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Abstract

In this paper, the particle filtering problem is studied for a class of general nonlinear cyber-physical
systems with non-Gaussian noises under Round-Robin protocol (RRP) subject to the randomly
occurring deception attacks. In order to prevent the data from collisions and alleviate the com-
munication overhead for the shared network with limited resources, the RRP is introduced in the
sensor-to-filter channel to schedule the multiple sensors with a predefined transmission order. Under
the RRP, only one sensor can be granted the access to the shared channel for measurement trans-
mission at each time instant. A Bernoulli-distributed stochastic variable is utilized to describe the
characteristic of random occurrence of deception attacks initiated by the adversaries. A RRP-based
particle filtering algorithm is developed by establishing a modified likelihood function, where the
statistical property of the randomly occurring deception attacks is exploited and the RRP-induced
effect on the filter design is reflected. Finally, an illustrative example regarding the target track-
ing problem is provided to verify the feasibility and effectiveness of the developed particle filtering
scheme.

Keywords: Particle filtering, cyber-physical systems, Round-Robin protocol, randomly occurring
deception attacks, nonlinear systems, non-Gaussian noises.

1. Introduction

In the past few decades, the filtering problem for nonlinear systems has received considerable
research interest due to its successful applications to a diverse range of practical domains including,
but are not limited to, mathematical finance [4], target tracking and localization [7], induction
motor drives [14] and satellite orbit estimation [18]. The general framework for nonlinear filtering
has been established with the help of Bayesian estimation theory, which involves the recursive
calculation of the Chapman-Kolmogorov equation and the Bayesian formula [30]. Unfortunately,
it is quite difficult (if not impossible) to obtain an analytical solution in most cases (except for
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the linear system with Gaussian noises) since the multidimensional integrals are required to be
calculated. Therefore, much effort has been devoted to the development of approximate nonlinear
filtering algorithms.

As one of the widely used approximate filtering approaches, the extended Kalman filtering
(EKF) algorithm and its variations have attracted a great deal of research attention from both
academia and industry [13, 17, 19]. However, a prerequisite for the effective utilization of the EKF
algorithm is the availability/calculation of the Jacobian matrix for linearization, which is often
impractical and therefore limits the application potentials especially when the system possesses
high-degree of nonlinearity or discontinuity. For the purpose of seeking alternatives to the EKF
algorithm, a large number of nonlinear filtering algorithms have been put forward with examples
including the unscented Kalman filtering [16], the cubature Kalman filtering [1], and the sparse-
grid based nonlinear filtering [15] techniques, all of which are capable of capturing the higher-order
moments and achieving higher accuracy than the traditional EKF method. It should be pointed out
that all the above-mentioned algorithms are inseparable from an underlying assumption that the
considered systems undergo noisy disturbances that are of Gaussian types, and such an assumption
is often unrealistic in most real-world cases. As such, the particle filtering technique has come into
being for its distinctive advantages in dealing with the non-Gaussian systems [2, 21]. Up to now,
many works related to the particle filtering have been published for various systems under various
performance indices such as event-triggered mechanisms [20, 27], outlier-resistant schemes [26, 33],
and some network-induced phenomena including delayed measurements [38], non-Gaussian fading
measurements [22] and packet dropouts [35].

In practical applications of the cyber-physical systems (CPSs), it is often necessary for many
components to operate (or communicate with others) via a shared communication network [6], and
this renders more opportunities for the malicious attackers to hijack and falsify the measurement
outputs (or control commands). Consequently, increasing research attention has recently been paid
to the secure filtering/control problems against various security threats, and some typical examples
include the deception attacks [9, 11], denial-of-service attacks [3, 12] and replay attacks [36]. Among
them, the deception attacks are deemed to be one of the most hazardous attack types since the
adversary can arbitrarily inject the false data to degenerate the filtering/control performance and
even destabilize the whole system. As such, the filtering/control problem with deception attacks
has been receiving some initial research attention and some elegant results have been reported. For
example, the secure distributed finite-time filtering problem has been studied in [32] for the positive
systems over sensor networks subject to the deception attacks.

In the context of the filtering problem, it is often the case that multiple sensors transmit their
respective measurement outputs to the filter simultaneously [23]. Such simultaneous transmissions
of massive data will inevitably give rise to the phenomenon of data collision in the communication
network with limited communication capacity. In order to alleviate the data collision and guarantee
the desired filtering performance, it is of vital importance to use certain rules/protocols to schedule
the multiple sensors and utilize the limited network bandwidth in a reasonable way. Accordingly, a
large amount of research results have recently been reported on the analysis and synthesis problems
for networked systems under communication protocols such as Round-Robin protocol (RRP) [25],
stochastic communication protocol [37] and weighted Try-Once-Discard protocol [29]. The common
feature of these communication protocols is that only one sensor (or one component) can be granted
the access to the transmission channel at each time, thereby ensuring the reliability and efficiency
of the data transmission.

As a type of deterministic communication protocol, the well-known RRP has captured the ever-
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increasing attention from researchers and has been frequently used in industry. The scheduling
mechanism of a RRP is to grant each sensor the access to transmit its measurement output in
a fixed circular order. By now, much research has been carried out on the RRP-based filtering
problem [28, 24]. Nevertheless, to the best of the authors’ knowledge, the particle filtering problem
for general nonlinear/non-Gaussian CPSs under the RRP is far from being well addressed despite its
practical significance, not to mention the case when the randomly occurring deception attacks also
come into existence. In fact, the fundamental difficulties encountered in the particle filter design
for CPSs under RRP lie in the following two aspects: 1) how to depict the communication protocol
and deception attacks in the sequential Bayesian filtering framework in a rigorously mathematical
way; and 2) how to calculate the likelihood function based on the scheduled and corrupted (if
attacked successfully) measurements, and update the importance weights? The main motivation of
this paper is therefore to provide satisfactory answers to these two questions.

Motivated by the above discussions, in this paper, the RRP-based particle filtering problem is in-
vestigated for a class of nonlinear/non-Gaussian CPSs subject to the randomly occurring deception
attacks. The main contributions of this paper are highlighted as follows: 1) the particle filtering is-
sue is addressed for the nonlinear/non-Gaussian CPSs in the simultaneous presence of the RRP and
the randomly occurring deception attacks; 2) a modified likelihood function is explicitly derived by
incorporating the probability information of the successfully launched deception attacks under the
RRP; and 3) a protocol-based particle filtering algorithm is proposed, which is shown to be more
efficient than its standard counterpart from both communication and computation perspectives,
and has certain robustness against the deception attacks.

The rest of this paper is organized as follows. In Section 2, a mathematical description of
the considered problem is formulated. The RRP-based particle filtering framework with randomly
occurring deception attacks is established in Section 3. The simulation results are provided in
Section 4 to demonstrate the effectiveness of the developed particle filtering algorithm. Finally,
some concluding remarks are summarized in Section 5.

Notation. Throughout this paper, the notations used are fairly standard. Let R
n represent

the n-dimensional Euclidean vector space. The superscript T denotes the operation of transpose
and mod(u, v) denotes the modulo operation that returns the remainder after dividing u by v.
diag{d1, d2, . . . , dn} represents a diagonal matrix with d1, d2, . . . , dn being its diagonal elements.
px(·) stands for the probability density function of a stochastic variable x and P{X} denotes the
occurrence probability of a discrete event X . N (x;µ,Σ) represents the Gaussian probability density
function of a stochastic variable x with mean µ and covariance Σ.

2. Problem Formulation and Preliminaries

Consider the following discrete-time nonlinear dynamic system:

xk+1 = f(xk) + ωk (1)

where xk+1 ∈ R
nx is the state of the system at time instant k + 1, f(·) : Rnx 7→ R

nx denotes the
state transition function, and ωk ∈ R

nx represents the process noise satisfying pωk
(·).

The measurement equation of the ith sensor is modelled by

yik = hi(xk) + νik, i = 1, 2, · · · , N (2)
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where yik ∈ R
ny is the measurement output of the ith sensor at time instant k, hi(·) : Rnx 7→ R

ny

denotes the measurement function of the ith sensor, and νik ∈ R
ny is the measurement noise on the

ith sensor satisfying pνi
k
(·).

In order to mitigate the data collision and reduce the consumption of network communication
resources, the RRP is introduced in the sensor-to-filter channel to schedule the measurement trans-
mission. Under the RRP, only the measurement output of one sensor can be transmitted to the
filter at each time instant. Here, γk is used to denote the particular sensor that is granted the
access at time instant k, which can be calculated as

γk = mod(k + γini − 2, N) + 1 (3)

where γini is the assigned sensor having the initial access.
In fact, due to the opening-up characteristic of the shared communication network, the trans-

mission process of the measurements is vulnerable to the cyber attacks. In other words, the mea-
surement yγk

k may be deliberately falsified by the randomly occurring deception attacks during
transmission over the network, and such an attacking behavior can be modeled by

ỹγk

k = yγk

k + ηk̺
γk

k (4)

where ỹγk

k denotes the measurement that may be corrupted and ̺γk

k represents the deception attack
initiated by the adversaries characterized by

̺γk

k = −yγk

k + ξk (5)

with ξk being the random deception signal satisfying pξk(·). It is worthwhile to note that the de-
ception attacks initiated by adversaries might not be always effective owing to the intricate network
environment and the defense measures. As such, from the viewpoint of defenders, the deception
attacks are likely to occur in a random fashion. The stochastic variable ηk, which is employed to
characterize the phenomenon of the randomly occurring deception attacks, is a Bernoulli-distributed
white sequence taking values on 0 or 1 with the following probability distribution:

{

P{ηk = 1} = η̄
P{ηk = 0} = 1− η̄

(6)

where η̄ ∈ [0, 1) is a known constant referred to as the success rate of the launched deception
attacks. Then, the available measurement signals at the filter end with the zero input strategy are
denoted as

ȳk =
[

(ȳ1k)
T (ȳ2k)

T · · · (ȳNk )T
]T

(7)

where

ȳik =

{

ỹγk

k , if i = γk;
0ny×1, otherwise.

Before proceeding further, the following three assumptions are made to clarify the considered
system.

Assumption 1. The initial state x0 satisfies the prior probability distribution px0
(·).

Assumption 2. The measurement noise sequences {νik}
N
i=1 and the process noise sequence ωk are

mutually independent and also independent of the initial state x0.
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Assumption 3. The nonlinear functions f(·) and hi(·), as well as the probability density functions
pωk

(·), pνi
k
(·) and pξk(·), are all known.

The purpose of this paper is to develop a particle filtering algorithm for the general nonlinear/non-
Gaussian CPSs under the RRP subject to the randomly occurring deception attacks such that the
estimate of state xk can be obtained in the sense of minimum mean-square error based on the
scheduled and corrupted measurement information.

3. RRP-Based Particle Filtering Algorithm with Randomly Occurring Deception At-

tacks

In this section, the basic framework of the standard particle filtering algorithm [2] is briefly
revisited, and then the RRP-based particle filtering scheme with randomly occurring deception
attacks is developed. A schematic diagram of the considered CPS is depicted in Fig. 1.

Sensor 1

Plant

Sensor 2 Sensor i Sensor N

Round-Robin Protocol

Particle Filter Attacker

Figure 1: Block diagram of the CPS subject to randomly occurring deception attacks under RRP.

Generally speaking, the fundamental idea of the particle filtering algorithm is to use the impor-
tance sampling method [2] to approximate the posterior probability density function with a set of
weighted particles as

p(x0:k|ȳ1:k) =
M
∑

m=1

Wm
k δ(x0:k − xm0:k) (8)

where δ(·) is the Dirac delta function and the particles {xm0:k}
M
m=1 are drawn from an importance

density q(x0:k|ȳ1:k), x0:k denotes the trajectory of x from time instant 0 to k, and ȳ1:k denotes the
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set of all received measurements up to time instant k, i.e. ȳ1:k = {ȳ1, ȳ2, · · · , ȳk}. In addition, the
importance weights {Wm

k }Mm=1 can be determined as

Wm
k ∝

p(xm0:k|ȳ1:k)

q(xm0:k|ȳ1:k)
. (9)

Assuming that the state evolution follows the first-order Markov process, it can be obtained
from the Bayesian theorem that

p(x0:k|ȳ1:k) =
p(ȳk|x0:k, ȳ1:k−1)p(x0:k|ȳ1:k−1)

p(ȳk|ȳ1:k−1)

∝ p(ȳk|x0:k, ȳ1:k−1)p(x0:k|ȳ1:k−1)

= p(ȳk|x0:k, ȳ1:k−1)p(xk, x0:k−1|ȳ1:k−1)

= p(ȳk|xk, ȳ1:k−1)p(xk|xk−1)p(x0:k−1|ȳ1:k−1).

(10)

On the other hand, under the assumption that the previous state information x0:k−1 and the cur-
rent measurement ȳk are uncorrelated, the importance density function q(x0:k|ȳ1:k) can be further
expressed as

q(x0:k|ȳ1:k) = q(xk|x0:k−1, ȳ1:k)q(x0:k−1|ȳ1:k−1). (11)

From (9)-(11), the importance weights are recursively calculated by

Wm
k ∝Wm

k−1

p(ȳk|xmk , ȳ1:k−1)p(x
m
k |xmk−1)

q(xmk |xm0:k−1, ȳ1:k)
(12)

where the particles {xmk }Mm=1 are drawn from the proposal density function q(xk|x0:k−1, ȳ1:k).
Note that the likelihood function p(ȳk|xmk , ȳ1:k−1) cannot be simply written as p(ȳk|xmk ) due to

the existence of the RRP. To be more specific, if the past transmitted measurements ȳ1:k−1 are
given, then the sensor having the access at time instant k − 1 (denoted as γk−1) is determined.
Therefore, we have

p(ȳk|x
m
k , ȳ1:k−1) = p(ȳk|x

m
k , γk−1)

= p(ȳ1k, ȳ
2
k, · · · , ȳ

N
k |xmk , γk)

= p(0, · · · , 0, ȳγk

k , 0, · · · , 0|xmk )

= p(ỹγk

k |xmk )

(13)

where the second equality results from the property of the RRP that the transmission order is
deterministic.

According to the law of total probability, we can write

p(ỹγk

k |xmk )

=p(ỹγk

k , ηk = 0|xmk ) + p(ỹγk

k , ηk = 1|xmk )

=p(ỹγk

k |ηk = 0, xmk )P{ηk = 0|xmk }+ p(ỹγk

k |ηk = 1, xmk )P{ηk = 1|xmk }

=(1− η̄)p(ỹγk

k |ηk = 0, xmk ) + η̄p(ỹγk

k |ηk = 1, xmk )

=(1− η̄)pνγk
k
(ỹγk

k − hγk(xmk )) + η̄pξk(ỹ
γk

k ).

(14)
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Remark 1. It is worth mentioning that, given the measurements at the time instant k − 1, the
stochasticity of the measurement outputs ȳk received by the filter is only reflected in the updated
component ỹγk

k according to the RRP. When the zero input strategy is employed as shown in (7),
all the measurements but the updated one are definitely equal to zero. In the case of the zero-order
holder strategy, the current available measurements (except the output of the sensor granted the
access) are totally determined by previously transmitted measurements. Thus, under the RRP, only
the measurement output ỹγk

k is utilized to calculate the likelihood value and accordingly update the
importance weight with both kinds of data-holding strategies. On the other hand, the scheduled
measurement is prone to be overheard and modified by the cunning adversaries during the wireless
transmission, and a Bernoulli-distributed stochastic variable ηk is introduced to depict the random
nature of the effective deception attacks. Specifically, if ηk = 1, the scheduled measurement is
successfully attacked by the malicious attackers and, if ηk = 0, the scheduled measurement is safely
transmitted to the filter end. In addition, if the success rate of the launched deception attacks is set
as η̄ = 0, then the addressed problem reduces to the case where only the RRP is taken into account.

As can be seen from (12), the term p(xk|xk−1) in the numerator is the transition probability den-
sity function, which is determined by the dynamics of state model (1). The term q(xk|x0:k−1, ȳ1:k)
in the denominator is the proposal density function to draw the random particles, which can de-
teriorate the performance of the particle filtering to some extent when inappropriately selected.
Following the line of the literature [26, 34], the transition probability density is chosen as the pro-
posal density function due primarily to its simplicity and convenience. Based on (13)-(14), the
update rule (12) of importance weights is written as

Wm
k ∝Wm

k−1p(ȳk|x
m
k , ȳ1:k−1)

=Wm
k−1

[

(1− η̄)pνγk
k
(ỹγk

k − hγk(xmk )) + η̄pξk(ỹ
γk

k )
]

.
(15)

The RRP-based particle filtering algorithm with randomly occurring deception attacks can now
be summarized in Algorithm 1.

Remark 2. From Algorithm 1, we can see that the update of importance weights only depends on
the point-wise evaluation of a portion of likelihood function at each particle, which is easy to imple-
ment but does not utilize the most recent observation to sample new particles. For the case where
the likelihood function is very narrow or lies in the tail of the prior distribution, the phenomenon
of particle degeneracy may occur and thus deteriorates the filtering performance [31]. A common
solution to this problem is to choose the posterior probability density function acquired from other
nonlinear filters (e.g., extended Kalman filter and unscented Kalman filter) as the proposal density
function q(xmk |xm0:k−1, ȳ1:k). Unfortunately, in this paper, the available measurements ȳ1:k at the fil-
ter end are scheduled by the RRP and further compromised by the deception attacks, which renders
the standard nonlinear filters inapplicable. Therefore, we will consider the possibility of extending
our results by using the proposal density function obtained from the RRP-based unscented Kalman
filter, which is one of our future research directions. For more details about the protocol-based
unscented Kalman filtering algorithm, we refer the interested readers to [24].

Remark 3. Up to now, the particle filtering problem has been addressed for a class of nonlinear/non-
Gaussian CPSs subject to the randomly occurring deception attacks under the RRP. Compared with
existing results, the RRP has been taken into consideration in the particle filtering framework to
schedule the sensors and hence avoid the data collision in practical applications, which is necessary
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Algorithm 1 RRP-based particle filtering algorithm with randomly occurring deception attacks

Step 1. Particle initialization
Draw M particles from the initial prior probability distribution xm0 ∼ px0

(·) and all
importance weights are set to be identical, i.e. 1

M
. Moreover, set the maximum simulation

time K.

Step 2. Importance sampling
For each m = 1, . . . ,M , draw particle xmk from the transition probability density distri-
bution p(xk|x

m
k−1), i.e., x

m
k = f(xmk−1) + ωm

k−1, where ω
m
k−1 is sampled from pωk−1

(·).

Step 3. Measurement update
Collect the measurements at the filter end under the randomly occurring deception at-
tacks and the scheduling mechanism of the RRP.

Step 4. Weight calculation
Calculate the importance weights {Ŵm

k }Mm=1 according to

Ŵm
k =Wm

k−1

[

(1− η̄)pνγk
k
(ỹγk

k − hγk(xmk )) + η̄pξk(ỹ
γk

k )
]

,

and normalize the weights as Wm
k =

Ŵm
k∑

M
m=1

Ŵm
k

.

Step 5. State estimate update
Calculate the state estimate x̂k and estimation error covariance Pk as

x̂k =

M
∑

m=1

Wm
k xmk ,

Pk =
M
∑

m=1

Wm
k (xmk − x̂k)(x

m
k − x̂k)

T .

Step 6. Resampling
Resample a new set of particles with equal weights from

∑M
m=1W

m
k δ(xk − xmk ).

Step 7. If k < K, then go to Step 2; otherwise go to Step 8.

Step 8. Stop.
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in the network with limited bandwidth. Meanwhile, the probability information of the randomly
occurring deception attacks has been inserted into the modified likelihood function to improve the
robustness against the malicious attacks launched by the adversaries. On the other hand, when a
large number of sensors are deployed to observe the target plant, the update of likelihood value at
the filter end needs to calculate the product of N local likelihood functions, which may be computa-
tionally expensive in the standard particle filtering algorithm. However, in our proposed algorithm,
the likelihood function is only computed based on reduced sensor information at each time instant,
which can relax the burden from the perspective of computation resources.

4. Simulation Example

In this section, a target tracking problem is provided to evaluate the tracking performance
of the proposed particle filtering algorithm. The state vector of the moving target is defined as
xk = [ζtk, ζ̇

t
k, ψ

t
k, ψ̇

t
k]

T , where (ζtk, ψ
t
k) and (ζ̇tk, ψ̇

t
k) denote the position and velocity at time instant k

in the two-dimensional Cartesian coordinates ζ and ψ, respectively. The target motion is modelled
by [5]

xk+1 =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









xk + ωk (16)

where T represents the sampling interval and ωk the zero-mean Gaussian white noise sequence with
covariance

Qk = σ2
ω











T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T











(17)

where σ2
ω denotes the acceleration variance.

The measurement function of the ith sensor is expressed by

hi(xk) =

[√

(ζtk − ζs,i)2 + (ψt
k − ψs,i)2

atan2(ψt
k − ψs,i, ζtk − ζs,i)

]

(18)

where (ζs,i, ψs,i) denotes the position of the ith sensor. The measurement noise on the ith sensor
is modelled by a mixture of two Gaussian distributions, i.e.,

p(νik) = (1 − κi)N (νik;µ
i
1,Σ

i
1) + κiN (νik;µ

i
2,Σ

i
2) (19)

where κi stands for the glint probability.
For the purpose of comparison, the tracking performance will be evaluated under the follow-

ing four scenarios: 1) tracking with the proposed RRP-based particle filtering algorithm under
randomly occurring deception attacks (denoted as RRP-PF-DA); 2) tracking with the RRP-based
standard particle filtering algorithm neglecting the effect of randomly occurring deception attacks
(denoted as RRP-SPF-DA); 3) tracking with the RRP-based standard particle filtering algorithm
utilizing normal measurements (denoted as RRP-SPF-NM); and 4) tracking with the particle filter-
ing algorithm using all the sensors’ measurements and considering the effect of randomly occurring
deception attacks (denoted as PF-DA).
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In all simulations, the trajectory of the target is generated with x0 = [20, 0.3, 20, 0.3]T , T = 1 and
σω = 0.055, and 4 sensors, as shown in Fig. 2, are deployed to observe the target. Other parameters
required in the simulation are set as follows: M = 500, µi

1 = [0, 0]T , Σi
1 = diag{4, (π/180)2},

µi
2 = [0, 0]T , Σi

2 = diag{25, (π/90)2}, κi = 0.2, η̄ = 0.2. In addition, the deception attack signal
satisfies a uniform distribution on a two-dimensional set [−10, 80]× [−π/2, π/2]. To evaluate the
performance of the filtering algorithms, the root mean-square error (RMSE) on both position and
velocity estimates are introduced as the performance metric, which are calculated over L = 50
Monte Carlo runs as

RMSEp,k =

√

√

√

√

1

L

L
∑

l=1

[

(ζt,lk − ζ̂t,lk )2 + (ψt,l
k − ψ̂t,l

k )2
]

,

RMSEv,k =

√

√

√

√

1

L

L
∑

l=1

[

(ζ̇t,lk − ˆ̇
ζ
t,l

k )2 + (ψ̇t,l
k − ˆ̇

ψ
t,l

k )2
]

where the realization and estimate of (ζtk, ψ
t
k, ζ̇

t
k, ψ̇

t
k) in the lth Monte Carlo run are represented by

(ζt,lk , ψt,l
k , ζ̇

t,l
k , ψ̇t,l

k ) and (ζ̂t,lk , ψ̂t,l
k ,

ˆ̇ζt,lk , ˆ̇ψt,l
k ), respectively.

One realization of the true target trajectory and the trajectories estimated by the above-
mentioned algorithms are shown in Fig. 2. We see that the RRP-PF-DA, RRP-SPF-NM and
PF-DA can closely track the true trajectory, while RRP-SPF-DA fails to track the target in most of
the time. The simulation results obtained from the 50 Monte Carlo runs are displayed in Figs. 3-4
and Table 1, from which we observe that the proposed RRP-PF-DA can attenuate the impact of
the randomly occurring deception attacks to some extent and achieve a satisfactory tracking per-
formance. When compared with the PF-DA, the proposed RRP-PF-DA has distinct advantages in
terms of average running time and communication rate, although at the cost of sacrificing certain
tracking accuracy. Hence, we can naturally draw a conclusion that the proposed algorithm is more
efficient in the CPS with limited computation and communication resources.

Table 1: Performance comparisons with respect to average RMSE, running time and communication times

RMSEp RMSEv Running Time Communication Times

RRP-PF-DA 0.9012 0.1197 0.0205 120
RRP-SPF-DA 9.7923 0.3760 0.0199 120
RRP-SPF-NM 0.8044 0.1169 0.0200 120
PF-DA 0.5746 0.1018 0.0764 480

Another group of simulation is conducted to investigate the effect of the randomly occurring
deception attacks on the tracking performance. The behaviors of the RMSEs on both position
and velocity estimates obtained with different occurrence probabilities are plotted in Figs. 5-6.
As expected, the tracking performance degrades with increasing occurrence probabilities of the
deception attacks.
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Figure 2: One realization of the target trajectory and its estimates obtained from RRP-PF-DA, RRP-SPF-DA,
RRP-SPF-NM and PF-DA. The black squares denote the sensors’ positions.
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Figure 3: RMSEs on position estimates of RRP-PF-DA, RRP-SPF-DA, RRP-SPF-NM and PF-DA.
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Figure 4: RMSEs on velocity estimates of RRP-PF-DA, RRP-SPF-DA, RRP-SPF-NM and PF-DA.
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Figure 5: RMSEs on position estimates with η̄ = 0.2, 0.4, 0.6.
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Figure 6: RMSEs on velocity estimates with η̄ = 0.2, 0.4, 0.6.

5. Conclusions

In this paper, we have investigated the sequential Bayesian filtering problem for the nonlinear/non-
Gaussian CPSs subject to the randomly occurring deception attacks in the framework of particle
filtering under the RRP. The measurement transmission has been scheduled by the RRP and a
Bernoulli-distributed stochastic variable with known probability distribution has been employed to
characterize the randomly occurring deception attacks. A modified likelihood function under the
RRP has been constructed to attenuate the effect of the randomly occurring deception attacks on
the estimation performance. Finally, an illustrative example has been presented to demonstrate
the feasibility and effectiveness of the proposed RRP-PF-DA algorithm. The simulation results
have shown that the proposed RRP-PF-DA algorithm can provide an effective alternative to the
PF-DA algorithm in a bandwidth-limited network. The directions of future research would focus
on considering more sophisticated attacks [8] as well as other communication protocols including
stochastic communication protocol and weighted Try-Once-Discard protocol, and designing the
secure communication scheme based on the principle of cryptology [10].

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under
Grants 61873148 and 61933007, the China Scholarship Council under Grant 201806030206, and the
Alexander von Humboldt Foundation of Germany.

References

[1] I. Arasaratnam, S. Haykin, Cubature Kalman filters, IEEE Trans. Autom. Control
54 (6) (2009) 1254–1269.

13



[2] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) (2002) 174–188.

[3] G. K. Befekadu, V. Gupta, P. J. Antsaklis, Risk-sensitive control under Markov modulated
denial-of-service (DoS) attack strategies, IEEE Trans. Autom. Control 60 (12) (2015) 3299–
3304.

[4] P. Date, K. Ponomareva, Linear and non-linear filtering in mathematical finance: A review,
IMA J. Manag. Math. 22 (3) (2011) 195–211.

[5] S. S. Dias, M. G. S. Bruno, Cooperative target tracking using decentralized particle filtering
and RSS sensors, IEEE Trans. Signal Process. 61 (14) (2013) 3632–3646.

[6] D. Ding, Q.-L. Han, Y. Xiang, X. Ge, X.-M. Zhang, A survey on security control and attack
detection for industrial cyber-physical systems, Neurocomputing 275 (2018) 1674–1683.

[7] A. Farina, B. Ristic, D. Benvenuti, Tracking a ballistic target: Comparison of several nonlinear
filters, IEEE Trans. Aerosp. Electron. Syst. 38 (3) (2002) 854–867.

[8] X. Ge, Q.-L. Han, X.-M. Zhang, D. Ding, F. Yang, Resilient and secure remote mon-
itoring for a class of cyber-physical systems against attacks, Inf. Sci. in press (doi:
10.1016/j.ins.2019.10.057)

[9] W. He, X. Gao, W. Zhong, F. Qian, Secure impulsive synchronization control of multi-agent
systems under deception attacks, Inf. Sci. 459 (2018) 354–368.

[10] W. He, T. Luo, Y. Tang, W. Du, Y.-C. Tian, F. Qian, Secure communication based on quan-
tized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans.
Neural Netw. Learn Syst. in press (doi: 10.1109/TNNLS.2019.2943548)

[11] W. He, F. Qian, Q.-L. Han, G. Chen, Almost sure stability of nonlinear systems un-
der random and impulsive sequential attacks, IEEE Trans. Autom. Control in press (doi:
10.1109/TAC.2020.2972220)

[12] N. Hou, Z. Wang, D. W. C. Ho and H. Dong, Robust partial-nodes-based state estimation for
complex networks under deception attacks, IEEE Transactions on Cybernetics, Vol. 50, No. 6,
Jun. 2020, pp. 2793-2802.

[13] J. Hu, Z. Wang, H. Gao, L. K. Stergioulas, Extended Kalman filtering with stochastic nonlin-
earities and multiple missing measurements, Automatica 48 (9) (2012) 2007–2015.

[14] S. Jafarzadeh, C. Lascu, M. S. Fadali, Square root unscented Kalman filters for state estimation
of induction motor drives, IEEE Trans. Ind. Appl. 49 (1) (2013) 92–99.

[15] B. Jia, M. Xin, Y. Cheng, Sparse-grid quadrature nonlinear filtering, Automatica
48 (2) (2012) 327–341.

[16] S. Julier, J. Uhlmann, H. F. Durrant-Whyte, A new method for the nonlinear transformation of
means and covariances in filters and estimators, IEEE Trans. Autom. Control 45 (3) (2000) 477–
482.

14



[17] S. Kluge, K. Reif, M. Brokate, Stochastic stability of the extended Kalman filter with inter-
mittent observations, IEEE Trans. Autom. Control 55 (2) (2010) 514–518.

[18] D.-J. Lee, K. T. Alfriend, Sigma point filtering for sequential orbit estimation and prediction,
J. Spacecr. Rockets 44 (2) (2007) 388–398.

[19] W. Li, Y. Jia, J. Du, State estimation for stochastic complex networks with switching topology,
IEEE Trans. Autom. Control 62 (12) (2017) 6377–6384.

[20] W. Li, Z. Wang, Q. Liu, L. Guo, An information aware event-triggered scheme for particle
filter based remote state estimation, Automatica 103 (2019) 151–158.

[21] W. Li, Z. Wang, Y. Yuan, L. Guo, Particle filtering with applications in networked systems:
A survey, Complex Intell. Syst. 2 (4) (2016) 293–315.

[22] W. Li, Z. Wang, Y. Yuan, L. Guo, Two-stage particle filtering for non-Gaussian state estimation
with fading measurements, Automatica 115 (2020) art. no. 108882, 12 pages.

[23] Q. Liu, Z. Wang, Q.-L. Han and C. Jiang, Quadratic estimation for discrete time-varying non-
Gaussian systems with multiplicative noises and quantization effects, Automatica, vol. 113,
Art. no. 108714, Mar. 2020.

[24] S. Liu, Z. Wang, Y. Chen, G. Wei, Protocol-based unscented Kalman filtering in the presence
of stochastic uncertainties, IEEE Trans. Autom. Control 65 (3) (2020) 1303–1309.

[25] S. Liu, Z. Wang, G. Wei and M. Li, Distributed set-membership filtering for multi-rate systems
under the Round-Robin scheduling over sensor networks, IEEE Transactions on Cybernetics,
Vol. 50, No. 5, May 2020, pp. 1910-1920.
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