. Fernández-Leivaand C. Cotta, “Opti-

FINAL VERSION 13

mizing hearthstone agents using an evolutionary algorithm,” Knowledge-
Based Systems, vol. 188, art. no. 105032, 2020.

[22] A. T. Goh, “Back-propagation neural networks for modeling complex
systems,”Artificial Intelligence in Engineering, vol. 9, no. 3, pp. 143–
151, 1995.

[23] J. Han, Z. Zhang and X. Wu, “A real-world-oriented multi-task allocation
approach based on multi-agent reinforcement learning in mobile crowd
sensing,”Information, vol. 11, no. 2, art. no. 101, 2020.

[24] M. Guo, B. Xin, J. Chen and Y. Wang, “Multi-agent coalition formation
by an efficient genetic algorithm with heuristic initialization and repair
strategy,”Swarm and Evolutionary Computation, art. no. 100686, 2020.

[25] A. Gharbi, “A social multi-agent cooperation system based on planning
and sistributed task allocation,”Information, vol. 11, no. 1, art. no. 271,
2020.

[26] E. G. Jones, M. B. Dias and A. Stentz, “Time-extended multi-robot co-
ordination for domains with intra-path constraints,”Autonomous Robots,
vol. 30, no. 1, pp. 41–56, 2011.

[27] K. Kesireddy, W. Shan and H. Xu, “Global optimal path planning
for multi-agent flocking: A multi-objective optimization approach with
NSGA-III,” in 2019 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pp. 64–71, 2019.

[28] N. Kouka, R. Fdhila and A. M. Alimi, “Multi objective particle swarm
optimization based cooperative agents with automated negotiation,”
in: Proc. International Conference on Neural Information Processing,
pp. 269–278, 2017.

[29] Y. Kong, M. Zhang and D. Ye, “A negotiation-based methodfor task al-
location with time constraints in open grid environments,”Concurrency
and Computation: Practice and Experience, vol. 27, no. 3, pp. 735–761,
2015.

[30] I. Kovalenko, D. Ryashentseva, B. Vogel-Heuser, D. Tilbury and
K. Barton, “Dynamic resource task negotiation to enable product agent
exploration in multi-agent manufacturing systems,”IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2854–2861, 2019.

[31] B. Li, Z. Wang, Q.-L. Han and H. Liu, “Distributed quasiconsensus
control for stochastic multiagent systems under Round-Robin protocol
and uniform quantization”,IEEE Transactions on Cybernetics, in press,
DOI: 10.1109/TCYB.2020.3026001.

[32] T. Li, F. Ma and W. Liu, “Multi-agent oriented stable payoff with coop-
erative game,” in:Proc. International Conference in Swarm Intelligence,
pp. 74–81, 2013.

[33] Z. Li and C. Guo, “Multi-Agent Deep Reinforcement Learning Based
Spectrum Allocation for D2D Underlay Communications,”IEEE Trans-
actions on Vehicular Technologyvol. 69, no. 2, pp. 1828–1840, 2020.

[34] C. Liu, K. Li, Z. Tang and K. Li, “Bargaining game-based scheduling
for performance guarantees in cloud computing,”ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), vol. 3, no. 1, pp.1–25, 2018.

[35] W. Liu, Z. Wang, Y. Yuan, N. Zeng, K. Hone and X. Liu, “A
novel sigmoid-function-based adaptive weighted particleswarm opti-
mizer”, IEEE Transactions on Cybernetics, in press, DOI: 10.1109/T-
CYB.2019.2925015.

[36] W. Liu, Z. Wang, N. Zeng, Y. Yuan, F. E. Alsaadi and X. Liu,A novel
randomised particle swarm optimizer,International Journal of Machine
Learning and Cybernetics, in press, DOI: 10.1007/s13042-020-01186-4.

[37] Y. Liu, Q. Cheng, Y. Gan, Y. Wang, Z. Li and J. Zhao, “Multi-objective
optimization of energy consumption in crude oil pipeline transportation
system operation based on exergy loss analysis”,Neurocomputing,
vol. 332, pp. 100–110, Mar. 2019.

[38] Y. Liu, S. Chen, B. Guan and P. Xu, “Layout optimization of large-scale
oil-gas gathering system based on combined optimization strategy”,
Neurocomputing, vol. 332, pp. 159–183, Mar. 2019.

[39] Y. Liu, N. Zhu and M. Li, “Solving many-objective optimization
problems by a Pareto-based evolutionary algorithm with preprocessing
and a penalty mechanism,”IEEE Transactions on Cybernetics, DOI:
10.1109/TCYB.2020.2988896,2020.

[40] L. Ma, Z. Wang, J. Hu and Q.-L. Han, “Probability-guaranteed envelope-
constrained filtering for nonlinear systems subject to measurement
outliers”, IEEE Transactions on Automatic Control, in press, DOI:
10.1109/TAC.2020.3016767.

[41] H. Mao, Z. Zhang, Z. Xiao, Z. Gong and Y. Ni, “Learning multi-agent
communication with double attentional deep reinforcementlearning,”
Autonomous Agents and Multi-Agent Systems, vol. 34, art. no. 32, 2020.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv: 1312.5602, 2013.

[43] A. Nath, A. Arun and R. Niyogi, “A distributed approach for road
clearance with multi-robot in urban search and rescue environment,”

International Journal of Intelligent Robotics and Applications, vol. 3,
no. 4, pp. 392–406, 2019. vol. 11, art. no. 4, 2020.

[44] H. Van Nguyen, H. Rezatofighi, B.-N. Vo and D. C. Ranasinghe, “Multi-
objective multi-agent planning for jointly discovering and tracking
mobile object,”arXiv preprint arXiv: 1911.09807, 2019.

[45] M. Otte, M. J. Kuhlman and D. Sofge, “Auctions for multi-robot task
allocation in communication limited environments,”Autonomous Robots,
vol. 44, no. 3, pp. 547–584, 2020.

[46] W. Qian, Y. Li, Y. Chen, and W. Liu, “L2-L∞ filtering for stochastic
delayed systems with randomly occurring nonlinearities and sensor
saturation”, International Journal of Systems Science, vol. 51, no. 13,
pp. 2360–2377, 2020.

[47] G. Qu, D. Brown and N. Li, “Distributed greedy algorithmfor multi-
agent task assignment problem with submodular utility functions,”
Automatica, vol. 105, pp. 206–215, 2019.

[48] F. Qureshi and D. Terzopoulos, “Distributed coalitionformation in visual
sensor networks: A virtual vision approach,” in:Proc. International
Conference on Distributed Computing in Sensor Systems, pp. 1–20,
2007.

[49] H. Ravichandar, K. Shaw and S. Chernova, “STRATA: unified frame-
work for task assignments in large teams of heterogeneous agents,”
Autonomous Agents and Multi-Agent Systems, vol. 34, no. 2, pp. 38,
2020.

[50] M. Roshanzamir, M. A. Balafar and S. N. Razavi, “A new hierarchical
multi group particle swarm optimization with different task allocations
inspired by holonic multi agent systems,”Expert Systems with Applica-
tions, vol. 149, art. no. 113292, 2020.

[51] R. Rădulescu, P. Mannion, D. M. Roijers and A. Nowé, “Multi-objective
multi-agent decision making: A utility-based analysis andsurvey,”
Autonomous Agents and Multi-Agent Systems, vol. 34, art. no. 10, 2020.

[52] T. Sandholm, K. Larson, M. Andersson, O. Shehory and F. Tohmé,
“Coalition structure generation with worst case guarantees,” Artificial
Intelligence, vol. 111, no. 1, pp. 209–238, 1999.

[53] M. E. H. Souidi, A. Siam and Z. Pei, “Multi-agent pursuitcoalition
formation based on a limited overlapping of the dynamic groups,”
Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6, pp. 5617–1629,
2019.

[54] E. del Val, M. Rebollo and V. Botti, “Self-Organizationin service dis-
covery in presence of noncooperative agents,”Neurocomputing, vol. 176,
pp. 81–90, 2016.

[55] L. Wang, Z. Wang, G. Wei and F. E. Alsaadi, “Observer-based consensus
control for discrete-time multi-agent systems with coding-decoding
communication protocol”,IEEE Transactions on Cybernetics, vol. 49,
no. 12, pp. 4335–4345, 2019.

[56] K. Young and J. Wang, “Robot motion similarity analysisusing an FNN
learning mechanism,”Fuzzy sets and systems, vol. 124, no. 2, pp. 155–
170, 2001.

[57] Y. Yuan, Z. Wang, P. Zhang and H. Dong, “Nonfragile near-optimal
control of stochastic time-varying multi-agent systems with control-
and state-dependent noises”,IEEE Transactions on Cybernetics, vol. 49,
no. 7, pp. 2605–2617, 2019.

[58] C. Zhang, Q. Li, Y. Zhu and J. Zhang, “Dynamics of task allocation
based on game theory in multi-agent systems,”IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 1068–1072,
2018.

[59] Z. Zhao, Z. Wang, L. Zou and J. Guo, “Set-Membership filtering
for time-varying complex networks with uniform quantisations over
randomly delayed redundant channels”,International Journal of Systems
Science, in press, DOI: 10.1080/00207721.2020.1814898.

[60] J. Zhu, Y. Song, D. Jiang and H. Song, “A new deep-q-learning-based
transmission scheduling mechanism for the cognitive internet of things,”
IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2375–2385, 2017.

[61] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,”IEEE Trans-
actions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[62] L. Zou, Z. Wang, Q.-L. Han and D. H. Zhou, “Moving horizonesti-
mation of networked nonlinear systems with random access protocol”,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, in press,
DOI: 10.1109/TSMC.2019.2918002.

[63] L. Zou, Z. Wang, J. Hu and D. H. Zhou, “Moving horizon estimation
with unknown inputs under dynamic quantization effects”,IEEE Trans-
actions on Automatic Control, vol. 65, no. 12, pp. 5368–5375, 2020.

[64] L. Zou, Z. Wang, H. Geng and X. Liu, “Set-membership filtering subject
to impulsive measurement outliers: A recursive algorithm”, IEEE/CAA
Journal of Automatica Sinica, vol. 8, no. 2, pp. 377–388, 2021.

FINAL VERSION 14

Mincan Li received the bachelor’s degree in the
Department of Information Science and Engineering,
Hunan University, in 2014. She is currently a Ph.D.
Candidate in the Department of Information Science
and Engineering, Hunan University, Changsha, Chi-
na. Since 2019, she has been a visiting Ph.D. student
with the Department of Computer Science, Brunel
University London, Uxbridge, U.K. Her research in-
terests include multi-agent systems, many-objective
optimization and machine learning.

Zidong Wang (SM’03-F’14) was born in Jiang-
su, China, in 1966. He received the B.Sc. degree
in mathematics in 1986 from Suzhou University,
Suzhou, China, and the M.Sc. degree in applied
mathematics in 1990 and the Ph.D. degree in elec-
trical engineering in 1994, both from Nanjing Uni-
versity of Science and Technology, Nanjing, China.

He is currently Professor of Dynamical Systems
and Computing in the Department of Computer
Science, Brunel University London, U.K. From 1990
to 2002, he held teaching and research appointments

in universities in China, Germany and the UK. Prof. Wang’s research interests
include dynamical systems, signal processing, bioinformatics, control theory
and applications. He has published more than 600 papers in international
journals. He is a holder of the Alexander von Humboldt Research Fellowship
of Germany, the JSPS Research Fellowship of Japan, William Mong Visiting
Research Fellowship of Hong Kong.

Prof. Wang serves (or has served) as the Editor-in-Chief forInternational
Journal of Systems Science, the Editor-in-Chief forNeurocomputing, and an
Associate Editor for 12 international journals including IEEE Transactions on
Automatic Control, IEEE Transactions on Control Systems Technology, IEEE
Transactions on Neural Networks, IEEE Transactions on Signal Processing,
and IEEE Transactions on Systems, Man, and Cybernetics-Part C. He is a
Member of the Academia Europaea, a Fellow of the IEEE, a Fellow of
the Royal Statistical Society and a member of program committee for many
international conferences.

Kenli Li Kenli Li received the Ph.D. degree in
Computer Science from Huazhong University of
Science and Technology, China, in 2003. He was
a visiting scholar at the University of Illinois at
Urbana- Champaign from 2004 to 2005. He is
currently a Cheung Kong Professor of Computer
Science and Technology at Hunan University, the
Dean of the College of Information Science and
Engineering of Hunan University, and the Director
in the National Supercomputing Center in Changsha.
His major research interests include parallel and dis-

tributed processing, high-performance computing, and bigdata management.
He has published more than 320 research papers in international conferences
and journals such as IEEE-TC, IEEE-TPDS, IEEE-TCC, AAAI, DAC, ICPP,
etc. He is an Distinguished Member of the CCF and a Senior Member of
the IEEE. He is currently serving or has served as an Associate Editor for
IEEE-TC, IEEE-TII, and IEEE-TSUSC.

Xiangke Liao received the B.S. degree from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 1985, and
the M.S. degree from the National University of
Defense Technology, Changsha, China, in 1988. He
is currently a Full Professor and the Dean of the
College of Computer Science, National Universi-
ty of Defense Technology. His research interests
include parallel and distributed computing, high-
performance computer systems, operating systems,
cloud computing, and networked embedded systems.

Kate Hone received the B.A. degree in experimental
psychology from the University of Oxford, Oxford,
U.K., in 1990, and the M.Sc. degree in work design
and ergonomics and the Ph.D. degree from the
University of Birmingham, Birmingham, U.K., in
1992 and 1996, respectively.

Professor Hone is Head of the Department of
Computer Science at Brunel University London,
U.K. She previously held academic posts at the U-
niversity of Nottingham, U.K. before joining Brunel
in 2000. At Brunel she has held a number of posts

including Director of the Graduate School between 2009 and 2018.
Professor Hone’s research interests include spoken dialogue systems, affec-

tive computing, social signals processing, health informatics and intelligent
data analysis.

Xiaohui Liu received the B.Eng. degree in com-
puting from Hohai University, Nanjing, China, in
1982 and the Ph.D. degree in computer science from
Heriot-Watt University, Edinburg, U.K., in 1988.

He is a Professor of Computing with Brunel
University London, Uxbridge, U.K., where he directs
the Centre for Intelligent Data Analysis. He has
over 100 journal publications in computational intel-
ligence and data science. Prof. Liu was a recipient
of the Highly Cited Researchers Award by Thomson
Reuters.

