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Probability-Guaranteed Distributed Filtering for
Nonlinear Systems with Innovation Constraints

over Sensor Networks
Lifeng Ma, Zidong Wang, Yun Chen, and Xiaojian Yi

Abstract—In this paper, the distributed filtering problem is
investigated for a class of nonlinear systems. Each individual
sensing node provides the state estimate by using not only its own
measurements but also its neighbors’ information propagated
according to the communication topology. With the purpose of
mitigating the effects from possible abnormal data during the
signal transmission, an innovation constraint with adaptively
determined threshold is imposed on the transmitted innovation
during the filter process. The aim of the addressed problem is
to design a distributed filtering algorithm which is capable of
1) confining all the estimation errors within certain ellipsoidal
regions with prescribed probability; and 2) achieving the required
average disturbance attenuation specification. By virtue of convex
optimization method, sufficient conditions are derived for the
existence of the requested filtering algorithm and the desired
filtering parameters are then obtained by iteratively solving
the corresponding matrix inequalities. Within the established
framework, two optimization problems are put forward to
seek locally optimal filtering parameters. Finally, an illustrative
numerical example is provided to demonstrate the applicability
of the proposed filtering paradigm.

Index Terms—Distributed filtering, set-membership filtering,
innovation constraints, probability-guaranteed filtering

I. I NTRODUCTION

Sensor networks, built of a group of individual sensing
nodes, have recently stirred intensive research attentionfrom
both industry and academy in the disciplinaries including
communication, system science and signal processing. These
sensing nodes are spatially dispersed with each individual
node having the basic abilities of information processing
such as collection, computing and transmission. Thanks to
their distinctive merits (e.g., low cost, easy deployability,
convenient maintenance), sensor networks have found wide
applications in many areas such as environment surveillance,

This work was supported in part by the Natural Science Foundation of
Jiangsu Province of China under Grant BK20190021, the National Natural
Science Foundation of China under Grants 61773209, 61973102, 61873148,
61933007 and 71801196, the Zhejiang Provincial Natural Science Founda-
tion of China under Grant LR16F030003, the Six Talent Peaks Project in
Jiangsu Province of China under Grant XYDXX-033, and the Alexander von
Humboldt Foundation of Germany.(Corresponding author: Xiaojian Yi.)

L. Ma is with the School of Automation, Nanjing University ofScience and
Technology, Nanjing 210094, China. (Email:malifeng@njust.edu.cn)

Z. Wang is with the Department of Computer Science, Brunel Univer-
sity London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.(Email:
Zidong.Wang@brunel.ac.uk)

Y. Chen is with the School of Automation, Hangzhou Dianzi University,
Hangzhou 310018, China. (Email:yunchen@hdu.edu.cn)

X. Yi is with the School of Mechatronical Engineering, Beijing Institute of
Technology, Beijing 100081, China. (Email:yixiaojianbit@sina.cn)

military detection, target location, and so forth [7], [17], [19],
[30], [31].

The filtering/estimation problem is well recognized as a
fundamental research topic that plays a vitally important role
in many engineering applications. Along with the recent devel-
opment of sensor networks, the distributed filtering/estimation
issues have attracted a particular research interest in extracting
the true signal from the possibly noisy measurement data
collected by sensing nodes. According to their structures,
the sensor-network-based filter algorithms can be generally
divided into two categories (namely, centralized approachand
distributed approach), each with their own merits and demerits.
The centralized approach adopts a central unit to calculatethe
state estimate by using the measurement information fromall
sensing nodes [13], [25]. Apparently, such a technique would
impose high demands upon the capabilities of the central
unit (e. g. storage capacity and processing speed), especially
when the scale of the network becomes large. In contrast, the
distributed algorithm deploys local filter at each individual
node and provides the state estimate by using not only the
local measurements but also the information propagated by
the neighbors. In comparison to the centralized approach,
the distributed algorithm possesses certain advantages such as
flexibility of deployment and robustness against disturbances,
etc. Thus, in recent decade, the distributed filtering issues have
been garnering considerable interest within systems science
and signal processing communities [10], [12], [14], [15].

So far, the distributed filtering problems have been exten-
sively investigated from different perspectives. According to
properties of disturbances, several distributed filteringtech-
niques have been proposed in the literature with respective
scopes of applicability. For instance, the Kalman filtering
technique has been applied in [5], [20], [21] to cope with the
distributed state estimation issues for systems with Gaussian
noises. As the standard Kalman-like framework is no longer
applicable in the case of non-Gaussian disturbances, many
alternative methods have been developed with examples in-
cluding, but are not limited to, theH∞ technique presented to
deal with energy-bounded noises (see e.g. [24]) and the set-
membership filtering theory exploited to handle the unknown-
but-bounded (UBB) noises (see e.g. [11]). Recently, a con-
sensus nonlinear information filter has been designed in [9]
where the sensors’ measurements are subject to a sort of non-
Gaussian disturbances. It should be emphasized that, due to
the wide appearance of UBB noises in practical applications
especially in electrical and electronics engineering, theset-
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membership filtering technique has recently attracted renewed
interest, and some representative publications can be found in
[14], [29] and the references therein.

In practical control engineering, it is often unnecessary (and
also impossible) to guarantee the performance requirements
with probability1 in a strict yet persistent way. This is partic-
ularly true when the target plant undergoes severe stochastic
noises. Actually, in certain situations, it is usually impractical
to achieve the desired objectives with 100% confidence. For
instance, in the maneuvering targets tracking problem, it is
generally satisfactory if the radar can track the targets with
a 90% success probability. Another quintessential example
that should be mentioned is that, in the missile control, we
often require the standard deviation error be confined within a
25m-radius-circle with an 80% probability. Such engineering
practice gives rise to the idea of designing controllers/filters
capable of meeting the performance with an acceptable proba-
bility [23], [26], [28]. Obviously, such a probability-guaranteed
scheme could reduce the conservatism stemming from unnec-
essarily stringent design requirements, thereby providing extra
freedom for other essential indices as well as reducing the
design expense. As a result, it is of significance to establish
the probability-guaranteed framework for system analysisand
synthesis, and such an issue has not yet received adequate
research attention.

In practical systems, it is quite desirable to design filters
that satisfymultiple performance requirements. Motivated by
the above discussions, in this paper, we endeavor to study
the probability-guaranteed distributed filtering problemfor
general time-varying nonlinear systems subject to innova-
tion constraint with simultaneous consideration of multiple
performance indices.This appears to be a challenging task
because of some fundamental difficulties identified as follows.
1) For general nonlinear time-varying systems, it is invariably
arduous to propose appropriate performance indices that quan-
tify transient dynamical characteristics and yet facilitate the
subsequent investigation by utilizing existing methodologies.
2) The nonlinear and time-varying nature of the addressed
system gives rise to significant difficulties in analysis and
synthesis with respect to the proposed multiple requirements.
3) The innovation constraint imposed on the transmitted in-
formation among sensing nodes constitutes another kind of
nonlinearities that complicates the filter design even further.
It is, therefore, the main purpose of this paper to deal with
the identified challenges by launching a major study on the
addressed probability-guaranteed multi-objective distributed
filtering problem.

The novelties of this paper can be summarized as fourfold.
i) The model of the target plant under consideration is
comprehensive that caters for nonlinearities, stochasticity and
time-varying effects. ii) In order to better characterize the
performances in the finite horizon, two transient performance
indices, namely, averageH∞ criterion and probabilistic ellip-
soidal constraint are proposed from different perspectives. iii)
In order to mitigate the effect of abnormal measurements (e.g.,
outliers, attacks, etc.), a saturation function is imposedon
the innovations and the saturation level is adaptively adjusted
at each time step according to previous estimation errors.

iv) The proposed algorithm is capable of guaranteeing the
ellipsoidal constraint with a predetermined probability (rather
than the usual 100% confidence). Such a probabilistically
design method could provide much extra flexibility by relaxing
certain stringent yet unnecessary performance constraints in
real-world applications.

Notation The notation used here is fairly standard except
where otherwise stated.Rn denotes then-dimensional Eu-
clidean space.1n denotes ann-dimensional column vector
with all ones.In and0n denote the identity matrix and zero
matrix of n dimensions, respectively. The notationX ≥ Y
(respectivelyX > Y ), whereX andY are symmetric matri-
ces, means thatX − Y is positive semi-definite (respectively
positive definite). For matricesA ∈ R

m×n andB ∈ R
p×q,

their Kronecker product is a matrix inRmp×nq denoted as
A⊗B. The superscript “ T ” denotes the transpose. The symbol
‘∗’ stands for the corresponding entry of the matrix can be
obtained by symmetrical property. For a vectora, ‖a‖ = aTa.
tr[A] means the trace of matrixA and diag{F1, F2, . . . , Fn}
denotes a block diagonal matrix whose diagonal blocks are
given byF1, F2, . . . , Fn. The notationdiagn{Ai} represents
the block diagonal matrixdiag{A1, A2, . . . , An} andcoln{xi}
denotes the column vector[xT1 xT2 . . . xTn ]

T. P{A} means
the occurrence probability of the event ‘A’.

II. PROBLEM FORMULATION

In this paper, it is assumed that the sensor network hasN
sensor nodes which are distributed in the space according toa
specific interconnection topology characterized by a directed
graphG = (V , E ,L ), whereV = {1, 2, ..., N} denotes the
set of sensing nodes,E ⊆ V × V is the set of edges, and
L = [θij ]N×N is the nonnegative adjacency matrix associated
with the edges of the graph, that is,θij > 0 if and only if
edge(i, j) ∈ E (i.e. there is information transmission from
sensorj to sensori). If (i, j) ∈ E , then nodej is called one
of the neighbors of nodei. Also, we assume thatθii = 1 for
all i ∈ V and, therefore,(i, i) can be regarded as an additional
edge. The set of neighbors of nodei ∈ V plus the node itself
is denoted byNi , {j ∈ V |(i, j) ∈ E }.

Consider the following nonlinear system defined on the
horizon [0, T ]:

{

xk+1 =f(xk) +Bkνk + (h(xk) +Dkνk)ωk

yi,k =Ci,kxk + Ei,kµk

(1)

where xk ∈ R
nx and yi,k ∈ R

ny represent, respectively,
the system state and measurement output on thei-th sensing
node;ωk is a zero-mean Gaussian white sequence with unitary
variance;νk ∈ R

nν andµk ∈ R
nµ are the process and mea-

surement noises;Bk, Dk, Ci,k andEi,k are known real-valued
matrices of compatible dimensions;f(xk) : Rnx 7→ R

nx and
h(xk) : R

nx 7→ R
nx are two nonlinear functions.

Assumption 1:The noise sequencesνk andµk satisfy the
constraints

{

νk ∈ Vk , {νk : νTk V
−1
k νk ≤ 1}

µk ∈ Uk , {µk : µT
kU

−1
k µk ≤ 1}

(2)

whereVk > 0 andUk > 0 are positive matrices with suitable
dimensions.
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For each sensing nodei (i = 1, 2, . . . , N), the local filter
to be designed is of the following form:

x̂i,k+1 = Fi,kx̂i,k +
∑

j∈Ni

θijHij,kSatσj,k
(yj,k − ŷj,k)

(3)
whereŷi,k , Ci,kx̂i,k is the estimated output on nodei; Fi,k

andHij,k are filtering parameters to be designed. Here, for a
vectora ∈ R

na with a(s) denoting itss-th entry, the nonlinear
functionSatσj,k

(a) is defined as

Satσj,k
(a) ,








Satσj,k

(
a(1)

)

Satσj,k

(
a(2)

)

...
Satσj,k

(
a(na)

)








whereSatσj,k

(
a(s)

)
, sign

(
a(s)

)
· min

{
|a(s)|, σj,k

}
. Fur-

thermore, in this paper, we employ the following function to
dynamically govern the saturation levelσi,k for nodei:

σi,k+1 = λσi,k + (yi,k − ŷi,k)
TWi(yi,k − ŷi,k) (4)

whereλ ∈ [0, 1) andWi > 0 is a given weighting matrix.
Remark 1:One of the distinct features of the distributed

filtering algorithm is that, at each individual sensing node,
not only the local measurements but also the neighboring
information will be used to generate the state estimate. This
requires the data exchange among sensing nodes, which is
realized via network-based communications. The traditional
form of distributed filters can be found in [24] and the
references therein. In our improved form of distributed filter
(3), a saturation function is used to characterize the restraint
on the innovation vector by imposing an upper-bound on the
absolute value of the transmitted data. Such a mechanism is
widely used in many engineering practice. For instance, in
electrical and electronics engineering, an amplitude limiter is
usually implemented to constrain the signals (e.g., current,
voltage, etc) within certain allowable range to protect devices.

Remark 2:It should be emphasized that the reason why we
propose such a saturation mechanism lies as twofold.First,
the transmitted data are innovations of neighboring nodes,
which we believe should be within certain range if the nodes
are in good condition. Accordingly, the saturation function
is conducive to alleviate the impacts from possible outliers
which usually occur especially to those nodes deployed in
harsh environments.Second, as is well known, the utilization
of networks will face the threat from malicious attacks, and
another advantage of the proposed filter structure is the ability
of mitigating the effects from possible attacks such as false
data injection which aims to deteriorate the performance
by injecting false signals to the original ones during the
transmission.

Remark 3:Different from saturation functions with fixed
thresholds in most existing literature (see, e.g. [29]), our filter
structure adopts time-varying saturation thresholds (character-
ized by σi,k) that are determined iteratively and adaptively
according to the value of innovations, see (4). In comparison to
the cases of fixed threshold, our proposed adaptive mechanism
enables the saturation thresholdσi,k to be adjusted appro-
priately along with the estimation performance. Specifically,

when the innovations become larger (which is indicative of
larger differences between measurement output and estimated
output), we know from (4) thatσi,k will be larger accordingly
so as to relax the limitations on the transmitted signals, which
is in accordance with the engineering practice.

Definition 1: A bounded ellipsoidE(c,X) of R
n with a

nonempty interior is defined by

E(c,X) , {x ∈ R
n : (x− c)TX−1(x− c) ≤ 1} (5)

where c ∈ R
n is the center ofE(c, P ) and P > 0 is a

positive definite matrix that specifies the ellipsoid’s shape and
orientation.

By defining the estimation error̃xi,k , xk − x̂i,k, we are
now ready to present the design objective. In this paper, it is
our aim to determine the filtering parametersFi,k andHij,k

in (3) such that the following two requirementsR1) andR2)
are met simultaneously.
R1) Probabilistic ellipsoidal constraint

P{xk ∈ E(x̂i,k,Pk)} ≥ p (6)

or, equivalently,

P{x̃Ti,kP
−1
k x̃i,k ≤ 1} ≥ p (7)

wherePk > 0 is a prescribed matrix and the prespecified
positive scalarp satisfies0 < p ≤ 1.
R2) AverageH∞ specification

1

N
E

{
N∑

i=1

T∑

k=0

‖x̃i,k‖
2

}

≤γ2
T∑

k=0

(
‖νk‖

2 + ‖µk‖
2
)
+ γ2

1

N

N∑

i=1

x̃Ti,0Πix̃i,0 (8)

whereΠi > 0 are known weighting matrices.
Remark 4: In practical systems, it is quite desirable to

design filters that satisfy multiple performance requirements.
For example, in the scenario of maneuvering target tracking
via sensor networks, it is always required the tracking systems
show simultaneously good tracking accuracy and disturbance
attenuation ability. On the other hand, for time-varying sys-
tems, it makes more sense to investigatetransient perfor-
mances over a time period of interest than the steady-state
characteristics over the infinite horizon. Note that, although
the design objectivesR1) andR2) are both proposed to depict
transient performances, they are actually put forward from
different perspectives. In the first place, inequality (7) proposes
the probabilistic ellipsoidal constraint with respect to each
individual node at eachsingle time step. In the second place,
inequality (8) measures the disturbance attenuation levelin a
collectiveway over thewhole time interval[0, T ].

III. M AIN RESULTS

Before presenting our main results, we first introduce the
following definition and lemmas that are helpful in subsequent
derivations.
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Definition 2: [1] Let K1 andK2 be some real matrices with
K , K2 − K1 > 0. A nonlinearityφ(·) is said to satisfy the
sector condition with respect toK1 andK2 if

(
φ(y)− K1y

)T(
φ(y)− K2y

)
≤ 0. (9)

In this case, the sector-bounded nonlinearityφ(·) is said to
belong to the sector[K1,K2].

Lemma 1: (S-procedure [2]) Letψ0(·),ψ1(·),. . .,ψp(·) be
quadratic functions of the variableς ∈ R

n: ψj(ς) , ςTXjς
(j = 0, . . . , p), whereXT

j = Xj . If there existǫ1 ≥ 0, . . .,
ǫp ≥ 0 such thatX0 −

∑p
j=1 ǫjXj ≤ 0, then the following is

true:
ψ1(ς) ≤ 0, . . . , ψp(ς) ≤ 0 → ψ0(ς) ≤ 0. (10)

Lemma 2: (Schur Complement Equivalence [2]) Given
constant matricesS1,S2,S3 whereS1 = ST

1 and0 < S2 =
ST

2 , thenS1 +ST
3 S

−1
2 S3 < 0 if and only if

[
S1 ST

3

S3 −S2

]

< 0 or

[
−S2 S3

ST
3 S1

]

< 0. (11)

Lemma 3: [2] Let M = MT, H andE be real matrices of
appropriate dimensions, and∆ satisfies‖∆‖ ≤ 1, then

M+ H∆E+ ET∆HT ≤ 0 (12)

if and only if there exists a positive scalarε such that

M+ εHHT + ε−1ETE ≤ 0. (13)

By resorting to the Taylor expansion technique, we can
express the nonlinear functionsf(xk) andg(xk) as follows:

f(xk) = f(x̂i,k) + Φi,kx̃i,k + Li∆1ix̃i,k (14)

h(xk) = h(x̂i,k) + Ψi,kx̃i,k +Σi∆2ix̃i,k (15)

whereLi ∈ R
nl andΣi ∈ R

nΣ are known matrices;∆1i ∈
R

nl×nx and∆2i ∈ R
nΣ×nx are unknown matrices such that

‖∆1i‖ ≤ 1 and ‖∆2i‖ ≤ 1; Φi,k andΨi,k are calculated as
follows:

Φi,k ,
∂f(x)

∂x

∣
∣
∣
x=x̂i,k

, Ψi,k ,
∂h(x)

∂x

∣
∣
∣
x=x̂i,k

. (16)

Letting rj,k , yj,k − ŷj,k, there exist matrices0 ≤ G1j ≤
I ≤ G2j such that

Satσj,k
(rj,k) = G1jrj,k + φj(rj,k) (17)

where φj(rj,k) is a nonlinear vector-valued function which
satisfies a sector condition withK1j = 0 andK2j = Gj (Gj =
G2j −G1j), i.e.,φj(rj,k) satisfies the following inequality:

φTj (rj,k)
(
φj(rj,k)−Gjrj,k

)
≤ 0. (18)

From system (1) and filter (3), we acquire the following
dynamics of estimation error:

xk+1 − x̂i,k+1

=f(x̂i,k) + Φi,kx̃i,k + Li∆1ix̃i,k +Bkνk − Fi,kx̂i,k

+
(
h(x̂i,k) + Ψi,kx̃i,k +Σi∆2ix̃i,k +Dkνk

)
ωk

−
∑

j∈Ni

θijHij,kG1jCj,kxk +
∑

j∈Ni

θijHij,kG1jCj,kx̂j,k

−
∑

j∈Ni

θijHij,kG1jEj,kµk −
∑

j∈Ni

θijHij,kφj(rj,k) (19)

For development brevity, denote

ξk , colN{xk}, x̂k , colN{x̂i,k}, x̃k , colN{x̃i,k},

f̂k , colN{f(x̂i,k)}, φk , colN{φi(ri,k)},

ĥk , colN{h(x̂i,k)}, ŷk , colN{ŷi,k},

Bk , 1N ⊗Bk, Dk , 1N ⊗Dk,

Ck , diagN{Ci,k}, Fk , diagN{Fi,k}, Ek , diagN{Ei,k},

G , diagN{G1i}, L , diagN{Li}, Φk , diagN{Φi,k},

Ψk , diagN{Ψi,k}, Σ , diagN{Σi},

∆1 , diagN{∆1i}, ∆2 , diagN{∆2i},

Θι,i , diag{0, . . . , 0
︸ ︷︷ ︸

i−1

, Iι, 0, . . . , 0
︸ ︷︷ ︸

N−i

},

Rι,i , (1TN ⊗ Iι)Θι,i, ι = {nx, nq, ny, nΣ}.

Then, we have the following compact form of the dynamics
of the estimation error:

x̃k+1 =f̂k +Φkx̃k + L∆1x̃k + Bkνk

+ (ĥk +Ψkx̃k +Σ∆2x̃k +Dkνk)ωk

−Fkx̂k −HkGCkξk −HkGEk(1N ⊗ Inµ
)µk

+HkGCkx̂k −Hkφk (20)

whereHk ,
[
θijHij,k

]

N×N
. Obviously, sinceθij = 0 when

j /∈ Ni, Hk is a sparse matrix which is characterized by

Hk ∈ Tnx×ny
(21)

where Tnx×ny
,

{
T = [Tij ] ∈ R

Nnx×Nny
∣
∣Tij ∈

R
nx×ny , Tij = 0 if j /∈ Ni

}
.

A. Ellipsoidal constraint in probabilityp

Defining

Pk ,
1

1− p
Pk,

we present the following lemma that will be used in later
derivation.

Lemma 4:If E{(xk − x̂i,k)
TP−1

k (xk − x̂i,k)} ≤ 1, then the
following holds:

P{xk ∈ E(x̂i,k,Pk)} ≥ p. (22)

Proof: Lemma 4 is easily accessible from Lemma 3 in
[23], and its proof is therefore omitted here.

Assumption 2:Let

P0 ,
1

1− p
P0

be given withP0 being a known positive definite matrix. The
system initial value and its estimates satisfy the following
condition:

(x0 − x̂i,0)
TP−1

0 (x0 − x̂i,0) ≤ 1. (23)

Lemma 5:Let the filtering parametersFi,k andHij,k be
given. For a given sequence of positive definite matrices
{Pk}k≥0 (with a factorizationPk = QkQ

T
k ) and under
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the initial condition (23), if there exist sequences of non-
negative scalars{̺(1)i,k}k≥0, {̺(2)k }k≥0, {̺(3)k }k≥0, {̺(4)i,k}k≥0,

{̺
(5)
i,k}k≥0 , {̺

(6)
i,k}k≥0 and sequences of scalars{βi,k}k≥0

satisfying the followingN recursive matrix inequalities:




−Γk Ω̄T
kR

T
nx,i

Ω̃T
kR

T
nx,i

∗ −Pk+1 0
∗ ∗ −Pk+1



 ≤ 0 (24)

where

Γk ,diag
{

1−
N∑

i=1

̺
(1)
i,k − ̺

(2)
k − ̺

(3)
k ,

N∑

i=1

̺
(1)
i,kΘnq,i −

N∑

i=1

(̺
(4)
i,k + ̺

(5)
i,k )Θnq,iQ

T
kQk,

N∑

i=1

̺
(4)
i,kΘnl,i,

N∑

i=1

̺
(5)
i,kΘnΣ,i,

̺
(2)
k V −1

k , ̺
(3)
k U−1

k , 0
}

+

N∑

i=1

̺
(6)
i,kΞi,k +

N∑

i=1

βi,kΥi,k, (25)

Ξi,k ,
1

2

[

0 Ξ
(12)
i,k

∗ 2INny
Θny,i

]

, (26)

Ξ
(12)
i,k ,











0
−diagN{QT

kC
T
i,kG

T
i }Θny,i

0
0
0

−ET
i,kG

T
i Rny ,i











,

Wi,k ,
[
0 Ci,kQkRnq,i 0 0 0 Ei,k 0

]
, (27)

Υi,k ,WT
i,kWiWi,k

− diag{σi,k+1 − λσi,k, 0, 0, 0, 0, 0, 0}, (28)

Ω̄k ,
[
Ω̄11 Ω̄12 L 0 Bk

−HkGEk(1N ⊗ Inµ
) −Hk

]
, (29)

Ω̄11 ,f̂k −Fkx̂k,

Ω̄12 ,(Φk −HkGCk)Qk,

Ω̃k ,
[

ĥk ΨkQk 0 Σ Dk 0 0
]
, (30)

then the following inequality holds

E{(xk+1 − x̂i,k+1)
TP−1

k+1(xk+1 − x̂i,k+1)} ≤ 1. (31)

Proof: See Appendix VI-A.
Theorem 1:Let the filtering parametersFi,k and Hij,k

be given. For a prespecified positive scalarp and a se-
quence of positive definite matrices{Pk}k≥0, the design
objective (6) is satisfied if there exist sequences of non-
negative scalars{̺(1)i,k}k≥0, {̺(2)k }k≥0, {̺(3)k }k≥0, {̺(4)i,k}k≥0,

{̺
(5)
i,k}k≥0, {̺

(6)
i,k}k≥0 and sequences of scalars{βi,k}k≥0

satisfying the following set ofN matrix inequalities:




−Γk Ω̄T
kR

T
nx,i

Ω̃T
kR

T
nx,i

∗ − 1
1−p

Pk+1 0

∗ ∗ − 1
1−p

Pk+1



 ≤ 0. (32)

Proof: Theorem 1 can be proved easily from Lemmas 3
and 5 by takingPk+1 = 1

1−p
Pk+1 into account.

B. AverageH∞ requirement

For derivation simplicity, we denote the following vectors

ϑk ,

[
νk
µk

]

, ̟k ,

[
1
x̃k

]

, ζk ,





̟k

ϑk
φk



 ,

and the following matrices

Π̃ , γ2
1

N
diag

{
0, diagN{Πi}

}
, Nk ,

[
0

−Hk

]

,

Âk ,

[
1 0

f̂k −Fkx̂k Φk −HkGCk

]

,

M̄k ,

[
0 0
Bk −HkGEk(1N ⊗ Inµ

)

]

,

Ǎk ,

[
0 0

−ĥk Ψk

]

, M̃k ,

[
0 0
Dk 0

]

,

Î ,
[
0 I

]
, Ĩ ,

[

Î 0 0 0 0
]
,

L̂ ,

[
0
L

]

, Σ̂ ,

[
0
Σ

]

, L̃ ,









0

L̂
0
0
0









, Σ̃ ,









0
0

Σ̂
0
0









,

Âk ,
[

Âk M̄k Nk

]
, M̂k ,

[
Ǎk M̃k 0

]
,

C̄k ,
[
0 GCk

]
, Ēk ,

[
0 GEk(1N ⊗ Inµ

)
]
,

C̄i,k , diag{0, . . . , 0
︸ ︷︷ ︸

i−1

, Ci,k, 0, . . . , 0
︸ ︷︷ ︸

N−i

} ×
[
0 INnx

]
,

Ēi,k ,
[
0nν

Ei,k

]
, C̃i,k ,

[
C̄i,k Ēi,k 0

]
.

Lemma 6:Let the filtering parametersFi,k andHij,k be
given. Under initial conditionY0 ≤ Π̃, the averageH∞ design
objective (8) is achieved if there exist a sequence of positive
definite matrices{Yk}k≥1, sequences of non-negative scalars
{εk}k≥0, {ρ1,k}k≥0, {ρ2,k}k≥0 and sequences of scalars
{ǫi,k}k≥0 satisfying the following set ofN recursive matrix
inequalities:







Λ̃k Â T
k M̂T

k L

Âk −Y −1
k+1 0 0

M̂k 0 −Y −1
k+1 0

L T 0 0 −J






≤ 0 (33)

where

Λ̃k ,− εkEk −
N∑

i=1

ǫi,kCi,k + Λ̄k, (34)

Ek ,





0 0 − 1
2 C̄

T
k

∗ 0 − 1
2 Ē

T
k

∗ ∗ I



 , (35)

Ci,k ,C̃T
i,kWiC̃i,k

− diag{σi,k+1 − λσi,k, 0Nnx
, 0nν+nµ

, 0Nny
}, (36)

Λ̄k ,





−Yk +
1
N
diag{0, I} 0 0
0 −γ2I 0
0 0 0



 , (37)
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L ,
[

L̃ Σ̃ ρ1,kĨ
T ρ2,kĨ

T
]
, (38)

J ,diag{ρ1,kI, ρ2,kI, ρ1,kI, ρ2,kI}. (39)

Proof: See Appendix VI-B.
Theorem 2:Let the filtering parametersFi,k andHij,k be

given. Under initial conditionY0 ≤ Π̃, the averageH∞ design
objective (8) is achieved if there exist a sequence of positive
definite matrices{Yk}k≥1, sequences of non-negative scalars
{εk}k≥0, {ρ1,k}k≥0 and{ρ2,k}k≥0 and sequences of scalars
{ǫi,k}k≥0 satisfying the following set ofN recursive matrix
inequalities:







Λ̃k Â T
k M̂T

k L

Âk −Yk+1 0 0

M̂k 0 −Yk+1 0
L T

k 0 0 −J






≤ 0 (40)

where the parameterYk contained in̄Λk is updated recursively
according toYk = Y−1

k .
Proof: The proof can be easily performed based on

Lemma 6 and is therefore omitted here.

C. Filter design

Theorem 3:Let the design specifications(γ2,p,Pk) be
given. Under initial conditionY0 ≤ Π̃, if there exist a sequence
of positive definite matrices{Yk}k≥1, sequences of real-
valued matrices{Fk}k≥0 and{Hk ∈ Tnx×ny

}k≥0, sequences
of non-negative scalars{̺(1)i,k}k≥0, {̺

(2)
k }k≥0, {̺

(3)
k }k≥0,

{̺
(4)
i,k}k≥0, {̺

(5)
i,k}k≥0 , {̺

(6)
i,k}k≥0, {εk}k≥0, {ρ1,k}k≥0,

{ρ2,k}k≥0 and sequences of scalars{ǫi,k}k≥0 and{βi,k}k≥0

such that the inequalities (32) and (40) hold simultaneously,
then the design objectivesR1) andR2) are achieved at the
same time, and the desired filtering parameters at each time
instant can be computed via solving the corresponding matrix
inequalities.

Proof: Based on Theorems 1 and 2, we arrive at Theo-
rem 3 directly. Hence the proof is omitted here.

In the following, an iterative algorithm is presented to
compute the sequences of the filtering parameters{Fi,k}k≥0

and{Hij,k}k≥0 recursively.
Algorithm 1:Computational Algorithm for {Fi,k}k≥0 and

{Hij,k}k≥0

1) Initialization: Setk = 0 and the maximum computation
step kmax. Set the triple

(
Pk, p, γ, Πi

)
for 0 ≤ k ≤

kmax. Then, by usingPk = 1
1−p

Pk, factorize {Pk}
appropriately to obtain the sequence of matrices{Qk}.
Select the initial values ofx0 and x̂i,0 satisfying (23).
Then x̂0 = colN{x̂i,0} is known.

2) With the obtained̂xk andQk, solve the RLMIs (32) and
(40) forFk andHk. ThenFi,k andHij,k can be obtained.

3) With the obtainedFk andHk, computêxi,k+1 according
to (3). Thenx̂k+1 = colN{x̂i,k+1} is obtained.

4) Setk = k + 1. If k > kmax, exit. Otherwise, go to2).

D. Optimization problems

Note that the desired distributed filtering parameters ac-
quired by using Theorem 3, if they exist, could form a set

and this provides extra design flexibility by making tradeoff
among performance indices. In this subsection, in terms of
two corollaries, we will propose two optimization problems
(OPs), one is to minimizePk (in the sense of matrix trace)
for locally optimal filtering performance, and the other is to
minimize p at each time step to guarantee a local threshold
probability which indicates the minimal chance with which
the errors can be confined within the desired ellipsoid.

Denoting a set by

Sk ,{Fk,Hk, ̺
(1)
i,k , ̺

(2)
k , ̺

(3)
k , ̺

(4)
i,k , ̺

(5)
i,k , ̺

(6)
i,k ,

εk, ǫi,k, ρ1,k, ρ2,k, βi,k}

and a function with respect top andPk+1 by

Fk(p,Pk+1) ,





−Γk Ω̄T
kR

T
nx,i

Ω̃T
kR

T
nx,i

∗ − 1
1−p

Pk+1 0

∗ ∗ − 1
1−p

Pk+1



 ,

we present the following optimization problems.
OP1: Minimization of Pk in the sense of matrix trace

with fixed p to seek the locally optimal filtering performance
subject to prescribed probability constraint.

Corollary 1: Let p be given. Under the conditions in
Theorem 3, a sequence of minimized{Pk}k≥0 (in the sense
of matrix trace) is guaranteed if the following optimization
problem is solvable:

min
{Sk,Pk+1}

trace[Pk+1] (41)

subject to (32) & (40)

Next, assume thatp is time-varying and denote bypk the
probability constraint at time instantk. By defining

sk ,
1

1− pk

,

we put forward the following optimization problem.
OP2: Minimization of sk with fixedPk to look for locally

lower bound on the probability constraint at each time instant.
Corollary 2: Let {Pk}k>1 be given. Under the conditions

in Theorem 3, the lower bound on probability constraintpk at
each time step is ensured if the following optimization problem
is feasible:

min
{Sk,sk}

sk (42)

subject to







(40)

1 < sk < +∞




−Γk Ω̄T
kR

T
nx,i

Ω̃T
kR

T
nx,i

∗ −skPk+1 0
∗ ∗ −skPk+1



 ≤ 0

The proofs of Corollaries 1 and 2 are straightforward based
on the previously obtained results and are therefore omitted
here.

Remark 5:Notice that the RLMI algorithm proposed in
this paper is based on LMI approach. As discussed in [2],
the computational complexity of an LMI system is bounded
by O(PQ3 log(U /ε)) whereP represents the row size,Q

stands for the number of scalar decision variables,U is a
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data-dependent scaling factor andε is relative accuracy set for
algorithm. For instance, let us now look at the averageH∞

performance criterion (as proposed in Theorem 2), where the
number of sensing nodes isN , the iteration time isT+1 (since
the time interval is[0, T ]) and the dimensions of variables are
known fromxk ∈ R

nx , yi,k ∈ R
ny , νk ∈ R

nν , µk ∈ R
nµ and

ωk ∈ R. Moreover, we assume thatqi,k ∈ R
nq , δ1k ∈ R

nδ1

and δ2k ∈ R
nδ2. The RLMI-based probabilistic ellipsoidal

performance criterion is implemented recursively forT + 1
steps and, at each step, we need to solve the LMI (40) with
P = N(1 + 2nx + nq + nδ1 + nδ2 + nµ + nν + ny) rows

and Q = N(
n2
x+nx

2 + 7) scalar variables. Accordingly, the
computational complexity of the proposed RLMI algorithm
can be represented byO((T + 1)PQ).

IV. N UMERICAL EXAMPLE

In this section, a numerical simulation example is presented
to show the effectiveness of the algorithm proposed in this
paper. We shall estimate the state of the Duffing equation as
follows:

z̈ + k0z(1 + kdz
2) + cż = 0

which is usually utilized to describe many practical physical
processes, such as nonlinear vibration and nonlinear circuit
[6]. In order to apply our proposed algorithm, first, we dis-
cretize the above differential equation and obtain the following
difference equation:

f(xk) =

[

x
(1)
k + Tx

(2)
k

x
(2)
k − T (k0x

(1)
k (1 + kd(x

(1)
k )2) + cx

(2)
k )

]

,

whereT is the sampling period;x(1)k andx(2)k are the1st and
2nd entries ofxk, representing the sample values ofz and ż
at timekT , respectively.

The measurement matrices are selected as follows:

C1,k =
[
0 1

]
, C2,k =

[
0.5 0

]
,

C3,k =
[
0.6 0.5

]
.

Other parameters are chosen as follows:

h(xk) =

[
0

−T (k1x
(1)
k + k2(x

(1)
k )3)

]

,

Bk =

[
0
1

]

, E1,k = 0.1,

E2,k =0.15, E3,k = 0.12,

T =0.2, k0 = 2.1,

kd =0.7, c = 0.4,

k1 =0.5, k2 = 0.3,

λ =0.85, W1 =W2 =W3 = 0.01.

Moreover, we selectνk = 0.36 cos(k) andµk = 0.4 sin(2k).
Then, setVk = 0.35 and Uk = 0.4, we can verify that
Assumption 1 is satisfied.

Assuming the communication topology among sensor nodes
are shown in Fig. 1, we obtain the corresponding adjacency
matrix L as follows:

L =





1 1 1
0 1 1
0 1 1



 .

Set the filtering performance indices byp = 0.9 andγ =
0.7, and the initial condition is given as follows:

x0 =

[
0.2
0.5

]

, x̂1,0 =

[
0.1
0

]

,

x̂2,0 =

[
0.3
0

]

, x̂3,0 =

[
0.1
0.2

]

,

σ1,0 = σ2,0 = σ3,0 = 0.25.

In order to show the effectiveness of the proposed algorithm
to mitigate the possible abnormal data, we here consider a
cyber attack scenario with signal injection. For nodei (i =
1, 2, 3), the injected attack signals are generated byψi,k = 3+
ςi,k whereςi,k are uniformly distributed random variables over
interval [0, 1] with the expectations̄ς1,k = 0.5, ς̄2,k = 0.35
and ς̄3,k = 0.4. During the time interval[20, 50], the attackers
injectedψi,k into the transmitted innovationsyi,k − ŷi,k to
deteriorate the estimation performance.

By solving Corollary 1, the simulation results are obtained
in Figs. 3–6. To be specific, Figs. 3–4 plot the entriesx

(1)
k and

x
(2)
k of xk and their estimateŝx(1)i,k andx̂(2)i,k , respectively. The

filtering errors ofx(1)k andx(2)k are, respectively, depicted in
Figs. 5–6. The occurrence of bias injection attacks are shown
in Fig. 2 where the success of injection attack is recorded for
each node at corresponding time step. It is easy to see that,
from Figs. 3-6, despite the existence of bias injection attacks,
the proposed filtering algorithm can effectively estimate the
state of the target nonlinear system. Thus, the simulation
results demonstrate the effectiveness and correctness of our
developed algorithm.

In the following, with the purpose of further illustrating
the effectiveness of our algorithm, we carry out a comparative
simulation. For the target nonlinear system, under the identical
attacks, we apply the traditional algorithm without a saturation
constraint (i. e.,σi,k = ∞). Moreover, the proposed algorithm
and the traditional algorithm are noted by ‘σ− adaptive’ and
‘σ−inf ’, respectively. The comparative simulation results are
recorded in Figs. 7–10. Specifically, Figs. 7–8 depictx

(1)
k and

x
(2)
k of xk and their estimateŝx(1)i,k andx̂(2)i,k , respectively. The

estimation errors ofx(1)k andx(2)k are, respectively, described
in Figs. 9–10. It can be seen from Figs. 7-10 that the estima-

Fig. 1. The communication topology.
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tion errors are diverging under attacks, which indicates that
the traditional distributed filtering algorithm cannot provide
satisfactory performance in such a case.

0 10 20 30 40 50 60

1

2

3

Time (k)

 

 
node 1
node 2
node 3

Fig. 2. The bias injection attacks.
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Fig. 3. x
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Fig. 4. x
(2)
k

and x̂(2)
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(σ − adaptive).

V. CONCLUSION

In this paper, the distributed filtering problem has been
discussed for a class of nonlinear systems subject to innovation
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Fig. 5. x̃
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0 10 20 30 40 50 60 70
−3

−2

−1

0

1

2

3

4

5

6

7

8

Time (k)

 

 
node 1
node 2
node 3

Fig. 6. x̃
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(σ − adaptive).
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constraint. The innovation constraint has been imposed on
the transmitted innovation in order to mitigate the effects
from possible abnormal data during the signal transmission
among nodes. By resorting to recursive linear matrix inequality
approach, sufficient conditions have been established for the
existence of the desired distributed filter, ensuring that the
estimation error is confined within the prespecified ellipsoidal
areas with a guaranteed probability, and meanwhile, the pre-
scribed averageH∞ criterion is satisfied. The desired filtering
parameters can be computed by solving the corresponding set
of matrix inequalities recursively from step to step. Within
the established framework, two optimization problems have
been proposed to look for certain locally suboptimal filtering
parameters. Finally, an illustrative numerical example has been
provided to verify the applicability of the proposed distributed
filtering paradigm. One of our future research topics is to
extend the main results to more general systems with more
performance requirements [16], [18], [22], [27].
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VI. A PPENDIX

A. Proof of Lemma 5

Proof: The proof of this lemma is carried out according to
the principle of mathematical induction. First, we know from
the initial condition (23) that

E{(x0 − x̂i,0)
TP−1

0 (x0 − x̂i,0)} ≤ 1. (43)

Second, suppose that the following inequality is true at the
time stepk > 0:

E{(xk − x̂i,k)
TP−1

k (xk − x̂i,k)} ≤ 1. (44)

Then, it remains to verify that, at time stepk + 1, inequality
(31) is true under the condition given in this lemma. To this
end, since (44) is true, there exist vectorsqi,k ∈ R

nq (i =
1, 2, . . . , N) with E{qTi,kqi,k} ≤ 1 such that

xk = x̂i,k +Qkqi,k. (45)

By denotingqk , colN{qi,k} andQk , diagN{Qk}, (45)
is described by

ξk = x̂k +Qkqk. (46)

Subsequently, the dynamics of estimation error (20) is rewrit-
ten by

x̃k+1 =f̂k −Fkx̂k + ĥkωk + (Φk +Ψkωk −HkGCk)Qkqk

+ Lδ1k +Σδ2kωk + Bkνk +Dkνkωk

−HkGEk(1N ⊗ Inµ
)µk −Hkφk (47)

where

δ1k , colN{δ1i,k} = ∆1Qkqk,

δ2k , colN{δ2i,k} = ∆2Qkqk.

By denoting

ηk ,
[
1 qTk δT1k δT2k νTk µT

k φTk
]T
,

we further express (47) as

x̃k+1 , (Ω̄k + Ω̃kωk)ηk (48)

whereΩ̄k and Ω̃k are defined in (29) and (30), respectively.
It follows from (2) and (45) that the vectorsqi,k, νk andµk

satisfy

E{qTi,kqi,k} ≤ 1, νTk V
−1
k νk ≤ 1, µT

kU
−1
k µk ≤ 1 (49)

which can be rewritten in terms ofηk as follows:






E
{
ηTk diag

{
−1,Θnq,i, 0, 0, 0, 0, 0

}
ηk
}
≤ 0

ηTk diag{−1, 0, 0, 0, V −1
k , 0, 0}ηk ≤ 0

ηTk diag{−1, 0, 0, 0, 0, U−1
k , 0}ηk ≤ 0

(50)

From definitions ofδ1i,k, δ2i,k and by noting that‖∆1i‖ ≤ 1
and‖∆2i‖ ≤ 1, we have

{

δT1i,kδ1i,k − qTi,kQ
T
kQkqi,k ≤ 0

δT2i,kδ2i,k − qTi,kQ
T
kQkqi,k ≤ 0

(51)

which can be expressed in terms ofηk as follows:
{

ηTk diag{0,−Θnq,iQ
T
kQk,Θnl,i, 0, 0, 0, 0}ηk ≤ 0

ηTk diag{0,−Θnq,iQ
T
kQk, 0,ΘnΣ,i, 0, 0, 0}ηk ≤ 0

(52)

Next, we rewrite (18) in terms ofηk by

ηTk Ξi,kηk ≤ 0 (53)

whereΞi,k is defined in (26).
By considering that

yi,k − ŷi,k = Wi,kηk

where Wi,k is defined in (27), we describe the innovation
constraint (4) in terms ofηk as follows:

ηTk Υi,kηk = 0 (54)

with Υi,k defined in (28).
On the other hand, by resorting to the Schur complement

equivalence (Lemma 2), it can be seen that the set of matrix
inequalities (24) hold if and only if

Ω̄T
kR

T
nx,i

P−1
k+1Rnx,iΩ̄k + Ω̃T

kR
T
nx,i

P−1
k+1Rnx,iΩ̃k − Γk ≤ 0,

(55)
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which, by taking into account the statistical property ofωk,
implies that

E{(Ω̄k + Ω̃kωk)
TRT

nx,i
P−1
k+1Rnx,i(Ω̄k + Ω̃kωk)} − Γk ≤ 0.

(56)

By considering (25) and (48), inequality (56) is equivalent
to

E{x̃Ti,k+1P
−1
k+1x̃i,k+1}

− ηTk diag{1, 0, 0, 0, 0, 0, 0}ηk

−
N∑

i=1

̺
(1)
i,kη

T
k diag{−1,Θnq,i, 0, 0, 0, 0, 0}ηk

− ̺
(2)
k ηTk diag{−1, 0, 0, 0, V−1

k , 0, 0}ηk

− ̺
(3)
k ηTk diag{−1, 0, 0, 0, 0, U−1

k , 0}ηk

−
N∑

i=1

̺
(4)
i,kη

T
k diag{0,−Θnq,iQ

T
kQk,Θnl,i, 0, 0, 0, 0}ηk

−
N∑

i=1

̺
(5)
i,kη

T
k diag{0,−Θnq,iQ

T
kQk, 0,ΘnΣ,i, 0, 0, 0}ηk

−
N∑

i=1

̺
(6)
i,kη

T
k Ξi,kηk −

N∑

i=1

βi,kη
T
k Υi,kηk

≤ 0. (57)

It is now readily inferred from the S-procedure (Lemma 1)
that:

E{x̃Ti,k+1P
−1
k+1x̃i,k+1} − ηTk diag{1, 0, 0, 0, 0, 0, 0}ηk ≤ 0

(58)

or, equivalently,

E{x̃Ti,k+1P
−1
k+1x̃i,k+1} ≤ 1. (59)

The proof is now complete.

B. Proof of Lemma 6

Proof: First, the filtering error system (20) can be rewrit-
ten as follows:

x̃k+1 =f̂k +Φkx̃k + L∆1x̃k + (ĥk +Ψkx̃k +Σ∆2x̃k)ωk

−Fkx̂k −HkGCkx̃k −Hkφk

+
[
Bk +Dkωk −HkGEk(1N ⊗ Inµ

)
]
ϑk, (60)

which can be further expressed by the following augmented
system:

̟k+1 = Ak̟k +Mkϑk +Nkφk (61)

where

Ak ,

[
1

f̂k −Fkx̂k + ĥkωk

0
Φk + L∆1 −HkGCk + (Ψk +Σ∆2)ωk

]

,

Mk ,

[
0 0

Bk +Dkωk −HkGEk(1N ⊗ Inµ
)

]

.

Defining a quadratic function byVk , ̟T
k Yk̟k, we have

the following derivation:

∆Vk ,E{Vk+1|̟k} − Vk

=E{̟T
k+1Yk+1̟k+1|̟k} −̟T

k Yk̟k

=E
{
ζTk Ykζk|̟k

}
(62)

where

Yk ,





AT
k Yk+1Ak − Yk AT

k Yk+1Mk AT
k Yk+1Nk

∗ MT
k Yk+1Mk MT

k Yk+1Nk

∗ ∗ NT
k Yk+1Nk



 .

Taking into account the statistical property of random vari-
ableωk, we have

∆Vk =ζTk Ỹkζk (63)

where

Ỹk ,





ĀT
k Yk+1Āk + ÃT

k Yk+1Ãk − Yk
∗
∗

ĀT
k Yk+1M̄k + ÃT

k Yk+1M̃k ĀT
k Yk+1Nk

M̄T
k Yk+1M̄k + M̃T

k Yk+1M̃k M̄T
k Yk+1Nk

∗ NT
k Yk+1Nk



 ,

Āk ,

[
1 0

f̂k −Fkx̂k Φk + L∆1 −HkGCk

]

,

Ãk ,

[
0 0

ĥk Ψk +Σ∆2

]

.

Subsequently, adding zero term1
N
x̃Tk x̃k − γ2ϑTk ϑk −

( 1
N
x̃Tk x̃k−γ

2ϑTk ϑk) to both sides of equation (63), we acquire

∆Vk = ζTk Λkζk − (
1

N
x̃Tk x̃k − γ2ϑTk ϑk) (64)

where

Λk , Ỹk + diag
{ 1

N
diag{0, I},−γ2I, 0

}
.

Summing both sides of (64) with respect tok from 0 to T
leads to

̟T
T+1YT+1̟T+1 −̟T

0 Y0̟0

=
T∑

k=0

ζTk Λkζk −
T∑

k=0

(
1

N
x̃Tk x̃k − γ2ϑTk ϑk

)

. (65)

Consequently,

T∑

k=0

(
1

N
x̃Tk x̃k − γ2ϑTk ϑk

)

− γ2
1

N
x̃T0 diagN{Πi}x̃0

=
T∑

k=0

ζTk Λkζk −̟T
T+1YT+1̟T+1 +̟T

0 (Y0 − Π̃)̟0. (66)

Next, it follows from (17) that

φTj (rj,k)φj(rj,k)− φTj (rj,k)Gjrj,k ≤ 0, (67)

which is indicative of

ζTk Ekζk ≤ 0. (68)
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Moreover, it is inferred readily from (4) that

ζTk Ci,kζk = 0 (69)

with Ci,k defined in (36).
Applying Schur Complement Lemma to inequality (33)

leads to





Λ̃k Â T
k M̂T

k

Âk −Y −1
k+1 0

M̂k 0 −Y −1
k+1






+diag{ρ−1
1,kL̃L̃

T + ρ1,kĨ
TĨ + ρ−1

2,kΣ̃Σ̃
T + ρ2,kĨ

TĨ, 0, 0} ≤ 0.

(70)

By resorting to Lemma 3, we know that the inequality (70)
is true if and only if






Λ̃k Â T
k M̂T

k

Âk −Y −1
k+1 0

M̂k 0 −Y −1
k+1






+L̃∆1Ĩ + (L̃∆1Ĩ)
T + Σ̃∆2Ĩ + (Σ̃∆2Ĩ)

T ≤ 0. (71)

Accordingly, it is obtained from inequality (71) that




Λ̃k Ā T
k M̄T

k

Āk −Y −1
k+1 0

M̄k 0 −Y −1
k+1



 ≤ 0, (72)

which further implies that

Λk − εkEk −
N∑

i=1

ǫi,kCi,k ≤ 0. (73)

According to Lemma 1, we have

ζTk Λkζk ≤ 0, (74)

which, in combination with (66) andY0 ≤ Π̃, results in

1

N
E

{
T∑

k=0

‖x̃k‖
2

}

≤ γ2
T∑

k=0

‖ϑk‖
2 + γ2

1

N
x̃T0 diagN{Πi}x̃0.

(75)
Therefore, the averageH∞ performance defined in (8) is
achieved. The proof is complete now.
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