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1. Introduction 

Consider a consumer panel of n members (which may be individuals, house- 
holds, etc.). where each member provides information about his weekly 
purchases of a certain kind of product. We suppose that several brands of 
the product are available and that we wish to monitor the panel's overall 
preference for a particular brand B. 

We assume that for each member 

(i) successive purchase occasions  occur  as  if  in  an  independent 

         Poisson process, 

(ii) the brand purchased on a given occasion is chosen as if at random,                     

and independently of previous brand choices, according to certain 

brand-choice probabilities. 

For member i, i = l , . . . . , n ,  let µi denote the mean number of purchase 

occasions per week, and pi the probability of choosing brand B on a given 

purchase occasion. These parameters may be constant or may vary from week 

to week. It follows that for the panel as a whole 

1)     successive  purchase  occasions occur in  a Poisson  process  at  a  rate  of 

         i such occasions per week. 
N

1i
μ

=
=μ ∑

 
2)   the brand purchased on a given occasion is independent of those 

         purchase on previous occasions, and the probability that brand B is 

         purchased is 
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−
p  is thus the expected proportion of a series of purchase occasions for 

the panel on which brand B is purchased, provided it remains constant over 

these occasions. 
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We shall be concerned with detecting changes in the panel's overall pre- 
ference for B as represented by the expected proportion 

−
p , and shall pre- 

sent an approach for monitoring the value of 
−
p  on a weekly basis using 

quality control methods. 

2. Some Distributional Results 

Let X t = overall number of purchase occasions for the panel in week t, 

Z t = overall number of occasions on which brand B is purchased by the 
         panel in week t. 

and Yt =
tX
tZ =overall proportion of occasions on which brand B is purchased 

 by the panel in week t , 
where t = 1,2, . . . . 

These random variables are independent between weeks. 

The Y's provide estimates of the value of p  in their respective weeks. 

The X's,on the other hand, are ancillary statistics as far as p  is concern- 
ed: they provide information about how accurately p  can be estimated in 
their respective weeks but no information about its value. 

We therefore consider the distributions of the random variables Z t and Yt. 
conditionally on Xt. 

Now, for given Xt > 0, Z t follows the binomial distribution Bi(Xt , p ) and 
hence 

                       E(Yt I X t) = p  , var ( Yt I X t ) = .
tX

)P~1(P
−−

Further, if the realised Xt is sufficiently large, this binomial distrib- 
ution, and the conditional distribution of Yt, may be approximated by 
normal distributions. Hence, for sufficiently large realised Xt , the 
conditional distribution of Yt given Xt is approximately 

                                    .
tx

)P1(P
,P(N

−
−

−
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Standardising, the conditional distribution of 
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given Xt is approximation N(0,1) for sufficiently large realised Xt.  
Further the T's are independent both conditionally on the X's and 
unconditionally. 

Approximate conditions for the validity of the normal approximation to the 
above  binomial  distribution  are  that  we  require 
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2
1

P

P12
1

P1

P

tX
1and5tX <

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−
−

−
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
−

−

>

 
For  example,   if  p  =  0.02  we  require  a  realised  Xt  >   522,   while   if  p  =  0.2 
we  require  a  realised  Xt   >   25.     The  realised  values  of  the  X's  will  be   large 
with  high  probability  if  the  underlying  overall  mean  weekly  purchase  rate 

∑
=

n

1i

  µ   = µj of the panel is large in each week, which will be  the  case   if 

the  size  n  of  the  panel   is  sufficiently  large. 

Note that since the approximate conditional distribution of Tt  given Xt 

does not depend on Xt, it follows that this approximate distribution 
applies unconditionally also, i.e. for large µ, the unconditional dis- 
tribution  of  each  Tt   is  approximately  N(0,1),   independently  for each Tt . 

Note also that the above distributional result does not depend on the 
panel's overall mean weekly purchase rate μ , and is therefore independent 
of any variation in the value of µ. from week to week such as seasonal 
variation. 

3.     Detecting  a  change  in  p   from  an  Established  Value 

Suppose in a given week t = 0 it is established from past data that p  has 
the value 

0
p . Then to detect a change from this established value we may 

monitor the panel's weekly purchasing behaviour using Shewhart and cumul- 
ative  sum   (cusum)   charts  of   the  statistics 

                                                ....,2,t,

tX
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Assuming that the value of p does not change from week to week then, con- 
ditionally on the X's or unconditionally, these statistics are independent 
and each is distributed approximately N(0,1). We shall assume that the 
overall weekly purchase rates are sufficiently large for the normal 
approximations to be valid. 
 
3.1 The Shewhart Chart 
 
For this chart Tt is plotted against t. While p  has the value 

0
p  the T's 

have zero expectations, but if p  increases or decreases then they have pos- 
itive or negative expectations, respectively. Large positive or negative 
values the T's are therefore evidence of a change in p . To decide whether 
or not a value of Tt is significantly large in absolute value, the chart is 
provided with decision limits, which may be chosen to give an acceptable 
sensitivity. 
 
We suggest that decision limits are placed at ± 2.58; for unchanged p , each 
Tt has a probability of only 0.01 of falling outside these limits (a prob- 
ability of 0.005 of falling beyond each limit). If, then, a value of Tt 
exceeds 2.58 or is less than - 2.58, this is taken as evidence of an 
increase or decrease, respectively, in the value of p . 
 
The sensitivity of the Shewhart chart in detecting changes in p  may be 
analysed as follows. 
 
Suppose at the start of a given week the value of p  changes from p 0 to p 1 

and remains at the new value thereafter. We shall only consider changes 
∆ p 0 = p 1 - p 0 which are small compared with p 0 , but which are 
comparable in 
 
magnitude with 

                                  ,
.

)0p1(0p
0 μ

−
−

−

=σ  

 
which is the approximate unconditional standard deviation of Y when 
p  = p 0 . We shall also assume that u remains constant in the weeks follow- 
ing the change in p . 
 
For such a change in p , and for large µ , the distribution of Tt is approxi- 

mately  )1,
0

op
(N

σ

−
Δ independently for each Tt , both unconditionally and 

conditionally on the realised Xt (see Appendix 1). 
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Suppose p  increases and let 

                          ).
0o
0p

58.2(1p58.2tTpr
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 Let  R  denote  the   number   of  weeks  that  elapse  following the increase before 

an increase is detected, i.e. before the upper decision limit is reached; 

R has the geometric distribution 

Pr(R = r) = (1 - θ)r-1θ , r = 1,2, . . .  . 

Hence the probability that the increase is detected by the rth week is 

Pr(R ≤ r) = 1 - ( l -θ) r  , r = 1 , 2 , . . . ,  

and the expected number of weeks that elapse before the increase is 
detected is 

                                    ,1)R(E
θ

=  

which is called the average run length (ARL) in quality control. 

Corresponding results apply for the detection of a decrease in p . 

The sensitivity of the chart in detecting a change in p  depends on the 

value of |∆
−
p 0 l/σ0 , i.e. on the change in p  expressed as a multiple of σ0 . 

Table 1 gives approximate values for the probability of the detection of an 

increase or a decrease, as appropriate, by the rth week, and of the ARL, 

for |∆
−
p

−
p0 l/σ0 = 0, 0.5, 1, 2, 3. Table 2 gives the values of |∆ 0 | corres- 

ponding to these multiples of σ0 for two pairs of values of p0 and µ 

typical of those found in practice. 

In the case of no change in the value of p  (∆ p 0/σ0 =0), the starting point 
for calculating the detection probabilities is arbitrary. In such a case, 
of course, the detection of an increase or a decrease constitutes an error. 
The ARL both between consecutive detections of an increase and consecutive 
detections of a decrease is 200 weeks; hence if p  remains unchanged the 
ARL between false alarms is 100 weeks. (These ARL's do not depend on the 
assumption of constant u between weeks.) The choice of decision limits was 
in fact based on this choice of the ARL between false alarms. 
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TABLE   1 

Detection  Probabilities  and  ARL's  for  the  Shewhart  Chart 

 

TABLE   2 

Values  of   |∆
−
p 0|   corresponding  to   | ∆

−
p 0 | /σ0

0

0P

σ

−
Δ

             
−
p 0                 µ .   | ∆ 

−
p 0 | 

 

 
0.5 

 
0.02

 
1000

       
     0 .0022

 0.20 1000 0.0063 
1.0 0.02 1000 0.0044 

 0,20 1000 0.013 
2.0 0.02 1000 0.0089 

 0.20 1000 0.025 
3.0 0.02 1000 0.013 

 0.20 1000 0.038
 

0

0P

σ

−
Δ

 

r   =   2 4 6 
 P(R< r) 

 8 

 
10 

15 20 ARL 

0 0.010 0.020 0.030 0.039 0.049 0 .072 0.095 200 
0.5 0.037 0.073 0.11 0.14 0.17 0.25 0.32 53
1 0.11 0.21 0.30 0.38 0.44 0.59 0.69 18
2 0.48 0.73 0.86 0.93 0.96 0.99 1.0 3.6
3 0.89 0.99 1.0 1.0 1.0 1.0 1.0 1.5 
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3.2 The Cusum Chart 

For this chart the cumulative sum of the T's, 

                                         ,jT
t

1j
tC ∑

=
=

is plotted against t. 
 
While p  has the value p 0 , the T's have zero expectations, and the expected 

value of Ct does not change with t; hence the path of the cusum tends to 
be roughly horizontal. However, if p  increases, the T ' s  have positive ex- 
pectations, and the expected value of C t begins to increase with t; hence 
the path of the cusum then tends to slope upwards. Similarly if p  de- 
creases, the path of the cusum then tends to slope downwards. 

Thus for the cusum chart, changes in the mean of T t (and hence in p) are 

indicated by changes in the slope of the cusum path, the magnitude of the 

slope indicating the value of the mean of the T ' s  at the corresponding 

location. 

Changes in the slope of the cusum path may occur by chance even if p  does 
not change, but a marked upward or downward slope in the path which per- 
sists for a sufficiently long period is evidence that the T's corresponding 
to that period have non-zero means,and hence that p  has changed from the 
value p 0 . To assess the significance of the slope of the cusum path the 
following decision rule is used. 

To detect an increase in the mean of the T's, and hence an increase in p , a 
so-called 'reference value' k > 0 and a 'decision interval' h > 0 are 
chosen and a modified 'cusum' Ut of the T ' s  is formed as follows: Ut

is defined to be zero until a value of T t occurs, say in week t 1 , which 
exceeds k; from this week onwards Ut is then defined to be the cusum 

                                   ...,,11t,1tt,)kjT(
t

tj
tU

1

+=−
=

= ∑

 
provided the cusum is positive; if the cusum returns to zero or becomes 
negative, then Ut is again defined to be zero until a further value of Tt 

occurs which exceeds k; the above cycle is then repeated. Thus for any 
value of t ≥ 1, Ut is given by 
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                           U t = max(Ut_1 + Tt - k , 0) (U0 = 0) 

An increase in the mean of the T ' s ,  and hence in p , is then signalled if the 
modified cusum Ut exceeds the limit h. We shall call Ut the upper 
'decision interval' ( d . i . )  cusum. 

The values of k and h are chosen to give an acceptable sensitivity in 
detecting   an   increase   in   the   mean   of   the   T 's .  This  sensitivity is   
expressed in terms of ARL's. If the mean of the T ' s  remains at zero, the 
detection of an increase is an error, and so we require a large ARL between 
such false detections. On the other hand, if a significant increase in the 
mean of the T's occurs, we would want to detect this quickly, and so 
require the ARL to detection to be small. There is a trade-off between 
these two requirements. 

For the changes in  that we consider the (unconditional or conditional) 
−
p

distribution of Tt becomes approximately 1,
0
0P(N

σ

−
Δ )The required 

sensitivity in detecting the increase ∆ p 0 /σ0 in the mean of the T's may be 
expressed by specifying a suitably small ARL for a particular 'critical' 
increase for which quick detection is desired, together with a suitably 
large ARL for the case of no change in the mean. Values of k and h may 
then be found, using the nomograms in BS5703 Part 3 (1982), which meet the 
above ARL specifications as closely as possible. 

An alternative approach is to set k equal to half the 'critical' increase 
in the mean of T's and then to determine h, using the nomogram, to give the 
required ARL in the case of no change in the mean. This usually also gives 
a satisfactory ARL in the case of the 'critical' increase, but if this ARL 
is found to be unsatisfactory, h can be varied until an acceptable 
compromise between the two ARL's is achieved. 

We suggest that we regard an increase of
0
0p

σ

−
Δ

 = 1 in the mean of the T's as a

'critical' increase and take the values of k and h to be 

                                    k = 0.5 ,         h = 3.5 . 

These values give an ARL of 200 in the case of no change in the mean and 
7.4 in the case of a 'critical' increase of 1. 
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A corresponding lower d.i .  cusum Lt of the T ' s  is used to detect a decrease 
in their mean, and hence a decrease in p . Thus, if k and h denote positive 
quantities, we calculate 

Lt = min(L t _ 1 + T t + k , 0) , t ≥ 1 (L0 = 0) . 

If Lt goes below - h, this is taken as evidence that the mean has become 
negative and hence that p has decreased. The values of k and h are chosen 
in the same way as before and the above suggested values for k and h apply 
also for the detection of a decrease in p . 

Estimates of the probability of the detection of an increase or decrease in 
p, as appropriate, by the rth week following a change, and of the corres- 
ponding ARL, are given in Table 3 for values of | ∆

−
p 0 | l/σ0 =0,0.5, 1, 2, 3. 

The probability estimates were obtained by simulation using 1000 runs and a 
'worst possible' starting value of 0 for the d.i. cusum in each case; the 
ARL's are given in BS5703 Part 3 (1982). (See Table 2 for changes | ∆

−
p 0 | in 

−
p  corresponding the above values of |∆ p 0 |/σ0 .) 

If p  remains unchanged, the ARL both between consecutive detections of an 
increase and consecutive detections of a decrease is 200 weeks, and hence 
the ARL between false alarms is 100 weeks; this is the same as for the 
Shewhart chart discussed earlier. 

TABLE 3 

Detection Probabilities and ARL's for the Cusum Chart 

                                                                P(R ≤ r)                                            
ARL 

0 

0P

σ

−
Δ

         r = 2             4                6         8          10           15     20 

0 0.0010 0.013 0.023 0.044 0.056 0.13 0.17 200
0.5 0.0050 0.062 0.14 0.22 0.32 0.51 0.64 22 
1 0.044 0.26 0.51 0.72 0.83 0.94 0.98 7.4 
2 0.36 0.90 0.99 1.0 1.0 1.0 1.0 3.0 
3 0.86 1.0 1.0 1.0 1.0 1.0 1.0 2.0 

Except for relatively very large changes, the cusum chart has greater 
sensitivity in detecting a change in p  than the Shewhart chart, as can be 
seen by comparing Tables 1 and 3. 



10 

When a change is detected, an estimate of the week in which the change 
occurred can be obtained from the ordinary cusum chart of the T's which 
makes the cusum especially useful. This is provided by the point at which 
the slope of the cusum path changes in the weeks prior to the point of 
detection. 

3.3 An Illustration 

The data shown in Table 4 concern purchases of packets of tea bags by a 
consumer panel over a period of 52 weeks. The weeky total number of 
purchases of such packets is given together with the number, and 
proportion, of purchases of a particular brand B. The panel's overall 
preference for this brand is to be monitored. 

For illustration purposes, we shall take the proportion of purchases of B 

for the first 10 weeks as the established value p  of p . Over this period 

there is no trend in the weekly estimates Y of p , and so the value of  
−
p

appears to be stable. 

Thus we take 
0

p  = 0.1933, and monitor the data from week 11 onwards for a 

change from this values. 

Figure 1 shows a time plot of the weekly proportions of B purchased by the 

panel. There is no clear indication of a change in the level of p ; any 

such changes are obscured by the variation in the data. 

Figure 2 shows the Shewhart chart - a time plot of statistics T - from week 
11 onwards. Neither decision limit is reached, and so no change in the 

value of p  is detected by this chart. 

3. p  is clearly signalled at week 37. 

Referring to the ordinary cusum chart (figure 3) we see that, in the weeks 
immediately preceding week 37, the slope changes from roughly horizontal to 
increasing in week 31. This, then, is our estimate of the week in which 
the change in p  first occurred. 

Further, the slope of the cusum path remains approximately constant from 
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                                                             TABLE 4 

Week Total Number of 
purchases 
      (X) 

 
Number of purchases

of brand B
(Z)

Proportion  of 
purchases of B 
          (Y) 

 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

1384 
1265 
1370 
1371 
1362 
1318 
1308 
1354 
1348 
1339 
1320 
1466 
1335 
1405 
1395 
1396 
1469 
1487 
1438 
  858 
1278 
1138 
1498 
1421 
1463 
1409 
1371 
1417 
1447 
1414 
1401 
1391 
1369 
1448 
1332 
1150 
1384 
1386 
1361 
1437 
1227 
1413 
1360 
1349 
1366 
1299 
1321 
1242 
1262 
1308 
1248 
1150 

275 
225 
237 
284 
269 
256 
255 
262 
268 
263 
254 
285 
238 
273 
268 
255 
278 
284 
276 
167 
250 
210 
302 
267 
273 
276 
275 
265 
294 
265 
290 
288 
275 
296 
274 
225 
299 
273 
296 
277 
230 
272 
246 
239 
283 
244 
236 
228 
246 
279 
244 
213 

0.1987 
0.1779 
0.1730 
0.2071 
0.1975 
0.1942 
0.1950 
0.1935 
0.1988 
0.1964 
0.1924 
0.1944 
0.1783 
0.1943 
0.1921 
0.1827 
0.1892 
0.1910 
0.1919 
0.1946 
0.1956 
0.1845 
0.2016 
0.1879 
0.1866 
0.1959 
02006 
0.1870 
0.2032 
0.1874 
0.2070 
0.2070 
0.2009 
0.2044 
0.2057 
0.1957 
0.2160 
0.1970 
0.2175 
0.1928 
0.1874 
0.1925 
0.1809 
0.1772 
0.2072 
0.1878 
0.1787 
0.1836 
0.1949 
0.2133 
0.1955 
0.1852 
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wek 31 to week 39, after which it begins to decrease. Hence, the increas;- 
ed level of P  appears to be held over this period, after which it begins to 
fall off. The proportion of B purchased over this period is 0.2059, which 
provides an estimate of the increased level of P . 

 
4. Adapting to a Gradual Change in the Panel's Preference for Brand B 

(Here we denote the values of µ and P  in week t by µ t and pt , respect- 
ively. ) 

Apart from rapid changes in the value of P  that may occur during promotion- 
al activity, the value of P  may change slowly over a comparatively long 
period of time due to many small background influences on the panel's 
overall preference for B, or because the membership of the panel gradually 
changes. 
 
The above procedures for detecting a change in the value of P  from an est- 
ablished value p will eventually detect a gradual drift away from P 0 when 
it becomes sufficiently large. If we wish to detect only rapid, local 
local changes in p, then we shall need to compare the estimate of p in a 
given week with an estimate of the current value of P  just prior to the 
given week. 

An estimate of the current value of p  at a given time, which adapts to 
gradually changing p , is provided by an exponential smoothing of the week- 
ly estimates. At week t, the exponentially smoothed value Y~ t of the avail- 
able weekly estimate Y1 , . . .,Y t is given by 

 
Y~  t = (1-α )Yt +Y~ t-1 

where 0 < a < 1 is a chosen smoothing constant; the value of a controls 
the rate at which Y~  adapts to changing p, although the more rapidly it is 
made to adapt the greater its variance becomes. To start up the smoothing 
process, the initial smoothed value Y~ 0 is taken to be the 'established' 
value 

0
p  of p  at that time, as given, say, by the mean of the Y's over 

preceding weeks. 

The statistics T may then be modified to measure only local changes in the 
weekly estimates Y of : we replace 

−
p

−
p 0 in the statistic T t corresponding 

to week t by the estimate 
−

Y~  t -1 of the current value of p  at week t - 1, 
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giving 
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We now consider weekly changes in p  which are small compared with the 

value of p , but comparable in magnitude to ,)p1(p
μ

−
−

−
 the approximate 

unconditional standard deviation of Y. We shall express the changes as 
multiples of the approximate standard deviation of Y in week 0, and write 
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)1(

0.
1 =

−
=−

−−

−

−−

j
pp

pp oo
jjj μ

λ

 

We show in Appendix 2 that, for large values of the µ 's, both uncondition- 
ally and conditionally on the realised values of the X ' s ,  the statistic  

,1,
2
t1

tNionapproximatddistributeis
2
tC1

t
~
T

1
t

~
T

⎟⎟
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⎜
⎝
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α+
α−

=

∑

and where the S's, which denote the exponentially smoothed values of the 
quantities shown in brackets together with the smoothing constants, are 
given by 

                    
.02;1

0S,2;1
1tS2

t

1)21(2;1
tS
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x
1
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x
1
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⎝

⎛
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⎛
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⎠
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⎛
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μ
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⎜
⎝
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4.1 Case where a is close to 1 

 
If a is close to 1, then c 2

t  and y 2
t  are both close to zero, and hence the 

statistic 
~
T t is distributed approximately N ( δ t ,1) for large µ 's, both 

unconditionally and conditionally on the realised values of the X's. 
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Further, is p  is changing so slowly that λ j ⋍ 0, j = 1 ,2 , . . . ,  and δt. is of 
negligible size, then, under the above conditions, the distribution of 

t
T~  

is approximately N ( 0 , 1 ) .  

Suppose now that,in week s, p  changes by a 'large' amount, and thereafter 
continues to change very slowly, so that λ j = 0 except for j = s. Then for 

t  ≥ s,  is distributed approximately t
~
T

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛− 1,2
1

μ.0
μ.t

sλstαN
, under the above 

Conditions. Thus the mean  of  suddenly changes to t
~
T 2

1

.0μ
t.μ

sλ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ in the week 

of the change, and then gradually decays back to zero as the estimator Y~  
gradually adapts to the new 'level' of 

−
p . 

Thus to detect only rapid, local changes in the value of p , we may monitor 
the panel's weekly purchasing behaviour using Shewhart and cusum charts 
of 
the modified statistics T~ . 

Unlike the T's the T~ ' s  are autocorrelated. We show in Appendix 2 that if 
a is close to 1, then for large µ. ' s ,  both unconditionally and condition- 
ally on the realised X ' s ,  the correlation between T~  t + t and T~  t is approxi- 
 
mately 

τα⎟
⎠
⎞

⎜
⎝
⎛

α+
α−

α
μ−τ+μμ+−αα−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

μ
τ+μ

−
1
1)2;1(1tS2

1
)t.t.(1r)1(

2
1

t.
t.  

         ,)1t21(1
1
1 −α+−τα⎟

⎠
⎞

⎜
⎝
⎛

α+
α−

−= if the µ 's are approximately equal. 
 

These autocorrelations are in fact quite small. For example, if a = 0.9, 
and if the µ 's are approximately equal, the autocorrelation at lag 1 (the 
largest autocorrelation) ranges from about -0.1 for t = 1 to about - 0.05 
for large t. Hence, for large a, the presence of autocorrelations amongst 
the T's should have only a slight effect on the behaviour of the Shewhart 
and cusum charts of these statistics. 
 
4.2 Choice of α 
 
The choice of a depends on what magnitude of gradual change in the value of 
p  we do not wish to detect. 
 
Suppose that we do not wish to detect a change in p  if the weekly amounts 
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by which it chanqes are such that | λj  | ≤ λ m , j = 1,2,... . For such 
  
changes, the mean of T t is bounded ( f o r  large µ ' s) as follows 

                              

.2
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δ
=

∑

 

Now, if p  does not change, the means of the T~ ' s  are zero. Hence, if p is 
changing as above, to keep the risk of detecting a change with a cusum 
chart close to what it would be for unchanging p , we need to choose a so 
that the means of the T~ ' s  are close to zero, say less than 0.1 in absolute 
value. Thus we should choose a so that 

                                         
2
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If | ∇ p  | m denotes the maximum weekly change in p that we do not wish to 
detect, then 

                                       ,
0.

)0p1(0p
mPm μ

−
−

−
−

∇=λ  

 

and hence we require 

                                           ,

,
0.

)0p1(0p

m
P10

1

μ

−
−

−

−
∇

−<α  

where µ m = max µ . 

As an illustration, suppose  ⋍ 0 .2  and µ . 1000. Then, if we do not wish 
−
p

to detect a change if 
−

 gradually changes by 0.005 over 50 weeks, we should p

take a < 0.92; whereas, if we do not wish to detect a change if  grad- 
−
p

ually changes by 0.015 over 50 weeks, we should take a < 0.76. 

If the required value of a is not sufficiently close to 1 to justify taking 
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2
tC   =0,  then  we  should   have  to use  the  statistics   

2
tC1

~
T

1
t

~
T

+

ι=   instead  of   t
~
T

4.3 Modified Decision Rules for Cusum Charts of the ' s  
~
T

The sensitivity of the cusum of the ' s  in detecting a change in their 
~
T

means is slightly different to that for the T's .  

Thus, if  is constant or is only slowly changing, and if µ is approx- 
−
p

imately constant, the small negative autocorrelations amongst the 's (for 
~
T

large a) slightly reduce the variances of their upper and lower d.i. cusums 
compared with the independent T's. Hence each of these cusums reaches its 
decision limit slightly less frequently than those for independent T 's, and 
hence the ARL between false alarms is slightly greater for the T  's than for 

~

the T's. 

On the other hand, if p  suddenly changes to a new level, the appropriate 
d.i. cusum moves towards the decision limit slightly less rapidly for the 
~
T 's than for the T's .  This is because the statistics Y~  gradually adapt to 
the new level of p  and so gradually reduce the magnitude of the T~ 's, whereas 

the T's are not so affected. Hence the sensitivity in detecting a sudden 
change in  is slightly less for the cusum of the 

−
p T~ ' s  than for the T's. 

We can increase the sensitivity of the cusum of the ' s  in detecting a 
~
T

sudden change in p by reducing the value of the decision interval h. A 
preliminary simulation study indicates that for a = 0.9, and taking 
k = 0.5, h should be reduced to about 3.2 to maintain an ARL of about 100 
weeks between false alarms when 

−
p  remains unchanged and y is constant. 

A more extensive simulation study needs to be carried out to obtain 
estimates, as in Table 3, of the ARL's to detection, and detection prob- 
abilities, following a sudden change in the value of p  of various 
magnitudes. 

4.4 An Illustration 

We use the data of the previous illustration (section 3.3) to demonstrate 
use of Shewhart and cusum charts of the modified statistics . 

~
T
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We take as the value of the smoothing constant α = 0 .9 ,  which will allow 
for a gradual change in p  of about 0.5% over a period of a year. 

We take as the established value of p  at the start of the smoothing 

process p 0 = 0.1933 ( the  proportion of purchases of B for the first 10 

weeks), and monitor the data for a rapid change in p  from week 11 onwards. 

The results are very similar to those for the T ' s .  No change in p is 
detected by the Shewhart chart (figure 5 ) ,  but the d.i.  cusum chart 
(figure 7) clearly detects an increase at week 39. Also from the ordinary 
cusum chart (figure 6) ,  as before, we estimate that the sudden increase in 
−
p  first occurred in week 31, and that the increased level was pproximately 
held until week 39. 

5. Monitoring by Weight of Product Purchased 

Suppose that the product is available in various packet sizes. We may 
regard the different packet sizes of a given brand as brands in their own 
right; suppose that there are g such brands and that brands 1 to b 
correspond to different packet sizes of the particular brand B of interest. 
Let wr be the weight of a packet of the rth brand, r = 1,. . .,g. 

Let µi , i = l , . . . , n ,  and µ . be as previously defined, but here let pr j ,  
i = l,...,n, r = l , . . . , g ,  denote the probability of member i choosing the 

rt h brand on a given purchase occasion, ∑
=

g

1r
 p r j = 1. The probability of 

the panel choosing the rt h brand on a given occasion is then 
 

              .1rP
g

1r
,g....,,1r,riP

.
i

n

1i
rP =

−

=
=

μ
μ

=
=

−

∑∑

Let Xt , t = 1 , 2 , . . . ,  be as previously defined but here let 

Z r t = overall number of occasions on which the rt h brand is 
 
          purchase by the panel in week t . 
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tX
rtZ

rtY =   overall proportion of occasions on which the rt h brand is 

                   purchased by the panel in week t. 

 

in week t purchased brandh rt  the
ofby weight  proportion overall
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The overall proportion by weight of brand B purchased in week t is 

.rtW
b

1r

B
tWthen ∑

=
=  

 
We show in Appendix 3 that for sufficiently large realised X , the con- 

ditional distribution of W B
t  given Xt is approximately normal with 
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where 

                                                  .

sPsW
g

1s

rPrWw
rP

∑
=

=  

 
pB is thus the approximate expected proportion by weight of brand B pur- 
chased by the panel in a given week t, and does not depend on Xt . 

The value of pB may be monitored from week to week in the same way as . 
−
p

Thus to detect a change from an established value pB
o (corresponding to 

established values p r 0 of 
−
p r , r = l , . . . , g ) ,  the monitoring would be based 

on the statistics 
 
                                       
                                 

                                           ,
B
O

B
OPB

tWw
tT

σ

−
=
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where uP
o ' is the value of oR corresponding to the established values of the  

−
p r. 

If the situation remains stable, then for large µ 's ,  both unconditionally 
and conditionally on the realised X ' s ,  the TW 's are independent and each 
is 

 
distributed approximately N ( 0 , 1 ) ;  and if there is a change in pB the 
mean 
of the TW 's changes accordingly. 
 
To adapt to a gradually changing pB in order to detect only rapid, local 
changes in its value, the monitoring would be based on the statistics 
 

                      ,
B~

1t

B~
1tPB

tWW
t

~
T

−σ

−−
=  

where B~
P t-1 and B~

σ t-1 are estimates of the current values of pB and σB at 

week t-1. The estimates of pB and σ Β  at week t are obtained by replacing 
the 

~
P r , r = l,...,g, in the expressions for these quantities by the corres- 

ponding exponentially smoothed estimates 
~
Y r t , given by 

                  
~
Y  r t = ( l-α)Y r  t  + α  

~
Y r, t-1 r = 1,...,g . 

 
If pB is constant or slowly changing, and if a is close to 1, then for 
large µ 's, both unconditionally and conditionally on the realised X's, the 
~
T ~W 's are distributed approximately N (0 ,1 ) ;  and if pB changes rapidly the 

means of the 
~
T ~W' s change accordingly. 

Note that, apart from the b 'pseudo-brands' which make up the particular 
brand B of interest, the other 'pseudo-brands' may be regrouped in terms of 
packet size, which may be computationally more convenient. 

The behaviour of these procedures for monitoring by weight (which can also 
be applied to expenditure) have not yet been fully investigated. 

Reference 

BS 5703 Part 3 (1982). Data analysis and quality control using cusum 
                                        techniques. British Standards Institution. 
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APPENDIX 1 

Distribution of T t when  = 
−
p

−
p

1

Now T t can be written 

       .
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We consider a change in p  of magnitude 

                          .fixediswhere,
.
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0P1P0P 0

λ
μ
−

λ=−=Δ  

We have the following limit results 

(i) If p  = p  1 , then as µ → ∞ 

                     )1,0(N~Z
d

tX
)1P1(1P

1PtY
→

−

− unconditionally, or conditionally 

                                                   on the realised Xt

(ii) Now X t ~ Po(µ) . 

                  Hence  1
.
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( i i i )  As µ → ∞ , ∆p0 → 0 and hence .1
)P1(0P

)1P1(1P
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Hence as µ → ∞ 
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                                         .)1,(N~Z
d

tT λλ+→
 

Hence for large µ , both unconditonally and conditionally on the realised 

value of X t , T t is distributed approximately N(λ ,1), where λ .
)0P1(0P

0P

μ
−

Δ
=  

For the typical values µ = 1000, λ = 1, p 0 = 0.02 and 0.2, we note 

that: 
 

  1) if p  = p 1 , the distribution of is

tX
)1P1(1P

1PtY

−

−  

          well approximated by the N(0,1) distribution; 

2)    since Xt is approximately normally distributed, Xt /µ will almost 

        certainly fall in the range 1 ± 3/ µ  = 1 ± 0.095, and so  /2µtx   
        will almost certainly fall in the range 1 + 0.046 and so be close 
        to the above limiting value; 

⎪⎩

⎪
⎨
⎧

=

=
=

−

−

2.00Pif02.1

02.00Pif10.1

)P1(0P
)1P1(1P)3

0

; these values are reasonably 

        close to the above limiting value for this quantity. 

Thus the above approximation to the distribution of Tt should be 

adequate for the values of µ , 
−
p

0 and λ which we consider. 
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APPENDIX 2 
 

2.1 Asymptotic Distribution of 
~
T t

Here we denote the values of µ and p in week t by µ t and 
−
p

 t , 
respectively. 

 

Now 
~
Y  t is given by 

  
  Yt = ( l -α ) (Y t  +αY t - 1  + α2 /Yt - 2 + ...... +α t-1Y1 + at -Y0 . 

 

We shall take 
~
Y  0 to be a constant 'starting' value p0 , representing the 

'established' value of p  in week 0. Hence 
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the exponentially smoothed value of p at week t with smoothing constant a, 
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Note that U't and V't are independent both unconditionally and conditionally 
on X1 ,........ Xt . 

We have the following limit results. 

(i)      As µ t → ∞, U't  N(0,1) ,  both unconditionally and conditionally 
d
→

         on the realised value of Xt . 

(ii)    As X1 , . . . ,Xt -1 → ∞, V't N(0,1)  conditionally on X
d
→ 1 ,.....,Xt - 1 . 

         Also, since X1 , . . . Xt -1 
p
→  ∞ as µ1,.. . . . µ t -1 → ∞ , it follows 

        that V't  N(0 ,1 )  unconditionally as µ
d
→  1 , . . . , u t  - 1  →∞ . 

 

(iii)  As X1 , ...,Xt - 1 → ∞ , var(Yt -1 |X1,...... , X t  - 1  ) → 0, and hence 

         Yt -1
p
→  S t-1 ( p ;a) conditionally on X 1 ,...,X t -1 . And since 
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X1 , . . . Xt -1 
p
→  ∞ as µ1,.. . . . µ t -1 → ∞ , it follows    that 

t -1
p
→  S t-1 ( ;a) unconditionally on µ

−
p  1 ,..., µ t -1 . → ∞  .(The   Y~

convergence is uniform in the values of p  1 ,......., p  t -1 .)  
Hence as µ 1 , . . . , µ t - 1  →∞   
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both unconditionally and conditionally on the realised values of 

X1 ,.. ...Xt - 1 (and uniformly in the 
−
p ' s ) .  

(iv) As µ t → ∞ , r t 
p
→  1 (see Appendix 1). 

 
(v) Let µ 0 ,.. . . , µ t → ∞ with fixed ratios θ j = µ j /µ 0 , 0 < θ j < ∞ , 
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(The convergence is uniform in the p's.) 

(vi) Consider now weekly changes in p of magnitude 
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  j = 1,2,..., where the λ ' s  are fixed. 
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Since, for fixed p ' s ,  the convergence of b t to β t , and of c t to γ 't 
is uniform in the p ' s ,  it follows that if µ 0 , µ1 , . . . ,µt → ∞ with 

fixed ratios θ j = µ. j / µ . 0 and with 
−
p

 j - 
−
p

 j-1 , = λ j. 
0.

)0P1(0P
μ

− ,  where 

λj. is fixed, j = l,......,t, then 
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The following asymptotic distribution for T t follows from the above 
results. 

Theorem 

Let µ . 0 , µ . t ,.... ...,µ . t → ∞ with fixed ratios θ j = µ. j /µ . 0 , 0 < θ j < ∞ , 

j = l,...,t, and let the weekly changes in p  be given by 

jwhere
0.
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j1jpjp λ

μ
−

λ=−
−

−
−

  is  fixed  , 

j = 1, . . . ,t. 

Then 
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both unconditionally and conditionally on the realised values of X1 , . ..,Xt  
 
 
Proof Under the limiting conditions of the theorem, we have from the 
above results that, both unconditionally and conditionally on the realised 
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It follows from this corollary that for large values of the µ 's,   
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is distributed approximately N 
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2-2 Correlation Structure of the 's 
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And under the limiting conditions of the above theorem 
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both unconditionally and conditionally on the realised values of the X's. 

Hence, for the asymptotic distribution, the covariance between 
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For large µ 's, the correlation between 
~
T  t + τ and 

~
T  t may be approximated by 

their asymptotic correlation, with θ j replaced by     .
0.
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APPENDIX 3 

 
Conditional Distribution of W Bt given Xt 

 
For given Xt > 0, Z 1 t . , . . . , Zg t have a multinomial distribution with index Xt
and probability parameters p1,...,Pg  
 
Hence, for Yr t = Z r t /Xt , 
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For sufficiently large realised X , the conditional variances of U and V 
are small, and hence we may approximate WB

t by the linear terms of the 
Taylor expansion of U/V about the conditional expectations of these vari- 
ables . Thus 
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Hence, for large realised Xt , 

 

 

 



  Y1 t ... ,Y g t it follows that the conditional distribution of W
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(after a  little  algebra),where    .w
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Further, for sufficiently large realised Xt , the multinomial conditional 

distribution of Z1 L , . . . , Z  g t ,. and hence the conditional distribution of 

Y1t .. , . . . ,Yg t , may be approximated by multivariate normal 
distributions. And 

since, for large X t , W B
t is well approximated by a linear combination of 

B
t  given Xt 

is approximately normal. 

Note also that, since X t  ∞ as µ → ∞, and since the approximate ⎯→⎯p

conditional distribution of W
t
 given large realised XB

t does not depend on 

Xt , it follows that, for large µ , this approximate distribution applies 

unconditionally also. 
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