

TR/05/93 August 1993

SOLVING LARGE SCALE LINEAR PROGRAMMING
PROBLEMS USING AN INTERIOR POINT METHOD
ON A MASSIVELY PARALLEL SIMD COMPUTER

Hjálmtýr Hafsteinsson, Roni Levkovitz
Gautam Mitra

w9256072

Solving Large Scale Linear Programming
Problems Using an Interior Point Method on a

Massively Parallel SIMD Computer

Hjálmtỳr Hafsteinsson* Roni Levkovitz† Gautam Mitra‡

Abstract

The interior point method (IPM) is now well established as a competitive
technique for solving very large scale linear programming problems. The leading
variant of the interior point method is the primal dual - predictor corrector
algorithm due to Mehrotra. The main computational steps of this algorithm are
the repeated calculation and solution of a large sparse positive definite system of
equations.

We describe an implementation of the predictor corrector IPM algorithm on
MasPar, a massively parallel SIMD computer. At the heart of the implemen-
tation is a parallel Cholesky factorization algorithm for sparse matrices. Our
implementation uses a new scheme of mapping the matrix onto the processor
grid of the MasPar, that results in a more efficient Cholesky factorization than
previously suggested schemes.

The IPM implementation uses the parallel unit of MasPar to speed up the
factorization and other computationally intensive parts of the IPM. An impor-
tant part of this implementation is the judicious division of data and computation
between the front-end computer, that runs the main IPM algorithm, and the par-
allel unit. Performance results on standard industrial test problems are presented
and discussed.

*Department of Computer Science, University of Iceland, Reykjavik, Iceland (hh@rhi.hi.is). This
work was performed while the author was visiting the Department of Mathematics and Statistics,
Brunei University

†Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UBS 3PH,
U.K. (Ron.Levkovitz@brunel.ac.uk)

‡Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UBS 3PH,
U.K. (Gautam.Mitra@brunel.ac.uk)

1. Introduction

In the last few years interior point methods (IPM) for linear programming (LP) have
become increasingly popular. The growing experience of using these methods has shown
that in general IPM algorithms complement and do not replace the established sparse
simplex (SSX) algorithms.

One of the main differences between the IPM and the SSX is the average conver-
gence rate. While the SSX average convergence rate is proportional to the number of
constraints, the IPM convergence rate is almost invariant to the growth in the problem
size. As a consequence, the IPM is considered to be well suited for solving very large
sparse LP problems. For a discussion of some of the research issues we refer the reader
to [12].

The concentration of numerical work in relatively few steps and the need to solve
very large LP problems makes the IPM a good candidate for exploiting the power
of parallel hardware. The efforts of parallelizing IPM have so far concentrated on
shared MIMD [17], distributed MIMD [11] and vector computers. Carolan et al. [3]
implemented several IPMs on an Alliant MIMD computer. Bisseling et al. [1] adapted
the dual affine IPM for a 20 x 20 transputer rack and achieved impressive speedup for a
series of computationally difficult problems. Other implementations using superscalar,
register and vector technology have also achieved consistent speedups compared to
similar serial implementations [5, 10, 15].

In this paper we describe our approach of deploying the computationally intensive
parts of IPM to a massively parallel SIMD computer. We have implemented a matrix
multiplication algorithm and an algorithm for solving triangular systems on the SIMD
computer. We also make use of the Cholesky factorization algorithm of Manne and
Hafsteinsson [14]. We show that for a large number of LP problems the SIMD imple-
mentation is a viable alternative and that by a simple preanalysis of matrix structure
and nonzero statistics, these problems, which are suitable for SIMD processing, can be
identified in advance.

The rest of the paper is organized as follows. In section 2 we present the primal dual
- predictor corrector IPM. We also analyze the computational structure of this IPM and
provide summary profiling information. We use this information to illustrate why the
IPM is well suited for parallelization. In section 3 we introduce our target hardware, the
MasPar MP-2 SIMD computer and give some performance information. In section 4 we
describe the MasPar implementation, and in particular present the symmetric matrix
multiplication, the Cholesky factorization, and the triangular solution algorithms and

2

explain how data movement between the parallel unit of the MasPar and the front-end
computer is handled. In section 5 we profile a set of difficult test models and compare
the solution times of the MasPar to those of a top of the range Sparc 10 computer. We
further use these results to develop a general criterion that enables us to decide which
models should be solved on the MasPar. Finally, in section 6, we discuss our results
and future extensions to the algorithm.

2 Interior Point Methods
Of the many variants of the IPM that have been implemented, the primal dual algo-
rithms in general, and the primal dual - predictor corrector algorithm in particular,
are considered to be the most computationally attractive [13, 16]. Our implementation
uses this predictor corrector variant and we describe below the algorithm.

2.1 The Predictor Corrector IPM

Consider the primal and dual LP problems in the standard form:

(Primal) min (1) xTc
subject to 0 ≥= x b, Ax

 (Dual) max bTy (2)
subject to ATy + z = c, z 0 ≥

A x,z,c y, b ∈ . mxnℜ∈ nℜ∈ mℜ

Our aim is to calculate an optimal point (x*, y*, z*) for this pair of non empty
polyhedrons denned by their respective constraints (1) and (2).

Such a point satisfies the primal and dual constraints and the optimality criterion

∗∗ − ybxc TT = (x*) T = 0 (3) ∗z

To solve the linear equation systems (l)-(2) and equation (3), we convert the con-
strained optimization problem to that of an unconstrained optimization. We first in-
corporate the non-negativity constraints in the objective function by introducing a
logarithmic barrier function.

3

The new problems can be stated as

min c x — (4) T
j

n

1j
xμ∑

=

1n

subject to Ax = b

max bTy + (5) jzlnμ
n

1j
∑

=

subject to A y + z = c T

mxnA ℜ∈ x, z, c mn ℜ∈ℜ∈ y,b

We further transform the problem to an unconstrained optimization problem by in-
troducing the Lagrangian functions.

L (Primal) = C x - T)(n1
1

bAxx T
j

n

j
−−μ∑

=

y

(6)

L(Dual) = bTy +)czAxz TT
j

n

j
−+−μ∑

=

y(n1
1

The first order optimality conditions for the problems set out in (6) for given values
of μ are

 Ax-b = 0

 ATy + z - c = 0 (7)

 XZe —μe = 0

 x, z > 0

where X, Z are diagonal matrices whose diagonals are x, z and e is a vector of all 1.
The search directions for the new points are derived from the conditions in (7). This

is done by following the Newton direction, the Taylor polynomial direction, or some
other method. Since the new point must satisfy the equations in (7). A simple way to
derive the predictor corrector direction is to introduce a new point (x+Δx, y + Δ y, z +
Δ z). The new point must satisfy the equations in (7). A proper reduction in the value
of the barrier parameter then gives us the desired improvement.

4

Substituting the new point in system (7) leads to the following set of equations.

AΔx = b-Ax

 AT Δ y + Δ z = c-ATy + z (8)

 X Δ Ze + Z Δ Xe = μe - XZe - Δ X Δ Ze

The system of equations in (8) contains a nonlinear term, namely Δ X Δ Ze, hence we

use a predictor corrector approach to solve it. We first calculate the predicting direction
by ignoring the nonlinear terms and the μ term. Then we calculate μ according to the
predicting direction and use it to calculate the correcting direction. The predicting
direction obtained from (8) is

Δ p y = (ADAT) [d1−
P - AD(z + d)] D

 Δ p x = D(AT Δ p y - z + dd) (9)

Δ p z = -(z + ZX Δ1−
 p X)

where D = XZ , dp = Ax — b and d — A1−
D

Ty + z-c.
The barrier parameter μ is calculated as a function of the duality gap after the

maximum step is taken in the predicting direction.
 μ = f(cT(x + Δ pX) - bT(y + Δ py))

The correcting direction can then be calculated as
Δ Cy = − ΔΔ−−−)()(11 ZeXeμXADA pp

T

Δ cx = (10))]([ZexΔΔμXΔAD ppe
1

c
T −− −y

Δ Cz =)Δ)ΔΔ(xZXZeXμeX c
1

pp
1 −− −−

5

The correcting and predicting directions are added to the current point to advance to advance
the next point.

)(xxxx cPP Δ+Δα+=

)(yyyy cPD Δ+Δα+= (11)

)(zzzz cPD Δ+Δα+=

where αp and αD are primal and dual attenuation parameters (0 < αp, αD < 1) that
ensure that the new point is represented by a vector of strictly positive components.

2.2 Computational structure of the IPM algorithm
One of the fundamental reasons for the acceptance of the primal dual IPM is the
polynomial worst case bound on the number of iterations. Indeed, if L denotes the
input size and n the largest dimension of the constraint matrix A then the algorithm
converges in no more then)(nLO iterations [9]. Practical implementations, however,
show that the average case convergence rate is closer to O(log n). This means that
only rarely will the number of iterations grow above 50-60 and most LP problems can
be solved in 20-40 IPM iterations. The computational work at each iteration of the
predictor corrector IPM algorithm is concentrated in the solution of equations (9) and
(10). It is easy to see that if m and n are of the same order then the repeated calculation
of the matrix ADAT and its subsequent inversion dominate the computational process.
Here, it is significant to observe that if the matrix A is of full rank then the matrix
ADAT is symmetric positive definite. Further, the nonzero structure of the matrix
remains invariant throughout the iterative process. Since the same matrix is required
in both (9) and (10), it is also natural to use a solution method that allows us to solve
the second system of equations without repeating the calculation.

There are many direct and iterative methods for solving a symmetric positive def-
inite system of equations [7]. We have adopted one of the more popular approaches,
namely, the Cholesky factorization. The main computational steps of the predictor
corrector IPM algorithm with the Cholesky factorization are set out in Figure 1.

2.3 Practical Considerations

Real life linear programming problems are usually very sparse. The symmetric matrix
ADAT, however, normally suffers some nonzero growth and can become much denser

6

1. Initialize set k = 0, calculate (xk , yk , zk)

2. Check for termination criteria

)()(()()(gap
kTkTkTk

D
k
P ||)b||/bxcandDdandPdif ∈<−∈<∈< yy then

STOP

 3. Factorize Lk(Lk)T = ADk AT

4. Compute the predicting direction (Δpxk
, Δpyk, Δpzk)

5. Compute the barrier parameter μk

6. Compute the correcting direction (Δcxk, Δ cyk, Δ czk)

7. Calculate αP, αD

8. Move to the new point

9. Set k = k+1, goto 2.

 Figure 1: The IPM primal dual - predictor corrector algorithm

than the A matrix. The Cholesky factor L, in turn, usually becomes even denser.
For example, a single dense column in A results in a fully dense ADAT and L. In
practical implementations, substantial amount of work is spent on reducing the fill-
in [4, 6, 9]. To begin with, dense columns are either split or calculated separately [19].
The symmetric matrix is then reordered to reduce the nonzero fill-in in the factorization.
A common reordering strategy is the minimum degree algorithm. This method is used
in our implementation of the predictor corrector IPM. However, depending on the
nonzero structure of the original A matrix, the amount of fill-in and the structure of the
Cholesky factor can vary considerably. This affects the distribution of computational
effort between the different parts of the algorithm as demonstrated in Tables 1 and 2.

The problems we use come from two sources. The first source is the set of NETLIB
models, the second is a set of industry generated LP problems. The models of the
second set, named CARxx and RAT1, originate from medical resolution enhancement
of PET (positron emission tomography) images [18]. In choosing these models we have
attempted to reflect the variety and size of real life LP models. The model CRE_A,
an American Air Force airlift model [3], for instance, has relatively small nonzero fill-
in during factorization while the model PILOT suffers a large amount of fill-in (see
Figure2).

7

Matrix A
Model Rows Cols Nonz.

Matrix AAT
Nonzeros

Cholesky factor
Nonzeros

Iter.

CAR2
25FV47
PILOT
CAR11
BNL2
RAT1
CRE_A
DFL001
CAR4
CAR8

400
793

1439
2025
2280
3136
3422
6071

16335
32768

1200
1849
4655
6075
4442
9408
7242

12230
33652
67678

38890
10566
42296

767804
14952
88267
18142
35632
63724

1183660

58805
11715
60977

1162527
15688

219086
24107
44169

107696
3276351

61411
32291

205230
1550510

89601
1251702

35924
1567825
169950

6280471

15
24
30
24
31
21
29
50
24
27

Table 1: Characteristics of the test problems

Model
Build
ADAT

Cholesky

Triag.
solves

Other

CAR2
25FV47
PILOT
CAR11
BNL2
RAT1

CRE_A
DFL001
CAR4
CAR8

33.6%
13.0%
13.1%
18.0%
4.0%
2.9%

28.4%
0.3%

16.1%
12.1%

45.8%
51.4%
62.4%
65.3%
66.4%
90.5%
24.6%
95.4%
56.3%
75.7%

1.5%
5.3%
3.3%
0.6%
5.1%
2.5%
4.6%
1.4%
1.2%
0.6%

19.1%
30.3%
21.2%
16.1%
24.5%
4.1%

42.4%
2.9%

26.4%
11.6%

Table 2: Distribution of computational effort in a single sequential IPM iteration

8

Figure 2: Symmetric matrix and Cholesky factor for the models CRE_A and PILOT

The model PILOT represents a large class of problems whose Cholesky factor is
fairly dense and requires a considerable amount of work. For these problems, large
speed gains can be made by improving the efficiency of the matrix multiplication and
factorization steps; either by improving the algorithms or by taking advantage of novel
hardware features. There are implementations of the IPM that take advantage of shared
memory [17], distributed memory [l], and vector computers [10].

In many cases, the matrices that benefit the least in the parallel solvers are those
that are easily solved in the naive sequential way. For very sparse matrices with evenly
distributed nonzeros and limited fill-in (e.g. the LP problem CRE_A) the overhead in
utilizing parallel factorization is almost always greater than the benefits. These types
of problems can be recognized in advance and solved by using a serial implementation.
Our main target is to speed up the solution process for those problems that cannot be
solved in reasonable time on standard sequential computers.

3 The MasPar computer

Parallel computers differ widely in their design, but there are abstract models that can
help in classifying them [8]. One such model is the SIMD, which stands for Single
Instruction stream, Multiple Data stream. As the name indicates there is only one
program for all the processors, but each processor uses a different data set. Another

9

implied feature of SIMD computers is synchronous operation, that is, all instructions
are performed in lock step on all the processors.

3.1 The MasPar MP-2 machine

The MasPar MP-2 system is a massively parallel SIMD computer. It is an upgrade of
the older MP-1 system [2], with more powerful processor elements but uses the same
communication subsystem. The MP-2 consists of two units: a work station, which acts
as a front-end for the system, and a parallel unit. The parallel unit contains between
32 x 32 (1K) and 128 x 128 (16K) processor elements. These are arranged in a 2-
dimensional, toroidal-wrapped grid called the processor array. The parallel unit also
contains an array control unit, which provides an interface between the front-end and
the processor elements.

Following the SIMD paradigm, all the processor elements of the MP-2 receive the
same instructions from the control unit at the same time and execute them on their
local data. However, individual processor elements can be disabled based on logical
expressions and can use indirect references when referring to local data. The advantage
of indirect references is that even though all the processors are accessing the i'th element
of a local array at the same time, i can be different on different processors, thus allowing
greater flexibility in programming.

The MP-2 provides two types of communication between the processor elements
called Xnet and Router. Xnet communication is the faster, but more restricted proce-
dure. It follows the grid lines of the processor array. Processor elements can send data
any distance to the north, south, west, and east, as well as to the northwest, northeast,
southwest, and southeast (see Figure 3). The grid lines wrap around, so each processor
element always has a neighbor in each of these eight directions.

The basic Xnet communication time is determined by the formula

<startup> + <#bits> * <dist>,

where <startup> is the latency startup time, <#bits> is the number of bits to be sent,
and <dist> is the distance expressed in number of processors. A typical execution time
for 64-bit operands is 6 + 66*<dist> clock cycles, with <dist> at most 128. On the
MP-2 a clock cycle is 80 ns. The MasPar also provides pipelined variations of Xnet that
are faster for long distances communication on the grid. They can be used to efficiently
broadcast values along rows or columns of the processor array. Sending a 64-bit data

10

Figure 3: A processor element and its grid connections

item to the other 127 processors in the same row/column of a 128 x 128 machine takes
only about three times as much time as a basic Xnet to a nearest neighbor.

Router communication allows each processor to send data to any other processor in
the processor array. This makes it more flexible than the Xnet, but slower. The time
for a Router communication varies with the amount of collisions, but averages out to
about 6200 clock cycles for 64-bit operands.

In the programs described in this paper we use the pipelined Xnet almost exclusively
for communication between processor elements. This gives higher speed, but requires
that data be distributed to the processors in a special way in order to take advantage
of the grid communication.

Each processor element of the MP-2 is a 32-bit load/store arithmetic processor
with 40 32-bit registers and 64Kb of RAM. There is no floating point hardware, so all
floating point operations are implemented in software. If we define the average time
of a floating point operation (flop) as a = 2

1 (Mult + Add), the peak speed of a single

processor element is 0.1412 Mflop/sec for 64-bit arithmetic. A 16K processor machine
thus has the peak performance of 2314 Mflop/sec.

Comparing the speed of arithmetic to communication on the MP-2, we obtain the
ratio

.8.0
]1[

=
α
netX

Thus floating point arithmetic on a 64-bit value is actually more expensive (by 20%)
than sending that value to the nearest neighbor in the processor array. Copying a 64-bit
value to all the other processors in a column or a row of the processor array, using
XnetC, costs only 2.5 times more than a single 64-bit floating point operation on the

11

MP-2.
This favorable ratio of communication to arithmetic speeds is probably due to the

fact that the processors do all floating point computations in software, since the absolute
communication speeds are not unusually high.

4 Computing kernels for the MasPar

In this section we consider the adaption of the predictor corrector IPM algorithm to the
MasPar MP-2 and discuss some of the design issues, especially our choice of computing
kernels for this SIMD parallel computer.

An existing implementation by Levkovitz [9] of the predictor corrector IPM for se-
quential computers was used as a basis for the parallel implementation. In section 2
we identified a number of computationally intensive steps in the sequential implemen-
tation that could be efficiently adapted to a parallel computer. We have rewritten
them to execute on the parallel unit of the MasPar. Thus, the basic framework of the
sequential implementation remains on the front-end computer of the MasPar, perform-
ing preprocessing, loop control, and minor computational tasks, while the bulk of the
computation takes place on the parallel unit.

Since the speed of data movement between the front-end and the parallel unit is
not very high, it is important that the division of work between the two units does
not result in large amounts of data traffic. In our implementation, this is achieved by
keeping the constraint matrix A on both the front-end and the parallel unit. This allows
us to confine the data transfer in each iteration to sending dense vectors, avoiding the
expensive transmission of matrices.

The most obvious candidate for parallelization in the iterative phase of the algorithm
is the solution of the two linear systems (see equations (9) and (10))

 (12))]([1
DpP dzADdH +−=Δ −y

 (13))]([11 ZeXeXH Ppc ΔΔ−μ−=Δ −−y

where H = ADAT. As shown in section 2 these solutions are the main steps in the
calculations of the predicting and the correcting projections respectively.

The linear systems can be solved either by a direct method or an iterative one.
Although iterative methods are usually better suited to SIMD parallelism we decided
to use the direct method of Cholesky factorization. The reason for this choice is the

12

better numerical stability of the Cholesky factorization and the fact that we are using
the predictor corrector IPM, which requires the solution of the same system twice
with different right hand sides. Using an iterative method we would have to solve the
two systems completely independently, while we only have to compute the Cholesky
factorization once and then carry out a pair of triangular solves for each right hand
side.

The solution of the linear systems proceeds by first calculating the Cholesky fac-
torization of the m x m matrix H = ADAT, where A is the original m x n constraint
matrix and D is a diagonal matrix that changes in every iteration. Then, the two lin-
ear systems can be solved by the solution of triangular systems involving the Cholesky
factor matrix L. Let r = dp — AD (z + dD) be the right hand side of equation (12), then
we can compute Δpy by first using forward elimination to solve the triangular system
Lw = r and then applying back substitution to solve LTΔpy = w. Similarly Δcy is
computed from L and the right hand side t = X-1 (μe — Δp X Δp Z e) of equation (13).

Thus, there are three tasks that require the lion share of the work in an IPM
iteration. The first one is to build the matrix H, given the diagonal matrix D for the
current iteration. In a typical sequential implementation this step takes about 10-20%
of the time for an iteration (see Table 2 in section 2). The second expensive task in an
iteration is the Cholesky factorization of H into LLT. This typically consumes 60-80%
of the sequential iteration time. The third step consists of the triangular solutions
needed to solve the two linear systems using the Cholesky factor L. As triangular
solutions require an order of magnitude fewer arithmetic operations than the two other
tasks (0(n2) as opposed to 0(n3) in the dense case) they take up a smaller percentage
of the sequential iteration time, usually less than 5%.

In the following subsections we describe in more detail how each of these tasks is
performed on the parallel unit of the MasPar MP-2.

4.1 Building ADAT

The constraint matrix A is loaded onto the processor grid in the preprocessing phase
of the IPM computation. The columns of A are wrapped onto the processor columns
of the grid, so that processor column p contains the columns j with (j mod 128) = p.
For the rows of A we use the same layout scheme as for the columns and rows of L.
This scheme is described in Manne and Hafsteinsson [14].

Thus each row of A is stored along a single processor row of the MasPar, but a
processor row can contain many matrix rows.

13

The computation of ADAT starts by calculating AD, storing it in the same way as
A is stored, and then computing the matrix product (AD) x AT. Initially we need to
send the diagonal of the matrix D, stored in the vector d, from the front-end to the
parallel unit. MasPar provides a communication primitive, called Blackout, for copying
a matrix from the front-end to the processor grid. If the matrix is 128 x 128 then each
processor on the processor grid receives the element in the corresponding position in
the matrix. If the matrix is smaller, then the elements of the matrix are sent to a
designated subgrid of the processors.

We want each processor row to have a copy of d, so the computation of AD can be
performed simultaneously on all the processor rows. One way of doing this would be
to load a 128 x 128 matrix S on the front-end with the first 128 elements of d in each
of its rows. This would require [n/128] Blockout operations to send all the elements
of d.

A faster method for sending d to the parallel unit is to pack it into the matrix S
by rows, so that Sij would get element d(i-1)*128+j. Then, after performing a Blockout,
each processor row sends copies of the elements they received to all the other rows,
using the grid communication primitive Xnet. Since Xnet is local to the processor grid,
it is several orders of magnitude faster than Blockout. Using this method only one
Blockout transmission is required for every 16K (128 * 128) elements of d.

After d is distributed, each processor multiplies its part of A with the corresponding
elements of d, and stores the resulting elements of AD in the same way as the A elements
are stored.

When computing the matrix multiplication (AD) x AT, we take advantage of the
fact that we know the structure of the resulting matrix. Thus, we only need to perform
the dot product of row i of AD with column j of AT when element (i, j) of H is nonzero.

The algorithm computes one column of H at a time. When calculating column
j it sends the nonzeros of column j of AT, which is stored as row j of A, to all the
other processor rows. The processors then store it in their local array guest. In order to
determine which elements of guest are valid in each iteration the corresponding element
of integer array time_stamp is set to j, the current iteration number.

For each nonzero lij of column j of H, if it is a nonfill element then its row position
i is sent to all the processor in the same processor row. The processors then proceed to
form their local dot product of row i of AD and column j of AT. These dot products
are collected up along the processor row and stored as the value of lij. With a 128 x 128
processor grid we can in this way compute up to 128 nonzeros of H simultaneously.

The complete algorithm for computing ADAT is given in Figure 4. In the algorithm

14

for each nonzero a,j on this processor do

cij : = aij * dji

end-do

Alow : = 1;
Llow : = 1;
for J : = 1 to M do

if Arow_name[Alow] = J
for each nonzero aJ, t do

copyS[P].di := aJ, t;
copyS[P]. k : = t;
all

time_stamp[k] : = J;
guest [k] : = fv,

end-all
end-do
Alow := AlOW + 1;

end-if

if Lcol_name[Llow] = J
for each nonfill nonzero lt,J do

copyE[P].i := t;
all

dot := 0.0;
for each nonzero ci,k in row i of AD do

if time_stamp[k] = J
dot := dot + ci,k * guest[k];

end-if
end-do

end-all
lt,J := ScanAdd(dot);

end-do
Llow := Llow + 1;

end-if
end-do

Figure 4: The computation of ADAT

15

capital variables are global and have the same value for all processors. The all statement
makes all the processors active and copyS[P]. y = x is the version of Xnet that copies
the value of variable x into the variable y on the next P processors to the south. Since the
processor grid wraps around we use this statement to broadcast the value of x on
one processor into y on all the processors in the same processor column. The construct
Scan Add is used to add up values along a processor row.

There are other approaches to building the matrix H. One that is quite often used
is to precompute elementary products.

 ∑ ∑
= =

==
n

k

n

k
kjkikjkkikjj daaadah

1 1
.)(

Since only dk changes in each iteration we can precompute the products aikajk, for
k = l,...,n, and store this list with hij In this way there is no need to send the
elements of A between the processors during the iteration and the computation at each
step can also be cut down. However, for this method there can be up to n elementary
products associated with each hij. Therefore, we decided not to take this approach,
since the additional memory requirement would have severely limited the size of solvable
problems.

4.2 Cholesky factorization

Cholesky factorization takes as input an m x m symmetric matrix H and produces
the lower triangular matrix L, such that H = LLT. Cholesky factorization is often
described in terms of the column operation cmod and cdiv. The operation cdiv(j) is

 mjk
h

h
l

jj

kj
kj ,...,, ==

and cmod(i, j) is

hki = hki - lij *lkj, k = i, ..., m

where i > j. Using these two operation the sequential factorization algorithm for a
sparse matrix H is given in Figure 5.

The parallel Cholesky factorization algorithm that we use is from Manne and Haf-
steinsson [14] and is a parallel version of the algorithm in Figure 5. It maps the nonzero
elements of H onto the processor grid in a certain way and then computes one column
of L at a time by parallelizing the operations cmod and cdiv.

16

for j = 1 to m do
cdiv(j);
for i > j where hij ≠ 0 do

cmod(i, j);
end-do

Figure 5: Sparse Cholesky factorization

To maximize parallelism we try to do as many cmod operations as possible simul-
taneously. However, if two columns i and I’ of H are mapped to the same processor
column then cmod(i, j) and cmod(i', j) have to be done sequentially. Because of the
SIMD nature of MasPar all the other processor will have to wait for this computation (if
they do not have two cmods to perform themselves). Thus, it would be better to assign
matrix columns i and i' to different processor columns. (Of course, this might cause
two other cmods operations to collide). We can not avoid these collisions entirely, since
the number of matrix columns is generally much larger than the number of processor
columns.

In Manne and Hafsteinsson [14] this assignment problem is modeled as a graph
coloring problem and an approximation algorithm is developed for it. In the current
IPM implementation this approximation is done in the preprocessing phase and the
layout that it produces is used to map both the columns and the rows of ADAT onto
the processor columns and rows of the MasPar.

4.3 Triangular solutions

When starting the triangular solutions we assume that the Cholesky factor L already
resides on the processor grid. For the forward solve Lw= r the parallel unit needs
the right-hand-side vector r from the front-end. This vector resides on the diagonal
processors of the grid using the same mapping as the factor matrix L. We use a similar
technique for sending the vector r as was used for sending the diagonal of D, so that
potentially up to 16K elements of r are sent simultaneously.

The parallel forward elimination algorithm computes one variable of the vector w
at a time, starting with w1. This value is sent down the processor column containing
column L*1 so that it can be multiplied with the elements lk1 that are nonzero. The
processors containing column L*1 do these multiplications simultaneously and then send
the result to the diagonal processors in the same row where it is subtracted from the

17

right hand side. Thus, the diagonal processor containing element rk sets rk = rk - lk1 w1.
The rest of the elements of r are then computed in the same way.

The potential parallelism in the triangular solution algorithm is less than in the
Cholesky factorization or in the building of ADAT. Therefore, in our implementation
only up to 128 processors are doing useful work at any point in time. This lack of
parallelism is a well known problem with parallel triangular solution. In our case an
important issue is that by computing the triangular solutions on the processor grid we
avoid having to send the matrix L between the parallel unit and the front-end.

The back substitution LT Δpy = w is performed in a similar manner to the forward
elimination, except that now we start by computing the m'th element of Δpy and work
our way up the vector. Back substitution, however, usually takes about 20% longer
than forward elimination. The reason for this difference is that the layout of L on the
processor grid is optimized for the Cholesky factorization. This layout turns out to be
good for forward elimination, but is not as beneficial for back substitution.

Another factor that influences the time for back substitution is the generally higher
density of individual rows of L than of the columns. Because of fill-in, L usually has
a rather dense block of nonzeros in its bottom part. This means that the row with
the highest number of nonzeros in L usually has many more nonzeros than the column
with the highest number of nonzeros. Row L1* only has one nonzero, as has column
L*m. Thus, there is usually more variation in the nonzero count of the rows of L than
there is in the columns. This makes the back substitution algorithm less efficient, since
it needs to access the columns of LT, which are the rows of L.

5 Experimental results

To test the parallel SIMD implementation of the IPM algorithm, we used the models
described in section 2. The different density and size of the models are useful in finding
the threshold where utilizing the MasPar becomes advantageous. The model statistics
and the number of IPM iterations it takes to solve them on a SUN Spare 10 computer
are listed in Table 1.

Tables 3 and 4 show timing results for a single iteration of the IPM on the MasPar.
Table 3 gives the absolute time in seconds for the various tasks and Table 4 displays the
percentages. The column "Data trans." contains the time spent in data transmission
between the front-end computer and the parallel grid. The columns “Build ADAT" and
"Cholesky1' contain the amount of time for building the symmetric matrix and factoring

18

Model

Data
trans.

Build
ADAT

 Triag.
Solves

Other

Total
Cholesky Time

CAR2
25FV47
PILOT
CAR11
BNL2
RAT1
CRE_A

 T a b l e 3 : T i mi n g s i n s e c o n d s f o r o n e i t e r a t i o n o f t h e M a s P a r I P M

it respectively. The time required for the four triangular solves that are performed in
each iteration is given in the column “Triag. Solves”. The column “Other” gives the
time that the front-end computer requires to perform the remaining computations in
each iteration. These include two multiplications of the matrix A by a dense n-vector
and various vector computations.

There was not enough memory available on the front-end to solve the model CAR8.
However, we present some figures for CARS in Table 3 showing that the parallel unit
has the potential to solve larger models than the ones we managed to compute.

The results obtained on the MasPar are compared to the results obtained from a
sequential implementation of the IPM running on a SUN Spare 10 model 25 workstation.
From the three different implementations of the Cholesky factorization algorithm [10],
we report only the best times for each model. These results are given in Table 5.

Let us now consider when we should use the MasPar implementation rather than
the sequential Spare 10 implementation. To have a better basis for comparing the two
implementations we need to consider if there are some simple parameters of the model
that influence each task in the iteration.

In the sequential implementation the time required to build the matrix ADAT is
usually proportional to the number of nonzeros in ADAT. The execution time for the
other tasks in the iteration is mainly related to the number of nonzeros in the Cholesky
factor matrix L.

The time it takes to build ADAT in the MasPar implementation depends primarily
on the number of rows in A and the number of nonzeros in ADA1'. The execution time

19

DFL001
CAR4
CAR8

0.197
0.187
0.199
0.247
0.269
0.309
0.542
0.477
1.171
―

1.084
1.402
3.477

21.367
3.773
9.621
5.555

11.277
28.969
―

0.195
0.262
0.894
5.656
0.848
3.848
1.074
8.516
2.223

39.371

0.590
1.058
2.629
9.144
2.938
9.070
3.980

13.820
8.504

55.272

0.809
0.427
1.539

14.816
0.981
2.871
1.966
2.515
5.512
―

2.875
3.336
8.738

51.230
8.809

25.719
13.117
36.605
46.379
―

Model
Data
trans.

Build
ADAT Cholesky

Triag.
solves Other

CAR2 6.9% 37.7% 6.8% 20.5% 28.1%
25FV47 5.6% 42.0% 7.9% 31.7% 12.8%
PILOT 2.3% 39.8% 10.2% 30.1% 17.6%
CAR11 0.5% 41.7% 11.0% 17.9% 28.9%
BNL2 3.1% 42.8% 9.6% 33.4% 11.1%
RAT1 1.2% 37.4% 15.0% 35.3% 11.1%
CRE_A 4.1% 42.3% 8.2% 30.4% 15.0%
DFL001 1.3% 30.8% 23.3% 37.7% 6.9%
CAR4 2.5% 62.5% 4.8% 18.3% 11.9%

Table 4: Percentage of time for different tasks in the MasPar IPM

Model
Build
ADAT

Cholesky

Traig.
Solves Other

Total
time

CAR2
25FV47
PILOT
CAR11
BNL2
RAT1
CRE_A

Table 5: Timings in seconds for one for iteration of the Sparc 10 IPM

20

DFL001
CAR4
CAR8

2.288
0.126
1.431

339.000
0.121
2.598
0.464
0.606
4.395

276.950

3.112
0.498
6.814

1232.230
1.992

79.954
0.402

180.773
15.397

1725.450

0.105
0.051
0.365

12.166
0.154
2.165
0.076
2.691
0.324

12.640

1.296
0.293
2.310

302.764
0.735
3.634
0.694
5.479
7.204

263.971

6.801
0.968

10.920
1886.160

3.002
88.351
1.636

189.549
27.320

2279.011

of the parallel Cholesky factorization can be linked to the number of nonzeros in L.
The time for the triangular solves also depends on the number of nonzeros in L, but is
in addition influenced by the number of rows in A.

Thus, there are three simple parameters that we can use a priori to predict whether a
model will be solved faster on a MasPar than a sequential computer. These parameters
can be summarized as

(i) the number of rows in A
(ii) the number of nonzeros in ADAT

(iii) the number of nonzeros in the factor matrix L

The larger the number of nonzeros in ADAT and L, the more efficient the MasPar
implementation is. On the other hand, as the average number of nonzeros per column
decreases the less effective the MasPar becomes. We observe that for small and sparse
models (e.g. 25FV47) the sequential implementation is faster. As the problems grow
in size the massively parallel implementation becomes more efficient.

Based on the above observations, we can conclude that there exists an breakeven
point, above which it is worth while using a massively parallel SIMD computer to solve
the computationally intensive parts of the IPM. For example, in our implementations
the size and density of the model PILOT seems to lie near this point.

For a simple rule of thumb to establish when the MasPar is faster than the Spare 10
we can combine two of the above parameters and consider the average number of
nonzeros per column in L. In most of our parallel algorithms we have each processor
column of the MasPar working on one matrix column at a time. Since there are 128
processors per processor column it is important that there is enough work in each
matrix column to keep most of the processors busy performing useful calculations.

In Table 6 we have calculated this parameter for each of the models and we also
indicate which implementation is faster at solving the model. Using Table 6 we can
estimate that when the average number of nonzeros per column in L is above 100 then
the MasPar implementation will be faster than the sequential Sparc 10 implementation.
For another, faster sequential computer this figure would be higher, or, if the sequential
computer was fast enough, the 128 x 128 processor MasPar might never be able to reach
the same speed no matter how high the average number of nonzeros per column in L.

A more accurate formula for the breakeven point could be found by calculating
the amount of computation required in each of the tasks in the IPM iteration for the
model in question. However, we feel that the cost of calculating those quantities defeats

21

Model

Ave. # nonz.
Per col in L

Suitability of
MasPar(M) or Sparc(S)

CAR2
25FV47
PILOT
CAR11
BNL2
RAT1
CRE_A
DFL001
CAR4
CAR8

153.5
40.7

142.6
765.7
39.3

399.1
10.5

258.2
10.4

191.7

M
S
M
M
S
M
S
M
S
―

 Table 6: The average number of nonzeros per column in L

our purpose. The above simple rule of thumb, quickly and with reasonable accuracy,
indicates whether it is worth solving a particular model on the MasPar.

6 Conclusions

In this paper we have presented an implementation of the interior point method for a
massively parallel SIMD machine. We investigated its performance on various standard
industrial test problems and tried to determine the types of problems it is best suited
for.

An obvious conclusion from our work is that a massively parallel SIMD computer
does not process all problems equally effectively. The problems need to be of some
minimum size for it to be worth solving them on such a machine. Since each individual
processor of the MasPar is not very powerful we need to have most of them contributing
to the solution at all times. If the problem is too small it is difficult to achieve any
performance advantage.

A related consideration is the division of computational load between the front-end
computer and the parallel unit of the MasPar. In a large application like the interior
point method there are always tasks that do not parallelize well. If only a handful of
the parallel processors can be applied to the solution of a task, then it runs faster on
the front-end than on the parallel unit. Thus, it is important to correctly identify those
parts of an application that can be translated into efficient data parallel algorithms.

22

It is worth investigating if our IPM implementation will benefit from using an iter-
ative method, e.g. the conjugate gradient algorithm, instead of Cholesky factorization
to solve the linear systems in each iteration of the IPM. Parallel SIMD computers are
often considered better suited for iterative algorithms than direct ones, since iterative
algorithms are usually structurally simpler. On the other hand, in our implementation
the Cholesky factorization and the triangular solutions usually take less than 50% of
the time in each iteration, so there is less room for improvement than there is in the
sequential case.

Acknowledgment

We would like to thank Para//ab, the Parallel Processing Laboratory at the University
of Bergen for the use of their MasPar computer. We would also like to thank Dr.
T. Jones and Mr. C. Tong of the MRC Cyclotron Unit of Hammersmith Hospital for
supplying the PET models and for working closely with us in the solution of those
problems.

References

[1] R. H. BISSELING, T. M. DOUP, AND L. D. J. C. LOYENS, A parallel interior
point algorithm for linear programming on a network of 400 transputers, Annals
of Operations Research, 43 (1993).

[2] T. BLANK, The MasPar MP-1 architecture, in Proceedings of IEEE Compcon
Spring 1990, IEEE, February 1990.

[3] W. CAROLAN, J. HILL, J. KENNINGTON, S. NIEMI, AND S. WICHMANN, An
empirical evaluation of the KORBX algorithms for military airlift applications,
Operations Research, 38 (1990), pp. 240-248.

[4] I. DUFF, A. ERISMAN, AND J. REID, Direct Methods for Sparse Matrices, Oxford
University Press, 1986.

[5] J. J. H. FORREST AND J. A. TOMLIN, Implementing interior point linear pro-
gramming methods in the Optimization Subroutine Library, IBM Systems Journal,
31 (1992), pp. 26-38.

[6] A. GEORGE AND J. W. H. LIU, Computer Solutions of Large Sparse Positive
Definite Systems, Prentice-Hall, 1981.

23

[7] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, North Oxford Aca-
demic, 1983.

[8] R. W. HOCKNEY AND C. R. JESSHOPE, Parallel Computers 2: Architecture,
Programming and Algorithms, IOP Publishing, 1988.

[9] R. LEVKOVITZ, An Investigation of Interior Point Methods for Large Scale Lin-
ear Programs: Theory and Computational Algorithms, PhD thesis, Brunel, The
University of West London, 1992.

[10] —, Solving large scale linear programming problems using a interior point method
on a vector computer, Tech. Report TR/06/93, Brunel, The University of West
London, August 1993.

[11] R. LEVKOVITZ AND G. MITRA, Solution of large sparse symmetric equations on

 a transputer network, in Proceedings of the Third International Conference on
Applications of Transputers, IOS Press, 1991, pp. 105-110.

[12] —, Solution of large-scale linear programs: A review of hardware, software and
algorithmic issues, in Optimization in Industry, T. A. Ciriani and R. C. Leachman,
eds., John Wiley & Sons, 1993, pp. 139-171.

[13] I. J. LUSTIG, R. E. MARSTEN, AND D. F. SHANNO, Interior point methods:
Computational state of the art, Technical Report, School of Engineering and Ap-
plied Science, Dept. of Civil Engineering and Operations Research, Princeton Uni-
versity, Princeton, NJ 08544, USA, December 1992. Also available as RUTCOR
Research Report RRR 41-92, RUTCOR, Rutgers University, New Brunswick, NJ,
USA. To appear in ORSA Journal on Computing.

[14] F. MANNE AND H. HAFSTEINSSON, Efficient sparse Cholesky factorization on
a parallel SIMD computer, Tech. Report CS-93-84, Department of Informatics,
University of Bergen, 1993.

[15] R. E. MARSTEN AND D. F. SHANNO, Interior point methods for linear program-
ming : Ready for production use, Workshop at the ORSA/TIMS Joint National
Meeting in Philadelphia, PA, USA, School of Industrial and System Engineering,
Georgia Institute of Technology, Atlanta, GA 30322, USA, October 1990.

[16] S. MEHROTRA, On the implementation of a primal-dual interior point method,
SIAM Journal on Optimization, 2 (1992), pp. 575-601.

[17] M. J. SALTZMAN, Implementation of an interior point LP algorithm on a shared-
memory vector multiprocessor, in Operations Research and Computer Science:
New Developments in Their Interfaces, O. Balci, R. Sharda, and S. A. Zenios,
eds., Pergamon Press, Oxford, UK, 1992.

24

[18] C. TONG, S. GROOTOONK, H. BYRNE, T. SPINKS, A. LAMMERTSMA, AND

T. JONES, Positron emission tomography: Recovery of resolution by Finite Ele-
ments method, The Journal of Nuclear Medicine, 34 (1993), pp. 26P-27P.

[19] R. J. VANDERBEI, Splitting dense columns in sparse linear systems, Linear Alge-
bra and Its Applications, 152 (1991), pp. 107-117.

25

