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Abstract 

The interior point method (IPM) is now well established as a competitive 
technique for solving very large scale linear programming problems. The leading 
variant of the interior point method is the primal dual - predictor corrector 
algorithm due to Mehrotra. The main computational steps of this algorithm are 
the repeated calculation and solution of a large sparse positive definite system of 
equations. 

We describe an implementation of the predictor corrector IPM algorithm on 
MasPar, a massively parallel SIMD computer. At the heart of the implemen-
tation is a parallel Cholesky factorization algorithm for sparse matrices. Our 
implementation uses a new scheme of mapping the matrix onto the processor 
grid of the MasPar, that results in a more efficient Cholesky factorization than 
previously suggested schemes. 

The IPM implementation uses the parallel unit of MasPar to speed up the 
factorization and other computationally intensive parts of the IPM. An impor-
tant part of this implementation is the judicious division of data and computation 
between the front-end computer, that runs the main IPM algorithm, and the par-
allel unit. Performance results on standard industrial test problems are presented 
and discussed. 
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1. Introduction 
 
 
In the last few years interior point methods (IPM) for linear programming (LP) have 
become increasingly popular. The growing experience of using these methods has shown 
that in general IPM algorithms complement and do not replace the established sparse 
simplex (SSX) algorithms. 

One of the main differences between the IPM and the SSX is the average conver-
gence rate. While the SSX average convergence rate is proportional to the number of 
constraints, the IPM convergence rate is almost invariant to the growth in the problem 
size. As a consequence, the IPM is considered to be well suited for solving very large 
sparse LP problems. For a discussion of some of the research issues we refer the reader 
to [12]. 

The concentration of numerical work in relatively few steps and the need to solve 
very large LP problems makes the IPM a good candidate for exploiting the power 
of parallel hardware. The efforts of parallelizing IPM have so far concentrated on 
shared MIMD [17], distributed MIMD [11] and vector computers. Carolan et al. [3] 
implemented several IPMs on an Alliant MIMD computer. Bisseling et al. [1] adapted 
the dual affine IPM for a 20 x 20 transputer rack and achieved impressive speedup for a 
series of computationally difficult problems. Other implementations using superscalar, 
register and vector technology have also achieved consistent speedups compared to 
similar serial implementations [5, 10, 15]. 

In this paper we describe our approach of deploying the computationally intensive 
parts of IPM to a massively parallel SIMD computer. We have implemented a matrix 
multiplication algorithm and an algorithm for solving triangular systems on the SIMD 
computer. We also make use of the Cholesky factorization algorithm of Manne and 
Hafsteinsson [14]. We show that for a large number of LP problems the SIMD imple-
mentation is a viable alternative and that by a simple preanalysis of matrix structure 
and nonzero statistics, these problems, which are suitable for SIMD processing, can be 
identified in advance. 

The rest of the paper is organized as follows. In section 2 we present the primal dual 
- predictor corrector IPM. We also analyze the computational structure of this IPM and 
provide summary profiling information. We use this information to illustrate why the 
IPM is well suited for parallelization. In section 3 we introduce our target hardware, the 
MasPar MP-2 SIMD computer and give some performance information. In section 4 we 
describe the MasPar implementation, and in particular present the symmetric matrix 
multiplication, the Cholesky factorization, and the triangular solution algorithms and 
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explain how data movement between the parallel unit of the MasPar and the front-end 
computer is handled. In section 5 we profile a set of difficult test models and compare 
the solution times of the MasPar to those of a top of the range Sparc 10 computer. We 
further use these results to develop a general criterion that enables us to decide which 
models should be solved on the MasPar. Finally, in section 6, we discuss our results 
and future extensions to the algorithm. 

 

2 Interior Point Methods 
Of the many variants of the IPM that have been implemented, the primal dual algo-
rithms in general, and the primal dual - predictor corrector algorithm in particular, 
are considered to be the most computationally attractive [13, 16]. Our implementation 
uses this predictor corrector variant and we describe below the algorithm. 
 

2.1 The Predictor Corrector IPM 

Consider the primal and dual LP problems in the standard form: 

(Primal)        min      (1) xTc
subject to 0  ≥= x b,  Ax  

  (Dual)    max bTy          (2) 
subject to ATy + z = c, z  0 ≥

A  x,z,c y, b  ∈ . mxnℜ∈ nℜ∈ mℜ

Our aim is to calculate an optimal point (x*, y*, z*) for this pair of non empty 
polyhedrons denned by their respective constraints (1) and (2). 

Such a point satisfies the primal and dual constraints and the optimality criterion 

∗∗ − ybxc TT    =  (x*) T = 0    (3) ∗z

To solve the linear equation systems (l)-(2) and equation (3), we convert the con-
strained optimization problem to that of an unconstrained optimization. We first in-
corporate the non-negativity constraints in the objective function by introducing a 
logarithmic barrier function. 
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The new problems can be stated as 
 

min  c x —       (4) T
j

n

1j
xμ∑

=

1n

subject to Ax = b 

max bTy +       (5) jzlnμ
n

1j
∑

=

subject to A y + z = c T

mxnA ℜ∈  x, z, c  mn ℜ∈ℜ∈ y,b

We further transform the problem to an unconstrained optimization problem by in-
troducing the Lagrangian functions. 

 

L (Primal)      =    C  x -  T )(n1
1

bAxx T
j

n

j
−−μ∑

=

y

(6)  

L(Dual) =   bTy +  )czAxz TT
j

n

j
−+−μ∑

=

y(n1
1

The first order optimality conditions for the problems set out in (6) for given values 
of μ are 

        Ax-b      =   0 

 ATy + z  - c   =   0    (7) 

     XZe —μe   =   0 

                x, z >  0 

where X, Z are diagonal matrices whose diagonals are x, z and e is a vector of all 1. 
The search directions for the new points are derived from the conditions in (7). This 

is done by following the Newton direction, the Taylor polynomial direction, or some 
other method. Since the new point must satisfy the equations in (7). A simple way to 
derive the predictor corrector direction is to introduce a new point (x+Δx, y + Δ y, z +  
Δ z). The new point must satisfy the equations in (7). A proper reduction in the value 
of the barrier parameter then gives us the desired improvement. 
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Substituting the new point in system (7) leads to the following set of equations. 

AΔx = b-Ax 

       AT Δ y + Δ z    =   c-ATy + z    (8) 

                X Δ Ze + Z Δ Xe =  μe - XZe - Δ X Δ Ze 
 
The system of equations in (8) contains a nonlinear term, namely Δ X Δ Ze, hence we 

use a predictor corrector approach to solve it. We first calculate the predicting direction 
by ignoring the nonlinear terms and the μ term. Then we calculate μ according to the 
predicting direction and use it to calculate the correcting direction. The predicting 
direction obtained from (8) is 

Δ p y =    (ADAT) [d1−
P - AD(z + d )] D

      Δ p x  =   D(AT Δ p y - z + dd)     (9) 

Δ p z   =   -(z + ZX  Δ1−
 p X) 

where D = XZ , dp = Ax — b and d — A1−
D

Ty + z-c. 
The barrier parameter μ is calculated as a function of the duality gap after the 

maximum step is taken in the predicting direction. 
 μ =   f(cT(x + Δ pX) - bT(y + Δ py)) 

The correcting direction can then be calculated as 
Δ Cy   =   −   ΔΔ−−− )()( 11 ZeXeμXADA pp

T

Δ cx   =      (10) )]([ ZexΔΔμXΔAD ppe
1

c
T −− −y

Δ Cz   =    )Δ)ΔΔ( xZXZeXμeX c
1

pp
1 −− −−

 

 

 

 

 

 

 

 

5



The correcting and predicting directions are added to the current point to advance to advance 
the next point. 

 

 )( xxxx cPP Δ+Δα+=  

 )( yyyy cPD Δ+Δα+=     (11) 

 )( zzzz cPD Δ+Δα+=  
 

where αp and αD are primal and dual attenuation parameters (0 < αp, αD < 1) that 
ensure that the new point is represented by a vector of strictly positive components. 
 

2.2 Computational structure of the IPM algorithm 
One of the fundamental reasons for the acceptance of the primal dual IPM is the 
polynomial worst case bound on the number of iterations. Indeed, if L denotes the 
input size and n the largest dimension of the constraint matrix A then the algorithm 
converges in no more then )( nLO  iterations [9]. Practical implementations, however, 
show that the average case convergence rate is closer to O(log n).  This means that 
only rarely will the number of iterations grow above 50-60 and most LP problems can 
be solved in 20-40 IPM iterations. The computational work at each iteration of the 
predictor corrector IPM algorithm is concentrated in the solution of equations (9) and 
(10). It is easy to see that if m and n are of the same order then the repeated calculation 
of the matrix ADAT and its subsequent inversion dominate the computational process. 
Here, it is significant to observe that if the matrix A is of full rank then the matrix 
ADAT is symmetric positive definite. Further, the nonzero structure of the matrix 
remains invariant throughout the iterative process. Since the same matrix is required  
in both (9) and (10), it is also natural to use a solution method that allows us to solve 
the second system of equations without repeating the calculation. 

 

There are many direct and iterative methods for solving a symmetric positive def-
inite system of equations [7]. We have adopted one of the more popular approaches, 
namely, the Cholesky factorization. The main computational steps of the predictor 
corrector IPM algorithm with the Cholesky factorization are set out in Figure 1. 

 
2.3 Practical Considerations 
 

Real life linear programming problems are usually very sparse. The symmetric matrix 
ADAT, however, normally suffers some nonzero growth and can become much denser 
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1. Initialize set k = 0, calculate (xk , yk , zk ) 

2. Check for termination criteria 

)()(()()( gap
kTkTkTk

D
k
P ||)b||/bxcandDdandPdif ∈<−∈<∈< yy  then 

STOP 

 3. Factorize Lk(Lk)T = ADk AT 

4. Compute the predicting direction (Δpxk
, Δpyk, Δpzk ) 

5. Compute the barrier parameter μk 

6. Compute the correcting direction (Δcxk, Δ cyk, Δ czk) 

7. Calculate αP, αD 

8. Move to the new point 

9. Set k = k+1, goto 2. 
 

 Figure 1: The IPM primal dual - predictor corrector algorithm 
 
than the A matrix. The Cholesky factor L, in turn, usually becomes even denser.             
For example, a single dense column in A results in a fully dense ADAT and L. In     
practical implementations, substantial amount of work is spent on reducing the fill-          
in [4, 6, 9]. To begin with, dense columns are either split or calculated separately [19].   
The symmetric matrix is then reordered to reduce the nonzero fill-in in the factorization.   
A common reordering strategy is the minimum degree algorithm. This method is used       
in our implementation of the predictor corrector IPM. However, depending on the   
nonzero structure of the original A matrix, the amount of fill-in and the structure of the 
Cholesky factor can vary considerably. This affects the distribution of computational 
effort between the different parts of the algorithm as demonstrated in Tables 1 and 2.   

The problems we use come from two sources. The first source is the set of NETLIB 
models, the second is a set of industry generated LP problems. The models of the         
second set, named CARxx and RAT1, originate from medical resolution enhancement 
of PET (positron emission tomography) images [18]. In choosing these models we have 
attempted to reflect the variety and size of real life LP models. The model CRE_A,             
an American Air Force airlift model [3], for instance, has relatively small nonzero fill-        
in during factorization while the model PILOT suffers a large amount of fill-in (see 
Figure2). 
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Matrix A  
Model Rows Cols Nonz. 

Matrix AAT 
Nonzeros 

Cholesky factor 
Nonzeros 

 
Iter. 

CAR2 
25FV47 
PILOT 
CAR11 
BNL2 
RAT1 
CRE_A 
DFL001 
CAR4 
CAR8 

400 
793 

1439 
2025 
2280 
3136 
3422 
6071 

16335 
32768 

1200 
1849 
4655 
6075 
4442 
9408 
7242 

12230 
33652 
67678 

38890 
10566 
42296 

767804 
14952 
88267 
18142 
35632 
63724 

1183660 

58805 
11715 
60977 

1162527 
15688 

219086 
24107 
44169 

107696 
3276351 

61411 
32291 

205230 
1550510 

89601 
1251702 

35924 
1567825 
169950 

6280471 

15 
24 
30 
24 
31 
21 
29 
50 
24 
27 

Table 1: Characteristics of the test problems 

 

 

 

 
 

Model 
Build 
ADAT

 
Cholesky 

Triag.  
solves 

 
Other 

CAR2 
25FV47 
PILOT 
CAR11 
BNL2 
RAT1 

CRE_A 
DFL001 
CAR4 
CAR8 

33.6% 
13.0% 
13.1% 
18.0% 
4.0% 
2.9% 

28.4% 
0.3% 

16.1% 
12.1% 

45.8% 
51.4% 
62.4% 
65.3% 
66.4% 
90.5% 
24.6% 
95.4% 
56.3% 
75.7% 

1.5% 
5.3% 
3.3% 
0.6% 
5.1% 
2.5% 
4.6% 
1.4% 
1.2% 
0.6% 

19.1% 
30.3% 
21.2% 
16.1% 
24.5% 
4.1% 

42.4% 
2.9% 

26.4% 
11.6% 

Table 2: Distribution of computational effort in a single sequential IPM iteration 
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Figure 2: Symmetric matrix and Cholesky factor for the models CRE_A and PILOT 

The model PILOT represents a large class of problems whose Cholesky factor is 
fairly dense and requires a considerable amount of work. For these problems, large   
speed gains can be made by improving the efficiency of the matrix multiplication and 
factorization steps; either by improving the algorithms or by taking advantage of novel 
hardware features. There are implementations of the IPM that take advantage of shared 
memory [17], distributed memory [l], and vector computers [10]. 

In many cases, the matrices that benefit the least in the parallel solvers are those   
that are easily solved in the naive sequential way. For very sparse matrices with evenly 
distributed nonzeros and limited fill-in (e.g. the LP problem CRE_A) the overhead in 
utilizing parallel factorization is almost always greater than the benefits. These types      
of problems can be recognized in advance and solved by using a serial implementation. 
Our main target is to speed up the solution process for those problems that cannot be 
solved in reasonable time on standard sequential computers. 
 

3 The MasPar computer 

Parallel computers differ widely in their design, but there are abstract models that can 
help in classifying them [8]. One such model is the SIMD, which stands for Single 
Instruction stream, Multiple Data stream. As the name indicates there is only one 
program for all the processors, but each processor uses a different data set. Another 
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implied feature of SIMD computers is synchronous operation, that is, all instructions   
are performed in lock step on all the processors.                                                              
 

3.1 The MasPar MP-2 machine 

The MasPar MP-2 system is a massively parallel SIMD computer. It is an upgrade of   
the older MP-1 system [2], with more powerful processor elements but uses the same 
communication subsystem. The MP-2 consists of two units: a work station, which acts 
as a front-end for the system, and a parallel unit. The parallel unit contains between      
32 x 32 (1K) and 128 x 128 (16K) processor elements. These are arranged in a 2-
dimensional, toroidal-wrapped grid called the processor array. The parallel unit also 
contains an array control unit, which provides an interface between the front-end and 
the processor elements. 

Following the SIMD paradigm, all the processor elements of the MP-2 receive the 
same instructions from the control unit at the same time and execute them on their    
local data. However, individual processor elements can be disabled based on logical 
expressions and can use indirect references when referring to local data. The advantage 
of indirect references is that even though all the processors are accessing the i'th element 
of a local array at the same time, i can be different on different processors, thus allowing 
greater flexibility in programming. 

The MP-2 provides two types of communication between the processor elements 
called Xnet and Router. Xnet communication is the faster, but more restricted proce-
dure. It follows the grid lines of the processor array. Processor elements can send data 
any distance to the north, south, west, and east, as well as to the northwest, northeast, 
southwest, and southeast (see Figure 3). The grid lines wrap around, so each processor 
element always has a neighbor in each of these eight directions. 

The basic Xnet communication time is determined by the formula 
 

<startup> + <#bits> * <dist>, 
 

where <startup> is the latency startup time, <#bits> is the number of bits to be sent,  
and <dist> is the distance expressed in number of processors. A typical execution time 
for 64-bit operands is 6 + 66*<dist> clock cycles, with <dist> at most 128. On the   
MP-2 a clock cycle is 80 ns. The MasPar also provides pipelined variations of Xnet that 
are faster for long distances communication on the grid. They can be used to efficiently 
broadcast values along rows or columns of the processor array. Sending a 64-bit data 
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Figure 3: A processor element and its grid connections 

item to the other 127 processors in the same row/column of a 128 x 128 machine takes 
only about three times as much time as a basic Xnet to a nearest neighbor. 

Router communication allows each processor to send data to any other processor in 
the processor array. This makes it more flexible than the Xnet, but slower. The time      
for a Router communication varies with the amount of collisions, but averages out to 
about 6200 clock cycles for 64-bit operands. 

In the programs described in this paper we use the pipelined Xnet almost exclusively 
for communication between processor elements. This gives higher speed, but requires 
that data be distributed to the processors in a special way in order to take advantage 
of the grid communication. 

Each processor element of the MP-2 is a 32-bit load/store arithmetic processor     
with 40 32-bit registers and 64Kb of RAM. There is no floating point hardware, so all 
floating point operations are implemented in software. If we define the average time       
of a floating point operation (flop) as a = 2

1  ( Mult + Add), the peak speed of a single 

processor element is 0.1412 Mflop/sec for 64-bit arithmetic. A 16K processor machine 
thus has the peak performance of 2314 Mflop/sec. 

Comparing the speed of arithmetic to communication on the MP-2, we obtain the 
ratio 

.8.0
]1[

=
α
netX

 

Thus floating point arithmetic on a 64-bit value is actually more expensive (by 20%)  
than sending that value to the nearest neighbor in the processor array. Copying a 64-bit 
value to all the other processors in a column or a row of the processor array, using 
XnetC, costs only 2.5 times more than a single 64-bit floating point operation on the 
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MP-2. 
This favorable ratio of communication to arithmetic speeds is probably due to the 

fact that the processors do all floating point computations in software, since the absolute 
communication speeds are not unusually high. 
 

4     Computing kernels for the MasPar 

In this section we consider the adaption of the predictor corrector IPM algorithm to the 
MasPar MP-2 and discuss some of the design issues, especially our choice of computing 
kernels for this SIMD parallel computer. 

An existing implementation by Levkovitz [9] of the predictor corrector IPM for se-
quential computers was used as a basis for the parallel implementation. In section 2     
we identified a number of computationally intensive steps in the sequential implemen-
tation that could be efficiently adapted to a parallel computer. We have rewritten      
them to execute on the parallel unit of the MasPar. Thus, the basic framework of the 
sequential implementation remains on the front-end computer of the MasPar, perform-
ing preprocessing, loop control, and minor computational tasks, while the bulk of the 
computation takes place on the parallel unit. 

Since the speed of data movement between the front-end and the parallel unit is    
not very high, it is important that the division of work between the two units does        
not result in large amounts of data traffic. In our implementation, this is achieved by 
keeping the constraint matrix A on both the front-end and the parallel unit. This allows 
us to confine the data transfer in each iteration to sending dense vectors, avoiding the 
expensive transmission of matrices. 

The most obvious candidate for parallelization in the iterative phase of the algorithm 
is the solution of the two linear systems (see equations (9) and (10)) 

     (12) )]([1
DpP dzADdH +−=Δ −y

    (13) )]([ 11 ZeXeXH Ppc ΔΔ−μ−=Δ −−y

where H = ADAT.  As shown in section 2 these solutions are the main steps in the 
calculations of the predicting and the correcting projections respectively. 

The linear systems can be solved either by a direct method or an iterative one. 
Although iterative methods are usually better suited to SIMD parallelism we decided      
to use the direct method of Cholesky factorization. The reason for this choice is the    
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better numerical stability of the Cholesky factorization and the fact that we are using 
the predictor corrector IPM, which requires the solution of the same system twice 
with different right hand sides. Using an iterative method we would have to solve the 
two systems completely independently, while we only have to compute the Cholesky 
factorization once and then carry out a pair of triangular solves for each right hand    
side. 

The solution of the linear systems proceeds by first calculating the Cholesky fac-
torization of the m x m matrix H = ADAT, where A is the original m x n constraint 
matrix and D is a diagonal matrix that changes in every iteration. Then, the two lin-
ear systems can be solved by the solution of triangular systems involving the Cholesky 
factor matrix L. Let r = dp — AD (z + dD ) be the right hand side of equation (12), then 
we can compute Δpy by first using forward elimination to solve the triangular system    
Lw = r and then applying back substitution to solve LTΔpy = w. Similarly Δcy is 
computed from L and the right hand side t = X-1 (μe  — Δp X Δp Z e) of equation (13). 

Thus, there are three tasks that require the lion share of the work in an IPM  
iteration. The first one is to build the matrix H, given the diagonal matrix D for the 
current iteration. In a typical sequential implementation this step takes about 10-20% 
of the time for an iteration (see Table 2 in section 2). The second expensive task in an 
iteration is the Cholesky factorization of H into LLT. This typically consumes 60-80%    
of the sequential iteration time. The third step consists of the triangular solutions    
needed to solve the two linear systems using the Cholesky factor L. As triangular 
solutions require an order of magnitude fewer arithmetic operations than the two other 
tasks (0(n2) as opposed to 0(n3) in the dense case) they take up a smaller percentage       
of the sequential iteration time, usually less than 5%. 

In the following subsections we describe in more detail how each of these tasks is 
performed on the parallel unit of the MasPar MP-2. 
 

4.1     Building ADAT

The constraint matrix A is loaded onto the processor grid in the preprocessing phase      
of the IPM computation. The columns of A are wrapped onto the processor columns      
of the grid, so that processor column p contains the columns j with (j mod 128) = p.         
For the rows of A we use the same layout scheme as for the columns and rows of L.   
This scheme is described in Manne and Hafsteinsson [14]. 

Thus each row of A is stored along a single processor row of the MasPar, but a 
processor row can contain many matrix rows.                                                                 
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The computation of ADAT starts by calculating AD, storing it in the same way as     
A is stored, and then computing the matrix product (AD) x AT. Initially we need to    
send the diagonal of the matrix D, stored in the vector d, from the front-end to the 
parallel unit. MasPar provides a communication primitive, called Blackout, for copying  
a matrix from the front-end to the processor grid. If the matrix is 128 x 128 then each 
processor on the processor grid receives the element in the corresponding position in   
the matrix. If the matrix is smaller, then the elements of the matrix are sent to a 
designated subgrid of the processors. 

We want each processor row to have a copy of d, so the computation of AD can be 
performed simultaneously on all the processor rows. One way of doing this would be    
to load a 128 x 128 matrix S on the front-end with the first 128 elements of d in each    
of its rows. This would require [n/128] Blockout operations to send all the elements                          
of d. 

A faster method for sending d to the parallel unit is to pack it into the matrix S       
by rows, so that Sij would get element d(i-1)*128+j. Then, after performing a Blockout,   
each processor row sends copies of the elements they received to all the other rows, 
using the grid communication primitive Xnet. Since Xnet is local to the processor grid,  
it is several orders of magnitude faster than Blockout. Using this method only one 
Blockout transmission is required for every 16K (128 * 128) elements of d. 

After d is distributed, each processor multiplies its part of A with the corresponding 
elements of d, and stores the resulting elements of AD in the same way as the A elements 
are stored. 

When computing the matrix multiplication (AD) x AT, we take advantage of the   
fact that we know the structure of the resulting matrix. Thus, we only need to perform 
the dot product of row i of AD with column j of AT when element (i, j) of H is nonzero. 

The algorithm computes one column of H at a time. When calculating column          
j it sends the nonzeros of column j of AT, which is stored as row j of A, to all the       
other processor rows. The processors then store it in their local array guest. In order to 
determine which elements of guest are valid in each iteration the corresponding element 
of integer array time_stamp is set to j, the current iteration number. 

For each nonzero lij of column j of H, if it is a nonfill element then its row position   
i is sent to all the processor in the same processor row. The processors then proceed to 
form their local dot product of row i of AD and column j of AT. These dot products      
are collected up along the processor row and stored as the value of lij. With a 128 x 128 
processor grid we can in this way compute up to 128 nonzeros of H simultaneously. 

The complete algorithm for computing ADAT is given in Figure 4. In the algorithm 
 
 
 
 
 

14 



 
for each nonzero a,j on this processor do 

cij : = aij * dji

end-do 
 
Alow  : = 1;  
Llow  : = 1; 
for J : = 1 to M do 

if Arow_name[Alow] = J 
for each nonzero aJ, t do 

copyS[P].di := aJ, t; 
copyS[P]. k : = t; 
all 

time_stamp[k] : = J; 
guest [k] : = fv, 

end-all 
end-do 
Alow := AlOW + 1; 

end-if 

if Lcol_name[Llow] = J 
for each nonfill nonzero lt,J do 

copyE[P].i := t; 
all 

dot := 0.0; 
for each nonzero ci,k  in row i of AD do 

if time_stamp[k] = J 
dot := dot + ci,k * guest[k]; 

end-if 
end-do 

end-all 
lt,J := ScanAdd(dot); 

end-do 
Llow := Llow + 1; 

end-if 
end-do 
 

Figure 4: The computation of ADAT 
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capital variables are global and have the same value for all processors. The all statement 
makes all the processors active and copyS[P]. y = x is the version of Xnet that copies   
the value of variable x into the variable y on the next P processors to the south. Since the 
processor grid wraps around we use this statement to broadcast the value of x on         
one processor into y on all the processors in the same processor column. The construct 
Scan Add is used to add up values along a processor row. 

There are other approaches to building the matrix H. One that is quite often used     
is to precompute elementary products. 

 ∑ ∑
= =

==
n

k

n

k
kjkikjkkikjj daaadah

1 1
.)(  

Since only dk changes in each iteration we can precompute the products aikajk, for            
k = l,...,n,  and store this list with hij In this way there is no need to send the        
elements of A between the processors during the iteration and the computation at each 
step can also be cut down. However, for this method there can be up to n elementary 
products associated with each hij. Therefore, we decided not to take this approach,     
since the additional memory requirement would have severely limited the size of solvable 
problems. 
 

4.2    Cholesky factorization 

Cholesky factorization takes as input an m x m symmetric matrix H and produces        
the lower triangular matrix L, such that H = LLT. Cholesky factorization is often 
described in terms of the column operation cmod and cdiv. The operation cdiv(j) is 

    mjk
h

h
l

jj

kj
kj ,...,, ==  

and cmod(i, j) is 

hki = hki - lij *lkj,     k = i, ..., m 

where i > j. Using these two operation the sequential factorization algorithm for a    
sparse matrix H is given in Figure 5. 

The parallel Cholesky factorization algorithm that we use is from Manne and Haf-
steinsson [14] and is a parallel version of the algorithm in Figure 5. It maps the nonzero 
elements of H onto the processor grid in a certain way and then computes one column   
of L at a time by parallelizing the operations cmod and cdiv. 
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for j = 1 to m do 
cdiv(j); 
for i > j where hij ≠ 0 do 

cmod(i, j); 
end-do 

 

Figure 5: Sparse Cholesky factorization 

To maximize parallelism we try to do as many cmod operations as possible simul-
taneously. However, if two columns i and I’ of H are mapped to the same processor 
column then cmod(i, j) and cmod(i', j) have to be done sequentially. Because of the   
SIMD nature of MasPar all the other processor will have to wait for this computation (if 
they do not have two cmods to perform themselves). Thus, it would be better to assign 
matrix columns i and i' to different processor columns. (Of course, this might cause      
two other cmods operations to collide). We can not avoid these collisions entirely, since 
the number of matrix columns is generally much larger than the number of processor 
columns. 

In Manne and Hafsteinsson [14] this assignment problem is modeled as a graph 
coloring problem and an approximation algorithm is developed for it. In the current   
IPM implementation this approximation is done in the preprocessing phase and the 
layout that it produces is used to map both the columns and the rows of ADAT onto       
the processor columns and rows of the MasPar.                                                                 
 

4.3    Triangular solutions 

When starting the triangular solutions we assume that the Cholesky factor L already 
resides on the processor grid. For the forward solve Lw= r the parallel unit needs          
the right-hand-side vector r from the front-end. This vector resides on the diagonal 
processors of the grid using the same mapping as the factor matrix L. We use a similar 
technique for sending the vector r as was used for sending the diagonal of D, so that 
potentially up to 16K elements of r are sent simultaneously. 

The parallel forward elimination algorithm computes one variable of the vector w    
at a time, starting with w1. This value is sent down the processor column containing 
column L*1 so that it can be multiplied with the elements lk1 that are nonzero. The 
processors containing column L*1 do these multiplications simultaneously and then send 
the result to the diagonal processors in the same row where it is subtracted from the 
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right hand side. Thus, the diagonal processor containing element rk sets rk = rk - lk1 w1. 
The rest of the elements of r are then computed in the same way. 

The potential parallelism in the triangular solution algorithm is less than in the 
Cholesky factorization or in the building of ADAT. Therefore, in our implementation 
only up to 128 processors are doing useful work at any point in time. This lack of 
parallelism is a well known problem with parallel triangular solution. In our case an 
important issue is that by computing the triangular solutions on the processor grid we 
avoid having to send the matrix L between the parallel unit and the front-end. 

The back substitution LT Δpy = w is performed in a similar manner to the forward 
elimination, except that now we start by computing the m'th element of Δpy and work 
our way up the vector. Back substitution, however, usually takes about 20% longer    
than forward elimination. The reason for this difference is that the layout of L on the 
processor grid is optimized for the Cholesky factorization. This layout turns out to be 
good for forward elimination, but is not as beneficial for back substitution. 

Another factor that influences the time for back substitution is the generally higher 
density of individual rows of L than of the columns. Because of fill-in, L usually has       
a rather dense block of nonzeros in its bottom part. This means that the row with          
the highest number of nonzeros in L usually has many more nonzeros than the column 
with the highest number of nonzeros. Row L1* only has one nonzero, as has column   
L*m. Thus, there is usually more variation in the nonzero count of the rows of L than 
there is in the columns. This makes the back substitution algorithm less efficient, since   
it needs to access the columns of LT, which are the rows of L. 

5    Experimental results 

To test the parallel SIMD implementation of the IPM algorithm, we used the models 
described in section 2. The different density and size of the models are useful in finding 
the threshold where utilizing the MasPar becomes advantageous. The model statistics 
and the number of IPM iterations it takes to solve them on a SUN Spare 10 computer   
are listed in Table 1. 

Tables 3 and 4 show timing results for a single iteration of the IPM on the MasPar. 
Table 3 gives the absolute time in seconds for the various tasks and Table 4 displays the 
percentages. The column "Data trans." contains the time spent in data transmission 
between the front-end computer and the parallel grid. The columns “Build ADAT" and 
"Cholesky1' contain the amount of time for building the symmetric matrix and factoring 
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Model 

Data 
trans. 

Build 
ADAT

 Triag. 
Solves 

 
Other 

Total 
Cholesky Time 

CAR2 
25FV47 
PILOT 
CAR11 
BNL2 
RAT1 
CRE_A 

   T a b l e  3 :  T i mi n g s  i n  s e c o n d s  f o r  o n e  i t e r a t i o n  o f  t h e  M a s P a r  I P M  

it respectively. The time required for the four triangular solves that are performed in    
each iteration is given in the column “Triag. Solves”. The column “Other” gives the     
time that the front-end computer requires to perform the remaining computations in    
each iteration. These include two multiplications of the matrix A by a dense n-vector    
and various vector computations. 

There was not enough memory available on the front-end to solve the model CAR8. 
However, we present some figures for CARS in Table 3 showing that the parallel unit  
has the potential to solve larger models than the ones we managed to compute. 

The results obtained on the MasPar are compared to the results obtained from a 
sequential implementation of the IPM running on a SUN Spare 10 model 25 workstation. 
From the three different implementations of the Cholesky factorization algorithm [10], 
we report only the best times for each model. These results are given in Table 5. 

Let us now consider when we should use the MasPar implementation rather than   
the sequential Spare 10 implementation. To have a better basis for comparing the two 
implementations we need to consider if there are some simple parameters of the model 
that influence each task in the iteration. 

In the sequential implementation the time required to build the matrix ADAT is 
usually proportional to the number of nonzeros in ADAT. The execution time for the  
other tasks in the iteration is mainly related to the number of nonzeros in the Cholesky 
factor matrix L. 

The time it takes to build ADAT in the MasPar implementation depends primarily    
on the number of rows in A and the number of nonzeros in ADA1'. The execution time 
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DFL001 
CAR4 
CAR8 

0.197 
0.187 
0.199 
0.247 
0.269 
0.309 
0.542 
0.477 
1.171 
― 

1.084 
1.402 
3.477 

21.367 
3.773 
9.621 
5.555 

11.277 
28.969 
― 

0.195 
0.262 
0.894 
5.656 
0.848 
3.848 
1.074 
8.516 
2.223 

39.371 

0.590 
1.058 
2.629 
9.144 
2.938 
9.070 
3.980 

13.820 
8.504 

55.272 

0.809 
0.427 
1.539 

14.816 
0.981 
2.871 
1.966 
2.515 
5.512 
― 

2.875 
3.336 
8.738 

51.230 
8.809 

25.719 
13.117 
36.605 
46.379 
― 



 
 
 

Model  
Data 
trans.  

Build 
ADAT  Cholesky  

Triag. 
solves  Other  

CAR2  6.9%  37.7%  6.8%  20.5%  28.1%  
25FV47  5.6%  42.0%  7.9%  31.7%  12.8%  
PILOT  2.3%  39.8%  10.2%  30.1%  17.6%  
CAR11  0.5%  41.7%  11.0%  17.9%  28.9%  
BNL2  3.1%  42.8%  9.6%  33.4%  11.1%  
RAT1  1.2%  37.4%  15.0%  35.3%  11.1%  
CRE_A  4.1%  42.3%  8.2%  30.4%  15.0%  
DFL001  1.3%  30.8%  23.3%  37.7%  6.9%  
CAR4  2.5%  62.5%  4.8%  18.3%  11.9%  

Table 4: Percentage of time for different tasks in the MasPar IPM 
 
 
   
  

Model 
Build 
ADAT

 
Cholesky 

Traig. 
Solves  Other 

Total 
time 

CAR2 
25FV47 
PILOT 
CAR11 
BNL2 
RAT1 
CRE_A 

 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Timings in seconds for one for iteration of the Sparc 10 IPM 
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DFL001 
CAR4 
CAR8 

2.288 
0.126 
1.431 

339.000 
0.121 
2.598 
0.464 
0.606 
4.395 

276.950 

3.112 
0.498 
6.814 

1232.230 
1.992 

79.954 
0.402 

180.773 
15.397 

1725.450 

0.105 
0.051 
0.365 

12.166 
0.154 
2.165 
0.076 
2.691 
0.324 

12.640 

1.296 
0.293 
2.310 

302.764 
0.735 
3.634 
0.694 
5.479 
7.204 

263.971 

6.801 
0.968 

10.920 
1886.160 

3.002 
88.351 
1.636 

189.549 
27.320 

2279.011 



of the parallel Cholesky factorization can be linked to the number of nonzeros in L.     
The time for the triangular solves also depends on the number of nonzeros in L, but is    
in addition influenced by the number of rows in A. 

Thus, there are three simple parameters that we can use a priori to predict whether a 
model will be solved faster on a MasPar than a sequential computer. These parameters 
can be summarized as 

(i)   the number of rows in A 
(ii) the number of nonzeros in ADAT

(iii) the number of nonzeros in the factor matrix L 

The larger the number of nonzeros in ADAT and L, the more efficient the MasPar 
implementation is. On the other hand, as the average number of nonzeros per column 
decreases the less effective the MasPar becomes. We observe that for small and sparse 
models (e.g. 25FV47) the sequential implementation is faster. As the problems grow     
in size the massively parallel implementation becomes more efficient. 

Based on the above observations, we can conclude that there exists an breakeven 
point, above which it is worth while using a massively parallel SIMD computer to solve 
the computationally intensive parts of the IPM. For example, in our implementations   
the size and density of the model PILOT seems to lie near this point. 

For a simple rule of thumb to establish when the MasPar is faster than the Spare 10 
we can combine two of the above parameters and consider the average number of 
nonzeros per column in L. In most of our parallel algorithms we have each processor 
column of the MasPar working on one matrix column at a time. Since there are 128 
processors per processor column it is important that there is enough work in each    
matrix column to keep most of the processors busy performing useful calculations. 

In Table 6 we have calculated this parameter for each of the models and we also 
indicate which implementation is faster at solving the model. Using Table 6 we can 
estimate that when the average number of nonzeros per column in L is above 100 then 
the MasPar implementation will be faster than the sequential Sparc 10 implementation. 
For another, faster sequential computer this figure would be higher, or, if the sequential 
computer was fast enough, the 128 x 128 processor MasPar might never be able to reach 
the same speed no matter how high the average number of nonzeros per column in L. 

A more accurate formula for the breakeven point could be found by calculating     
the amount of computation required in each of the tasks in the IPM iteration for the 
model in question. However, we feel that the cost of calculating those quantities defeats 
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Model 

Ave. # nonz.
Per col in L 

Suitability of 
MasPar(M) or Sparc(S)

CAR2 
25FV47 
PILOT 
CAR11 
BNL2 
RAT1 
CRE_A 
DFL001 
CAR4 
CAR8 

153.5 
40.7 

142.6 
765.7 
39.3 

399.1 
10.5 

258.2 
10.4 

191.7 

M 
S 
M 
M 
S 
M 
S 
M 
S 
― 

       Table 6: The average number of nonzeros per column in L 

our purpose. The above simple rule of thumb, quickly and with reasonable accuracy, 
indicates whether it is worth solving a particular model on the MasPar. 
 

6    Conclusions 

In this paper we have presented an implementation of the interior point method for a 
massively parallel SIMD machine. We investigated its performance on various standard 
industrial test problems and tried to determine the types of problems it is best suited     
for. 

An obvious conclusion from our work is that a massively parallel SIMD computer 
does not process all problems equally effectively. The problems need to be of some 
minimum size for it to be worth solving them on such a machine. Since each individual 
processor of the MasPar is not very powerful we need to have most of them contributing 
to the solution at all times. If the problem is too small it is difficult to achieve any 
performance advantage. 

A related consideration is the division of computational load between the front-end 
computer and the parallel unit of the MasPar. In a large application like the interior   
point method there are always tasks that do not parallelize well. If only a handful of     
the parallel processors can be applied to the solution of a task, then it runs faster on      
the front-end than on the parallel unit. Thus, it is important to correctly identify those 
parts of an application that can be translated into efficient data parallel algorithms. 
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It is worth investigating if our IPM implementation will benefit from using an iter-
ative method, e.g. the conjugate gradient algorithm, instead of Cholesky factorization     
to solve the linear systems in each iteration of the IPM. Parallel SIMD computers are 
often considered better suited for iterative algorithms than direct ones, since iterative 
algorithms are usually structurally simpler. On the other hand, in our implementation    
the Cholesky factorization and the triangular solutions usually take less than 50% of     
the time in each iteration, so there is less room for improvement than there is in the 
sequential case. 
 

Acknowledgment 

We would like to thank Para//ab, the Parallel Processing Laboratory at the University    
of Bergen for the use of their MasPar computer. We would also like to thank Dr.            
T. Jones and Mr. C. Tong of the MRC Cyclotron Unit of Hammersmith Hospital for 
supplying the PET models and for working closely with us in the solution of those 
problems. 
 

References 

[1] R. H. BISSELING, T. M. DOUP, AND L. D. J. C. LOYENS, A parallel interior  
point algorithm for linear programming on a network of 400 transputers, Annals 
of Operations Research, 43 (1993). 

[2] T. BLANK, The MasPar MP-1 architecture, in Proceedings of IEEE Compcon 
Spring 1990, IEEE, February 1990. 

[3] W. CAROLAN, J. HILL, J. KENNINGTON, S. NIEMI, AND S. WICHMANN, An       
empirical evaluation of the KORBX algorithms for military airlift applications, 
Operations Research, 38 (1990), pp. 240-248. 

[4] I. DUFF, A. ERISMAN, AND J. REID, Direct Methods for Sparse Matrices, Oxford 
University Press, 1986. 

[5] J. J. H. FORREST AND J. A. TOMLIN, Implementing interior point linear pro-
gramming methods in the Optimization Subroutine Library, IBM Systems Journal, 
31 (1992), pp. 26-38. 

[6] A. GEORGE AND J. W. H. LIU, Computer Solutions of Large Sparse Positive 
Definite Systems, Prentice-Hall, 1981. 

 

23 



[7] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, North Oxford Aca-
demic, 1983. 

[8] R. W. HOCKNEY AND C. R. JESSHOPE, Parallel Computers 2: Architecture, 
Programming and Algorithms, IOP Publishing, 1988. 

[9] R. LEVKOVITZ, An Investigation of Interior Point Methods for Large Scale Lin-
ear Programs: Theory and Computational Algorithms, PhD thesis, Brunel, The 
University of West London, 1992. 

[10] —, Solving large scale linear programming problems using a interior point method 
on a vector computer, Tech. Report TR/06/93, Brunel, The University of West 
London, August 1993. 

[11] R. LEVKOVITZ AND G. MITRA, Solution of large sparse symmetric equations on  

 a transputer network, in Proceedings of the Third International Conference on 
Applications of Transputers, IOS Press, 1991, pp. 105-110. 

[12] —, Solution of large-scale linear programs: A review of hardware, software and 
algorithmic issues, in Optimization in Industry, T. A. Ciriani and R. C. Leachman, 
eds., John Wiley & Sons, 1993, pp. 139-171. 

[13] I. J. LUSTIG, R. E. MARSTEN, AND D. F. SHANNO, Interior point methods: 
Computational state of the art, Technical Report, School of Engineering and Ap-
plied Science, Dept. of Civil Engineering and Operations Research, Princeton Uni-
versity, Princeton, NJ 08544, USA, December 1992. Also available as RUTCOR 
Research Report RRR 41-92, RUTCOR, Rutgers University, New Brunswick, NJ, 
USA. To appear in ORSA Journal on Computing. 

[14] F. MANNE AND H. HAFSTEINSSON, Efficient sparse Cholesky factorization on 
a parallel SIMD computer, Tech. Report CS-93-84, Department of Informatics, 
University of Bergen, 1993. 

[15] R. E. MARSTEN AND D. F. SHANNO, Interior point methods for linear program-
ming : Ready for production use, Workshop at the ORSA/TIMS Joint National  
Meeting in Philadelphia, PA, USA, School of Industrial and System Engineering, 
Georgia Institute of Technology, Atlanta, GA 30322, USA, October 1990. 

[16] S. MEHROTRA, On the implementation of a primal-dual interior point method,        
SIAM Journal on Optimization, 2 (1992), pp. 575-601. 

[17] M. J. SALTZMAN, Implementation of an interior point LP algorithm on a shared-
memory vector multiprocessor, in Operations Research and Computer Science: 
New Developments in Their Interfaces, O. Balci, R. Sharda, and S. A. Zenios,  
eds., Pergamon Press, Oxford, UK, 1992. 

 
 

24 



[18] C. TONG, S. GROOTOONK, H. BYRNE, T. SPINKS, A. LAMMERTSMA, AND                           

T. JONES, Positron emission tomography: Recovery of resolution by Finite Ele-
ments method, The Journal of Nuclear Medicine, 34 (1993), pp. 26P-27P. 

[19] R. J. VANDERBEI, Splitting dense columns in sparse linear systems, Linear Alge-      
bra and Its Applications, 152 (1991), pp. 107-117. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 



 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


