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a b s t r a c t 

An asymptotic model for time-harmonic motion in fully-coupled linear thermoelastic or- 

thorhombic materials is presented. The asymptotic approach takes advantage of the ob- 

servation that the parameter expressing departure from the purely adiabatic regime is 

extremely small in practice. Consequently, the leading order bulk response turns out to 

be non-dissipative, and is governed by the usual equations of elastodynamics with adi- 

abatic material constants. In the case of isothermal stress-free boundary conditions, it 

is shown that thermoelastic interaction is dominated by a thermoelastic boundary layer. 

Hence, effective boundary conditions may be constructed, which duly account for the in- 

fluence of this boundary layer and successfully describe dispersion and dissipation of sur- 

face waves to leading order. As an illustration, in the special case of an isotropic half-space 

with free isothermal boundary conditions, we recover the asymptotic results by Chadwick 

and Windle (1964). Numerical comparison of the dispersion curves for surface waves in 

an orthorhombic half-space shows excellent agreement between the exact fully-coupled 

thermoelastic problem and the corresponding quasi-adiabatic approximation, even for rel- 

atively large wavenumbers. 

© 2021 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Since the pioneering work of Danilovskaya (1950) , it is known that disregard of coupling between strain and temper-

ature fields may lead to significant inaccuracy in the prediction of the dynamic response of thermoelastic solids. Hence, 

after Biot (1956) provided the first consistent formulation of coupled thermoelasticity, substantial research effort has been 

invested to study dynamics of coupled thermoelastic media. Chadwick and Sneddon (1958) and Chadwick (1960) studied 

the basic properties of body waves in a thermoelastic isotropic body. Further extensions to anisotropy and pre-stress were 

discussed by Green (1962) , Chadwick (1979) , Scott (1989) , Shuvalov and Chadwick (1997) and many others. 

Surface waves (SWs), since their discovery by Rayleigh (1885) , attracted continued interest of researchers, so it is 

not surprising that first studies on SWs in thermoelastic bodies appeared shortly after Biot’s paper was published. 

Lockett (1958) showed that, to leading order, waves on the surface of a thermoelastic isotropic half-space are identical 
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to classical Rayleigh waves appearing in an isotropic half-space, provided that adiabatic material constants are taken. Fur- 

ther studies by Chadwick (1960) , Deresiewicz (1961) and, especially, Chadwick and Windle (1964) , provided a more detailed

characterization of thermoelastic SWs, which were shown to be both dispersive and dissipative. Various generalizations 

of the basic isotropic problem were also considered: Ivanov and Savova (2009) studied thermoviscoelastic SWs, Chiri ̧t ̆a 

(2013b) considered thermoelastic SWs on an exponentially graded half-space; Chakraborty and Pal (1969) studied influ- 

ence of transverse anisotropy on two-dimensional thermoelastic SWs. Recently, Chiri ̧t ̆a (2013a) constructed the characteristic 

equation for a general anisotropic thermoelastic half-space by adopting the Stroh formalism. 

All the afore-mentioned papers set off from the explicit secular equation for SWs, which they proceed to analyse either 

numerically or by using analytical tools, e.g. power series expansions. However, the problem’s involved structure and lack of 

symmetry, even in the simplest case of isotropic thermoelasticity, entails that direct approaches are fairly complicated and 

lend little insight into the physics of the solution. Moreover, involved analyses are difficult to check and prone to errors:

as an example, in Chadwick and Windle (1964) multiple solution branches are stated to exist, implying non-uniqueness 

of SWs in a thermoelastic half-space. Yet, uniqueness has been later established by Atkin and Chadwick (1981) . Still, this

false claim led other researchers to seek for other examples of non-uniqueness of SWs in dissipative media. For instance, 

Currie, Hayes, and O’Leary (1977) described similar non-unique solutions for a viscoelastic half-space and again, only later, 

Romeo (2001) presented a proof for uniqueness of SWs in viscoelastic media, which was further generalized to the pre- 

stressed case by Destrade, Ogden, and Saccomandi (2009) . 

An active area of current research is devoted to strictly hyperbolic variants of thermoelasticity, as opposed to the mixed 

hyperbolic/parabolic equations formulated by Biot (1956) , see, e.g., Chandrasekharaiah (1986, 1998) or Sherief, Hamza, and 

Saleh (2004) . Many SW solutions have been constructed over the years for different formulations of hyperbolic ther- 

moelasticity, e.g. Nayfeh and Nemat-Nasser (1971) for an isotropic half-space with the Lord-Shulman model, Singh and 

Sharma (1985) for a transversely isotropic half-space again with the Lord-Shulman model and Chandrasekharaiah (1997) for 

an isotropic half-space with the Green-Naghdi model. Abd-alla and Al-dawy (2001) compared SWs using classical, Lord- 

Shulman and Green-Lindsay models, Sharma, Walia, and Gupta (2008) considered SWs in a piezothermoelastic rotating half- 

space modelled with the Lord-Shulman and Green-Lindsay models, Abouelregal (2011) in an isotropic half-space using the 

dual-phase-lag model and Biswas, Mukhopadhyay, and Shaw (2017) in an orthorhombic half-space using the three-phase- 

lag model. Interest in hyperbolic thermoelasticity is usually justified by referring to the existence of the so-called “second 

sound”, which is an additional body wave detected in thermoelastic media at extremely low temperatures. Since accepted 

experimental evidence for the second sound at room temperature is currently lacking, there exits neither an accepted for- 

mulation for hyperbolic thermoelasticity, nor a set of material parameters describing a real hyperbolic thermoelastic solid. 

Thus, in this paper, we restrict attention to the classical hyperbolic/parabolic equations of coupled thermoelasticity given by 

Biot (1956) , esp. in light of discussions by Fichera (1992) and Auriault (2014) . 

Motivation for this work lies in the desire to provide some physical insight into the dissipation mechanisms for Non- 

Destructive Testing (NDT), signal processing and bandpass filters applications in real devices and materials ( Morgan, 2007 ). 

Modern SW devices routinely operate in the gigahertz range. Indeed, a typical velocity figure for SWs in crystals is in the

order of 30 0 0 m 

s , which amounts to operating with wavelengths scaling hundreds of nanometers. In such devices, dissipation

is typically dominated by interactions with the thermal phonons (Morgan, 2007, Section 4.2) . Indeed, it is possible to identify

two specific physical mechanisms responsible for dissipation: on the one hand, thermoelastic coupling and on the other, 

inherent phonon viscosity. As an illustration, the second mechanism appears to govern propagation of bulk waves in quartz, 

see Maris (1969) . 

Importantly, dissipation caused by thermoelastic coupling is not necessarily induced by damping of the bulk waves. In- 

stead, the dissipation can be dominated by interaction with the thermoelastic boundary layer, which is particularly relevant 

for waves localized in the vicinity of material boundaries. In the context of SWs, Mayer (1990) showed that thermoelastic

dissipation strongly depends on the thermal boundary condition: indeed, free boundary with prescribed heat flux produced 

almost negligible dissipation, whereas isothermal free boundary induced dissipation an order of magnitude larger. The so- 

lution given by Mayer (1990) relies upon the projection method developed by Tiersten and Sinha (1978) . In this paper,

we describe an alternative, more explicit, asymptotic method capable of modelling thermoelastic dissipation of SWs in or- 

thorhombic materials in the case of isothermal boundaries. 

More specifically, we perform dimensional analysis of the steady-state equations of thermoelasticity and identify the nat- 

ural small parameters appearing in the problem ( Section 2 ). This allows to highlight the relevant asymptotic regimes and

to show that motion is usually dominated by adiabatic interaction between the elastic and the thermal fields. Within this 

limit, the leading order regular expansion turns out to be formally equivalent to classical orthorhombic elasticity, although 

adiabatic parameters replace isothermal ( Section 3 ). Boundary layer solutions are also derived and used to construct effec-

tive boundary conditions ( Section 3.2 ). The latter, coupled with classical elasticity, provide a practical and efficient “quasi- 

adiabatic” model that incorporates thermoelastic effects without delving into the intricacies of the fully coupled problem. 

They also offer precious insight into the physics behind dissipation. Indeed, it is shown that the boundary layer near an

isothermal boundary dominates thermoelastic dissipation and governs both dispersion and dissipation of SWs ( Section 4 ). 

The validity of our “quasi-adiabatic” model is confirmed by comparing the asymptotic dispersion curves versus the disper- 

sion curves of the fully coupled problem ( Section 5 ). 
2 



A. Nobili and A.V. Pichugin International Journal of Engineering Science 161 (2021) 103464 

 

 

 

 

 

 

 

 

2. Governing equations 

The following summary of the equations of linear anisotropic thermoelasticity is mostly based upon the exposition in 

Nowacki (1977) . We consider a rectangular Cartesian coordinate system ( ̄x 1 , ̄x 2 , ̄x 3 ) such that wave propagation occurs along

x̄ 1 and the free surface is located at x̄ 2 = 0 . For a homogeneous linear anisotropic thermoelastic solid, the stress components 

are given by the Duhamel-Neumann law (Nowacki, 1977, Eq.(2.11)) 

σ̄i j = c̄ i jkl e kl − β̄i j ̄θ, i, j, k, l = 1 , 2 , 3 , (1) 

where e and β̄ are, respectively, the rank-2 tensors of strain and thermal moduli (or temperature coefficients of stress), 

θ̄ = T̄ − T̄ 0 is the local increment from the ambient temperature T̄ 0 and c̄ is the rank-4 isothermal stiffness tensor, whose 

components are denoted by c̄ i jkl . Hereinafter, an overbar is used to denote dimensional quantities, while summation over 

twice repeated suffices is implied. The linear strain tensor e is defined in terms of the displacement vector field ū by the

kinematical relations (Nowacki, 1977, Eq.(2.1)) 

e i j = 

1 

2 

( ̄u i, j + ū j,i ) , (2) 

where a comma indicates differentiation with respect to the implied spatial coordinate, i.e. ū i, j = ∂ ̄u i /∂ ̄x j . Motion of

anisotropic linear thermoelastic solids is governed by conservation of linear momentum (Nowacki, 1977, Eq.(2.6)) 

σ̄i j, j = ρ̄ ¨̄u i , (3a) 

where ρ̄ denotes the material mass density, a superimposed dot denotes time differentiation and we assume absence 

of body forces. The remaining energy equation can be constructed by combining the Fourier law of heat conduction 

(Nowacki, 1977, Eq.(2.19)) 

−q̄ i = κ̄i j ̄θ, j , (3b) 

with the following identity motivated by thermodynamical considerations (Nowacki, 1977, Eqs.(2.18), (2.20)) : 

−q̄ i,i = T̄ 0 β̄i j ̇ e i j + ρ̄C̄ v 
˙ θ̄ , (3c) 

where q̄ is the heat flux vector, C̄ v the specific heat at constant strain and κ̄i j are the components of the thermal conductivity

tensor κ̄. 

To perform dimensional analysis, the tensor of thermal moduli, β̄, will be defined as the product of a typical (dimen-

sional) temperature coefficient of stress, β̄, and the non-dimensional tensor 

βi j = c̄ i jkl ̄a kl / ̄β , (4) 

where ā is the tensor of linear expansion coefficients. Likewise, we will write κ̄i j = κ̄κi j for the heat conduction coeffi- 

cients, where κ̄ is a typical (dimensional) value for thermal conductivity. This representation will enable us to formulate a 

transparent non-dimensional form of the equations. 

This paper is devoted to the study of two-dimensional surface waves propagating in the symmetry plane (O, ̄x 1 , ̄x 2 ) of an

orthorhombic thermoelastic material (sagittal plane). In this case, both the tensor of linear expansion coefficients ā and the 

tensor of thermal conductivities κ̄κ become diagonal (Hahn & Özi ̧s ik, 2012, Chapter 15) , and so does the tensor of temper-

ature coefficients of stress β̄β. Also, harmonic behaviour is assumed in time, the common factor exp (− i ̄ω ̄t ) arising from it

being omitted throughout. After specializing to the symmetry plane and the material symmetry, and after introducing the 

Voigt notation for components of the stiffness tensor, we can write Eq. (3) in explicit form 

c̄ 11 ̄u 1 , 11 + c̄ 66 ̄u 1 , 22 + ( ̄c 12 + c̄ 66 ) ̄u 2 , 12 − β̄β11 ̄θ, 1 = −ρ̄ω̄ 

2 ū 1 , (5a) 

c̄ 66 ̄u 2 , 11 + c̄ 22 ̄u 2 , 22 + ( ̄c 12 + c̄ 66 ) ̄u 1 , 12 − β̄β22 ̄θ, 2 = −ρ̄ω̄ 

2 ū 2 , (5b) 

κ̄κ11 ̄θ, 11 + κ̄κ22 ̄θ, 22 + i ̄ω ( ̄T 0 β̄β11 ̄u 1 , 1 + T̄ 0 β̄β22 ̄u 2 , 2 + ρ̄C̄ v ̄θ ) = 0 . (5c) 

It is worth noting that the positive definiteness of the strain energy necessitates that 

c̄ 11 , ̄c 22 , ̄c 66 > 0 and c̄ 11 ̄c 22 − c̄ 2 12 > 0 , (6) 

see Nobili and Prikazchikov (2018) . 

Eq. (5) must be solved in conjunction with the appropriate mechanical and thermal boundary conditions on the free 

surface x̄ 2 = 0 . The vanishing of tangential and normal stress is achieved when 

ū 1 , 2 + ū 2 , 1 = 0 , at x̄ 2 = 0 , (7a) 

c̄ 12 ̄u 1 , 1 + c̄ 22 ̄u 2 , 2 − β̄β22 ̄θ = 0 , at x̄ 2 = 0 . (7b) 

Lastly, we enforce an isothermal boundary 

θ̄ = 0 , at x̄ 2 = 0 ; (7c) 
3 
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the physical significance, limitations and reasoning behind this specific boundary condition being addressed later in the 

paper. 

Given that spotlight is set on how elastic waves are affected by coupling with the thermal field, we introduce the char-

acteristic length h̄ , which is the typical wavelength of the elastic disturbance. From this, we move to the non-dimensional

form of Eq. (5) and of the boundary conditions (7) , which brings out the natural small parameters that govern the prob-

lem. More specifically, we use h̄ as our unit of length and T̄ = h̄ / 
√ 

c̄ 66 / ̄ρ as our unit of time and introduce dimensionless

quantities accordingly 

x i = h̄ 

−1 x̄ i , ū i = h̄ 

−1 ū i , ω = T̄ ω̄ , θ = 

ρ̄C̄ v 

β̄ T̄ 0 
θ̄ . (8) 

This re-scaling transforms Eq. (5) into non-dimensional form 

c̄ 11 

c̄ 66 

u 1 , 11 + u 1 , 22 + 

(
c̄ 12 

c̄ 66 

+ 1 

)
u 2 , 12 − εβ11 θ, 1 = −ω 

2 u 1 , (9a) 

u 2 , 11 + 

c̄ 22 

c̄ 66 

u 2 , 22 + 

(
c̄ 12 

c̄ 66 

+ 1 

)
u 1 , 12 − εβ22 θ, 2 = −ω 

2 u 2 , (9b) 

α(κ11 θ, 11 + κ22 θ, 22 ) + i ω(β11 u 1 , 1 + β22 u 2 , 2 + θ ) = 0 , (9c) 

within which 

ε = 

β̄2 T̄ 0 

ρ̄C̄ v ̄c 66 

and α = �̄ / ̄h , where �̄ = κ̄/ ( ̄C v 
√ 

ρ̄ c̄ 66 ) . (10) 

Similarly, the boundary conditions (7) re-scale as 

u 1 , 2 + u 2 , 1 = 0 , at x 2 = 0 , (11a) 

c̄ 12 

c̄ 66 

u 1 , 1 + 

c̄ 22 

c̄ 66 

u 2 , 2 − εβ22 θ = 0 , at x 2 = 0 , (11b) 

θ = 0 , at x 2 = 0 . (11c) 

The newly introduced non-dimensional parameters ε and α characterize fundamental aspects of the interaction between 

the thermal and the elastic fields. The parameter ε, characterizing the strength of coupling between the fields, differs by the

constant factor c̄ 11 / ̄c 66 from the identically named parameter given in Chadwick and Sneddon (1958) . Since the thermoelastic 

effect is not particularly strong, numerical values for ε are typically around a few per cent, see e.g. Chadwick and Sneddon

(1958 , Table 1). 

The parameter α expresses the ratio between the characteristic lengths �̄ and h̄ , where �̄ is proportional to the mean free 

path of the thermal phonons and is measured on the scale of nanometers, see Kittel (1996) . It is, effectively, an equivalent

of the Knudsen number in fluid mechanics. In the vast majority of devices using surface acoustic waves, the parameter α
is going to be small or very small. In fact, the equations of classical thermoelasticity can be formulated without any phe-

nomenological assumptions, by a formal limiting procedure that moves from the microscopic description provided by Boltz- 

mann’s equation. The key assumption in such a procedure is that strains and rates of strain should vary slowly, compared to

the mean free path of the thermal phonons (Maris, 1969, Eqs. (28) and (29)) , i.e., in our terms, when �̄ � h̄ or, equivalently,

α � 1 . The use of thermoelasticity in situations where the parameter α is not small cannot be similarly justified, see also

Auriault (2014) . 

3. Quasi-adiabatic approximation 

The smallness of α can be put to considerable advantage by constructing an essentially simplified version of our bound- 

ary value problem. We begin by making the usual asymptotic assumption that constant factors in front of the terms in

Eq. (9) indicate their relative contribution and that differentiation of all relevant fields does not alter their asymptotic or- 

der. It is then clear that the first term on the left hand side of Eq. (9c) is vanishingly small. The remaining terms can be

rearranged into 

θ a = −β11 u 

a 
1 , 1 − β22 u 

a 
2 , 2 , (12) 

which can be recognized as a type of adiabatic condition, because it says that local temperature is a function of the local

deformation (which reduces to volume deformation in the isotropic case). Here, we added the superscript a to indicate 

adiabatic fields that satisfy (12) and, effectively, are the leading order terms in the regular expansion in α. We can now

treat local temperature as a dependent parameter, which can be determined from the displacement field ū . Consequently, 

we use Eq. (12) to eliminate θ a from the equations of motion (9a), (9b) , which yields 

˜ c 11 

˜ c 66 

u 

a 
1 , 11 + u 

a 
1 , 22 + 

(
˜ c 12 

˜ c 66 

+ 1 

)
u 

a 
2 , 12 = −ω 

2 u 

a 
1 , (13a) 
4 
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u 

a 
2 , 11 + 

˜ c 22 

c̄ 66 

u 

a 
2 , 22 + 

(
˜ c 12 

˜ c 66 

+ 1 

)
u 

a 
1 , 12 = −ω 

2 u 

a 
2 , (13b) 

where we introduced the adiabatic stiffness constants ˜ c i j (no summation implied over repeated indices) 

˜ c i j = c̄ i j + ε ̄c 66 βii β j j , i, j = 1 , 2 , and 

˜ c 66 = c̄ 66 , (14) 

see e.g. (Shuvalov & Scott, 20 0 0, p. 3) . Eq. (13) are formally equivalent to the usual equations of elastodynamics for an

orthorhombic solid, written in the time-harmonic regime ( Nobili & Prikazchikov, 2018 ). Nowacki demonstrates a similar 

reduction for isotropic materials (Nowacki, 1975, Section 1.16) ; he refers to the resulting effective equations as equations 

of elastokinetics . These equations reflect the fact that thermoelastic wave motion is governed, to the leading order in α,

by equations formally equivalent to those of isothermal elasticity, although with adiabatic material constants. Indeed, the 

distinction between static and dynamic elastic modulae is put forward in the engineering literature for the same reason. 

The parameter α is often so small that Eq. (13) are perfectly adequate for describing many thermoelastic problems. How- 

ever, it is important to recognize that elimination of the O (α) terms disregards some of the qualitative features specific of

the thermoelastic response. For example, Eq. (13) cannot predict bulk wave dissipation, which occurs owing to the coupling 

with the thermal field. In the case of isotropic elasticity, it is possible to construct the higher-order version of Eq. (13) with

truncation error O (α2 ) , see Pichugin (2010) . The resulting equations remain formally equivalent to these of isothermal elas-

ticity, although material constants become complex-valued and frequency dependent. Consequently, a viscoelastic Voigt-like 

solid is retrieved, which can be interpreted as an effective model for thermoelastic dissipation in the bulk. 

For situations where dissipation is irrelevant, specialized theories of thermoelasticity have been formulated that feature 

no dissipation at all, see e.g. Sarkar and Lahiri (2012) . The perturbation technique described in this Section can be considered

an alternative approach to formulating a theory of this kind, basically assuming that parameter α is negligibly small. 

Importantly, thermoelastic dissipation is not always dominated by dissipation of bulk waves. Indeed, similarly to Kon- 

stantinov’s effect in acoustics, see Legusha (1984) , dissipation can be induced by the near-surface boundary layer. In fact, 

reduction of the three equations of thermoelasticity (9) to the pair of equations of elastokinetics (13) expresses the result

that temperature is no longer an independent field. As a result, the thermal boundary condition cannot be accommodated 

without a thermoelastic boundary layer. 

3.1. Boundary layer 

Boundary layer solutions may be constructed by introducing the scaled coordinates 

x 1 = ξ , x 2 = 

√ 

αζ , (15) 

which allow to zoom into the vicinity of boundary. Furthermore, we assume the following asymptotic structure for our 

fields: 

u 

bl 
1 = αu 

(0) 
1 

+ O (α2 ) , (16a) 

u 

bl 
2 = 

√ 

αu 

(0) 
2 

+ O (α3 / 2 ) , (16b) 

θ bl = θ (0) + O (α) . (16c) 

After inserting the ansatz (16) into the governing Eq. (9) , we obtain the leading order problem 

u 

(0) 
1 ,ζ ζ

+ 

(
c̄ 12 

c̄ 66 

+ 1 

)
u 

(0) 
2 ,ξζ

− εβ11 θ
(0) 
,ξ

= 0 , (17a) 

c̄ 22 

c̄ 66 

u 

(0) 
2 ,ζ ζ

− εβ22 θ
(0) 
,ζ

= 0 , (17b) 

κ22 θ
(0) 
,ζ ζ

+ i ω 

(
θ (0) + β22 u 

(0) 
2 ,ζ

)
= 0 . (17c) 

Integrating Eq. (17b) yields the “anti-adiabatic” relationship (in the sense that it provides displacement gradients with 

respect to local temperature) 

u 

(0) 
2 ,ζ

= εβ22 
c̄ 66 

c̄ 22 

θ (0) , (18) 

which, upon substitution into Eq. (17c) , lends an explicit constant-coefficient ordinary differential equation for the boundary 

layer temperature 

κ22 θ
(0) 
,ζ ζ

+ i ωδ2 θ (0) = 0 , (19) 
5 
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where δ2 = 1 + εβ2 
22 

c̄ 66 
c̄ 22 

is a material parameter assuming the role of a decay index. This equation admits the solution 

θ (0) = �(0) exp 

( 

± (1 − i ) 
√ 

ω √ 

2 κ22 

δζ

) 

, (20) 

where �(0) = �(0) (ξ ) and the sign in the exponent is chosen as to ensure decay as ζ → ∓∞ (corresponding to the solid oc-

cupying the lower or the upper half-plane). This solution represents an oscillatory boundary layer, rapidly decaying into the 

interior of half-space, very similar to thermal boundary layers in acoustics and fluid mechanics. The associated displacement 

field is established integrating the remaining governing Eq. (17a) 

u 

(0) 
1 

= i εκ22 ω 

−1 δ−2 

(
β11 − β22 

c̄ 12 + c̄ 66 

c̄ 22 

)
θ (0) 

,ξ
, (21) 

and accounting for ( 18,20 ) 

u 

(0) 
2 

= ±(1 + i ) ε 
β22 ̄c 66 

√ 

κ22 √ 

2 ̄c 22 

√ 

ω δ
θ (0) . (22) 

Thus, it is possible to recover the leading order boundary layer solution in terms of the amplitude function �(0) = �(0) (ξ ) .

3.2. Effective boundary conditions 

The regular expansion 

θ = θ a + αθ (1) + . . . , 

reduced the system of three partial differential equations of thermoelasticity (9) to the system of two quasi-adiabatic 

Eq. (13) . We can now use the newly constructed explicit solution for thermoelastic boundary layer to perform a similar re-

duction for the boundary conditions (11) . This is done using the Vishik-Lyusternik method, see Vis ̆ik and Lyusternik (1962) .

Specifically, we seek our solution in the form of the composite expansions 

u 1 = u 

a 
1 + u 

bl 
1 , u 2 = u 

a 
2 + u 

bl 
2 , θ = θ a + θ bl . (23) 

In view of these, our isothermal boundary condition (11c) can be used to recover the boundary layer amplitude 

�(0) = θ bl | x 2 =0 = −θ a | x 2 =0 = 

[
β11 u 

a 
1 , 1 + β22 u 

a 
2 , 2 

]
x 2 =0 

, (24) 

where we have employed the adiabatic relationship (12) . This completely defines the leading order boundary layer solu- 

tion in terms of the leading order adiabatic displacements. Upon recalling ( 15,16,22,23 ), we may recast the stress boundary

conditions (11a) and (11b) purely in terms of the adiabatic solution 

u 

a 
1 , 2 + u 

a 
2 , 1 + 

√ 

α
εD √ 

ω 

(
β11 u 

a 
1 , 11 + β22 u 

a 
2 , 12 

)
= 0 , at x 2 = 0 , (25a) 

˜ c 12 

˜ c 66 

u 

a 
1 , 1 + 

˜ c 22 

˜ c 66 

u 

a 
2 , 2 = 0 , at x 2 = 0 , (25b) 

where the non-dimensional parameter D is defined by 

D = ±1 + i √ 

2 

√ 

κ22 

(
β11 − β22 

˜ c 12 

˜ c 22 

)
√ 

1 − εβ2 
22 

˜ c 66 

˜ c 22 

. (26) 

Disregarding O ( 
√ 

α) terms, the effective boundary conditions (25) are formally equivalent to the classical stress-free 

boundary conditions of plain elasticity, provided that these are written in terms of adiabatic material constants. Thus, we 

conclude that the leading order contribution coming from coupling thermal and elastic fields is most simply obtained re- 

placing isothermal with adiabatic material constants, similarly to what occurs for isotropic media, see Lockett (1958) . Next, 

the O ( 
√ 

α) contribution to the shear stress (25a) describes the leading order term arising from thermoelastic diffusion.

Remarkably, for the specific case of isothermal boundary condition considered here, this contribution is larger than the dif- 

fusion contribution arising from bulk waves, which appears through O (α) terms. As a result, in the vicinity of isothermal

boundaries, the thermoelastic boundary layer dominates diffusive interactions. 

A similar asymptotic analysis may be performed considering the complementary boundary condition for temperature, 

which is that of perfectly insulated (or zero thermal flux) boundary. In this case, it turns out that the first boundary cor-

rection term is O (α) , which is of the same asymptotic order as the first omitted term from the governing equations of

elastokinetics (13) . As a consequence, a consistent description of this condition demands producing higher-order correction 

terms for both the governing equations as well as for the boundary conditions. However, this rests outside the scope of

this paper, also in consideration of the fact that the corresponding thermoelastic contributions are much weaker. This is 

independently confirmed in the analysis by Mayer (1990) . 
6 
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4. Surface waves on isothermal boundary 

We are now in a position to exploit the quasi-adiabatic governing Eq. (13) and the effective boundary conditions (25) to

describe fully-coupled thermoelastic surface waves. This is done by seeking travelling wave solutions 

u 

a 
1 , 2 = U 

a 
1 , 2 exp ( kqx 2 ) exp ( i kx 1 ) , (27) 

where U 

a 
1 , 2 

are constant amplitudes, k ∈ R is the dimensionless wavenumber and q the attenuation index. We observe that,

in light of the implied factor exp (− i ̄ω ̄t ) ≡ exp (− i ωt) , positive values of k correspond to right-propagating waves moving 

with phase velocity v = ω/k . 

Substitution of (27) into the quasi-adiabatic governing Eq. (13) yields a homogeneous algebraic system that is linear in 

the unknowns U 

a 
1 

and U 

a 
2 

. Non-trivial solutions of this system exist when its determinant vanishes, whence we get the

secular (or frequency) equation 

q 4 + d 2 q 
2 + d 0 = 0 , (28) 

that is a bi-quadratic polynomial in q with coefficients 

d 2 = 

(
1 + 

˜ c 66 

˜ c 22 

)
v 2 + 

2 ̃

 c 12 ̃  c 66 − ˜ c 11 ̃  c 22 + 

˜ c 2 12 

˜ c 66 ̃  c 22 

, (29a) 

d 0 = (1 − v 2 ) 
˜ c 11 − ˜ c 66 v 2 

˜ c 22 

. (29b) 

Eq. (28) sets the condition for existence of bulk waves. These are generally inhomogeneous, although, in the special situ- 

ation v = 1 , homogeneous bulk waves moving with the longitudinal wavespeed 

√ 

c̄ 66 / ̄ρ are retrieved. Again, this wavespeed 

formally corresponds to the classical result, except for the use of adiabatic material parameters. 

We now move to surface waves and assume, to fix ideas, that the half-space is located at x 2 ≤ 0 , whence decay occurs

as x 2 → −∞ . For this, the pair of admissible solutions, q 1 and q 2 , of the bi-quadratic secular Eq. (28) must have positive

real part, i.e. � (q 1 ) > 0 and � (q 2 ) > 0 . To each solution q i we attach the wave amplitudes U 

a 
1 ,i 

and U 

a 
2 ,i 

that form the mode

vector. They are related by 

U 

a 
2 ,i = i q i 

˜ c 12 + 

˜ c 66 

˜ c 66 

(
1 − v 2 

)
− ˜ c 22 q 

2 
i 

U 

a 
1 ,i , i = 1 , 2 . (30) 

Also, in light of Vieta’s theorem, we have 

q 2 1 + q 2 2 = −d 2 , and q 2 1 q 
2 
2 = d 0 . (31) 

Substituting the general wave solutions (27) , written for each decay index q i , into the effective boundary conditions (25) ,

computing the determinant of the resulting linear system and employing relations ( 31,30 ), one obtains, after lengthy alge-

braic manipulations, the following dispersion relation 

v 2 + 

˜ c 2 12 − ˜ c 11 ̃  c 22 

˜ c 22 ̃  c 66 

+ 

q 1 q 2 v 2 

1 − v 2 

+ εD 

(β11 ̃  c 22 − β22 ̃  c 12 ) 

˜ c 22 

√ 

v 
(q 1 + q 2 ) 

√ 

k 
√ 

α = 0 , (32) 

where terms of the order O (α) and higher are omitted. The leading order terms of the dispersion relation are equivalent

to the secular equation for surface waves in orthorhombic bodies, see Chadwick (1976) , Royer and Dieulesaint (1984) or

Nobili and Prikazchikov (2018) . The remaining O ( 
√ 

α) term encapsulates the leading order influence of thermoelastic cou- 

pling, which results in both dispersion and dissipation of the surface waves. 

The relative simplicity of the dispersion relation (32) suggests to formulate an explicit asymptotic expansion for its solu- 

tion: 

v 2 R = v 2 0 (1 + v 2 1 

√ 

α + O (α)) . (33) 

Here v 0 is the surface wave speed in the orthorhombic half-space with adiabatic material constants, i.e. the solution of 

v 2 0 + 

˜ c 2 12 − ˜ c 11 ̃  c 22 

˜ c 22 ̃  c 66 

+ v 2 0 

√ 

˜ c 11 − ˜ c 66 v 2 0 

˜ c 22 (1 − v 2 
0 
) 

= 0 , (34) 

and we get the correction 

v 2 1 = 

2 ε ̃  c 22 D v −1 / 2 
0 

(β11 ̃  c 22 − β22 ̃  c 12 ) 
[
q 2 1 q 

2 
2 (q 1 + q 2 ) 

]
v = v 0 

√ 

k 

( ̃  c 11 ̃  c 22 − ˜ c 2 )( ̃  c 66 v 4 − ( ̃  c 11 + 3 ̃

 c 66 ) v 2 + 2 ̃

 c 11 ) + 

˜ c 66 v 4 ( ̃  c 22 ̃  c 66 − ˜ c 2 ) 
. (35) 
12 0 0 0 12 

7 
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Table 1 

Material parameters which are selected to reproduce the response of 

the worked pure copper, as used by Chadwick and Windle (1964) . 

Worked pure ρ̄ = 8940 kg/m 

3 ; c̄ 11 = ̄c 22 = 199 . 5 GPa, 

copper c̄ 12 = ̄c 13 = ̄c 23 = 101 . 346 GPa, c̄ 66 = 49 . 077 GPa; 

(isotropic) T̄ 0 = 293 K; 

ā 11 = ā 22 = ā 33 = 16 . 7 · 10 −6 K −1 ; 

C̄ v = 386 J/(kg ·K) and κ̄ = 383 W/(m ·K), 

κ11 = κ22 = 1 , see Davis (2001 , pp. 446–452). 

Eqs. (4) and (10) 1 yield β̄ = 6 . 717 MPa K −1 , 

β11 = β22 = 1 and ε = 0 . 07805 . 

For h̄ = 1 · 10 −3 m one has α = 0 . 0 0 0 04737 . 

 

 

 

 

 

 

 

 

 

The key take away message of this section is not really about constructing an asymptotic description for dispersion and 

dissipation of surface waves in orthorhombic media, even though expansion (33) –(35) is new and remarkably straightfor- 

ward. The real importance of this result is that it was obtained by solving the effective “quasi-adiabatic” boundary value 

problem (13), (25) instead of the much more complex full boundary value problem (9), (11) . The additional effort spent on

deriving effective boundary conditions (25) may be recuperated by noting that they can now be used to solve other bound-

ary value problems, for example, the problem of reflection and/or conversion of plane waves at the free surface, see e.g.

Nobili, Radi, and Signorini (2020) . 

4.1. Specialization to isotropic materials 

The asymptotic expansion (33) assumes a particularly simple form for isotropic materials, for which 

˜ c 11 = 

˜ c 22 = 

˜ λ + 2 ̃  μ, ˜ c 12 = 

˜ λ , ˜ c 66 = ˜ μ, β11 = β22 = κ11 = κ22 = 1 , (36) 

where ˜ λ and ˜ μ are the adiabatic values of the standard Lamé parameters. The associated secular Eq. (34) can be re-written 

as 

v 2 0 

⎛ 

⎝ 1 + 

√ 

1 − ˜ �v 2 
0 

1 − v 2 
0 

⎞ 

⎠ = 4(1 − ˜ �) , where ˜ � = 

˜ μ

˜ λ + 2 ̃  μ
. (37) 

Even though Eq. (37) may look unfamiliar, Chadwick (1976) describes a sequence of steps to transform (37) into the standard

form for the Rayleigh secular equation. The corresponding expression for the correction v 2 
1 

is also much simpler in the

isotropic case 

v 2 1 = 

ε ˜ �D (2 − v 2 0 ) 
4 
√ 

2 v 4 
0 

− 4(3 + 

˜ �) v 2 
0 

+ 16 

8 

√ 

v 0 (1 − ˜ �)((1 − 8 ̃

 �) v 4 
0 

+ (4 + 12 ̃

 �) v 2 
0 

− 8) 

√ 

k , (38) 

where D = (1 + i ) 
√ 

2 ̃  �/ 

√ 

1 − ε ˜ �. 

An essentially equivalent asymptotic expansion for the thermoelastic surface wave speed in isotropic materials was given 

by Chadwick and Windle (1964) . Direct comparison of this expression with (33) is difficult, because the implicit nature of

the Rayleigh Eq. (37) for v 0 makes the expressions for all of the higher-order coefficients non-unique. However, we can 

still revert to numerical comparison. Table 1 lists the material parameters for worked pure copper, which were used for all

numerical examples in Chadwick and Windle (1964) . 1 The constant factor c 1 for the first correction to surface wave velocity

in the paper by Chadwick and Windle (1964) can be written in terms of our constant v 2 1 as follows 

c 1 = − (1 − i ) 
√ 

1 − ε ˜ �√ 

2 v 0 k 
v 2 1 . (39) 

Evaluating this expression using the parameters of Table 1 for pure worked copper gives c 1 ≈ 0 . 004896593 , which fully

agrees with the corresponding value given in Chadwick and Windle (1964 , p. 58). 

5. Numerical examples 

To better illustrate the effectiveness of the quasi-adiabatic approximation, we compare solution (33) of the asymptotic 

dispersion relation (28) against the numerical solutions of the exact dispersion relation for the fully coupled thermoelastic 
1 The parameters given by Chadwick and Windle (1964) are incomplete, i.e. they cannot be used to provide a full description of surface waves. Hence, 

in order to provide the full picture, we use literature values for pure copper, see Davis (2001 , pp. 446–452), and work out the components of the stiffness 

and of the thermal conductivity tensors to match the results reported by Chadwick and Windle (1964) . 

8 
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problem. In order to derive such dispersion relation, we consider a travelling wave solution for the governing Eq. (9) 

{ u 1 , u 2 , θ} = { U 1 , U 2 , �} exp ( kqx 2 ) exp ( i kx 1 ) , (40) 

and obtain a homogeneous linear algebraic system in the amplitudes U 1 , 2 and �. Just as in Section 4 , a common factor

exp (− i ̄ω ̄t ) ≡ exp (− i ωt) is assumed, see (8) 3 , and k > 0 corresponds to the right-propagating waves with the velocity v =
ω/k . The requirement that a non-trivial solution exists provides the secular equation, in the form of a bi-cubic equation for

the attenuation index q : 

b 6 q 
6 + b 4 q 

4 + b 2 q 
2 + b 0 = 0 , (41) 

where 

b 6 = κ22 
c̄ 22 

c̄ 66 

α , b 4 = 

i v 
k 

(
c̄ 22 

c̄ 66 

+ εβ2 
22 

)
−

(
κ11 

c̄ 22 

c̄ 66 

− κ22 B 1 

)
α , (42a) 

b 2 = 

i v 
k 

(
B 1 − εβ2 

11 

c̄ 22 

c̄ 66 

+ 2 εβ11 β22 

(
c̄ 12 

c̄ 66 

+ 1 

)
+ εβ2 

22 B 2 

)
−

(
κ11 B 1 + κ22 (1 − v 2 ) B 2 

)
α , (42b) 

b 0 = (1 − v 2 ) 
(

i v 
k 

(εβ2 
11 − B 2 ) + κ11 B 2 α

)
, (42c) 

as well as 

B 1 = v 2 + 

c̄ 2 12 

c̄ 2 
66 

+ 2 

c̄ 12 

c̄ 66 

+ 

c̄ 22 

c̄ 66 

B 2 and B 2 = v 2 − c̄ 11 

c̄ 66 

. (43) 

We observe that the decay requirement as x 2 → ∓∞ demands that � (q i ) ≷ 0 for the roots q i , i = 1 , 2 , 3 , of (41) , which

provides the correct sign for the square root. Alongside the secular equation, we obtain relations for the ratios of component

amplitudes U 2 /U 1 and �/U 1 (explicit expressions for those are omitted for the sake of brevity). 

Enforcing now the boundary conditions (11) provides the sought-for dispersion relation, in the form of a polynomial in 

the attenuation indices q i 

2 ∑ 

i, j,k =0 

a i jk q 
i 
1 q 

j 
2 
q k 3 = 0 , (44) 

where a i jk = 0 unless i + j + k ∈ { 0 , 2 , 4 , 6 } . The nonzero coefficients are 

a 222 = c̄ 22 ̄c 66 ̄A 2 ( ̄A 2 − c̄ 66 β22 v 2 ) , (45a) 

a 220 = c̄ 22 ̄c 66 ̄A 2 ( ̄c 66 β22 v 2 − Ā 1 )(1 − v 2 ) , (45b) 

a 200 = c̄ 22 ̄c 66 ( ̄A 1 − Ā 6 v 2 )( ̄A 1 − c̄ 66 β22 v 2 )(1 − v 2 ) , (45c) 

a 211 = c̄ 22 ̄c 66 v 2 ( ̄c 66 β22 ( ̄A 6 − Ā 2 ) v 2 + Ā 1 ̄A 2 − c̄ 66 ̄A 2 β11 − c̄ 66 ̄A 1 β22 ) , (45d) 

a 110 = a 211 (1 − v 2 )( ̄c 2 12 − c̄ 11 ̄c 22 + c̄ 22 ̄c 66 v 2 ) / ( ̄c 22 ̄c 66 v 2 ) , (45e) 

a 0 0 0 = ( ̄A 6 v 2 − Ā 1 )(1 − v 2 ) 
[
c̄ 22 ̄c 

2 
66 β22 v 4 − ( ̄c 11 ̄A 2 + 2 ̄c 12 ̄A 1 ) ̄c 66 (45f) 

+ ̄c 66 ( ̄c 12 ̄A 6 − 2 ̄c 22 ̄A 1 − c̄ 12 ̄A 2 + c̄ 22 ̄c 66 β11 ) v 2 − ( ̄c 2 12 − c̄ 11 ̄c 22 ) ̄A 1 

]
, (45g) 

where 
Ā 1 = c̄ 11 β22 − c̄ 12 β11 , Ā 2 = c̄ 22 β11 − c̄ 12 β22 , Ā 6 = c̄ 66 (β11 + β22 ) , (45h) 

and the cyclic permutation property a i jk = a jki = a ki j stands, namely 

a 200 = a 020 = a 002 , a 011 = a 101 = a 110 , (45i) 

a 211 = a 121 = a 112 , a 022 = a 202 = a 220 . (45j) 

Fig. 1 illustrates a sample numerical solution of the dispersion relation (44) for the Rochelle salt, which is an anisotropic

material widely used for piezoelectric transducers. The crystal symmetry of the Rochelle salt is orthorhombic, and a rep- 

resentative set of material parameters is gathered in Table 2 . Superposed onto the dispersion curve for the fully coupled
9 
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Fig. 1. Dispersion and dissipation of thermoelastic surface waves propagating along the Ox 1 -axis in the Rochelle salt: respectively, real (a) and imaginary 

part (b) of the phase velocity v R . The solid curve, representing the numerical solution of the fully coupled thermoelastic system, is superposed onto the 

asymptotic approximation (33) , that appears in dotted style. 

Table 2 

Material parameters for the Rochelle salt. 

Rochelle salt NaKC 4 H 4 O 6 · 4H 2 O ρ̄ = 1767 kg/m 

3 (Berlincourt, Curran, & Jaffe, 1964, p. 180) ; 

(orthorhombic) c̄ 11 = 25 . 5 GPa, c̄ 12 = 14 . 1 GPa, c̄ 13 = 11 . 6 GPa, 

c̄ 22 = 38 . 1 GPa, c̄ 23 = 14 . 6 GPa, c̄ 66 = 9 . 79 GPa 

(Huntington, 1958, p. 72) ; T̄ 0 = 300 K; 

C̄ v = 1390 J/(kg ·K) (Helwig, 1974, p. 226) ; 

ā 11 = 58 · 10 −6 K −1 , ā 22 = 33 . 53 · 10 −6 K −1 , 

ā 33 = 43 . 33 · 10 −6 K −1 (Moina, Levitskii, & Zachek, 2011, p. 8) ; 

κ̄ = 0 . 5 W/(m ·K), κ11 = 1 , κ22 = 1 . 22 

(Newnham, 2005, p. 206) . 

Eqs. (4) and (10) 1 yield β̄ = 2 . 45 MPa K −1 , 

β11 = 1 , β22 = 1 . 11 and ε = 0 . 0749 . 

For h̄ = 1 · 10 −6 m one has α = 0 . 0 0 0 0865 . 

 

 

 

 

system is the asymptotic approximation (33) , that is plotted in dotted style. It appears that the latter reproduces the exact

curve over a wide range of wave numbers, especially in terms of dispersion. Overall, an excellent agreement can be observed

for (dimensionless) wavenumbers k up to 100. For higher wavenumbers, the exact solution exhibits a peak of dissipation, 

see Fig. 1 (b), which is not captured by the asymptotic solution. This happens because dissipation peaks for wavelengths

comparable to the mean free path of thermal phonons, which is precisely where our natural small parameter ceases to 

be small. Still, it is worth reiterating that the validity of the very equations of the thermoelasticity in this regime is very

questionable, see Fichera (1992) and Auriault (2014) . 
10 
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6. Conclusions 

Thermo-mechanical coupling drives design of modern microelectronics systems, on account of the outstanding growth 

in the number of integrated sub-systems which can now be fitted in a single packaging, see Lau (1993) . Besides, thermo-

mechanical interaction is a key factor in understanding dispersion and dissipation at high frequencies, which are typical of 

modern signal processing and passband filter devices, see Morgan (2007) . However, the fully coupled equations of thermoe- 

lasticity pose a formidable obstacle to analytical approaches, while numerical solutions suffer from the usual flaw of lending 

little insight on the role of the problem’s parameters. 

In this paper, the equations of linear thermoelasticity are considered for orthorhombic materials. The aim is to develop 

better physical insight into the way in which thermoelastic coupling contributes to dispersive and dissipative properties of 

the media. This is achieved by an asymptotic approach which moves from the observation that the non-dimensional param- 

eter α, equivalent to the Knudsen number in fluid mechanics, is very small in practice. An asymptotic model is proposed

which reduces the role of temperature to that of a dependent field. Consequently, the leading order governing equations are 

expressed entirely in terms of displacements and formally correspond to those in classical linear elastodynamics, provided 

that isothermal material constants are replaced by their adiabatic counterparts. Such equations are known in the literature 

as equations of elastokinetics. Since the temperature field is now a dependent quantity, a boundary layer is required to 

satisfy thermal boundary conditions, in a manner similar to the edge-effect of shell theory. Consideration of this boundary 

layer leads to the formulation of effective boundary conditions for the equations of elastokinetics, through which the lead- 

ing order contribution of the correct thermal boundary conditions is reproduced. Interestingly, even though the equations 

of thermoelasticity exhibit dissipative behaviour, it is worth observing that the thus-constructed leading order asymptotic 

model admits a time-dependent Hamiltonian structure. 

Remarkably, in the case of isothermal boundary conditions, the viscoelastic response is produced, to leading order, by 

the boundary layer. This is in contrast to common sense expectation, which ascribes dissipation to bulk properties. In fact, 

dissipation is well described by the newly derived effective boundary conditions. On the other hand, insulated boundary 

conditions induce dissipation at an asymptotically higher order, and, to it, boundary and bulk thermal effects equally con- 

tribute. 

As an illustration of the effectiveness of this approach, surface wave propagation in an orthorhombic thermoelastic half- 

plane is considered. The dispersion relations for the asymptotic as well as for the fully coupled problem are given explicitly

and then compared numerically for a reference material, namely potassium sodium tartrate tetrahydrate (the Rochelle salt), 

that is widely used in piezoelectric transducers. Excellent agreement, for both dispersion and dissipation, is found up to 

relatively high dimensionless wavenumbers. The special case of isotropy is also considered, as it can be compared with 

existing results in the literature. 

Overall, this paper shows that dealing with fully-coupled thermoelastic problems does not need to be much more cum- 

bersome analytically than dealing with the purely elastic boundary value problems. We are confident that similar techniques 

are applicable to modelling of even more complex inhomogeneous waves in thermoelastic media, including waves guided 

by plate edges ( Pichugin & Rogerson, 2012 ) or other topographical features ( Pichugin, 2013 ). Our results are likely to be

particularly relevant for modelling micro and nano-scale structures, because their characteristic dimensions can become 

comparable with the mean free path of the thermal phonons, and consequently thermo-elastic coupling plays a significant 

role. 
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