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Abstract:  
Audio signals typically comprise several characteristics to be improved by signal processing and in practice, each of these 
characteristics has a unique relationship to the controllable system parameters. Quantifying these relationships in a multi-
objective (MO) approach will enable an improved system setup. In this paper, two novel objective functions of a complex audio 
signal are determined for the real-time simultaneous improvement of audio peak reduction and speech clarity in a dental drill 
noise reduction (DDNR) device. The influence of the DDNR system parameters on the outcome of peak reduction and speech 
clarity is determined by combining response surface methodology and a desirability function to enable MO optimisation. The 
results show an average improvement of nearly 30% over the original DDNR device performance. The approach described 
provides an effective means for addressing MO optimisation of other real-time audio signal processing applications where the 
signal has similar peak reduction and speech clarity objectives to be processed, particularly where the physical outcome is not 
easy to evaluate in a virtual environment. 
 

 Introduction 
Audio signals typically comprise several 

characteristics to be improved simultaneously when 
being processed by a signal processing algorithm. In 
practice, each of these characteristics is affected by the 
algorithm system parameters, requiring a multi-
objective (MO) approach. This paper addresses two 
objectives of an audio signal containing desired speech 
and undesired dental drill noise, respectively peak 
reduction and speech clarity. Associated objective 
functions are then determined for each, which are based 
on key signal characteristics. This MO approach to peak 
reduction and speech clarity produces improved results 
over the original design.  

Section 1.1 describes the context of a dental drill 
noise reduction (DDNR) problem, focusing on the 
interaction between dental drill noise and speech 
phenomes to highlight the risk of degrading 
communication clarity if a broadband noise reduction is 
employed. A brief description of the DDNR device and 
the technique it uses for audio signal processing is 
provided in 1.2. Section 2 describes the theory of how 
objectives and their associated objective functions are 
defined in the context of DDNR. Section 3 describes the 
application of the MO approach, including how to link 
each objective function to algorithm parameters. 
Section 4 discusses the results in terms of the 
practicality and limitations of the approach and Section 
5 concludes the paper. 

 
1.1 Dental drill noise and speech signal 

Patient fear of dental drill (also known as a 
dental handpiece) noise is a worldwide issue [1] that 
leads to avoidance of treatment, particularly by more 

extreme sufferers, as well as causing distress to many 
who still undergo treatment despite their fear. An 
investigation completed in the UK using the Modified 
Dental Anxiety Scale (MDAS) [2] suggests that dental 
drill noise is the most significant cause of patient 
anxiety, highlighting the need to suppress the noise to 
improve patient comfort. Noise from a dental drill is 
generated by its rotating mechanical components. High-
speed dental drills are either air turbine-driven or 
electric motor-driven and their frequencies can vary 
from 2 to 14 kHz [3]. Fig. 1 illustrates a typical electric 
motor driven dental drill as used in this study. An 
intermediate shaft is driven by an electric motor 
normally operating at a speed of 150,000 Revolutions 
per Minute (RPM) and the burr shaft (cutting tool) 
normally operates at a speed of 200,000 RPM. Thus, 
significant noise peaks due to mechanical resonance are 
generated at around 2.5 and 3.3 kHz. 
 

 
Fig. 1. Illustration of a typical electric dental drill (Adapted 
from Long Star Handpiece [4]) 

In a dentistry environment, verbal 
communication between dentist and patient is vital to 
ensure safe and efficient clinical treatment. In an 
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audiogram of sounds from the English language, speech 
phenomes cluster in a banana shape, which is often 
referred to as the ‘speech banana’ [5] as shown in Fig. 
2. It is broadly used in the assessment of hearing loss [5, 
6] but can also indicate the frequency distribution of 
commonly used speech signals. From this figure, it can 
be observed that the majority of speech phenomes are 
within the range of 250 Hz to 5 kHz. Simplified 
frequency response for an electric motor driven dental 
drill under no load is also shown in Fig. 2. It indicates 
that the noise to be attenuated, particularly for the two 
significant noise peaks, is within the frequency 
spectrum of speech signals. In use, these two drill peaks 
will reduce their frequencies as the drill comes under 
load and therefore will interfere with a broader range of 
speech phenomes than shown. 

 
Fig. 2. ‘Speech banana’ frequency audiogram superimposed 
with a simplified frequency profile of an electric motor 
driven dental drill at no load (Adapted from Klingpornkun 
et.al [6]) 

1.2 The dental drill noise reduction (DDNR) device  
Commercial active noise cancelling (ANC) 

devices are widely available. However, they are 
optimised for high performance and stability at 
significantly lower frequencies, e.g. <1 kHz [7], than 
dental drill noise, which is typically >3 kHz. There are 
also sound insulation devices available such as ear 
defenders and in-the-ear plugs but they aim to attenuate 
a broad range of frequencies that will impair the 
essential verbal communication between dentist and 
patient. Thus, both off-the-shelf ANC headphones and 
sound insulation devices are unsuitable for the target 
application, which needs to reduce dental drill noise 
whilst maintaining speech communication. This 
justifies the need for a DDNR device, whose schematic 
arrangement is shown in Fig. 3. 

The mixed speech and drill noise signal are 
captured by a microphone embedded in the DDNR 
device. The signal is then conditioned by a pre-

processing unit. The signal then passes to a core 
adaptive filtering (AF) signal processing unit for noise 
peak reduction and maintenance of speech. The output 
signal from the AF unit passes to the post-processing 
unit, in which the signal can be conditioned again and 
converted back to analogue for a headphone speaker, 
and then finally received by a human ear. 
 

 
Fig. 3. Schematic illustration of the DDNR device being 
developed. 

The main reason for using AF in the DDNR is 
because it has been successfully applied in noise 
cancellation for over five decades and is still very 
popular due to its low cost and adjustability [8]. AF 
algorithms share similar underlying principles to 
adaptive control methods in system control [9]. The 
overall concept of AF is that noise buried within a signal 
can be estimated and subtracted to enable the desired 
signal at the input to be better received at the output. 
Unlike fixed filters, filtering and subtraction in AF are 
controlled by an adaptive process to reduce the risk of 
distorting the desired signal or increasing the output 
noise [10]. AF has been applied to noise cancellation in 
headphones and proven to be effective for low 
frequencies [7] but there has been very little research on 
AF for high-frequency noise reduction applications. In 
[11–13], AF methods are applied within the domain of 
signal processing but target on low-frequency noise (< 
1kHz). The potential of adaptive control algorithms for 
dealing with complex signals and system responses has 
been demonstrated, (e.g. [14–16]) but again no high-
frequency characteristics of signal/system output were 
mentioned. An AF system using for reducing dental 
drill noise solely was proposed by Kaymak et al. [17]. 
Additional needs of improved system capability in 
mixed-signal processing and maintaining clarity of 
speech signals have motivated the development of the 
device investigated here.  

The Least Mean Square (LMS) algorithm is the 
most frequently applied method for noise cancellation 
due to its simplicity and robustness [18]. Variants of 
LMS algorithms are widely available, including 
Normalised LMS (NLMS), which was adopted in the 
DDNR. NLMS has the advantages of a steadier and 
faster convergence due to the use of a time-varying step 
size µ. In the DDNR, the NLMS algorithm pre-scales 
the error to prevent overloading and maintain a more 
stable LMS. An illustrative block diagram of the NLMS 
AF algorithm developed for the application is shown in 
Fig. 4.  
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Fig. 4. Simplified block diagram of the AF algorithm 
implemented in the DDNR. 

The AF algorithm applied uses multiple filters, 
represented by a single block with each filter denoted as 
the ith filter in Fig. 4. Pre-processed digitalised audio 
input x(n) containing the desirable signal (e.g. speech) 
together with noise (e.g. drill sound) is stored in a delay 
buffer to synchronise with the filters. In the meantime, 
x(n) undergoes processing by one of the filters 
according to arrays of filter weights wi[n]. The filtered 
output signal yi(n) is then subtracted from the delayed 
signal d(n) to obtain an error signal e(n). Filter weights 
in each filter are continuously adapted using the NLMS 
method to minimise e(n). Detailed implementation of 
the AF algorithm is not revealed due to commercial 
confidentiality and also because the authors do not 
consider this to be the key purpose of the paper. Besides, 
whilst AF parameter values are likely to differ in other 
applications the objective functions and MO approach 
described here can still be used.  

When considering the improvement of filtering 
performance, there are approaches such as the H∞ 
methods (e.g. [19, 20]) that claim to produce guaranteed 
high performance and good robustness but they are 
costly in terms of the mathematical computational 

power required. In addition, the indirect effect of both 
unchanged pre- and post-processing units on the 
resultant noise reduction outcome when the AF 
parameters change needs to be considered. As a result, 

the AF algorithm requires careful tuning to incorporate 
this uncertainty to achieve satisfactory output in the 
physical domain.  

 Objectives and objective functions  
Subjective and objective measurements are both 

commonly applied in the assessment of digitally 
transmitted speech and audio signal quality [21]. Until 
the 1990s, subjective measurements by means of human 
focus groups have been a standard way, which is time-
consuming and expensive [22]. Most objective 
measurement used aims to predict the subjective quality 
using quantitative models with a focus on speech 
quality [23]. For example, the perceptual evaluation of 
speech quality (PESQ) assesses the quality of the output 
speech signal by comparing with the original input 
speech signal [24]. Such measures are configured for 
reducing the effects of background noise (e.g. white and 
factory noise) [25] that does not have narrow-band high 
frequency (“peaky”) characteristics of drill noise. The 
primary target of the DDNR device is to eliminate 
unwanted drill noise peaks, with a secondary target of 
maintaining effective verbal communication. Therefore, 
new objective measures of for evaluating DDNR are 
required and the key characteristics of the processed 
signal need to be investigated. Frequency domain 
techniques [12] are applied here as they can analyse the 
frequency component of a signal individually. Power 
spectral estimation is used to perform frequency domain 
analysis of the original and filtered signals. MATLAB 
Signal Process ToolBox [26] offers a family of spectral 

Fig. 5. Example PSD plot for the original design, i.e. nominal setting. The original signal is shown in red dotted 
line, the filtered signal is shown in black solid line. Signal floor values are shown by horizontal lines. 
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analysis methods amongst which Welch’s power 
spectrum density (PSD) [27] is used in this paper. The 
digitised sound recording is 24-bit audio with a 
sampling rate of 48 kHz. A window size of 4096 and 
2048 overlapped samples are used to produce a PSD 
plot. An example audio plot for the original design, i.e. 
nominal AF parameter setting is shown in Fig. 5. Two 
key objectives are identified suited to the target purpose 
of the DDNR device, namely peak reduction and 
speech clarity. A frequency spectrum of 0 to 5 kHz is 
focused on as this is the region of interest where both 
drill noise peaks and speech signal co-exist. The 
original signal is indicated by a red dotted line and the 
filtered signal is represented by a black solid line.  

For the peak reduction objective (objective 1), 
two significant peaks are observed in the figure, labelled 
as P1 and P2, whose frequency characteristics 
correspond to the resonant frequencies (approx. 2.5 and 
3.3 kHz) stated in Section 1.1. Rather than taking the 
absolute summit value for P1 and P2 from the plot, a 
peak is defined as the difference between its summit 
value (dB/Hz) and signal floor (dB/Hz). The signal floor 
value is obtained by taking the mean of the signal power 
across the range of 0.25 Hz and 5 kHz referring to the 
‘speech banana’ region. For example, in Fig. 5 the 
original peak power for P1 is indicated by P1o, and the 
original peak power for P2 is indicated by P2o, with 
their signal floor denoted as Flooro. Similarly, for the 
filtered peak P1’, its power is indicated by P1f and 
power of filtered peak P2’ becomes P2f, with a new 
signal floor denoted as Floorf.  

Using the above rationale, the objective function 
ObjPi of peak reduction for each peak Pi can be 
obtained by subtracting the filtered peak power value 
from the original peak power value, shown as Equation 
(1), where i stands for the ith peak to be suppressed in 
the PSD plot, for the drill noise shown in Fig. 5, i equals 
1 for P1 and 2 for P2. For the speech clarity objective 
(objective 2) an inverse based on speech signal loss is 
used as the objective function, defined as the difference 
between the original signal floor value Flooro and 
filtered signal floor Floorf. The mathematical 
expression for speech clarity, ObjS, is shown in 
Equation (2). 

 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑜𝑜 − 𝑂𝑂𝑂𝑂𝑓𝑓

= (𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑂𝑂𝑂𝑂
−  𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜)
− �𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑂𝑂𝑂𝑂′

− 𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓� 

(1) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜 −  𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓  (2) 

 Multi-Objective approach 
An overview of the MO approach taken for 

improving real-time audio peak reduction and speech 
clarity in the DDNR device is shown in Fig. 6. With two 

objectives represented by objective functions (Equation 
(1) and (2)), the next step is to perform analysis and 
optimisation starting from the exploration of the 
influence of AF algorithm parameters.  One way of 
investigating this is through analytical models enabled 
by computer-based simulation, e.g. using MATLAB. 
Analytical models work well when the problem is 
relatively simple but in real-world scenarios, problems 
are typically too complex for analytical methods. In this 
study, the device design is complex and its actual 
acoustic performance at the headphone output to the ear 
is the primary interest, making physical experiments 
more suitable than analytical models. The physical 
experiments can be kept to a minimum by employing 
Design of Experiments (DoE), a series of tests in which 
inputs are varied purposefully to enable observation of 
their influences on the outcome of a process or system 
[28]. DoE enables regression models of the objective 
functions to be obtained and hence predict output 
responses for given AF parameter values. Response 
Surface Methodology (RSM) builds on DoE, using 
statistical techniques to plot surfaces relating responses 
to several inputs to find an optimum configuration [29]. 
RSM has broad application in various fields such as 
chemical [30], biomedical [31] and engineering 
sciences [32, 33] but RSM for noise cancellation 
performance improvement is barely addressed in the 
literature. Despite criticism regarding the time and 
resources required [34], RSM offers the means of 
unveiling the complex relationships of the physical 
situation hence makes it a suitable candidate for this 
study. In the context of the DDNR device, configurable 
AF parameters correspond to RSM variables, while the 
scalar values obtained by applying the objective 
functions correspond to responses in RSM. For the peak 
reduction objective, there are two noise peaks P1 and 
P2 to be attenuated whose response can be obtained by 
using the same objective function ObjPi, namely RP1 
and RP2. The speech clarity objective, ObjS, can be 
represented by one response namely RS. Each of these 
three responses will have a unique regression model 
determined by RSM, see Equation (4) to (6). These 
regression models need to be minimised, maximised or 
optimised towards a specific target by finding a 
combination of appropriate variable settings. However, 
changing the variables will affect all three responses, 
resulting in a MO optimisation problem to be solved.  

The complexity of AF parameter-objective 
function relationships requires a second-order model to 
be selected, whose general expression is shown in 
Equation (3). In the equation, the response is 
represented by y, k stands for the number of variables, i 
and j are indices of the variables. β0 is the model 
intercept, βi, βii, βij are coefficients corresponding to xi, 
xi

2 and xixj respectively. ε represents the model error.  
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𝑦𝑦 =  𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖<𝑖𝑖

+ 𝜀𝜀 (3) 

 
Box-Behnken Design (BBD) and Central 

Composite Design (CCD) are commonly employed 
RSM methods. CCD can be further categorised into 
Circumscribed, Inscribed and Faced CCD. Detailed 
explanations of these methods can be found in [35]. The 
selection of DoE methods is a case-dependent decision.  

Regression Analysis examines the adequacy of 
the regression models obtained from RSM and decides 
whether they are suitable for predicting responses with 
reasonable statistical accuracy. The desirability 
function approach introduced by Derringer and Suich 
[36] is adopted for dealing with multiple-objective 
optimisation due to its successful use in a range of 
applications such as manufacturing, chemistry and 
biology [31, 37, 38] The desirability function first 
coverts system performances (RSM responses) into 
desirability ratings and uses a single aggregated overall 
desirability to enable simultaneous optimisation. The 
desirability function needs to be configured before 
applying it to the problem. Optimal variable settings for 
delivering the highest overall desirability rating can 
then be identified. Validation then needs to be carried 
out in order to verify the optimisation outcome.  

 
Fig. 6. Overview of the MO approach for improving audio 
peak reduction and speech clarity 

When applying the MO approach, engineering 
decisions that contribute to a successful outcome need 
to be made. For example, setup of the experiments 
should be considered to resemble the actual working 
environment as close as possible. Therefore, a 
calibrated GRAS 43AG-1 Ear & Cheek Simulator (ECS) 
[39] was used to mimic a section of a human head and 
ear canal for representing the acoustic characteristics of 
an actual ear. The ECS contains a GRAS RA0045 
externally polarised ear simulator conforming to IEC 
60318-4, which works very effectively below 10 kHz 
[40]. Typical transfer impedance for the RA0045 can be 
found in [40], which shows that within the frequency 
range of interest (0 to 5 kHz), the ear simulator is 
acceptable for this application in evaluating noise 
reduction of an electric motor driven dental drill. The 
ECS uses a GRAS 40AG 1/2" externally polarised 
pressure microphone [41] that conforms to IEC 61094-
4. The typical frequency response shows that the 
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microphone is suitable for up to 20 kHz. A GRAS 
KB0065 Large Right KEMAR Pinna [42] is also used. 
The ECS is powered by a GRAS 12AD unit, which is 
also the hardware interface between the ECS and a PC. 
A high-performance Behringer MS16 16-Watt monitor 
speaker was used at a constant volume setting to 
playback sound recordings representing the sound 
source. The speaker has a frequency response over the 
80 Hz to 20 kHz range [43] that is again suitable for this 
study. A Windows PC was used to capture the sound 
data transmitted through the ECS. MATLAB 
applications were developed to enable data recording 
and analysis. 

The effectiveness of the AF algorithm is assessed 
by comparing its output with the original combined drill 
noise and speech signal. Both sounds are transmitted 
through the DDNR device and its output becomes the 
signal that is analysed. 

The experiment setup for this study is shown in 

Fig. 7, in which a schematic illustration of the device 
operating environment can be seen in Fig. 7a and the 
actual experiment layout can be seen in Fig. 7b. The 
device is intended to be placed on the patient’s chest 
while they are lying on the treatment chair. An over-the-
ear headphone is plugged into the device and will be 
worn by the patient. An over-the-ear headphone 
minimises the effect of acoustic transmission from the 
noise source directly to the ear. Sound will be generated 
simultaneously during treatment by both the dental drill 
and the dentist. The nominal distance from the device 
microphone to the dental drill and the dentist is 
estimated as 250mm. The distance from the patient’s 
mouth, where the drill will be located, to the ear is 
estimated as 100mm horizontally and 50mm vertically.  

In the implemented AF algorithm (see Fig. 4) four 
adjustable parameters, labelled in brackets, were 
identified and used as RSM variables. Again, due to 
commercial confidentiality, only an outline explanation 
is provided here and these four parameters will be 
referred to as x1 to x4 from now on. Bearing in mind 
that these AF parameters are algorithm dependent, 
which means that different AF methods applied may 
have different variables to explore.  

1. Size of filters (x1) 
2. Size of a delay buffer (x2) 
3. Learning rate for error minimisation (x3) 
4. Filter change rate (x4) 

 
Initially, the upper and lower limits for these four 

variables are explored, extending beyond nominal 
device settings (i.e. the original design of the AF 
parameters), which equates to 24 = 16 combinations of 
variable settings. Preliminary experiments are carried 

out applying the extreme variable limits to determine 
the viable design space of AF algorithm parameters. 
Instability of the algorithm output can be observed from 
both the MATLAB application and from the hardware 
LED indicators. When the algorithm output becomes 
unstable during the preliminary experiments, 
adjustments are made by either increasing the lower 
limit or decreasing the upper limit of the variables. 
When all 16 combinations of variable extremes yield 
reasonable filtering output then an attainable design 
space is established.  

The lower and upper limits of variables identified 
in the Planning stage are close to their true limits, 
therefore using any value outside these ranges poses an 
unacceptable risk of crashing the system. As a result, 
inscribed CCD [35] is selected to keep the experimental 
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plan within variable limits and for its capability in 
modelling quadratic behaviours of responses. A CCD 
experiment created using MATLAB ccdesign function 
with 4 variables, requires 24 experimental runs plus 12 
centre runs (see Appendix 1), which is less than 6% of 
the equivalent full factorial experiments (625 runs). As 
each experiment takes approximately 3 min to complete 
then applying inscribed CCD saves approximately 30 
hours in total. Codified variables, using -1 for the lower 
limit and +1 for the upper limit, are used due to 
commercial confidentiality. The run order is 
randomised to avoid biased responses. Results collected 
for each inscribed CCD experiment run can be found in 
Appendix 1. 

MATLAB fitlm function [44] is used to fit full 
quadratic regression models to the results collected for 
the three responses established in Equations (1) and (2). 
A summary of the regression analysis can be found at 
the bottom of Appendix 1 and detailed regression 
results for each response, including the estimated term 
coefficients, can be found in Appendix 2. Second-order 
linear regression models derived from the results for the 
three responses are written as Equations (4) to (6). RP1 

and RP2 represent the fitted response of objective peak 
reduction for the first and second noise peak, and RS 
represents the fitted response of objective speech 
clarity. x1 to x4 stand for the four RSM variable 
identified in the previous section. From Appendix 1 it 
can be seen that all three regression models are 
statistically significant given that all p values are 
significantly less than 0.05. R-squared values for the 
three models indicate that they are good in terms of 
explaining the variability in responses, i.e. representing 
the empirical relationships between AF parameters and 
noise reduction performance.  

 
 
 
 
 

𝑹𝑹𝑷𝑷𝑷𝑷 = 6.74 − 0.6𝑥𝑥1 + 8.9𝑥𝑥2 + 0.45𝑥𝑥3 +
0.28𝑥𝑥4 − 4.78𝑥𝑥12 − 7.62𝑥𝑥22 − 3.7𝑥𝑥32 −
0.22𝑥𝑥42 − 0.86𝑥𝑥1𝑥𝑥2 + 0.16𝑥𝑥1𝑥𝑥3 −
1.01𝑥𝑥1𝑥𝑥4 + 0.07𝑥𝑥2𝑥𝑥3 − 1.51𝑥𝑥2𝑥𝑥4 −
3.33𝑥𝑥3𝑥𝑥4  

(4) 

𝑹𝑹𝑷𝑷𝟐𝟐 = 25 − 3.92𝑥𝑥1 + 3.92𝑥𝑥2 − 0.43𝑥𝑥3 +
0.06𝑥𝑥4 − 6.61𝑥𝑥12 − 5.62𝑥𝑥22 − 0.66𝑥𝑥32 +
0.77𝑥𝑥42 + 12.22𝑥𝑥1𝑥𝑥2 − 2.09𝑥𝑥1𝑥𝑥3 +
0.25𝑥𝑥1𝑥𝑥4 + 0.45𝑥𝑥2𝑥𝑥3 + 1.36𝑥𝑥2𝑥𝑥4 −
0.72𝑥𝑥3𝑥𝑥4  

(5) 

𝑹𝑹𝑺𝑺 = 3.61 + 5.49𝑥𝑥1 − 5.33𝑥𝑥2 + 0.31𝑥𝑥3 −
0.14𝑥𝑥4 + 5.06𝑥𝑥12 + 4.87𝑥𝑥22 − 0.41𝑥𝑥32 −
0.2𝑥𝑥42 − 11.39𝑥𝑥1𝑥𝑥2 + 1.36𝑥𝑥1𝑥𝑥3 +

(6) 

0.09𝑥𝑥1𝑥𝑥4 − 1.72𝑥𝑥2𝑥𝑥3 − 0.32𝑥𝑥2𝑥𝑥4 −
0.14𝑥𝑥3𝑥𝑥4  

 
These regression equations are used to predict 

responses for the same designs in the designed 
experiments and then compared with the observed 
responses for validation. The results are shown in 
Appendix 3. Columns for variables x1 to x4 are omitted 
to save space and can be referred to using Appendix 1. 
A noticeable larger difference is found between 
predicted and observed responses for RP1 than RP2 and 
RS. A similar conclusion can be drawn from the 
regression analysis results, in which larger root mean 
square error, smaller R-squared and adjusted R-squared 
are obtained. Considering that all three regression 
models are statistically significant, reflected in their 
small p values, plus reasonable R-squared and adjusted 
R-squared values, then these models were accepted for 
carrying out the multi-objective optimisation in the next 
step.  

When applying the desirability function response 
y to be optimised is converted into an individual 
desirability d whose value varies in the range of 0 to 1. 
If y reaches its target value then desirability, d, equals 1, 
if y is outside its acceptable range then d equals 0. Three 
categories of desirability function are available 
depending on response target types and are shown in 
Table 1. Larger-the-better (LTB) means that the 
response becomes more desirable when its value is large 
while Smaller-the-better (STB) means that the response 
should be optimised towards a smaller value. Nominal-
the-best (NTB) indicates that there is a specific target 
value to be achieved for a response, either too large or 
too small will reduce the desirability. d represents the 
desirability rating for the response to be optimised, y is 
the quantitative measure of the response. L is the lower 
limit of the acceptable range of y, applicable to LTB and 
NTB scenarios. U is the upper limit of the acceptable 
range of y, applicable to STB and NTB scenarios. T is 
the target value of y, used in all scenarios. r, r1 and r2 
are user-specified factors (> 0). When equals to 1, the 
desirability function rises linearly from 0 at the bounds 
to 1 at the target. When set to be larger than 1 this 
implies that the individual desirability value is relatively 
small unless the response gets very close to its target 
value. In other words, the higher the value of r, r1 and r2 
are, the greater the importance of response values being 
closer to the respective target will be [45]. More detailed 
explanation and examples of desirability function with 
different r values can be found in [46].  

When there is more than one response to be 
optimised, individual desirability ratings di relate to the 
individual responses yi to be optimised. When multi-
objective optimisation is required, i.e. multiple 
responses need to be optimised at the same time, an 

Fig. 7. Operating environment and experiment setup for improving the DDNR device  performance 
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overall desirability D can be calculated using Equation 
(10) as a function of di for all the responses to be 
optimised. m is the number of responses to be optimised 
simultaneously and i is the index of individual 
responses. Referring to Fig. 5 and Equation (1) and (2), 
objective peak reduction is larger-the-better (LTB), 
whilst objective speech clarity, which is represented by 
an inverse measure, is, therefore, smaller-the-better 
(STB). 
Table 1 Desirability function types. y is the response to be 
optimised, L is the lower limit, U is the upper limit, T is the 
target, r, r1 and r2 are the user-specific factors. 

Larger-
the-better 

(LTB) 

𝑑𝑑 =  �

0,                𝑦𝑦 < 𝐿𝐿

�
𝑦𝑦 − 𝐿𝐿
𝑇𝑇 − 𝐿𝐿

�
𝑟𝑟

, 𝐿𝐿 ≤ 𝑦𝑦 ≤ 𝑇𝑇

1,                𝑦𝑦 > 𝑇𝑇

 

 

(7) 

Smaller-
the-better 

(STB) 

𝑑𝑑 =  �

1,                𝑦𝑦 < 𝑇𝑇

�
𝑈𝑈 − 𝑦𝑦
𝑈𝑈 − 𝑇𝑇

�
𝑟𝑟

, 𝑇𝑇 ≤ 𝑦𝑦 ≤ 𝑈𝑈

0,                 𝑦𝑦 > 𝑈𝑈

 

 

(8) 

Nominal-
the-best 

(NTB) 

𝑑𝑑 =  

⎩
⎪
⎨

⎪
⎧

0,                 𝑦𝑦 < 𝐿𝐿

�
𝑦𝑦 − 𝐿𝐿
𝑇𝑇 − 𝐿𝐿

�
𝑟𝑟1

, 𝐿𝐿 ≤ 𝑦𝑦 ≤ 𝑇𝑇

�
𝑈𝑈 − 𝑦𝑦
𝑈𝑈 − 𝑇𝑇

�
𝑟𝑟2

, 𝑇𝑇 ≤ 𝑦𝑦 ≤ 𝑈𝑈

0,                 𝑦𝑦 > 𝑈𝑈

 

 

(9) 

 
𝐷𝐷 = (𝑑𝑑𝑖𝑖 × 𝑑𝑑𝑖𝑖+1 × … × 𝑑𝑑𝑚𝑚)

1
𝑚𝑚 (10) 

 
The proposed upper (U), lower (L) and target (T) 

values for the three responses are presented in Table 2. 
Physical experiments are conducted in order to 
determine the viable values for these limits. The lower 
limit for Peak 1 reduction response RP1 is set to be 5 
dB/Hz and lower limit for Peak 2 reduction response RP2 
is set to be 15 dB/Hz. A 15 dB/Hz target is used for RP1 
and 30 dB/Hz target is used for RP2. For speech clarity 
response RS, an upper limit of 10 dB/Hz is set with its 
target response set at 0 dB/Hz. Factor r is selected to be 
1 for all desirability functions, thereby assuming a linear 
improvement of performance from limits to target 
values. 

After obtaining individual desirability di for each 
response, the overall desirability D for all the possible 
permutations of the four variable settings across the 
entire design space can be estimated using Equation (10) 
with m equal to 3, expressed in Equation (11). 

 
𝐷𝐷 = (𝑑𝑑1 × 𝑑𝑑2 × 𝑑𝑑3)

1
3 (11) 

 
The solution(s) for the x1 to x4 configuration that 

yields the highest D value should indicate the optimal 
setting for the AF algorithm. The largest overall 
desirability value D equals 0.6906 is obtained having 
corresponding variables configured at [x1=0.1, x2=0.6, 
x3=0.6, x4=-1]. To visualise the results a 3D response 

surface and contour plot of D with respect to x1 and x2 
are shown in Fig. 8, with x3 set at 0.6 and x4 set at -1. 
In Fig. 8, larger D values indicate better overall 
desirability and therefore represent better overall noise 
reduction performance according to the three responses 
established. 
Table 2 Desirability functions for three responses RP1, RP2 
and RS 

Response Desirability type L T U r 
RP1 LTB 5 15 N/A 1 

RP2 LTB 15 30 N/A 1 

RS STB N/A 0 10 1 
Response Desirability function 

RP1 
𝑑𝑑1 =  

⎩
⎨

⎧
0,                𝑅𝑅𝑃𝑃1 < 5

�
𝑅𝑅𝑃𝑃1 − 5
15 − 5

�
1

,     5 ≤ 𝑅𝑅𝑃𝑃1 ≤ 15

1,                  𝑅𝑅𝑃𝑃1 > 15

 

 

(12) 

RP2 𝑑𝑑2 =  

⎩
⎨

⎧
0,                   𝑅𝑅𝑃𝑃2 < 15

�
 𝑅𝑅𝑃𝑃2 − 15
30 − 15

�
1

, 15 ≤  𝑅𝑅𝑃𝑃2 ≤ 30

1,                     𝑅𝑅𝑃𝑃2 > 30

 

 

(13) 

RS 𝑑𝑑3 =  

⎩
⎨

⎧
1,                   𝑅𝑅𝑆𝑆 < 0

�
 10− 𝑅𝑅𝑆𝑆
10− 0

�
1

, 0 ≤  𝑅𝑅𝑆𝑆 ≤ 10

0,                     𝑅𝑅𝑆𝑆 > 10

 

 

(14) 

 

 
Fig. 8. Response surface and contour plot of overall 
desirability D with x3 and x4 set at 0.6 and -1 respectively. 

The optimal variable setting [0.1, 0.6, 0.6, -1] is 
applied to the AF algorithm to validate the optimisation 
outcome in the physical domain, with the noise 
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reduction results obtained in the form PSD plot, shown 
in Fig. 9 Details regarding quantified optimised 
responses are presented in Table 3. Fairly small 
differences between predicted and observed amongst 
the three responses suggest the adequacy of the 
regression models obtained in Equation (4) to (6). The 
regression model error is indicated by an 11% 
difference in the overall desirability D based on 
comparing experimental results to predicted values. 
The bottom of Table 3 shows the actual improvement of 
optimal configurations compared to the original settings 
in the physical domain. Nominal values of the three 
responses, i.e. quantitative performance for the original 
design shown in the table are obtained by averaging the 
experiment results for the 12 centre runs in the inscribed 
CCD. An average of 29.6% improvement for all the 
three responses is achieved due to optimisation. 
Significant improvements of 34% and 51% in RP1 and 
RS are also achieved, and a slight improvement of 4% in 
RP2 is also accomplished.  

 
Fig. 9. PSD plot for the optimal design. The original signal 
is shown in dotted line, the optimised filtered signal is 
shown in solid line.  

Table 3 Comparison between tuned AF and original design.  

 RP1 RP2 RS 
Predicted response y 10.69 25.12 1.53 
Observed response y 9.01 25.89 1.76 
Difference 19% 3% 13% 
 D 
Observed overall 
desirability D 0.6906 

Predicted overall 
desirability D 0.6217 

Difference 11% 
 RP1 RP2 RS 
Nominal value of 
response y  
(Original design) 

6.75 24.97 3.61 

Improvement due to 
optimisation 

34% 4% 51% 

Average Improvement 29.6% 

 Discussion 
Comparing to previous research on dental drill 

noise reduction the outcome of this study is encouraging. 
For example, in [17] an AF algorithm is applied to 
suppress one air turbine driven dental drill noise peak at 
4.2 kHz but with no speech, and in [47, 48] AF is 
applied to reduce an electric dental drill running at 3.33 
kHz again with no speech signals included in the 
experiment. The simulation results shown in [3] look 
promising but they are not validated by physical 
experiments. More importantly, these literature 
references only deal with a single objective, which is 
peak reduction. In this work, e.g. from Table 3, all 
three responses are optimised with an average 
improvement of 29.6% as a MO problem. This 
demonstrates the potential of the approach developed. 

When applying this MO approach, identification 
of objectives and definition of objective functions forms 
a crucial step. Different objective functions will steer 
the direction of optimisation and hence can lead to 
distinctly different outcomes. For example, Fig. 10 
shows the outcome of applying two different AF 
parameter configurations, corresponding to experiment 
run No. 1 (black solid line) and 5 (blue dashed line). If 
a simpler objective function is established that indicates 
a direct reduction in peak power ObjPi* from the 
original to the filtered signal (ObjPi* = Power of Pi – 
Power of Pi’), then the two modified responses, denoted 
as RP1* and RP2*, will yield nearly identical values. This 
suggests the outcome of objective function ObjPi* for 
objective peak reduction is identical for the two 
experiments despite the obvious differences observed in 
the overall signal. This negative effect can be confirmed 
by performing a regression analysis for RP1* and RP2*, 
whose results are shown in Table 4. Noticeably worse 
regression statistics, e.g. R2 and Adjusted R2 are 
observed, especially for RP2* for which a non-
significant model (p > 0.05) is obtained. Also, Fig. 10 
shows using ObjPi* instead of ObjPi does not 
necessarily represent an actual reduction of the peaks as 
the relative peak power is still significant compared to 
signal floor, e.g. experiment No. 5 (blue dashed line). 
This means the ‘peaky-ness’ of the filtered signal 
remains despite the overall power of the signal being 
reduced. The objective peak reduction defined in this 
study aims to address the perceived reduction in noise 
peaks by considering the signal floor. A peak is only 
being suppressed when its relative power to signal floor 
is reduced, e.g. experiment run No. 1 (black solid line). 
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Fig. 10. Comparison of AF outcome for two different 
configurations. Black dotted line represents the original 
signal, the black line represents experiment run No.1 and 
the blue dashed line represents run No.5.  

 
 
Table 4 Regression statistics comparison between different 
peak reduction measures 

 RP1 RP1* RP2 RP2* 
RMS 
error 2.8 2.72 1.44 1.35 

R2 0.81 0.749 0.92 0.535 
Adjusted 
R2 0.683 0.582 0.867 0.224 

F-test 6.38 4.47 17.3 1.72 
p value 8.73e-5 1.06e-3 1.91e-8 0.126 

 
When defining the objective function for 

objective speech clarity, the initial approach adopted 
selects specific ‘frequency data points’ from the PSD 
plot, within the region of interest but away from the two 
identified noise peaks (2.5 and 3.3 kHz), e.g. 0.25, 0.5, 
0.75, 1, 1.5, 2, 3, 4, 4.5 and 5 kHz to eliminate the effect 
of signal power difference due to noise peak filtering. 
This is because the narrowband characteristic of the two 
peaks is expected to cause a certain effect on the actual 
differences between signal floors. A comparison of 
results between applying the ‘frequency data points’ 
approach described above and the signal floor 
difference approach used in this study produced a 14% 
difference in objective function ObjS values. Different 
responses RS collected for ObjS could result in different 
regression equations and hence a different optimal 
variable configuration. However, in this study, the 
simplest measure using signal floor difference was 
effective enough to yield meaningful outcomes. There 
are situations where signal difference at specific 
frequencies are of interest then the ‘frequency data point’ 
approach will offer more practicality.  

The use of response desirability is able to 
aggregate multiple responses into one single measure 
that is easy to calculate and interpret as found in the 
literature [37]. The calculations are easily accomplished 
in MATLAB or similar environments. The formula 
used for estimating overall desirability D (see Equation 
(10)) assumes that all responses are equally important 
by taking the geometric mean of individual desirability 
di. This original formulation of overall desirability D is 
sufficient in most cases however there are situations 
where unequal weights are preferred to address the 
difference in importance for responses [38], an example 
expression is shown in Equation (15).  

 
𝐷𝐷 =  𝑑𝑑1

𝑤𝑤1 × 𝑑𝑑2
𝑤𝑤2 × … × 𝑑𝑑𝑖𝑖

𝑤𝑤𝑖𝑖  (15) 
 
where wi indicates the relative importance of each 

response, with each of them great than 0 and the sum of 
them equal to 1, i.e. w1 + w2 +…+ wi = 1. If the relative 
importance of responses were considered in this study, 
the outcome of optimisation will be affected. To 
investigate this a new set of sensitivity analysis varies 
the relative weights between two responses from 0.1 to 
0.8 with a step of change equals to 0.1 while the third 
response fixed at 0.1. The results are shown in Fig. 11. 
Fig. 11a illustrates the variation of overall D when the 
RP2 weight decreases from 0.8 to 0.1 (indicated by a 
reducing stacked area) with RS or RP1 weight increase 
from 0.1 to 0.8 (indicated by an increasing stacked area) 
at the same time. From the figure, It can be seen that 
when RP2 weight drops D intends to escalate with the 
increasing RS weight (indicated by red squares) whilst 
D intends to drop with the increasing RP1 weight 
(indicated by blue triangles). Fig. 11b indicates the 
variation of overall D when RS weight decreases from 
0.8 to 0.1 (indicated by a reducing stacked area) with 
RP1 or RP2 weight increase from 0.1 to 0.8 (indicated by 
an increasing stacked area) at the same time. Overall D 
drops in both cases when RS weight decreases. A more 
rapid decline of D is found when RP1 weight increases 
(indicated by purple diamonds). Fig. 11a shows that 
when RP1 weight is set to be 0.1, overall D stays on top 
of the value obtained using geometric mean (indicated 
by a horizontal dotted line), regardless of how relative 
weight between RS and RP2 changes. From Fig. 11a and 
Fig. 11b, it is found that the value of overall desirability 
D is proportional to the relative weight of response RS 
implying that speech clarity is the easiest to achieve 
amongst the three responses. D is more sensitive to RP1 
relative weight changes compared to RP2. Despite the 
variation observed in overall D with regard to changing 
relative weights in the three responses, optimal 
configurations identified for the system are similar. For 
example, optimal points for x1 and x2 for all situations 
studied are depicted in Fig. 11c and superimposed on 
the contour plot shown in Fig. 8. It can be seen that all 
points lie within the 0.6 regions of the plot, indicating 
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that varying the relative weights amongst the three 
response has little effect on the selection of optimal 
configurations.  

The outcome of this sensitivity analysis firstly 
demonstrates the validity of the desirability function in 
accomplishing multiple-objective optimisation. This is 
confirmed by the small variation of the overall D despite 
the change in relative weights amongst the three 
individual desirability ratings. Secondly, in a broader 
sense, it offers a useful means to investigate the 
potential effect of response relative weights on the 
optimal setting of AF parameters.  

 

 
Fig. 11. Sensitivity analysis of overall desirability D with 
regard to different relative weights assigned to the three 
responses. In (a) and (b) varying responses are represented 
using different patterns. Overall D prediction using 
geometric mean is indicated by a horizontal black dotted 
line. In (c) all optimal points identified are depicted by red 
crosses. 

 Conclusion 
Audio signal processing becomes a multi-

objective problem when there are several key signal 

characteristics to be improved at the same time. A multi-
objective (MO) approach for tackling such problems, 
using two novel objectives functions to define peak 
reduction and speech clarity, has been presented in this 
paper and applied to improve the performance of a 
dental drill noise reduction (DDNR) device. For the 
objective of peak reduction, the objective function is 
established based on the reduction of target noise peak 
power relative to its signal floor. The objective function 
for speech clarity is based on a comparison between the 
original signal floor value and the filtered signal floor 
value.  

The DDNR employs an adaptive filtering (AF) 
algorithm using the Normalised Least Mean Square 
(NLMS) method to achieve steady and fast convergence. 
Exploration of the different empirical relationships 
between AF parameters and the objectives was enabled 
by the successful application of response surface 
methodology (RSM) and the relationships were 
presented in the form of statistical regression equations. 
The MO approach described has successfully improved 
the DDNR performance, in the physical domain, by 
effectively reducing unwanted noise peaks (peak 
reduction objective) while keeping the speech signal 
that is mixed in relatively unaffected (speech clarity 
objective). The outcome of the MO optimisation is an 
average overall improvement of nearly 30% compared 
to the original design, with a 51% specific improvement 
in objective speech clarity. A next step will be to apply 
the proposed approach to a more advanced and complex 
active noise cancelling (ANC) device.  
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 Appendices
 
Appendix 1 Experiment and regression analysis results applying inscribed CCD 

Run order x1 x2 x3 x4 RP1 RP2 RS 

1 -1 0 0 0 4.55 22.35 3.36 
2 0 0 0 0 8.78 24.24 4.02 
3 0 0 0 0 6.69 23.98 3.87 
4 0 0 0 0 8.45 23.35 4.15 
5 0 -1 0 0 -6.09 14.07 13.64 
6 -0.5 -0.5 0.5 0.5 -2.20 24.90 3.23 
7 -0.5 0.5 -0.5 -0.5 8.76 23.33 3.78 
8 0.5 -0.5 -0.5 0.5 0.50 16.79 13.26 
9 0 0 0 0 7.38 24.98 4.17 
10 0.5 -0.5 -0.5 -0.5 -2.24 16.64 12.81 
11 0 0 0 0 8.11 24.47 3.54 
12 -0.5 0.5 0.5 -0.5 9.30 21.65 2.92 
13 0 0 0 0 6.56 23.07 3.30 
14 0.5 -0.5 0.5 0.5 -4.48 12.41 15.42 
15 -0.5 0.5 -0.5 0.5 10.27 21.82 3.36 
16 -0.5 0.5 0.5 0.5 5.94 22.76 2.90 
17 0 0 0 1 7.00 25.87 3.41 
18 0.5 0.5 0.5 0.5 8.01 25.22 2.86 
19 0.5 0.5 -0.5 -0.5 8.80 24.18 3.25 
20 0 0 0 0 6.84 26.92 3.12 
21 0 0 0 -1 3.88 26.17 3.70 
22 0 1 0 0 2.22 25.00 3.53 
23 0 0 0 0 6.26 27.65 3.21 
24 0.5 -0.5 0.5 -0.5 -0.88 15.20 15.49 
25 0 0 0 0 6.23 24.32 3.73 
26 0 0 0 0 5.75 25.67 3.35 
27 0.5 0.5 -0.5 0.5 9.64 25.34 2.89 
28 0 0 -1 0 -0.85 24.21 3.44 
29 -0.5 -0.5 -0.5 0.5 -3.59 26.36 2.64 
30 -0.5 -0.5 -0.5 -0.5 -3.69 23.83 3.03 
31 1 0 0 0 -2.73 14.75 14.19 
32 0 0 0 0 5.89 25.57 3.12 
33 0 0 0 0 4.02 25.38 3.63 
34 -0.5 -0.5 1 -1 -4.06 27.51 2.86 
35 0 0 1 0 4.78 24.97 3.24 
36 0.5 0.5 1 -1 10.13 22.94 2.91 

Regression Analysis 
 RP1 RP2 RS 

Error degrees of freedom 21 21 21 
Root mean squared error 2.8 1.44 0.397 

R-squared 0.81 0.92 0.994 
Adjusted R-squared 0.683 0.867 0.991 

F-test 6.38 17.3 267 
p value 8.73e-5 1.91e-8 2.13e-20 
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Appendix 2 Regression results for the three responses with coefficients for each term outlined in red.  

 
 
Appendix 3 Comparison between predicted and observed results 

 Observed Predicted Difference 
Run RP1 RP2 RS RP1 RP2 RS RP1 RP2 RS 

1 4.55 22.35 3.36 2.55 22.30 3.18 44% 0% 5% 
2 8.78 24.24 4.02 6.74 24.99 3.61 23% 3% 10% 
3 6.69 23.98 3.87 6.74 24.99 3.61 1% 4% 6% 
4 8.45 23.35 4.15 6.74 24.99 3.61 20% 7% 13% 
5 -6.09 14.07 13.64 -9.78 15.45 13.82 61% 10% 1% 
6 -2.20 24.90 3.23 -1.60 24.66 3.29 27% 1% 2% 
7 8.76 23.33 3.78 6.57 21.92 4.20 25% 6% 11% 
8 0.50 16.79 13.26 -1.02 15.77 13.28 303% 6% 0% 
9 7.38 24.98 4.17 6.74 24.99 3.61 9% 0% 13% 
10 -2.24 16.64 12.81 -3.22 15.91 13.28 44% 4% 4% 
11 8.11 24.47 3.54 6.74 24.99 3.61 17% 2% 2% 
12 9.30 21.65 2.92 8.64 23.12 2.90 7% 7% 1% 
13 6.56 23.07 3.30 6.74 24.99 3.61 3% 8% 9% 
14 -4.48 12.41 15.42 -2.19 13.71 15.20 51% 10% 1% 
15 10.27 21.82 3.36 8.27 22.90 3.79 19% 5% 13% 
16 5.94 22.76 2.90 7.01 23.38 2.63 18% 3% 9% 
17 7.00 25.87 3.41 6.80 25.83 3.28 3% 0% 4% 
18 8.01 25.22 2.86 5.55 24.65 3.15 31% 2% 10% 
19 8.80 24.18 3.25 5.97 25.04 3.27 32% 4% 1% 
20 6.84 26.92 3.12 6.74 24.99 3.61 1% 7% 16% 
21 3.88 26.17 3.70 6.23 25.71 3.55 60% 2% 4% 
22 2.22 25.00 3.53 8.01 23.30 3.15 260% 7% 11% 
23 6.26 27.65 3.21 6.74 24.99 3.61 8% 10% 12% 
24 -0.88 15.20 15.49 -1.06 14.57 15.06 21% 4% 3% 
25 6.23 24.32 3.73 6.74 24.99 3.61 8% 3% 3% 
26 5.75 25.67 3.35 6.74 24.99 3.61 17% 3% 8% 
27 9.64 25.34 2.89 6.66 26.26 2.94 31% 4% 2% 
28 -0.85 24.21 3.44 2.59 24.77 2.89 404% 2% 16% 
29 -3.59 26.36 2.64 -0.27 24.63 2.73 92% 7% 3% 
30 -3.69 23.83 3.03 -3.48 25.01 2.82 6% 5% 7% 
31 -2.73 14.75 14.19 1.36 14.47 14.16 150% 2% 0% 
32 5.89 25.57 3.12 6.74 24.99 3.61 14% 2% 16% 
33 4.02 25.38 3.63 6.74 24.99 3.61 68% 2% 0% 
34 -4.06 27.51 2.86 -2.52 26.96 2.93 38% 2% 2% 
35 4.78 24.97 3.24 3.49 23.91 3.51 27% 4% 9% 
36 10.13 22.94 2.91 8.52 23.72 2.96 16% 3% 2% 
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