Multi-trait genome-wide association analysis of blood pressure identifies 45 additional loci

Claudia P. Cabrera^{1,2}, Raha Pazoki^{3,4,5}, Ayush Giri⁶, Jacklyn N. Hellwege⁷, Evangelos Evangelou^{3,8}, Julia Ramírez¹, Louise V. Wain^{9,10}, Ioanna Tzoulaki^{3,8,11}, Todd L. Edwards⁷, Paul Elliott^{3,12,13}, Patricia B. Munroe^{1,2}, Michael R. Barnes^{1,2}, Mark J. Caulfield^{1,2}, Helen R. Warren^{1,2}, on behalf of the VA Million Veteran Program and the ICBP working group

¹William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

² National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK

³ Department of Epidemiology and Biostatistics, Imperial College London, London, UK

⁴ Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UK ⁵ Centre for Inflammation Research and Translational Medicine, Brunel University, London, UK

⁶ Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, USA

⁷ Vanderbilt Genetics Institute, Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, USA

⁸ Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece

⁹ Department of Health Sciences, University of Leicester, Leicester, UK

¹⁰ NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester

¹¹ MRC-PHE Centre for Environment and Health, Imperial College London, London, UK

¹² National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust and Imperial College London, London, UK

¹³ UK Dementia Research Institute, Imperial College London, London, UK

Introduction:

Single-trait genome wide association studies (GWAS) have revealed over 1,000 blood pressure (BP) loci. However, these loci only account for less than one third of the BP genetic variation. Multi-trait GWAS is reported to increase discovery power by jointly analysing highly correlated traits. By performing the first large-scale multi-trait BP GWAS, we aimed 1) to compare multi-trait vs single-trait results and 2) identify additional loci.

Methods:

We apply MTAG to conduct a multi-trait GWAS of systolic BP, diastolic BP and pulse pressure using results from our recent GWAS discovery analysis of ~750k individuals of European ancestry from UK Biobank and the International Consortium of Blood Pressure. To detect additional loci we tested ~7 million imputed genetic variants applying the same combined 1-stage and 2-stage design criteria as in the original GWAS, with replication using MTAG results from the US Million Veteran Program (n~220k).

Results:

Single-trait GWAS yielded a higher number of significant independent signals genome-wide. Nevertheless, our multi-trait analysis identified 45 new BP loci that were not detected in the equivalent GWAS, of which nine remain novel (based on further BP loci discoveries since 2018).

Conclusions:

Our multi-trait GWAS discovered additional BP loci. However, our results illustrate that the benefits of MTAG are trait-specific, requiring high pairwise correlation between all pairs of traits, and that more power is gained when MTAG is also used for meta-analysis of traits from different samples. This suggests that future BP genetics discovery projects should focus efforts on larger meta-analyses including new cohorts.