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Abstract 
          Consider a bicubic rectangular patch complex which surrounds an n-sided hole in R3. Then the 

problem of filling the hole with n bicubic rectangular patches is studied.  
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1. Introduction 

              

The problem of filling a polygonal hole, which occurs within a smooth parametric rectangular      

patch complex, is one which arises frequently in free-form surface modelling, for example, where a    

number of surfaces are to be blended together. Here, we consider the situation where the rectangular             

patch complex is composed of bicubic patches which form a C1 surface about an n-sided hole. A 

method is proposed for filling the n-sided hole with n bicubic rectangular patches such that the resulting patch 

complex is a C1 surface. 

          The development of such a method is not new, for example [Van Wijk ’86] gives a detailed study 

of such a technique, based on the use of a certain type of continuity constraint between the bicubic 

patches. However, [Liu ’86], [Liu and Hoschek ’89], and [Peters’89] have observed that a more general 

type of continuity constraint between polynomial patches is allowable, and it is the general  continuity          

constraint condition which we propose to study here. 

          The bicubic method proposed here is that reported on in the tutorial paper [Gregory, Lau and 

Zhou ’90], where a variety of techniques for filling n-sided holes is surveyed. In the case n = 3, a closed 

form solution for filling the hole with three bicubic patches is produced. In the case of an n-sided hole, 

n > 4, a solution is produced by constraining certain of the boundary data coefficients. 

A Hermite representation of the bicubic patches will be assumed in the development of the theory, 

rather than the use of the Bernstein-Bézier representation. This will allow us to impose C1 continuity 

constraints on the rectangular patch complex surrounding the hole through the choice of common       

Hermite data coefficients and this leads to some simplification of the analysis. 

         In section 2 we give a precise statement of the polygonal hole problem and introduce the basic 

continuity constraint conditions for filling the hole with bicubic patches. A detailed analysis of the 

continuity constraints is given in section 3. This analysis is used in the development of the schemes for 

filling an n-sided hole in the cases n = 3 and n > 4 described in section 4. 
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2.        Description of the Problem  

2.1     Bicubic patch 

The bicubic Hermite patch p: [0,1]2  is defined by 3RR→

 

      [ ] [ ] [ 2
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This Hermite representation of a bicubic patch has the interpolation property that, at the vertices (i,j) of 

[0,1]2, 
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Figure 2.1    Bicubic Hermite Patch  

 
where = ∂p/∂u, = ∂p/∂v, = ∂up vp uvp 2p/∂u∂v, see figure 2.1.    Furthermore, along the edges, the 
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boundary curves p(u,0), p(u,l), p(0,v), p(l,v) and the cross boundary tangent vector derivatives Pv(u,0), 

v),(pv),(0,p),(u,p uuv 11 are univariate cubic Hermite functions. These univariate functions are 

determined completely by the vertex values on those edges. Thus two patches p and q can be joined with 

position and tangent plane continuity by appropriate identification of vertex data along their common 

boundary. This situation is well known in the construction of surface complexes of rectangular patches, 

where at each vertex there are four edges meeting (a "regular" vertex). The patch complex can then be 

considered as a single map from a parametric domain, subdivided by a regular rectangular mesh. We 

now   wish  to consider the more complex situation of filling an n-sided hole with n bicubic patches, where 

there are now n edges meeting at a vertex, n ≠ 4 (a "non-regular" vertex).  

2.2     The polygonal hole problem 

  Consider the situation shown in figure 2.2 of an n-sided "hole" in R3 surrounded by rectangular 
bicubic patches with regular vertices.  The patches are assumed to form a C1 surface around the hole,  

 

 
Figure 2.2    The polygonal hole problem 

this being achieved by having identical vertex interpolation data along common edges. The j’ th 

"boundary edge" of the hole, j = 0,...,n-1, is defined by two adjoining bicubic patches, as shown in the 

figure. (This includes the situation of having one bicubic patch adjacent to the boundary edge as a 

degenerate case.) 
 We wish to fill the n-sided hole with n bicubic patches  pj : [0,1]2 , j = 0,...,n—1, which meet            3RR→

at a non-regular n-vertex and which adjoin the regular rectangular patch complex with parameterizations 

as shown in figure 2.3.  Thus Pj(s,l) and Pj+1(l,s) must match the j’ th boundary edge of the hole and
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Figure 2.3  Filling the hole with rectangular patches 

)1,(1,0 spj∂ and must match the cross boundary tangent.  Hence the vertex data of the patches )s,1(pj0,1∂

pj and pj+1 along the j'th edge of the hole are identified with those of the adjoining bicubic patches. In 

particular, we denote 

         (2.5) 
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Similarly, the vertex data at the corners of the polygonal hole are also defined by the adjoining 

rectangular patches, but will not be required explicitly in the analysis. This leaves us with the degrees of 

freedom at the n-vertex, where we denote 
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2.3 The basic continuity constraint equations 

 The choice of the bicubic Hermite data for the patches pj, j= 0,...,n-1, of the previous   

subsection, means that these patches have C1 joins with the bicubic patches surrounding the hole. We are
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thus concerned with achieving a C1 surface across the "interior edges" about the n-vertex Q. It is well 
known that this involves constraint equations of the form 

 Pj+1 (s.0) – Pj (0.s) = 0,      (2.7)  

 1n0,....,j,0(s,0)p(s)γs)(0,p(s)βs)(0,p(s)α 1j0,1jj0,1jj1,0j −==∂+∂+∂ +    (2.8) 

where 

 0)s()s( jj >γα        (2.9) 

 The constraint (2.7) is that for C° continuity and in our case is automatically satisfied since 

pj+1(s,0) and pj+1(0,s) are univariate Hermite functions which share common interpolation data, see  (2.5) 

(2.6). The constraint (2.8) is that for C1, that is tangent plane, continuity and has become known as 

the "geometric" GC1 constraint in the CAGD literature. The condition (2.9) is imposed to avoid cusp like 

joins between the patches. 

 In references [Liu ’86], [Liu and Hoschek ’89] and [Peters ’89] it is observed that, in the case of 

bicubic patches, where  and s),(p j 00,1∂ s),(p j 010,1 +∂ are cubic polynomials and  is quadratic, s),(p j 00,1∂

the scalar factors and can be quintic polynomials and the can be sextic. We consider this (s)α j (s)γ j (s)β j

situation in detail in the following section. In particular, we are concerned with analysing the constraints 

(2.8) around the n-vertex. 

3. A Study of the Continuity Constraints 

3.1 C1 continuity at the n-vertex 

 We first consider the constraint equation (2.8) at the n-vertex Q, where s = 0. Thus with s =0 

in (2.8) and (2.9) we obtain 

111 −==++ +− n0....,j0,(0)Qγ(0)Qβ(0)Qα jjjjjj     (3.1)    

Where 

     0)0()0( >jj γα       (3.2) 

 It is required that  

 dim span{ } 2       (3.3)
0
=

=

n
jjQ
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so that the vectors {Qj} lie in a common tangent plane at Q, see figure 3.1. We also assume, without loss 

of generality, that  

 1,....,0,1)0( −== njjα       (3.4) 

 

Figure 3.1    The n-vertex situation 

 In order to proceed with the analysis, we now consider the "symmetric" equal coefficient case, 

where  

 10000 00 −=>== n,....,j,γ)(γandβ)(β jj      (3.5) 

The vertex constraints (3.1) are thus 

 .n,...,j,QγQβQ jjj 1001001 −==++ +−      (3.6) 

Furthermore, the following geometrical constraints on the vectors { } 1
0

−

=

n
jjQ jare imposed: Let θ  denote 

the angle from Qj  to Qj+1, j=0,….n-1 (all measured under a common orientation). Then it is assumed 

that 

      (3.7) ∑
−

=

−=>=
1

0
1,....,0,02

n

j
jj njand θπθ
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These assumptions imply that the vectors {Qj} form a non-overlapping star in the tangent plane at Q and 
that  
 
 ,nj,0,jforQQ j 1−≤≤≠≠ lll      (3.8) 
 
see figure 3.1.  We now have the following: 

Proposition 3.1. There exists{ } satisfying the vertex constraints (3.6) and the non-overlapping  star 1
10
−

=

n
jjQ

condition (3.7) if and only if 

 
 .γandπ/n)cos(β0 122 0 =−=       (3.9) 
 

Furthermore, 

 
 .1,....0),/2sin()/2)1sin()/2sin(| 01 −−−−= njnVQnjQnjQ j πππ    (3.10) 

Proof. The constraints (3.6) define a homogeneous, constant coefficient, difference equation giving 

 

             (3.11) ,)()()(| 10011 μλμλμλλμ ≠−−+−= forVQQQQQ jj

and 
 
  μλλλ =−+= j

j jQQQQ )( 010       (3.12) 
 

where are the roots of the auxillary equation μλ,
 
 .      (3.13) mγmβ 01 2

00 =++
Hence 
 
   .//1, 000 γβμλγμλ −=+= and      (3.14) 

The solution (3.12) cannot satisfy the periodicity requirement Q0 = Qn whilst maintaining the linear 

independence of Q0 and Q1 Thus (3.11) is the only allowable solution and imposing periodicity gives 

,1nn =μ=λ  which implies that 

   .1,0,, /2/2 −≤≤== nkee ninik ll ππ μλ

The requirement that  and  be real (see (3.14)) then leads, after further analysis, to the restriction λμ μ+λ
that 
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   .2/1,, /2/2 nkee niknik <≤== − ππ μλ
 
Hence 
 
 101 01 −=−−= n,...,j,Vsin)Q)sin(j)Q[sin(jQ kkkj ϕϕϕ    (3.15)   
 
Where 
 
 ,n/kforπ),(πk/nk 2102 <≤∈=ϕ  
 
and thus sin kϕ >0 We now consider the case .n/k 22 <≤ . In this case there exists , with l 1n3 −≤≤ l , 

such that  If )1( −l k.nk l≤< kn l=  then (3.15) gives 0QQ =l which contradicts  (3.8). Thus 

k,n)k( ll <<−1  that is   Therefore k.nk <−< l0

 
 π),π.(n)π)πk(πk 3222 ∈−+= llϕ  
 
and 
 ).2,(/)(22)1( ππππϕ ∈−−+=− nknkk ll  
 
Hence 
 sin(lϕ k) > 0 and sin((l-1)ϕ k)<0 
 

Thus, from (3.15),  lies between QlQ 0 and Q1 since it is a positive linear combination of Q0 and Qt. This 

violates (3.7). Hence k = 1 is the only value acceptable in (3.15) which completes the proof.  

Remark 3.2. A corollary to Proposition 3.1, which follows from (3.3), is that the rank of the cyclic 

coefficient matrix defined in (3.6) is n-2. 

3.2 C1 continuity across the interior edges 

 We now study the continuity constraint equations (2.8) in the symmetric case where  )(),( ss

and  are independent of j. Thus (2.8) is written as )(

 0000 1,01,00,1 =∂+∂+∂ + )(s,pγ(s)s),(pβ(s)s),(pα(s) 1jjj    (3.16) 

where we denote the scalar polynomials by 

       (3.17) ∑ ∑∑
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i
i .sγγ(s),sββ(s),sαα(s)

                                             i=0          i=0         i=0 
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(The suffix notation in (3.17) should not be confused with that for n )(γand),(β),(α jjj 000 i

subsection 3.1.) It was observed in section 2 that can be at most quintic polynomials and  can be at γα, β

most sextic but for our purposes here it is easier to assume the general power series forms (3.17), where 

the higher order coefficients are zero. Our purpose is to analyse the solvability of (3.16) assuming that 

the polygonal hole data (2.5) are given a priori. We will see that in the case n = 3 a solution of (3.16) is 

possible but that for n  5 a solution is not possible, in general. In section 4 we will consider a specific ≥

solution for the case n = 3. In the case n  5 we will obtain a solution of (3.16), where some of the ≥

polygonal hole data (2.5) are determined a posteriori. 

 Equating coefficients in (3.16) gives 

 

13221, )23())((6: −−−−− +−+−−= jiiiiiji QQBE αααββ  

               13221 )23()34( +−−−− +−++−+ jiiijiii QQ γγγβββ  

                v
jii

u
jiii)i B)ββ(B)γγα(3α 213232 32232 −−−−−− −++−−−

               13211321 22 +−−−−−−− +−++−+ jj,iiij,jiii )Qγγ(γ)Qαα(α  

                     (3.18) ,....,i,)Bγγα(α vu,
jiiii 1,003232 ==+−−− −−−−

  
where any coefficients with negative suffices are interpreted as zero. For i = 0, (3.18) gives the vertex 

constraint 

 1,...0,010010 −==++ +− njQQQ jjj γβα      (3.19) 

 

which from subsection 3.1 has the solution 

 

 π/n).cos(β,γα 000 221 −===      (3.20) 

For the purposes of analysis we consider the transformed equations 

 

         (3.21) ∑
∞

=

−==
0

100
i

ji,
k ,.....nj,Ei

for k = 0,1,…. where is defined by (3.18). ji,E

 We then make the following definition 
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Definition 3.3. We say that the constraints (3.21) are removable if for arbitrarily given

boundary data { there exists scalars } 1

0
,, −

=

n

j
v
j

u
jj BBB { }iii , γβα and vectors { } 1

01,
−

=+
n

jjjj QQQ

such that the constraints are satisfied. 

Proposition 3.4. For n  the constraints (3.21) are removable if and only if 5≥

 

 .0)()()( ≡== sss γβα       (3.22) 

 

Proof   We first consider the constraint 

 

 ∑ ∑∑ =−−−≡
i i

v
j

i

u
jiiji .B)Bγ(αE 0      (3.23) 

Then 

 ∑ ∑==−
i i

iii β0)γ(α       (3.24) 

 

since the two tangent vectors  and  at the boundary vertex Bu
jB v

jB Bj must be linearly independent. We 
now consider 

 ∑ =0Ei ji,  

which, using (3.24), gives 

 ∑ ∑ =β−γ−α− .0BiB)(i v
ji

u
jii      (3.25) 

Hence 

 

 ∑∑ ==− .0)( iii ii βγα        (3.26) 

 We now proceed by induction, assuming that the constraints (3.21) are removable for k = 0,...,m, 
m  1, if and only if ≥

 

       (3.27) ∑ −== ,m,.....,k,αi i
k 200

 

       (3.28) ∑ ∑ =−== .,.....0),(0 miii ii
k

i
k γαβ

(In the case m=1,(3.27)   is void.)  (3.21) for  k = m+1 gives 
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     (3.29) ).(26 1,,1,1,3,2,10 +− +=++ jjjjmj
v

mj
u

mjm QQBBQ σσσσβ
where 
 
 ( )∑ ∑∑ ++−+ =−== .),(, 1

,3
1

,2
11

2,1 i
m

mii
m

mi
mm

m iii βσγασασ   (3.30) 
 

Eliminating the term  by use of (3.18) for i = 1 then gives 11 +− + jj,j,j QQ

 

 )Qγ)Qβ(βQ(ασQ)(Bσβ jjjm,jm,0 11011111 212 +− +−++−  

 

     (3.31) 1004 1032 −==+++ n,....,j,)Bσβ(σBσ v
jm,m,

u
jm,

 
Taking a linear combination of equations (3.31) for j = i -1 and i + 1 together with a 0β  multiple for 
j = i and using the vertex constraints 
 
 1,....0,0101 −==++ +− njQQQ jjj β  
gives 
 
  )())2((12 101,201101,10

u
i

u
i

u
imiim BBBQBBB +−+− ++++−++ βσββσβ

 
 .      (3.32) ,...ni0,)BBβ)(Bσβ(σ v

ii
vv

im,0m, 104 10113 −==++++ +−

 
Taking the difference of (3.32) for 1and +== ll ii  then gives 
 

)](()[(12 21)101,10 +++− −+−+− llllll BBBBBBm  σβ β
 

)]()()[( 21101,2
uuuuuu

m BBBBBB +++− −+−+−+ llllll βσ  
 

.0)]()())[(4( 11101,10,3 =−+−+−++ +++−
vvvvv

mm BBBBBB lll
l
lll βσβσ      (3.33) 

For n 5 the three vectors in (3.33) will, in general, be linearly independent and ≥ ,4nfor00 ≠≠β  see 

(3.9). Hence  

 m,3m,2m,1 σ=σ=σ  

which completes the inductive step. 
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Remark 3.5 From Proposition 3.4 we conclude that the continuity constraints are not removable in 

general for n ≤ 5 and hence we cannot assume arbitrarily given Hermite boundary data in this case. For  

n = 3, however, equation (3.33) is satisfied identically since β0 = 1 and (3.32) gives an identical equation 

for j = 0,1,2, In this case the constraints are removable. 

  This completes the analysis of the continuity constraints and we are now in a position to develop 

the special solutions for the polygonal hole problem. 

4. Methods for Filling the n-sided Hole 

 In this section we consider particular solutions to the continuity constraint equaitons (3.16) which 

result in practical methods for filling the n-sided hole with bicubic patches. As was observed in the 

previous section, we find it appropriate to distinguish between the case n = 3 and the general case n≥ 5. 

We first, however, consider the choice of the scalar coefficients α(s), β(s) and γ(s) in the constraints 

(3.16).  

4.1 A particular continuity constraint 

 From (3.9) we have 

 α (0)= 1= γ (0) and β(0)= -2cos(2π /n) .     (4.1) 

Also, from (3.24) and (3.26) we see that 

 β(1)= β '(1) =0 and  α (l) – γ(1)= α'(l) - γ'(l) = 0.     (4.2) 

This latter condition reflects the fact that  and  must be linearly independent for a regular surface. u
jB v

jB

For simplicity, we now choose the minimum degree scalar polynomials consistent with (4.1) and (4.2), namely, 

 α(s)= γ (s)= 1  and  β (s)=β0(l-s)2 ,     (4.3) 

where 

 β0= -2cos(2π /n) .      (4.4) 

Substituting in (3.16) then gives the quartic polynomial equation 



 
 

13 
 
    (4.5) ( ) ( ) ( ) ( ) ( ) ( ) ,0,0,0/2cos12,0 11,00,1

2
0,1: =∂+∂−−∂= + spspnssps jjjj πϕ

 
where, by the choice (4.3), 
 
 ( ) ( ) ( ) .0110 ' === jjj ϕϕϕ  
 
Thus, we only require two additional constraints in order that (4.5) is satisfied. We take these as 
 
 ( ) ( ) 000 ''' == jj ϕϕ  
 
which gives the two constraints 
 

( )

( )⎪⎩

⎪
⎨
⎧

−==−−−+−−

=+++−−

+−

+−

,1n0,...,j0,2Q2QB7βQ15βQB18β

,0QQB2βQ6βQB6β

1jj,j1,j
v
j0j0j0

1jj,j1,j
v
j0j0j0

    (4.6) 

 
see equations (3.18) for i = 1 and 2. Thus, for the choice of the scalar functions (4.3), the constraints 
(4.6) are necessary and sufficient conditions for a GC1 join between the patches pj and Pj+1. To these 
conditions we must also add the vertex constraint 
 
 Qj-1 + β0 Qj + Qj+1 =0   j=0,…,n-1,     (4.7) 
 
see (3.19) and (3.20). 
 
4.2 Solution for the case n = 3 
 In the case n = 3 we have β0 = 1 and the constraints (4.6) and (4.7) then give 
 

( ) ( )
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=++
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+−=+−− +−

.0
,2,1,0,02

,266

210

1,,1

QQQ
jBQQB

QQBQQB
v
jjj

jjjj
v
jjj

        (4.8) 

 
We then have 
Proposition 4,1 A symmetric solution to the triangular hole problem is  
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⎪
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WVQ

v
jjjj

v
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where 

 V = BB0 + B1B  + BB2  ,  W=        (4.10) .
210
vvv BBB ++

 Here, the value of Q in (4.9) follows by summing the second equation in (4.8) over j and this 

second equation is then solved for Qj. The value of Qj-1,j+1 is now given by the solution of the cyclic 

system defined by the first equation in (4.8) for j = 0,1,2. 

Remark 4.2 The above analysis shows that the continuity constraints are 'removable' in the case n = 3, 

that is, there is a solution for arbitrarily given Hermite boundary data around the triangular hole. 

 Figures 4.1 - 4.3 show a model example of a triangular hole being filled with three rectangular 

patches with the interior vertex data determined by (4.9). It can be seen that a satisfactory tangent plane 

continuous surface is obtained by this method.  

4.3 Solution for general n 

 The analysis of section 3 shows that it is generally impossible to obtain a cubic Hermite patch 

solution to the polygonal hole problem in terms of arbitrarily given Hermite boundary data. In this case 

we can allow the Hermite boundary data parameters (Bj,Bv
j), j = 0,...,n-1, to be additional degrees of 

freedom. 

 These parameters, together with the n-vertex parameters Q and (Qj,Qj,j+1), j = 0,…,n -1, are 

then constrained by the underdetermined system of equations (4.6) and (4.7). There are then many 

possible ways of seeking appropriate solutions to this underdetermined system. For simplicity here, we 

observe  that   if  the  n-vertex  parameters  are  given  subject  to  the  vertex  constraint   (4.7),   then  
 

 
( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

−=++−=

+−+=

+−

+−

,1,...,0,13

2
12

1,,1
0

1,,1
0

njQQQB

QQQQB

jjjjj
v
j

jjjjjj

β

β
     (4.11) 

 

provides a solution to the problem. However, figure 4.5 shows that this simple technique of perturbing 

some of the boundary data can lead to underirable 'bumps" being introduced into the tangent plane 

continuous surface. Here the pentagonal hole of figure 4.4 has been filled with five rectangular patches, 

where the interior vertex data has been determined by an averaging process and the boundary data has 

been perturbed to satisfy (4.11). 
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 Figure 4.6 shows the effect of partitioning the hole with an additional layer of bicubic patches 

adjacent to the boundary. This enables given Hermite boundary data to be matched exactly but 

introduces many additional degrees of freedom. The additional layer has thus been constrained by a 

simple splitting technique to reduce the number of degrees of freedom, see [Zhou '91] for further details. 

The remaining degrees of freedom have been chosen by trial and error to give the satisfactory solution of 

the figure.  

4.4 Conclusion 

 The main purpose of this paper has been to give a detailed analysis of the continuity equations 

which result from constraining n patches to meet at a non-regular n-vertex. For the case of a 3-vertex, it 

has been shown that there is a simple closed form solution of the constraint equations which enables a 

triangular hole to be filled with three bicubic patches. For the case of an n-vertex, n ≥ 5, a solution of 

n-sided hole problem is produced by constraining certain of the boundary data. In practice, we feel that 

some variational surface criterion should be applied to the problem of determining an appropriate solution 

in this case, but have considered an investigation of such criteria to be beyond the scope of the present 

paper. However, the theory and examples presented here demonstrate the existence of tangent plane 

continuous bicubic patch methods for filling polygonal holes. 
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