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FFA and OFA Encode Distinct Types of Face Identity
Information
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Faces of different people elicit distinct fMRI patterns in several face-selective regions of the human brain. Here we used rep-
resentational similarity analysis to investigate what type of identity-distinguishing information is encoded in three face-selec-
tive regions: fusiform face area (FFA), occipital face area (OFA), and posterior superior temporal sulcus (pSTS). In a sample
of 30 human participants (22 females, 8 males), we used fMRI to measure brain activity patterns elicited by naturalistic vid-
eos of famous face identities, and compared their representational distances in each region with models of the differences
between identities. We built diverse candidate models, ranging from low-level image-computable properties (pixel-wise, GIST,
and Gabor-Jet dissimilarities), through higher-level image-computable descriptions (OpenFace deep neural network, trained to
cluster faces by identity), to complex human-rated properties (perceived similarity, social traits, and gender). We found
marked differences in the information represented by the FFA and OFA. Dissimilarities between face identities in FFA were
accounted for by differences in perceived similarity, Social Traits, Gender, and by the OpenFace network. In contrast, repre-
sentational distances in OFA were mainly driven by differences in low-level image-based properties (pixel-wise and Gabor-Jet
dissimilarities). Our results suggest that, although FFA and OFA can both discriminate between identities, the FFA represen-
tation is further removed from the image, encoding higher-level perceptual and social face information.

Key words: face identity; face processing; FFA; OFA; representational similarity analysis

(s )

Recent studies using fMRI have shown that several face-responsive brain regions can distinguish between different face identi-
ties. It is however unclear whether these different face-responsive regions distinguish between identities in similar or different
ways. We used representational similarity analysis to investigate the computations within three brain regions in response to
naturalistically varying videos of face identities. Our results revealed that two regions, the fusiform face area and the occipital
face area, encode distinct identity information about faces. Although identity can be decoded from both regions, identity rep-
resentations in fusiform face area primarily contained information about social traits, gender, and high-level visual features,
whereas occipital face area primarily represented lower-level image features. /
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Introduction

The human brain contains several face-selective regions that
consistently respond more to faces than other visual stimuli
(Kanwisher et al., 1997; Pitcher et al., 2011; Rossion et al., 2012;
Khuvis et al., 2021; Axelrod et al., 2019). fMRI has revealed that
some of these regions represent different face identities with dis-
tinct brain patterns. Specifically, studies using fMRI multivariate
pattern analysis have shown that face identities can be distin-
guished based on their elicited response patterns in the fusiform
face area (FFA), occipital face area (OFA), posterior superior
temporal sulcus (pSTS), and anterior inferior temporal lobe
(Nestor et al,, 2011; Goesaert and Op de Beeck, 2013; Verosky et
al,, 2013; Anzellotti et al., 2014; Axelrod and Yovel, 2015; Zhang
et al,, 2016; Anzellotti and Caramazza, 2017; Guntupalli et al,
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2017; di Oleggio Castello et al., 2017; Tsantani et al., 2019; for
results using intracranial EEG [iEEG], see also Davidesco et al.,
2014; Ghuman et al., 2014; Khuvis et al., 2021). But do these
regions represent the same information and, if not, what infor-
mation is explicitly encoded in each of these face-selective
regions?

Behaviorally, we distinguish between different faces using the
surface appearance of the face, the shape of face features, and
their spacing or configuration (e.g., Rhodes, 1988; Calder et al,,
2001; Yovel and Duchaine, 2006; Russell and Sinha, 2007; Russell
et al., 2007; Tardif et al., 2019). In particular, Abudarham and
Yovel (2016) recently showed that features, such as lip thickness,
hair color, eye color, eye shape, and eyebrow thickness, were cru-
cial in distinguishing between individuals (see also Abudarham
et al, 2019). Additionally, we perceive a vast amount of socially
relevant information from faces that can be used to distinguish
between different individuals, such as gender, age, ethnicity, and
social traits (Oosterhof and Todorov, 2008; Sutherland et al.,
2013), and even relationships and social network position
(Parkinson et al., 2014, 2017). Therefore, if the response patterns
in a certain brain region distinguish between two individuals,
that region could be representing any one, or a combination of,
these dimensions.

Like several other studies (see above), Goesaert and Op de
Beeck (2013) demonstrated that the FFA, OFA, and a face-selec-
tive region in the anterior inferior temporal lobe could all decode
between different face identities based on fMRI response pat-
terns. Importantly, the authors further tested what type of face
information was encoded in these different regions. The authors
found that all three regions could distinguish between faces using
both configural and featural face information; therefore, all
regions seemed to represent similar information. Goesaert and
Op de Beeck (2013) also showed that representational distances
between different faces in face-selective regions did not correlate
with low-level pixel-based information. This study, however,
used one single image for each person’s face, making it difficult
to disentangle whether representations in a certain brain region
are related to identity per se or related to the specific images
used.

To determine whether brain response patterns represent face
identity per se, it is necessary to show that patterns generalize
across different images of the same person’s face, in addition to
distinguishing that person’s face from the faces of other people.
Anzellotti et al. (2014) showed that classifiers trained to decode
face identities in the FFA, OFA, anterior temporal lobe, and
pSTS (later analyzed in Anzellotti and Caramazza, 2017) could
also decode the same faces from novel viewpoints. Guntupalli et
al. (2017) additionally showed a hierarchical organization of the
functions of face-selective regions, with the OFA decoding view-
point of face independently of the face identity, the anterior infe-
rior temporal lobe (and a region in the inferior frontal cortex)
decoding face identity independently of the viewpoint, and the
FFA decoding both viewpoint and identity information (see also
Dubois et al., 2015). Extending these findings and using iEEG in
epilepsy patients, Ghuman et al. (2014) showed invariant decod-
ing in the FFA across different facial expressions. In contrast,
Grossman et al. (2019) have recently shown that representational
distances between different face identities (computed from brain
response patterns recorded from implanted electrodes) were very
similar across the OFA and the FFA (in the left hemisphere).
Crucially, the representational geometries in both regions were
associated with differences in image-level descriptions computed
from a deep neural network (VGG-Face), which were not
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generalizable across different viewpoints of the same person’s
face. These results thus suggest that the OFA and FFA both rep-
resent complex configurations of image-based information and
not face identity per se.

Also using iEEG, Davidesco et al. (2014) further showed that
representational distances between face images in the FFA (and
to a lesser extent in the OFA) were associated with perceived
similarity and characteristics of facial features (e.g., face area and
mouth width), but not with low-level features related to pixel-
based information (see also Ghuman et al., 2014). Some fMRI
studies have shown that even lower-level stimulus-based proper-
ties of face images, such as those computed by Gabor filters,
explain significant variance in the representational geometries in
the FFA (Carlin and Kriegeskorte, 2017) as well as OFA and
pSTS (Weibert et al.,, 2018). On the other hand, other studies
have shown that more high-level information, such as biographi-
cal information and social context, affects the similarity of
response patterns to different faces in the FFA (Verosky et al.,
2013; Collins et al., 2016).

There is thus mixed evidence regarding whether different
face-selective regions rely on similar or distinct information to
distinguish between face identities, and what type of information
may be encoded in different regions. In the present study, we
used representational similarity analysis (RSA) (Kriegeskorte et
al., 2008a,b) to investigate what type of identity-distinguishing
information is encoded in different face-selective regions. In our
previous work (Tsantani et al., 2019), we showed that famous
face identities could be distinguished in the right FFA, OFA, and
pSTS based on their elicited fMRI response patterns. Here, for
the same set of famous identities and using the same data as in
Tsantani et al. (2019), we compared the representational distan-
ces between identity-elicited fMRI patterns in these regions with
diverse candidate models of face properties that could potentially
be used to distinguish between identities.

Importantly, we used multiple naturalistically varying videos
for each identity that varied freely in terms of viewpoint, lighting,
head motion, and general appearance. In addition, our represen-
tational distances were cross-validated across different videos, to
deconfound identity from incidental image properties. By using
a large, diverse set of candidate models, based on image proper-
ties of the stimuli (Image-computable models) and on human-
rated properties (Perceived-property models), we were able to
determine what types of identity-distinguishing information are
encoded in different face-selective regions.

Materials and Methods

This study involved an fMRI component, in which we measured brain
representations of faces and voices, and a behavioral component, in
which we collected ratings of the same faces and voices on social traits
and perceived similarity. The fMRI part corresponds to the same experi-
ment and data described in Tsantani et al. (2019), and the behavioral
part is reported here for the first time. In the present study, we analyzed
the data related to faces only.

Participants

We recruited 31 healthy right-handed adult participants to take part in
two fMRI sessions and a behavioral session (all on separate days, result-
ing in at least 6 h of testing per participant). We did not conduct a for-
mal power analysis as there were no previous studies at the time of the
study design that had investigated the main effect described by Tsantani
et al. (2019). Our sample size was determined based on similar fMRI
studies within the field and on available funding. To ensure adequate ex-
posure to our stimulus set of famous people, participants were required
to be native English speakers between 18 and 30 years of age, and to have
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Figure 1.

Examples of face trials in the fMRI and behavioral experiments. All experiments presented the same videos of moving, nonspeaking, faces of 12 famous people. For each famous

person, we presented six naturalistically varying videos of their face. In an event-related fMRI task, each trial presented a single face video. This task also contained trials of the same length fea-
turing voice clips (excluded from the present analysis), stimuli relating to the anomaly detection task, and fixation (null events). In each trial of the Social Trait Judgments Tasks (separate tasks
for Trustworthiness, Dominance, Attractiveness, and Valence), participants viewed three videos of the face of the same identity and judged the intensity of the target trait (on a scale from 1 to
7). In each trial of the Perceived Similarity Task, participants viewed three videos of one identity followed by three videos of a different identity and rated their visual similarity (from 1 to 7).
Face videos were presented for their full duration of 3000 ms in the fMRI experiment, whereas only the first 1500 ms were presented in the behavioral experiments.

been resident in the United Kingdom for at least 10 years. We also inde-
pendently verified that all participants knew the famous people used in
the experiment (see Tsantani et al., 2019). No inclusion or exclusion cri-
teria were applied based on race or ethnicity, and we did not formally re-
cord this information. It has been shown that the other-race effect does
not apply to familiar faces (McKone et al., 2007; Zhou and Mondloch,
2016). Participants were recruited at Royal Holloway, University of
London, and Brunel University London. One participant was excluded
because of excessive head movement in the scanner. The final sample
consisted of 30 participants (22 females, 8 males) with a mean age of
21.2years (SD=2.37 years, range = 19-27 years). Participants reported
normal or corrected-to-normal vision and normal hearing, provided
written informed consent, and were reimbursed for their participation.
The study was approved by the Ethics Committee of Brunel University
London.

Stimuli

The same stimuli were used in the fMRI and behavioral testing, and
consisted of videos of the faces and sound recordings of 12 famous indi-
viduals, including actors, comedians, TV personalities, pop stars, and
politicians: Alan Carr, Daniel Radcliffe, Emma Watson, Arnold
Schwarzenegger, Sharon Osbourne, Graham Norton, Beyonce Knowles,
Barbara Windsor, Kylie Minogue, Barack Obama, Jonathan Ross, and
Cheryl Cole. These individuals were selected based on pilot studies that
showed that participants (18-30 years of age and living in the United
Kingdom) could recognize them easily from their faces and voices.

For each identity, six silent, nonspeaking video clips of their moving
face were obtained from videos on www.YouTube.com (Fig. 1). The six
clips were obtained from different original videos. In total, we obtained
72 face stimuli. Face videos were selected so that the background did not

provide any cues to the identity of the person. The face videos were pri-
marily front-facing and did not feature any speech but were otherwise
unconstrained in terms of facial motion. Head movements included
nodding, smiling, and rotating the head. Videos were edited so that they
were 3 s long, 640 x 360 pixels, and centered on the bridge of the nose,
using Final Cut Pro X (Apple).

For purposes not related to this study, we also presented 72 voice
stimuli, which consisted of recordings of the voices of the same 12 fa-
mous individuals (6 clips per identity) obtained from videos on www.
YouTube.com. Speech clips were selected so that the speech content,
which was different for every recording, did not reveal the identity of the
speaker. Recordings were edited so that they contained 3 s of speech after
removing long periods of silence using Audacity 2.0.5 recording and
editing software (RRID:SCR_007198). The recordings were converted to
mono with a sampling rate of 44,100, low-pass filtered at 10 kHz, and
root mean square normalized using Praat (version 5.3.80; www.praat.
org) (Boersma and Weenink, 2014).

Participants were familiarized with all stimuli via one exposure to
each clip immediately before the first scanning session.

MRI data acquisition and preprocessing

Participants completed two MRI sessions: in each session, participants
completed a structural scan, three runs of the main experiment, and
functional localizer scans (for face and voice areas, but below we only
describe the localizer of face-selective regions). Participants were
scanned using a 3.0 Tesla Tim Trio MRI scanner (Siemens) with a 32
channel head coil. Scanning took place at the Combined Universities
Brain Imaging Center at Royal Holloway, University of London. We
acquired whole-brain T1-weighted anatomic scans using MPRAGE
(1.0 x 1.0 in-plane resolution; slice thickness, 1.0 mm; 176 axial
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interleaved slices; PAT, factor 2; PAT mode, GeneRalized
Autocalibrating Partially Parallel Acquisitions; TR, 1900 ms; TE, 3.03 ms;
flip angle, 11° matrix, 256 x 256; FOV, 256 mm).

For the functional runs, we acquired T2*-weighted functional scans
using EPI [3.0 x 3.0 in-plane resolution; slice thickness, 3.0 mm; PAT,
factor 2; PAT mode, GeneRalized Autocalibrating Partially Parallel
Acquisitions; 34 sequential (descending) slices; TR, 2000 ms; TE, 30 ms;
flip angle, 78°; matrix, 64 X 64; FOV, 192 mm]. Slices were positioned at an
oblique angle to cover the entire brain, except for the most dorsal part of
the parietal cortex. Each run of the main experiment comprised 293 brain
volumes, and each run of the face localizer had 227 brain volumes.

Functional images were preprocessed used Statistical Parametric
Mapping (SPM12; Wellcome Department of Imaging Science, London;
RRID:SCR_007037;  http://www filion.ucl.ac.uk/spm) operating in
MATLAB (version R2013b, The MathWorks; RRID:SCR_001622). The
first three EPI images in each run served as dummy scans to allow for
T1-equilibration effects and were discarded before preprocessing. Data
from each of the two scanning sessions, which took place on different
days, were first preprocessed independently with the following steps for
each session. Images within each brain volume were slice-time corrected
using the middle slice as a reference, and were then realigned to correct for
head movements using the first image as a reference. The participants’
structural image in native space was coregistered to the realigned mean
functional image, and was segmented into gray matter, white matter, and
cerebrospinal fluid. Functional images from the main experimental runs
were not smoothed, whereas images from the localizer runs were smoothed
with a 4 mm Gaussian kernel (FWHM). To align the functional images
from the two scanning sessions, the structural image from the first session
was used as a template, and the structural image from the second session
was coregistered to this template; we then applied the resulting transforma-
tion to all the functional images from the second session.

Functional localizers and definition of ROIs

Face-selective regions were defined using a dynamic face localizer that
presented famous and nonfamous faces, along with a control condition
consisting of objects and scenes. The stimuli were silent, nonspeaking
videos of moving faces, and silent videos of objects and scenes, presented
in an event-related design. Participants completed between one and two
runs of the localizer across the two scanning sessions. The localizer pre-
sented different stimuli in each of two runs. For full details of the local-
izer, see T'santani et al. (2019).

Functional ROIs were defined using the Group-Constrained Subject-
Specific method (Fedorenko et al,, 2010; Julian et al., 2012), which has the
advantage of being reproducible and reducing experimenter bias by provid-
ing an objective means of defining ROI boundaries. Briefly, subject-specific
ROIs were defined by intersecting subject-specific localizer contrast images
with group-level masks for each ROI obtained from an independent dataset.
In this study, we obtained group masks of face-selective regions (right FFA
[rFFA], right OFA [rOFA], and right pSTS [rpSTS]) from a separate group
of participants who completed the same localizer (for details, see Tsantani et
al,, 2019). We focused on face-selective regions from the right hemisphere
because they have been shown to be more consistent and larger compared
with the left hemisphere (e.g., Rossion et al., 2012). Our masks are publicly
available at https://doi.org/10.17633/rd.brunel.6429200.v1.

Contrast images were defined for each individual participant. Face
selectivity was defined by contrasting activation to faces versus nonface
stimuli using f tests. We then intersected these subject-specific contrasts
with the group masks, and extracted all significantly activated voxels at
P <0.001 (uncorrected) that fell within the boundaries of each mask. In
cases where the resulting ROI included fewer than 30 voxels, the thresh-
old was lowered to p << 0.01 or p < 0.05. ROISs that included fewer than
30 voxels at the lowest threshold were not included, and this occurred
for the rFFA in 2 participants and for the rOFA in 1 participant. For full
details of size and location of all ROls, see Tsantani et al. (2019).

Experimental design and statistical analysis

Main experimental fMRI runs

In the main experimental runs, face stimuli were presented intermixed
with voice stimuli within each run in an event-related design. The

J. Neurosci., March 3, 2021 - 41(9):1952-1969 - 1955

experiment was programmed using the Psychophysics Toolbox (version
3; RRID:SCR_002881) (Brainard, 1997; Pelli, 1997) in MATLAB and
was displayed through a computer interface inside the scanner.
Participants were instructed to fixate on a small square shape that was
constantly present in the center of the screen. From a distance of 85 cm,
visual stimuli subtended 20.83 x 12.27 degrees of visual angle on the
1024 x 768 pixel screen.

The experiment was presented in two scanning sessions, with three
runs in each session. Each run featured two unique videos of the face of
each of the 12 identities, presented twice. Each run therefore contained
48 face trials (12 identities x 2 videos X 2 presentations), intermixed
with 48 voice trials (96 experimental trials in total). In other words,
across all three runs within a session, each of the 12 face identities
appeared in 12 trials, featuring six unique videos of their face. Stimuli
were presented in a pseudorandom order that prohibited the succeeding
repetition of the same stimulus and ensured that each identity could not
be preceded or succeeded by another identity more than once within the
same modality. Each trial presented a stimulus for 3000 ms and was fol-
lowed by a 1000 ms intertrial interval (Fig. 1).

To maintain attention to stimulus identity in the scanner, partici-
pants performed an anomaly detection task in which they indicated via
button press when they were presented with a famous face or voice that
did not belong to one of the 12 famous individuals that they had been
familiarized with before the experiment. Therefore, each run also
included 12 randomly presented task trials (six faces and six voices).
Finally, each run contained 36 randomly interspersed null fixation trials,
resulting in a total of 144 trials in each run lasting ~10 min.

The three experimental runs that were completed in the first scan-
ning session were repeated in the second session with the same stimuli,
but in a new pseudorandom order. The task stimuli, however, were
always novel for each run. The three runs, which had different face vid-
eos, were presented in counterbalanced order across participants in both
sessions.

Behavioral session

All participants completed a behavioral session in a laboratory, which
took place on a separate day and always after the fMRI sessions had been
completed. In this session, participants rated the same faces with which
they had been presented in the scanner on perceived social traits and on
perceived pairwise visual similarity. Participants also rated voices (the
order of tasks was counterbalanced across modality), but these results
are not presented here. All tasks and stimuli were presented using the
Psychophysics Toolbox and MATLAB.

Social Trait Judgment Tasks. In the Social Trait Judgment Tasks, par-
ticipants were asked to make judgments about the perceived
Trustworthiness, Dominance, Attractiveness, and positive-negative Valence
of the face identities. There were four blocks, one for each judgment, and
their order was counterbalanced across participants. Face stimuli were pre-
sented in the center of the screen. In contrast to the fMRI runs, in which
stimuli were presented for the full 3 s of their duration, here all stimuli were
only presented for the first 1500 ms of their duration, to reduce testing time.

All blocks followed the same trial structure (Fig. 1). In each trial, a
face identity was presented with three videos: these were presented suc-
cessively with no gap in between them (total of 4500 ms). Participants
were then asked to rate how trustworthy/dominant/attractive/negative-
positive the face was, and they were asked to base their judgment on all
three videos of the face. The rating scale ranged from 1 (very untrust-
worthy/nondominant/unattractive/negative) to 7 (very trustworthy/
dominant/attractive/positive), and participants responded using the cor-
responding keys on the keyboard. There was a 1000 ms intertrial interval
following the response.

Each identity was presented in two trials: one trial presented three
face videos randomly selected from the six available, and the other trial
presented the remaining three videos. This resulted in 24 trials in each
block (12 identities x 2 presentations). The videos within each trial were
presented in a random order, and the trial order was also randomized.
Trustworthiness was defined as “able to be relied on as honest and truth-
ful.” Dominance was defined as “having power and influence over other
people.” No definition was deemed necessary for valence or
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Figure 2.  Brain and model representational dissimilarity matrices (RDMs). 4, Location in MNI space of the three face-selective regions localized in our participants: rOFA, rFFA, and rpSTS (all
regions in the right hemisphere). These probabilistic maps were created for illustration purposes (in our analyses, we only used subject-specific ROls) and show all voxels that were present in
at least 20% of participants. B, Example brain RDM for the rFFA. For each ROl and each participant, we computed RDMs showing the dissimilarity of the brain response patterns between all
pairs of identities. Each row and column represent one identity, and response patterns are based on all six presented videos of that identity. Each cell represents the LDC distance between the
response patterns of two identities (higher values indicate higher dissimilarity), cross-validated across runs presenting different videos of the face of each identity. The matrix is symmetric
around a diagonal of zeros. ¢, Model RDMs for Image-computable properties (blue) and Perceived properties (pink). These models are in the same format as the brain RDMs and show the dis-
similarity between two identities on each property (see Materials and Methods). Image-computable models include a neural network trained to distinguish between face identities (OpenFace),
a Gabor-Jet model, Pixel Dissimilarity (both for faces only, Pixel-Faces; and the whole frames, Pixel-Frames), and a GIST Descriptor model (both for faces, GIST-Faces; and the whole frames,
GIST-Frames). The RDMs computed per image (before averaging across identity) are shown in Extended Data Figure 2-1, although those 72 x 72 RDMs were not used in any analysis.
Perceived-property models include perceived social traits [Trustworthiness, Dominance, Attractiveness, Valence, Social Traits (All)], Perceived Similarity, and Gender. Models based on participant
ratings were averaged across participants. All models were built based on multiple images (Image-computable models) or videos (Perceived-property models) of the face of each identity. For
visualization purposes, all model RDMs were scaled to a range between 0 (no dissimilarity) and 1 (maximum dissimilarity). D, Correlations (Pearson) between the different model RDMs. The dif-

ferent candidate models were compared with each other using Pearson correlation. Extended Data Figure 2-2 shows this same matrix with added correlation values.

attractiveness. Participants were advised that there was no time limit to
their responses and that they should follow their first judgment. The du-
ration of each block was ~3 min.

Pairwise Visual Similarity Task. In the Pairwise Visual Similarity
Task, participants rated the perceived visual similarity of pairs of face
identities. Each of the 12 identities was paired with the other 11 identities
creating 66 identity pairs. Each identity was presented by three videos,
randomly selected from the six available videos. Each identity pair was
presented in two trials, counterbalancing the presentation order of each
identity in the pair. There were therefore 132 trials in each task (66 iden-
tity pairs X 2 presentations). The presentation order of the Pairwise
Similarity Task in relation to the Social Trait Judgment Tasks was also
counterbalanced across participants.

Participants were instructed to rate the similarity between the visual
appearance of the two face identities in each pair, focusing on the facial
features. Participants were asked to rate how similar the two faces looked
on a scale from 1 (very dissimilar) to 7 (very similar). Participants were
advised that there was no time limit to their responses and that they
should follow their first instinct. Participants were told to ignore similar-
ities between people that were related to biographical or semantic infor-
mation (e.g., if both identities were actors). Furthermore, to encourage
participants to base their judgments on perceptual information, partici-
pants were advised to consider to what extent two identities could poten-
tially be related to each other (i.e., be part of the same family) based on
how they looked.

In each trial, participants were first presented with the three videos
of the face of one identity (Fig. 1). Following a 500 ms fixation screen,
they were presented with the three videos of the face of the second iden-
tity. Videos for each identity were presented successively with no gap in
between. Each video was presented for 1500 ms, and there was a 1000 ms

intertrial interval following the response. The presentation order of the
trials was randomized. The duration of each task was ~30 min.

Brain representational dissimilarity matrices (RDMs)

RDMs showing the discriminability of the brain response patterns eli-
cited by the 12 face identities (during the fMRI experimental runs) were
created for each individual participant and for each ROL

First, to obtain brain responses at each voxel for each of the 12 face
identities, mass univariate time-series models were computed for each
participant using a high-pass filter cutoff of 128 s and autoregressive
AR(1) modeling to account for serial correlation. Regressors modeled
the BOLD response at stimulus onset and were convolved with a canoni-
cal HRF. We defined a model for each run separately, and for every pos-
sible pair of runs within a scanning session (by concatenating the two
runs), to create data partitions for cross-validation (described below).
Each model contained a regressor for the face of each of the 12 identities,
which incorporated the different videos of their face (two per run) and
the repetitions of those videos. The model also included regressors for
each of the 12 voice identities, task trials, and the six motion parameters
obtained during the image realignment preprocessing stage (included as
regressors of no interest).

Second, within each ROI, we extracted the B estimates at each voxel
for each of the 12 face identities. This resulted in 12 vectors of B values
per ROI that described the response patterns (across voxels) elicited by
the 12 face identities.

Third, these vectors of B estimates were used to compute 12 x 12
Face RDMs in face-selective ROIs, in which each cell showed the dis-
tance between the response patterns of two identities (Fig. 2B). RDMs
were computed using the linear discriminant contrast (LDC), a cross-
validated distance measure (Nili et al., 2014; Walther et al., 2016), which
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we implemented using in-house MATLAB code and the RSA toolbox
(Nili et al., 2014). Two RDMs were created for each ROI, one for each
scanning session. Each RDM was computed using leave-one-run-out
cross-validation across the three runs, which presented different stimuli
for each identity. Therefore, RDMs showed the dissimilarities between
face identities, rather than specific face videos. In each cross-validation
fold, concatenated data from two runs formed Partition A, and data
from the left-out run formed Partition B. For each pair or identities (e.g.,
ID1 and ID2), Partition A was used to obtain a linear discriminant,
which was then applied to Partition B to test the degree to which ID1
and ID2 could be discriminated. Under the null hypothesis, LDC values
are distributed ~0 when two patterns cannot be discriminated. Values
>0 indicate higher discriminability of the two response patterns
(Walther et al., 2016).

The discriminability of face identities in each ROI was computed by
calculating the mean LDC across all cells of each participant’s RDM, and
comparing the mean LDC distances against 0 (Tsantani et al., 2019).

Full details of this analysis are presented in Tsantani et al. (2019),
and the data to compute brain RDMs are available at https://doi.org/
10.17633/rd.brunel.6429200.v1. Here, we used the RDMs for three face-
selective regions (rFFA, rOFA, and rpSTS). All three of these regions
showed significant discriminability of face identities.

RDM:s based on Image-computable properties

We computed dissimilarities between the 12 face identities based on vis-
ual descriptions of their faces obtained using the models described
below. We did not use the full videos as input to these models, but
instead extracted one still frame from each face video used in the experi-
ment (typically the first frame in which the full face was visible and
the image was not blurred). Thus, we obtained six different images of
the face of each identity, taken from the six different videos in which the
identity was presented, resulting in 72 images in total.

OpenFace model. The OpenFace model RDM was computed from
low-dimensional face representations obtained from OpenFace (Amos
et al,, 2016) (http://cmusatyalab.github.io/openface/). Briefly, OpenFace
uses a deep neural network that has been pretrained (using 500,000
faces) to learn the best features or measurements that can group two pic-
tures of the same identity together and distinguish them from a picture
of a different identity. We used this pretrained neural network to gener-
ate measurements for each of our face pictures and to compare these
measurements between each pair of pictures. OpenFace first performs
face detection, identifies prespecified landmarks, and does an affine
transformation so that the eyes, nose, and mouth appear in approxi-
mately the same location. The faces are then passed on to the pretrained
neural network to generate 128 descriptor measurements for each face.
To create an RDM, we used the program’s calculated distances between
the measurements for each pair of faces images. A value of 0 indicates
that two images are identical, and values between 0 and 1 suggest that
two different images likely show the same person’s face. Values >1 indi-
cate that the two images show the faces of two different people. We
found that OpenFace performed well at grouping different images of the
same person’s face compared with images of different people’s faces in
our image set (Extended Data Fig. 2-1 includes full 72 x 72 matrices
showing distances between all images, but these full matrices were not
used in any analysis). To obtain a 12 x 12 RDM for the 12 identities,
which would be comparable to the brain RDMs, we computed the mean
of all cells that showed images of the same identity pair (Fig. 2C). The
12 x 12 RDMs were used in all analyses.

Gabor-Jet model. The Gabor-Jet model RDM was computed from
visual descriptors of face images obtained using the Gabor-Jet model
(Biederman and Kalocsai, 1997; Yue et al., 2012; Margalit et al., 2016).
This model was designed to simulate response properties of cells in area
V1, and has been found to correlate with psychophysical measures of fa-
cial similarity (Yue et al, 2012). In addition, Carlin and Kriegeskorte
(2017) showed that the dissimilarity of response patterns to different
faces in the FFA was predicted by image properties based on Gabor fil-
ters. First, we used OpenFace 2.0 (Baltrusaitis et al., 2018) to automati-
cally detect the faces in each image, and the pictures were grayscaled.
The MATLAB script provided in http://www.geon.usc.edu/GWTgrid_
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simple.m was then used to create a 100 x 40 Gabor descriptor for each
face. After transforming these matrices into vectors, we computed the
Euclidean distance between the vectors from each pair of faces
(Extended Data Fig. 2-1), and then averaged the distances across all
pairs of stimuli that showed the same two identities, resulting in a
12 x 12 RDM (Fig. 2C).

GIST model (faces only and whole frames). The GIST model RDMs
were computed from visual descriptors of pictures obtained using the
GIST model (Oliva and Torralba, 2001). The GIST model estimates in-
formation about the spatial envelope of scenes, and it is related to per-
ceived dimensions of naturalness, openness, roughness, expansion, and
ruggedness. Weibert et al. (2018) showed that the similarity between the
representations of different faces in the FFA, OFA, and posterior STS
was predicted by the similarity of the different pictures computed using
the GIST descriptor model. We extracted GIST descriptors both from
the full picture (whole Frames) and just from the face (Faces only: we
used the same stimuli as in the Gabor-Jet model). We then used the
MATLAB script provided in http://people.csail.mit.edu/torralba/code/
spatialenvelope to compute GIST descriptors for each picture, and com-
puted Euclidean distances between each pair of pictures (Extended Data
Fig. 2-1). We finally averaged the distances across all pairs of stimuli that
showed the same two identities, resulting in 12 x 12 RDMs (Fig. 2C).

Pixel model (faces only and whole frames). Finally, we computed
model RDMs based on pixel dissimilarity between each pair of pictures.
As for the GIST model, we computed this model both for the full picture
(whole Frames) and just for the face (Faces only). We extracted pixel
grayscale values for each image, computed Pearson correlations between
the vectors of each pair of images, and used correlation distance as the
output measure (1 - r) (Extended Data Fig. 2-1). We finally averaged the
distances across all pairs of stimuli that showed the same two identities,
resulting in 12 x 12 RDMs (Fig. 2C).

RDM s based on Perceived properties

Social trait models: Trustworthiness, Dominance, Attractiveness,
Valence, Social Traits (All). RDMs for ratings of the 12 face identities on
Trustworthiness, Dominance, Attractiveness, and positive-negative
Valence were computed using Euclidean distances. For each participant
and each social trait, the Euclidean distance between the ratings of each
pair of identities was calculated (ratings were averaged across the two tri-
als in which the same identity was presented), resulting in a 12 x 12
RDM per trait. We then averaged the matrices for the same trait across
participants (Fig. 2C).

We also created Social Traits (All) RDMs combining all four Social
Traits, by calculating the Euclidean distance between all trait ratings for
each pair of identities, resulting in a 12 x 12 trait RDM per participant.
We then computed the mean matrix for all Social Traits across partici-
pants (Fig. 2C).

To get estimates of the intersubject reliability of these models, we
computed the correlations between each participant’s RDM and the av-
erage RDMs across all participants (i.e., the RDMs that we used as mod-
els), and then averaged the correlations across participants. The
reliabilities were r=0.34 for Trustworthiness, r=0.48 for Dominance,
r=0.67 for Attractiveness, r=0.31 for Valence, and r=0.48 for Social
Traits (All). We also computed the average correlations between each
participant’s RDM and the average RDM of all remaining participants.
These reliabilities were r=0.24 for Trustworthiness, r=0.42 for
Dominance, r=0.63 for Attractiveness, r = 0.20 for Valence, and r=0.42
for Social Traits (All).

Perceived Similarity model. The judgments in the Pairwise Visual
Similarity Task indicated the degree of visual similarity between all pos-
sible pairs of identities. These ratings were averaged across the two trials
in which each identity-pair was presented, and were reverse-coded to
match the LDC and Euclidean distance measures, where a higher value
indicates higher dissimilarity. The resulting values were arranged into a
12 x 12 face RDM for each participant and were then averaged across
participants (Fig. 2C).

Intersubject reliability, estimated by computing the average correla-
tion between each participant's RDM and the average RDM across all
participants, was r = 0.65. Reliability computed as the average correlation
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between each participant’s RDM and the average RDM of all remaining
participants was r=0.61.

Gender model. Finally, a 12 x 12 RDM for Gender was constructed
by assigning a value of 0 to same Gender identity pairs, and a value of 1
to different-Gender identity pairs (Fig. 2C).

Correlations between all 13 models are presented in Figure 2D and
Extended Data Figure 2-2.

Individual model analysis: RSA comparing brain RDMs to candidate
model RDMs using correlation

For each individual participant and each ROI, we compared the brain
RDM for faces with each of the candidate model RDMs defined above
using Pearson correlation (Fig. 3A4). We then tested whether the correla-
tions across participants for each ROI were significantly >0, using two-
sided one-sample Wilcoxon signed-rank tests (Nili et al., 2014). p values
were corrected for multiple comparisons using FDR correction
(g=0.05) across all 13 comparisons for each ROIL. We also compared the
correlations across all pairs of models within each ROI, to test which
model was the best predictor of the variance in brain RDMs in each
ROI For these pairwise comparisons, we used two-sided Wilcoxon
signed-rank tests and only significant FDR-corrected values (for 78 com-
parisons) are reported.

An estimate of the noise ceiling was calculated for each RO, to esti-
mate the maximum correlation that any model could have with the brain
RDMs in each ROI given the existing noise in the data. We estimated
the noise ceiling using the procedures described by Nili et al. (2014). The
lower bound of the noise ceiling was estimated by calculating the
Pearson correlation of the brain RDM for each participant with the aver-
age brain RDM across all other participants (after z scoring the brain
RDM for each participant). The upper bound of the noise ceiling was
estimated by computing the Pearson correlation of the brain RDM for
each participant with the average brain RDM across all participants (af-
ter z scoring the brain RDM for each participant).

Weighted model-combination analysis: weighted representational
modeling

We also used weighted representational modeling (Khaligh-Razavi and
Kriegeskorte, 2014; Jozwik et al., 2016, 2017) to combine individual
models via reweighting and thus investigate whether combinations of
different model RDMs could explain more variance in representational
geometries than any single model. For each combined model, we used
linear non-negative least squares regression (lsqnonneg algorithm in
MATLAB) to estimate a weight for each component of the combined
model. We fitted the weights and tested the performance of the
reweighted (combined) model on nonoverlapping groups of both partic-
ipants and stimulus conditions within a cross-validation procedure, and
used bootstrapping to estimate the distribution of the combined model’s
performance (Storrs et al., 2020).

We used six different combinations of component models: Image-
computable properties (OpenFace, GIST, GaborJet, and Pixel), Social
Traits (comprising a weighted combination of the Trustworthiness,
Dominance, Attractiveness, and Valence properties), Perceived proper-
ties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived
Similarity, and Gender), Low-Level properties (GIST, GaborJet, and
Pixel), High-Level properties (Trustworthiness, Dominance, Attractiveness,
Valence, Perceived Similarity, Gender, and OpenFace), and All properties.

Within each cross-validation fold, data from 8 participants for four
stimulus identity conditions were assigned to serve as test data, and the
remainder were used to fit the weights for each component of each of
the six combined models. Because the cross-validation was performed
within a participant-resampling bootstrap procedure, the number of par-
ticipant data RDMs present in each cross-validation fold was sometimes
smaller than eight (when a participant was not present in the bootstrap)
or larger than eight (when a participant was sampled multiple times in
the bootstrap). All data from the same participant were always assigned
only to either the training or test split. A reweighting target RDM was
constructed by averaging the training-split participants’ RDMs for train-
ing-split stimulus conditions, and weights were fitted to the components
of each combined model to best predict this target RDM. The six
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resulting combined models, as well as the 13 individual models, were
then correlated separately with each of the brain RDMs from test partici-
pants for test conditions, using Pearson correlation. The noise ceiling
was also computed within every cross-validation fold using the same
procedure as for the main analysis. In other words, we correlated
(Pearson correlation) each test participant’s RDM with the average of all
other test RDMs, excluding their own (for the lower bound of the noise
ceiling) and with the average of all test participants’ RDMs including
their own (for the upper bound of the noise ceiling). This procedure was
repeated for 30 participant cross-validation folds within 30 stimulus-
condition cross-validation folds to provide a stabilized estimate of the
noise ceiling and the performance of each model (Storrs, et al., 2020).

The cross-validation procedure was repeated for 1000 bootstrap resam-
plings of participants for each face-selective ROI. From the resulting boot-
strap distribution, we computed the mean estimate of the lower bound of
the noise ceiling, as well as the mean of each model’s correlation with
human data for both individual models and combined models (Fig. 3B).
Correlations between model and brain RDMs were considered significantly
>0 if the 95% CI of the bootstrap distribution did not include 0. Bonferroni
correction was applied to correct for multiple comparisons. Finally, we
compared each pair of models by testing whether the distributions of the
differences between each pair of models contained 0. We only report pair-
wise differences that were significant after Bonferroni correction. Code for
this analysis was adapted from the following: https://github.com/tinyrobots/
reweighted_model_comparison.

Data and code accessibility
Data and code for main analysis are available as follows: https://doi.org/
10.25383/city.11890509.v1.

Results

We tested 30 participants in an fMRI experiment, in which they
were presented with faces of 12 famous people (same fMRI data
as in Tsantani et al., 2019), and in a separate behavioral experi-
ment, in which participants rated the faces of the same people on
perceived similarity and social traits (Fig. 1). We then computed
RDMs showing the representational distances between the brain
response patterns elicited by the face identities in the face-selec-
tive rFFA, rOFA, and rpSTS. The distance measure that we used
to compute the RDMs was the LDC, which is a cross-validated
estimate of the Mahalanobis distance (Walther et al., 2016). The
mean LDC across each RDM showed that response patterns to
different face identities were discriminable in all three regions
(Tsantani et al., 2019). To investigate the informational content
of brain representations of the face identities in each face-selec-
tive region, we used RSA (Kriegeskorte et al., 2008a,b) to com-
pare the brain RDMs with a diverse set of candidate model
RDMs (Fig. 2). We used candidate models based on the physical
properties of the stimuli (Image-computable models), including
low-level stimulus properties (based on Pixel-wise, GIST [Oliva
and Torralba, 2001], and Gabor-jet [Biederman and Kalocsai,
1997] dissimilarities) and higher-level image-computable des-
criptions obtained from a deep neural network trained to cluster
faces according to identity (OpenFace; see Materials and
Methods) (Amos et al,, 2016). Additionally, we used candidate
models based on perceived higher-level properties (perceived-
property models), including Gender and participants’ ratings of
the face identities on Perceived Similarity and social traits
(Trustworthiness, Dominance, Attractiveness, Valence, and
Social Traits (All), which corresponds to all traits combined) in a
behavioral experiment.

Individual model analysis
In our main analysis, we computed Pearson’s correlations
between RDMs in the rFFA, rOFA, and rpSTS, and each
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Figure 3.  rFFA and rOFA show distinct representational profiles of face identity information. A, Similarity (Pearson correlations) between brain RDMs (in rFFA, rOFA, and rpSTS) and each of the individ-
ual candidate models. Bars represent mean correlations across participants. Error bars indicate SE. Blue represents correlations with Image-computable models. Pink represents Perceived-property models.
Horizontal dashed lines indicate the lower bound of the noise ceiling. An asterisk above a bar and the name of the model in bold indicate that correlations with that model were significantly >0.
Correlations with individual models are sorted from highest to lowest. Horizontal lines above bars indicate significant differences between the correlations of the first marked column with the subsequent
marked columns (FDR-corrected for multiple comparisons). Full results are given in Table 1, and single-subject data are shown in Figure 4. B, Similarity (Pearson correlations) between brain RDMs (in
rFFA, rOFA, and rpSTS) and each of the candidate models in the weighted representational modeling analysis. Bars represent mean correlations. Error bars indicate SE across 1000 bootstrap samples.
Horizontal dashed lines indicate the lower bound of the noise ceiling, averaged across bootstrap samples. An asterisk above a bar and the name of the model in bold indicate that correlations with that
model were significantly 0. Correlations with individual models are blocked by type of model (Image-computable models followed by Perceived-property models) and sorted from highest to lowest.
RW refers to the combined and reweighted models. Light blue represents models that combine Image-computable properties. Light pink represents models that combine Perceived properties. Gray repre-
sents models that combine both types of properties. None of the combined models outperformed individual models. Full results are reported in Table 2. The results of both analyses show that in the
rFFA, the models that explained most of the variance are related to high-level properties, such as perceived properties of the stimuli and the Image-computable OpenFace model of face recognition. In
contrast, brain RDMs in rOFA correlated mainly with low-level Image-computable properties, such as pixel dissimilarity and the Gabor-Jet model. No significant correlations were found in rpSTS.
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Table 1. Results of individual model analysis”

Pearson correlation
between RDMs

Noise ceiling

p < 0.05 (lower bound,

Meanr SE 7 (FDR-corrected)  upper bound)

rFFA 0.135, 0.262
Perceived Similarity ~ 0.109 0.023  3.689 Yes
Social Traits (All) 0.104 0.031 2710 Yes
OpenFace 0.101 0.023  3.461 Yes
Attractiveness 0.090 0.033  2.687 Yes
Gender 0.086 0.021 3302 Yes
Valence 0.060 0.023 2391 Yes
Dominance 0.058 0.030 1640 No
Gabor-Jet 0.052 0.049  0.95 No
Trustworthiness 0.040 0.029 159 No
Pixel-Faces 0.035 0.044  0.865 No
Pixel-Frames 0.005 0.027  0.159 No
GIST-Faces —0.006 0.040 0.114 No
Pixel-Frames —0.018 0.041 —0.478 No

rOFA 0.337, 0.408
Pixel-Faces 0.221 0.031 4357 Yes
Gabor-Jet 0.204 0.037  3.968 Yes
Pixel-Frames 0.107 0.031  3.016 Yes
GIST-Faces 0.104 0.043 2216 Yes
Attractiveness 0.092 0.029  2.843 Yes
Social Traits (All) 0.083 0.031 1979 No
Gender 0.074 0.021 2757 Yes
OpenFace 0.067 0.020 2952 Yes
Dominance 0.055 0.031 1.546 No
Perceived Similarity ~ 0.039 0.026  1.416 No
GIST-Frames 0.025 0.034 0746 No
Trustworthiness 0.011 0.025  0.400 No
Valence —0.016 0.031 —0.573 No

rpSTS 0.126, 0.252
GIST-Frames 0.075 0.047 1800 No
Dominance 0.052 0.027 1800 No
OpenFace 0.040 0.020 2129 No
Social Traits (All) 0.032 0.026 1.018 No
Pixel-Frames 0.022 0.030 0.95 No
Gender 0.020 0.017  0.95 No
Trustworthiness 0.017 0.032 0524 No
Attractiveness 0.005 0.024  0.134 No
Valence 0.002 0.031  0.051 No
Pixel-Faces —0.003 0.035 —0.113 No
Perceived Similarity —0.008 0.026 —0.072 No
Gabor-Jet —0.045 0.040 —1.700 No
GIST-Faces —0.048 0.036 —1.368 No

?Values correspond to the results presented in Figure 3A. For each ROI, we show the mean correlations
between brain RDMs with each model, SE, Z statistics from two-sided one-sample Wilcoxon signed-rank
tests, and whether correlations were significantly >0. We also show the estimated lower and upper bounds
of the noise ceiling for each ROI. Models are ordered by effect size.

candidate model RDM. Correlations were computed for each
individual participant, and then correlations across participants
for each model were compared against 0 using two-sided one-
sample Wilcoxon signed-rank tests. For each ROI and each
model that showed significant correlations with participants’
brain RDMs, we report below the mean correlation across partic-
ipants, and the Z statistic and p value obtained from the signed-
rank test, corrected for multiple comparisons using FDR correc-
tion. Full results are presented in Figure 3A and Table 1, and
individual-subject correlations are presented in Figure 4. We also
compared the correlations across all pairs of models using two-
sided Wilcoxon signed-rank tests.

Brain RDMs in the rFFA had the highest mean correlation
with the Perceived Similarity model (mean r=0.11, Z=3.69,
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p=0.0002), followed by perceived Social Traits (All) (mean
r=0.10, Z=2.71, p=0.0067), the Image-computable neural net-
work OpenFace (mean r=0.10, Z=3.46, p=0.0005), perceived
Attractiveness (mean r=0.09, Z=2.69, p=0.0072), Gender
(mean r=0.09, Z=3.30, p=0.0010), and Valence (mean r=0.06,
Z=2.39, p=0.0168) (Fig. 3A). We estimated the lower bound of
the noise ceiling as the mean correlation between each partici-
pant’s rTFFA RDM and the average of all other participants’ rFFA
RDMs (Nili et al., 2014). This estimates the non-noise variance
in the data, and is not overfit to the present data. None of the
mean correlations reached the lower bound of the noise ceil-
ing for the rFFA (r=0.14); this suggests that there could be
models outside those tested here that would better explain
the representational distances in rFFA. Pairwise comparisons
showed no significant differences between the correlations of
any pairs of models (all p > 0.0041; no significant results af-
ter FDR correction).

In contrast with the rFFA, the brain RDMs in the rOFA had
the highest mean correlations with low-level Image-computable
models. The highest mean correlation was observed with the
Pixel-Faces model (mean r=0.22, Z=4.36, p < 0.0001) (Fig. 3A4),
followed by the Gabor-Jet (mean r=0.20, Z=3.97, p <0.0001),
Pixel-Frames (mean r=0.11, Z=3.02, p=0.0026), GIST-Faces
(mean r=0.10, Z=2.22, p=0.0267), perceived Attractiveness
(mean r=0.09, Z=2.84, p=0.0045), Gender (mean r=0.07,
Z=2.76, p=0.0058), and the OpenFace model (mean r=0.07,
Z=2.95, p=0.0032). None of the mean correlations reached the
lower bound of the noise ceiling (r=0.34). Pairwise compari-
sons between model correlations revealed that the Pixel-
Faces model had significantly higher correlations with the
rOFA RDMs than all other models (all p <0.0058, FDR-cor-
rected), except for the Gabor-Jet model and the GIST-Faces
model. The Gabor-Jet model also had significantly higher
correlations with the brain RDMs in rOFA than all other
models (all p<<0.0058, FDR-corrected), except the Pixel-
Faces and Pixel-Frames models. Perceived Attractiveness
had significantly higher correlations with the rOFA RDMs
than perceived Valence (p=0.0051), and Social traits (All)
was significantly higher than Trustworthiness and Valence
(both p < 0.0018).

Finally, we investigated which model best explained the var-
iance in representational distances in the rpSTS. We found no
significant correlations between any of the candidate models and
the brain RDMs in this region (all p>0.0333; no significant
results after FDR correction) (Fig. 3A). None of the models
reached the lower bound of the noise ceiling (r=0.13), and there
were no significant differences between models (all p > 0.0140;
no significant results after FDR correction).

These results show a clear distinction between the types
of models that were associated with the representational
geometries of face identities in the rFFA and rOFA.
Representational distances of face identities in the rFFA were
most associated with high-level Perceived Similarity, Gender,
and Social Traits, as well as a high-level model of Image-com-
putable properties (OpenFace), whereas representations in
rOFA were most associated with low-level Image-computable
properties. To test this directly, we compared the correlation
profiles between the two regions. We first averaged all correla-
tions per participant (after Fisher’s transformation) for the
same type of model (all Perceived-property models and all
Image-computable models) for each ROI (rFFA and rOFA). In
the rFFA, the mean correlation with Perceived-property models
was 0.08 (SD=0.095) and 0.03 (SD = 0.109) with Image-
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rOFA

RDM correlation [Pearson r]

. Perceived-property models . Image-computable models

Similarity between brain RDMs (in rFFA, rOFA, and rpSTS) and each of the candidate models, showing individual participant data. This figure shows the same data as in Figure 34,

but with added individual data. Circles represent correlations for individual participants. Colored lines indicate mean (full lines) and median (dotted lines) correlations across participants. Pink
represents correlations with models based on Perceived-property models. Blue represents correlations with Image-computable models. Horizontal black dashed lines indicate the 0 correlation
point. An asterisk above a bar and the name of the model in bold indicate correlations that were significantly >0. Correlations with individual models are sorted from highest to lowest based

on the mean correlation across participants to match the format of Figure 34.

computable models. In the rOFA, the mean correlation with
Perceived-property models was 0.05 (SD=0.108) and 0.13
(SD = 0.102) with Image-computable models. We then con-
ducted a 2 x 2 repeated-measures ANOVA with ROI and
type of model as variables. There was no main effect of ROI
(Fa,27) = 3.37, p=0.0773) or type of model (F,7 = 0.36,
p=0.5519), but there was a significant interaction between
the two variables (F(; 57y = 23.75, p <0.0001). Pairwise com-
parisons (using two-sided Wilcoxon signed-rank tests) showed
that, in the rFFA, the correlations with Perceived-property models
were significantly higher than correlations with Image-computable
models (Z=2.25, p=0.0242), whereas in the rOFA, correlations
with Perceived-property models were significantly lower than cor-
relations with Image-computable models (Z = —3.17, p=0.0015).
We also divided the models into low-level properties (GIST,
Gabor-Jet, and Pixel) and high-level properties (Trustworthiness,
Dominance, Attractiveness, Valence, Perceived Similarity, Gender,
and OpenFace), and computed means per participant and per
ROI for each of these types of models. In the rFFA, there was a
mean correlation of 0.08 (SD =0.090) with high-level properties,
and of 0.02 (SD = 0.157) with low-level properties. In the rOFA,

there was a mean correlation of 0.05 (SD =0.102) with high-level
properties, and of 0.16 (SD = 0.141) with low-level properties. A 2
x 2 repeated-measures ANOVA showed a significant effect of
ROI (F127) = 5.44, p=0.0274), no significant effect of model
(Faz7) = 043, p=0.5201), and a significant interaction between
the two variables (F(; 7 = 21.64, p <0.0001). Pairwise compari-
sons showed that in the rFFA, the correlations with high-level
models were significantly higher than correlations with low-level
models (Z=2.21, p=0.0272), whereas in the rOFA, correlations
with high-level models were significantly lower than correlations
with low-level models (Z = —3.25, p=0.0011). These results dem-
onstrate the clear distinct patterns of correlations for the rFFA and
rOFA.

Our Image-computable models used a single image from
each video clip. We recomputed all models using 72 images per
clip, and averaged the features across all images of the same clip.
We then computed distances between video clips in the same
manner as before, and averaged distances for each pair of identi-
ties, resulting in 12 x 12 RDMs for each model. The results were
very similar when using 72 images per clip compared with one
image per clip (Fig. 5A). We additionally showed that we
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Control analyses with modified model RDMs. 4, Similarity between brain RDMs (in rFFA, rOFA, and rpSTS) and each of the candidate models, using Image-computable models derived from

72 images per video. Our main analysis in Figure 34 used a single image per video to compute Image-computable models. Here, we repeated all analyses of Image-computable models using 72 frames
for each video. We extracted 72 image frames for each video, and applied each model to each image. For each model, after extracting the features of each image of each video, we averaged the values
for all images belonging to the same video. We then computed distances between videos in the same manner as before, and averaged distances for each pair of identities. We note that these results
were very similar to the ones using just with one image per video, but some correlations were lower. B, Similarity between brain RDMs (in rFFA, rOFA, and rpSTS) and each of the individual candidate
models, using behavioral models based on individual participant ratings. The analysis was the same as in Figure 34; but instead of using average behavioral RDMs, each participant’s brain RDM was corre-
lated to their own behavioral RDMs for Perceived Similarity, Trustworthiness, Dominance, Attractiveness, Valence, and Social Traits (All). The pattern of results looked very similar to the ones in Figure 34,
but correlations with Perceived-property models were overall lower when using each participant's own model RDMs. Bars show mean correlations across participants and error bars show standard error.
Horizontal dashed lines show the lower bound of the noise ceiling. An asterisk above a bar and the name of the model in bold indicate that correlations with that model were significantly higher than
zero. Horizontal lines above bars show significant differences between the correlations of the first marked column with the subsequent marked columns (FDR corrected for multiple comparisons).
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Control analyses using other similarity measures between RDMs. Similarity between brain RDMs (in rFFA, rOFA, and rpSTS) and each of the candidate models using Spearman cor-

relation (4) and Kendall tau-a (B). These analyses were identical to the analysis using Pearson correlations (Fig. 34), with the exception that noise ceiling was computed after rank-transforming
the RDMs (Nili et al., 2014). The pattern of results was similar across all three correlation measures. Bars show mean correlations across participants and error bars show standard error.
Horizontal dashed lines show the lower bound of the noise ceiling. An asterisk above a bar and the name of the model in bold indicate that correlations with that model were significantly
higher than zero. Horizontal lines above bars show significant differences between the correlations of the first marked column with the subsequent marked columns (FDR corrected for multiple

comparisons).
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Figure 7. Control analysis with modified brain RDMs. Similarity between brain RDMs for voices
(in rFFA, rOFA, and rpSTS) and each of the candidate models for faces. We computed RDMs from
response patterns to voices in the rFFA, rOFA, and rpSTS, and compared them with our model
RDMs for faces (same models as in Fig. 2). The voice stimuli belonged to the same 12 identities as
the face stimuli and were presented interspersed among the face videos in the same runs (see
Materials and Methods). RDMs for voice identities were computed using the same procedure as
for face identities (see Materials and Methods) and were compared with model RDMs for faces
using Pearson correlation. Bars show mean correlations across participants and error bars show
standard error. Horizontal dashed lines show the lower bound of the noise ceiling. Correlations
with individual models are sorted from highest to lowest. None of the correlations was signifi-
cantly >0 after correction for multiple comparisons. Pairwise comparisons showed no significant
differences between the correlations of any pairs of models.

obtained similar results to those in Figure 3A when using other
similarity measures between RDMs (Spearman correlation,
Kendall tau-a), demonstrating that these results are not depend-
ent on using Pearson correlation (Fig. 6). Finally, we conducted
an additional control analysis using brain RDMs in the same
ROIs but built from response patterns to voices of the same indi-
viduals, instead of brain responses to faces. There were no signif-
icant correlations between any of the model RDMs for faces and
brain RDM:s for voices after correcting for multiple comparisons
in the rFFA (all p > 0.040), rOFA (all p>0.103), or rpSTS (all
p>0.063) (Fig. 7). Pairwise comparisons showed no significant
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differences between the correlations of any pairs of models (all
p > 0.034). The estimated lower bounds of noise ceilings for the voi-
ces brain RDMs were very low for rFFA (r = -0.038) and rOFA (r =
-0.001), and higher for rpSTS (r=0.108). This control analysis dem-
onstrates that the above results for rFFA and rOFA are specific to
visual stimuli (faces). To conclude, we find that the structure of the
model correlations is reliable and is systematically different between
the rFFA and rOFA.

Weighted model-combination analysis

Although our models accounted for a large portion of the
explainable variance (based on the noise ceiling) in brain repre-
sentations in the rFFA and rOFA, none of the mean correlations
reached the lower bound of the noise ceiling. It could be that each
individual model captured only a portion of the information repre-
sented in each brain region, in which case we may be able to fully
explain the brain representations by combining multiple models.
We thus used weighted representational modeling (Khaligh-Razavi
and Kriegeskorte, 2014; Jozwik et al., 2016, 2017) to combine sets of
models into weighted combinations via cross-validated fitting on
the human data, and to investigate whether these combined models
resulted in better predictions of the brain dissimilarities in each
brain region (see Materials and Methods). We considered six
different combined models: Image-computable properties
(OpenFace, GIST, GaborJet, and Pixel), Social Traits (com-
prising a weighted combination of the Trustworthiness,
Dominance, Attractiveness, and Valence properties), Perceived
properties (Trustworthiness, Dominance, Attractiveness, Valence,
Perceived Similarity, and Gender), Low-Level properties (GIST,
GaborJet, and Pixel), High-Level properties (Trustworthiness,
Dominance, Attractiveness, Valence, Perceived Similarity, Gender,
and OpenFace), and All properties.

We used linear non-negative least squares regression to esti-
mate a weight for each component of each combined model. We
fitted the weights and tested the performance of the reweighted
(combined) model on nonoverlapping groups of both partici-
pants and stimulus conditions within a cross-validation proce-
dure, and used bootstrapping to estimate the distribution of the
combined model’s performance (Storrs et al.,, 2020). Figure 3B
shows the results of this analysis. p values were corrected for
multiple comparisons using Bonferroni correction. For the
rFFA, the combined models for Perceived properties and High-
Level properties had the highest mean correlations with the brain
RDMs, and the individual-subject correlations were signifi-
cantly >0. For the rOFA, the combined model of all Low-
Level properties and that of all Image-computable properties
had the highest mean correlations with the brain RDMs,
although the individual-subject correlations were not signi-
ficantly >0 after correcting for multiple comparisons.
Importantly, however, none of the combined models per-
formed better than the best of the individual models (see full
results in Table 2). Instead, the models with best perform-
ance in the previous (main) analysis also showed the highest
correlations in this analysis. These results suggest that the
models that best explained representational distances in each
face-selective region share overlapping variance, given that
combining them did not improve model performance. Last,
replicating the findings of the previous analysis using more
stringent statistical methods (cross-validation across stimuli
and participants) provides further evidence of a reliable pat-
tern of model correlations in rFFA and rOFA that reveals a
distinction between the type of information encoded in these
two regions.
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Table 2. Results of weighted representational modeling analysis”
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Pearson correlation between RDMs

Noise ceiling

Mean r SE p < 0.05 (Bonferroni-corrected) (lower bound, upper bound) p < 0.05 (Bonferroni-corrected)
rFFA 0.089, 0.286
OpenFace 0.105 0.032 Yes No
Gabor-Jet 0.041 0.042 No No
Pixel-Faces 0.027 0.040 No No
Pixel-Frames 0.019 0.036 No No
GIST-Faces 0.007 0.037 No No
GIST-Frames —0.010 0.037 No No
RW Image-computable 0.063 0.037 No No
Perceived Similarity 0.118 0.031 Yes No
Social Traits (All) 0.102 0.035 Yes No
Gender 0.094 0.033 Yes No
Attractiveness 0.091 0.035 No No
Valence 0.059 0.031 No No
Trustworthiness 0.049 0.033 No No
Dominance 0.048 0.034 No No
RW Social Traits 0.074 0.034 No No
RW Perceived 0.100 0.033 Yes No
RW Low-Level —0.006 0.035 No No
RW High-Level 0.096 0.033 Yes No
RW ALL 0.086 0.035 No No
rOFA 0.237, 0.372
Pixel-Faces 0.158 0.041 Yes No
Gabor-Jet 0.138 0.047 Yes No
Pixel-Frames 0.108 0.039 No Yes
GIST-Faces 0.087 0.047 No No
OpenFace 0.066 0.041 No Yes
GIST-Frames 0.050 0.042 No Yes
RW Image-computable 0.089 0.044 No No
Gender 0.082 0.041 No No
Attractiveness 0.075 0.039 No Yes
Social Traits (All) 0.067 0.040 No Yes
Perceived Similarity 0.055 0.039 No Yes
Dominance 0.039 0.038 No Yes
Trustworthiness 0.031 0.040 No Yes
Valence —0.010 0.041 No Yes
RW Social Traits 0.037 0.040 No Yes
RW Perceived 0.033 0.040 No Yes
RW Low-Level 0.103 0.046 No No
RW High-Level 0.019 0.040 No Yes
RW ALL 0.059 0.041 No Yes
rpSTS 0.091, 0.277
GIST-Frames 0.051 0.040 No No
OpenFace 0.034 0.030 No No
Pixel-Faces 0.009 0.034 No No
Pixel-Frames 0.006 0.032 No No
GIST-Faces —0.031 0.034 No No
Gabor-Jet —0.038 0.037 No No
RW Image-computable 0.013 0.036 No No
Dominance 0.054 0.030 No No
Social Traits (All) 0.035 0.030 No No
Trustworthiness 0.026 0.033 No No
Gender 0.023 0.029 No No
Valence 0.005 0.033 No No
Attractiveness 0.003 0.029 No No
Perceived Similarity —0.003 0.032 No No
RW Social Traits 0.026 0.033 No No
RW Perceived 0.031 0.032 No No
RW Low-Level 0.010 0.038 No No
RW High-Level 0.033 0.031 No No
RW ALL 0.025 0.030 No No

?Values correspond to the results presented in Figure 38. Within each ROI, we show the mean correlations between brain RDMs with each model (individual models and combined models), and whether correlations were sig-
nificantly >0. We also show the estimated lower and upper bounds of the noise ceiling for each ROI, and whether correlations were significantly below the noise ceiling. Models are ordered by effect size and grouped first
by Image-computable models, then Perceived-property models, and then models that combined both types of properties. RW refers to combined and reweighted models.
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Individual differences and idiosyncratic representations

It is possible that there were substantial individual differences in
face identity representations that limit the magnitude of the cor-
relations between brain and model RDMs in our analyses. Brain
and behavioral representations of face identities could be idio-
syncratic and thus characteristic of each individual. We consid-
ered below three ways in which we could test this hypothesis.

First, we considered whether there were substantial individual
differences in brain RDMs. To estimate the lower-bound of the
noise ceiling, we had computed intersubject reliabilities of brain
RDMs. If, however, there were substantial individual differences
in the brain RDMs, we would expect that representational dis-
tances in each of the face-selective ROIs could be highly reliable
within each participant but not across participants. We thus
computed intrasubject reliabilities of brain RDMs by correlating
the brain RDMs calculated independently from two separate test-
ing sessions for each participant, and then averaging the correla-
tions across participants. We note that, in all other analyses in
the present manuscript, the brain RDMs for each participant cor-
responded to the average of these two sessions. For all three face-
selective ROIs, we observed intrasubject reliabilities (rFFA:
r=0.063; rOFA: r=0.079; rpSTS: r=0.094) that were on average
lower than the intersubject reliabilities (rFFA: r=0.135; rOFA:
r=0.337; rpSTS: r=0.126; see Table 1), suggesting that in fact, in
this case, the brain RDMs were not more reliable within each
individual. It is important to note, however, that there was much
less data to compute intrasubject reliabilities than intersubject
reliabilities.

Second, idiosyncratic brain representations could also
result in higher correlations between each participant’s
brain RDM and behavioral RDMs based on their own rat-
ings, compared with the average behavioral RDMs that we
used in the main analyses. We thus repeated the main anal-
ysis using each individual’s own RDMs for the rating-based
Perceived-property models, namely, Perceived Similarity,
Trustworthiness, Dominance, Attractiveness, Valence, and
Social Traits (All). The results, however, did not reveal
higher correlations when using these participant-specific
behavioral models (Fig. 5B). In contrast, correlations with
the participants’ individual behavioral models were slightly
lower than when using average behavioral models.

A third possibility is that idiosyncratic representational geo-
metries could result in the variance of each participant’s brain
RDMs being best explained by a uniquely weighted combination
of candidate models (even if no set of weightings would perform
well for all participants). However, we did not have sufficient
data per participant to test this possibility here.

Discussion

We aimed to investigate what information is explicitly encoded
in the face-selective rFFA, rOFA, and rpSTS. We extracted fMRI
patterns elicited by famous face identities in these regions, and
computed face identity RDMs, which showed that face identities
could be distinguished based on their elicited response patterns
in all three regions. Using RSA, we compared the brain RDMs
for the rFFA, rOFA, and rpSTS with multiple model RDMs rang-
ing from low-level image-computable properties (pixel-wise,
GIST, and Gabor-Jet dissimilarities), through higher-level
image-computable descriptions (OpenFace deep neural network,
trained to cluster faces by identity), to complex human-rated
face properties (perceived visual similarity, social traits, and gen-
der). We found that the rFFA and rOFA encode face identities in
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a different manner, suggesting distinct representations in these
two regions. The representational geometries of face identities in
the rFFA were most associated with high-level properties, such
as perceived visual similarity, social traits, gender, and high-level
image features extracted with a deep neural network (OpenFace)
(Amos et al.,, 2016). In contrast, the representational geometries
of faces in the rOFA were most associated with low-level image-
based properties, such as pixel similarity and features extracted
with Gabor filters that simulate functioning of early visual cortex.
While previous studies had shown that low-level properties of
images extracted with Gabor filters were associated with repre-
sentational distances of faces in rFFA (Carlin and Kriegeskorte,
2017; Weibert et al., 2018), our results suggest that representa-
tions in rFFA use more complex combinations of stimulus-based
features and relate to higher-level perceived and social properties
(see also Davidesco et al., 2014). These results inform existing
neurocognitive models of face processing (Haxby et al., 2000;
Duchaine and Yovel, 2015) by shedding light on the much-
debated computations of face-responsive regions, and providing
new evidence to support a hierarchical organization of these
regions from the processing of low-level image-computable
properties in the rOFA to higher-level visual features and social
information in the rFFA.

Our initial prediction was that, by combining and reweighting
different candidate models, we would be better able to explain
the brain RDMs. However, we did not find evidence for this in
any of our face-selective ROIs. These results suggest that, when
more than one model was significantly correlated with the brain
RDMs for a certain brain region, they tended to explain overlap-
ping variance in the brain RDMs. For example, while Perceived
Similarity and OpenFace both explained the representational
geometries in rFFA, their combination did not explain more var-
iance than each model individually. However, our pattern of
results suggests a clear distinction between the types of models
that are associated with representations in the rFFA and rOFA,
with higher-level properties explaining more variance in the
rFFA and lower-level image-based properties explaining more
variance in the rOFA.

One crucial aspect of our study is that we used naturalistically
varying video stimuli and multiple depictions for each identity.
Brain RDMs were built by cross-validating the response patterns
across runs featuring different videos of the face of each identity,
and behavioral models were based on averages of ratings of mul-
tiple videos for each identity. Image-based models were built by
calculating dissimilarities between image frames taken from mul-
tiple videos of the face of each identity, and then computing the
mean dissimilarity across different image pairs featuring the
same identity pair. Behavioral studies have demonstrated that
participants make more mistakes in “telling together” (ie.,
grouping multiple images of the same identity, which is different
process from “telling apart,” or distinguishing, between different
identities) different photographs of the same person when those
photographs were taken with different cameras, on different
days, or with different lighting conditions, compared with
when photographs were taken on the same day and with the
same camera (Bruce et al., 1999; Jenkins et al., 2011). Most pre-
vious fMRI studies, however, used very visually similar images,
or even just a single image, for each identity, making it difficult
to determine whether a brain region represents different face
images or different face identities. Here, by having multiple vid-
eos for each person, we can be more confident that we are cap-
turing representations of specific identities rather than specific
stimuli.
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Related to the previous point, Abudarham and Yovel (2016)
have recently shown that humans are more sensitive in perceiv-
ing changes in some face features (e.g., lip thickness, hair, eye
color, eye shape, and eyebrow thickness) compared with others
(e.g., mouth size, eye distance, face proportion, skin color).
Changes in the former type of features (also known as critical
features) are perceived as changes in identity and those features
tend to be invariant for different images of the same identity.
Interestingly, Abudarham et al. (2019) showed that the
OpenFace algorithm that we used in the present study also
seemed to be capturing those same critical features. Given our
results in rFFA, it would be interesting to see whether represen-
tations in this region can also distinguish between the process-
ing of the critical and noncritical face features as described by
Abudarham et al. (2016, 2019).

Grossman et al. (2019) have also recently shown that repre-
sentations in the FFA relate to image-computable descriptors
from a deep neural network. There are two main differences,
however, between our results and those of Grossman et al.
(2019). First, Grossman et al. (2019) found similar representa-
tional geometries across all face-selective ventral temporal cortex,
and no differentiation between OFA and FFA. One possible
reason for this difference is that the authors were only able to
define OFA and FFA in the left hemisphere, whereas our face-
selective regions were defined in the right hemisphere. Face-
selective regions are more consistent and larger in the right
hemisphere (e.g., Rossion et al., 2012). A second main difference
between our results and those of Grossman et al. (2019) is that
the deep neural network that we used here showed high general-
ization across different images of the same person. OpenFace
(Amos et al., 2016) was trained specifically to group together
images of the same person and distinguish images of different
people, and it performed very well in doing this in our set of stim-
uli (see Extended Data Fig. 2-1), where it showed high generaliza-
tion across very variable pictures of the same person. This was not
the case with the VGG-Face network used by Grossman et al.
(2019). Future studies should focus on describing and comparing
the image-level descriptions of different types of neural networks.

Previous studies have demonstrated that face-selective regions
are sensitive to the viewpoint from which faces are presented
(Grill-Spector et al., 1999; Axelrod and Yovel, 2012; Kietzmann
et al., 2012; Ramirez et al., 2014; Dubois et al., 2015; Guntupalli
et al., 2017). However, there is also evidence that the FFA, OFA,
anterior temporal lobe, and pSTS represent face identity across
different viewpoints (Anzellotti et al., 2014; Anzellotti and
Caramazza, 2017; Guntupalli et al., 2017). In our video stimuli,
the faces were mostly front-facing, but were free to vary in terms
of changes in viewpoint (e.g., turning the head to the side dur-
ing the video). Given that our patterns for each identity were
estimated across multiple different videos of their face, it is
unlikely that viewpoint alone could explain the differences
between identities. Therefore, our results suggest that the FFA
and OFA encode information that relate to face identity,
beyond viewpoint.

We note that the lower bounds on the noise ceiling in our
analyses were consistently quite low, especially for rFFA and
rpSTS. However, these values are similar to the lower bounds of
the noise ceiling in other studies using RSA (e.g., Jozwik et al,,
2016; Carlin and Kriegeskorte, 2017; Thornton and Mitchell,
2017, 2018). We considered whether the low correlations could
reflect substantial individual differences in face identity brain
representations, but our results did not support this possibility.
The low noise ceilings in our study likely reflect the fact that the
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differences between brain-activity patterns associated with faces
of different people are small compared with the differences
between patterns associated with different visual categories (e.g.,
faces and places). Moreover, we used identity-based, rather than
image-based, patterns (by cross-validating across runs presenting
different videos for each identity), and this is likely to have intro-
duced additional variability to the pattern estimates. It is also
possible that we needed more data per participant, and future
studies should consider ways to increase the amount of explain-
able variance. A related issue is that the Perceived-property mod-
els had intersubject reliabilities that varied between 0.2 and 0.6;
thus, correlations between these models and brain RDMs would
be affected by these low reliabilities.

None of the models that we considered here explained the
representational geometry of responses in the face-selective
rpSTS. It is likely that the pSTS, as defined in the present study,
contains overlapping and interspersed groups of voxels that
respond to faces only, voices only, or both faces and voices
(Beauchamp et al., 2004) that make the overlapping representa-
tional geometry difficult to explain. On the other hand, it is pos-
sible that the pSTS represents information about people that we
did not consider here, such as idiosyncratic facial movements
(Yovel and O’Toole, 2016), emotional and mental states
(Thornton et al., 2019), biographical knowledge (Verosky et al.,
2013; Collins et al., 2016; Thornton et al., 2019), social distance
or network position (Parkinson et al.,, 2014, 2017), or type of
social interactions (Walbrin and Koldewyn, 2019). Future studies
may need to explore an even richer set of social, perceptual, and
stimulus-based models to better characterize responses in the
pSTS (and investigate representations beyond face-selective
regions).

A limitation of our study was the lack of diversity of our face
identities in terms of race and ethnicity (10 identities were White
and 2 were Black), which limits the generalizability of our results
to faces of different ethnicities. It was essential to our study that
our set of celebrities were highly familiar to our sample of young
British participants, and they were chosen based on their recog-
nizability (of both faces and voices) (see Tsantani et al., 2019).
Future work will need to incorporate more diversity in the face
stimuli. This is also crucial when considering the Image-comput-
able models. In particular, OpenFace has been developed,
trained, and evaluated on databases that contain large propor-
tions of White faces compared with other ethnicities. Future
work using larger samples of identities should evaluate the biases
caused by these procedures, and develop models trained on
more representative and diverse databases.

In conclusion, our study highlights the importance of using
multiple and diverse representational models to characterize how
face identities are represented in different face-selective regions.
Although similar levels of identity decodability were observed in
both OFA and FFA (Tsantani et al.,, 2019), the information explic-
itly encoded in these two regions is indeed distinct, suggesting that
the two regions serve quite different computational roles. Future
work attempting to define the computations of cortical regions that
appear to serve the same function (e.g., discriminating between
identities) would benefit from comparing representations in those
regions with multiple and diverse candidate models to reveal the
type of information that is encoded.
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