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Abstract

In this paper, the partial-neurons-based state estimation problem is studied for a class of delayed
neural networks with state-dependent noises under redundant channels. For the purpose of im-
proving the success rate of the data transmission from the sensor to the estimator, the redundant-
channel-based transmission mechanism is considered. The main aim of the addressed problem is
to design a state estimator to estimate the neurons’ state by use of a small fraction of the sensor
measurements. With the help of the Lyapunov stability theory, a sufficient condition is provided
to ensure that the estimation error dynamics is exponentially mean-square bounded. The desired
estimator gain is acquired by minimizing an asymptotic upper bound of the estimation error. Fi-
nally, a numerical simulation is carried out to demonstrate the usefulness of the presented estimator
design scheme.

Keywords: Neural networks, state estimation, partially measurable nodes, redundant channels,
state-dependent noises.

1. Introduction

It is well known that an artificial neural network (ANN) is an information response network
composed of a large number of neurons stored in the network through the node connection weight,
which has the capacity of fast processing speed and strong fault tolerance in a parallel and dis-
tributed mechanism. The past few decades have seen a popularity surge with ANNs for their wide
range of application potentials in engineering practice including image processing, pattern recogni-
tion, associative memory, and optimization problems [3, 4, 9, 17, 28, 29, 34, 39, 42, 43]. In recent
years, as the technology improvement in the storage and computing power, the ANN has shown
its fast growing in large scale, strong coupling and nonlinearities that have contributed greatly to
the complexities in the analysis of the dynamical behaviors for ANNs. Accordingly, a rich body
of related results has been reported on the stability, synchronization and estimation problems for
various ANNs (see [6, 8, 11, 16, 25, 38, 41, 44, 48] and the references therein).

For a large-scale ANN, due to the environment changing, limited sensing capacities or the
complicated topology structure, it is difficult to get access to all the neural’s state information. In
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this case, a more realistic situation is to estimate the neurons’ states by using the noisy measurement
signals measured by sensing devices. To this end, the state estimation problem of ANNs has been a
research hotspot in the industrial filed and the artificial intelligence filed and much effort has been
devoted to the design of easy-to-implement state estimators for ANNs [46, 47]. On the other hand,
given the long-distance transmission of signals and the finite speed of information processing, the
time-delay phenomenon ubiquitously exists in ANNs and could guide the system dynamics to an
undesirable behavior (e.g instability and chaos). In this context, some in-depth discussions have
been conducted on the analysis and synthesis of various delayed ANNs (e.g., constant, time-varying,
random, or distributed), see [1, 12, 14, 23, 24, 33, 47] and the references therein.

In most existing literature related to the state estimation issue of ANNs, it implies a prerequisite
that the measurement signals are accessible to each neuron node. Nevertheless, such a condition
is against reality when considering the harsh measurement environment and the limited measure-
ment technology [27, 30, 31]. This means that, in engineering practice, it is mostly the case that
only partial measurement signals can be collected by sensing devices, which results in the so-called
partial-neurons-based state estimation problem. Lately, the partial-neurons-based state estimation
problem has received some initial research attention and the relevant results have been reported, see
[13, 21]. For example, in [13], the passivity-guaranteed state estimation problem has been studied
for the ANN with randomly occurring time delays and the partial availability of the neurons’ mea-
surement information. Moreover, for the sensor networks, the related results have been investigated
in [7] for scalable H∞-consensus filtering issue with censored measurements.

It should be emphasized that, due to the limited bandwidths of the communication channel,
the packet dropout phenomenon inevitably occurs and widely exists in networked systems [2, 10,
15, 45, 36], which would deteriorate the system performance to an extent. Up to now, many
data compensation schemes have been put forward with the intention to decrease the negative
effect caused by the missing phenomenon including the one-step delay strategy and the prediction
compensation [26]. On the other hand, from the viewpoint of reducing the occurrence probability
of the packet dropout, the redundant channel mechanism has recently proven to be an effective tool
to enhance the transmission reliability, whose main idea is to introduce additional channels for the
signal transmission in case the current channel fails to work. Special attention has been paid to the
redundant channel mechanism and fruitful achievements have appeared in the literature [32, 49, 50].
However, a thorough literature search has displayed that the relevant research work has not been
extended to the partial-neurons-based state estimation problem for delayed neural networks owing
mainly to the mathematical complexities and this constitutes the main motivation of our current
investigation.

Concluding the above discussion, our research focus is on the partial-neurons-based state es-
timator design and performance analysis issues for delayed neural networks under the redundant
channel mechanism. In doing so, the following two major challenges should be overcome: 1) how
to compensate the estimation performance when only partial neurons can obtain the measurement
signals; and 2) how to design a suitable partial-neurons-based estimation scheme to achieve the ex-
ponential boundedness of estimation errors for the overall neural network. To deal with the above
two challenges, in this paper, by means of the redundant-channel-based communication scheme, a
partial-neurons-based state estimator is first designed based on the partially available measurement
signals. Then, with the help of the Lyapunov stability theory, some criteria are derived to ensure
the overall exponential boundedness of estimation errors in the mean square sense.

The main contribution of this paper is highlighted as threefold: 1) a partial-neurons-based state
estimator is proposed for delayed ANNs with state-dependent noises under redundant channels; 2)
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a criterion is established to guarantee the overall exponential boundedness of estimation errors in
the mean square sense; and 3) the expected estimator gain is acquired in terms of the solution to
a convex optimization problem with certain matrix inequality constraints.

The remainder of this paper is organized as follows. Section 2 gives the problem formulation
and some preliminaries. Section 3 establishes the main results where some sufficient conditions are
provided to ensure the exponentially ultimate boundedness of the estimation error. A numerical
simulation is used to show the effectiveness of the proposed estimator design scheme in Section 4
and Section 5 summarizes the paper.

Notation. The notation used here is fairly standard except where otherwise stated. The
occurrence probability of the event “·” is denoted by Prob{·}. diag{X1, X2, · · · , Xn} stands for
a block diagonal matrix whose diagonal blocks are matrices X1, X2, · · · , Xn. Ip denotes the p-
dimensional column vector with all entries 1. λmin{P} denotes the minimum eigenvalue of the
matrix P . In symmetric block matrices, the symbol * is used as an ellipsis for terms induced by
symmetry.

2. Problem Formulation

The neural network considered in this paper is described by n coupled discrete time-delayed
nonlinear systems where the dynamics of individual nodes is characterized by:

xi,k+1 =aixi,k +

n∑
j=1

bijfj(xj,k) +

k−1∑
l=k−d

n∑
j=1

cijgj(xj,l) + āixi,kwk

xi,k =φi,s, s = −d,−d+ 1, . . . , 0

(1)

where i ∈ N , {1, 2, . . . , n}; xi,k ∈ R denotes the state of the neuron i; gi(·) : R 7→ R and
fi(·) : R 7→ R are the activation functions; ai stands for the state feedback coefficient; āi is the
weight coefficient of the state-dependent noise; The constants bij and cij represent, respectively,
the connection weights of the activation functions fi(·) and gi(·); wk ∈ R is the state-dependent
Gaussian white noise satisfying E{wk} = 0 and E{w2

k} = 1; d ≥ 1 denotes the constant distributed
time delay; φi,s (s = −d,−d+ 1, . . . , 0) are given initial conditions; The scalar nonlinear functions
fi(·) and gi(·) satisfy fi(0) = gi(0) = 0 and the following sector-bounded conditions:

(fi(u)− fi(v)− ϕ1(u− v))(fi(u)− fi(v)− ϕ2(u− v)) ≤ 0

(gi(u)− gi(v)− ψ1(u− v))(gi(u)− gi(v)− ψ2(u− v)) ≤ 0
(2)

for ∀ u, v ∈ R, where ϕ1, ϕ2, ψ1 and ψ2 are known scalars.
In this paper, the measurement output is only available for a small fraction of the n neuron

nodes. Without lose of generality, it is assumed that Na = {1, 2, . . . , p} (p ≤ n) denotes the set
of those nodes whose outputs are measurable. Moreover, due to the bandwidth constraint and
the unreliable transmission of communication network, the packet loss may inevitably occur in the
network between the sensor and the receiver. To reduce the rate of packet loss, an effective method
is to employ additional transmission channels instead of the traditional single transmission channel.
In this paper, N−1 redundant channels are extra introduced to transmit the measurement outputs,
whose model is described by the following equation:

yi,k =α1,kd1xi,k +mivi,k +
N∑
l=2

{
l−1∏
s=1

((1− αs,k)αl,kdl)xi,k

}
(3)
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for i ∈ Na, where yi,k ∈ R represents the output received by the receiver; vi,k ∈ R are the Gaussian
white noises satisfying E{vi,k} = 0, E{vi,kvi,k} = 1 and E{vi,kvj,k} = 0 (i ̸= j); dl (l = 1, . . . , N) and
mi are known scalars; αl,k is a random Bernoulli distributed variable with the following statistical
properties:

Prob{αl,k = 1} = ᾱl, Prob{αl,k = 0} = 1− ᾱl (4)

with ᾱl ∈ [0, 1] (l = 1, . . . , N) being the given constants. αl,k (l = 1, . . . , N) are assumed to be
uncorrelated with wi,k, vi,k and φi,s (s = −d,−d+ 1, . . . , 0).

Remark 1. We have the following observations from the measurement model (3). First, consider-
ing the environment changing and the limited measurement capacity of the sensing device, certain
measurement data may be difficult to be obtained. As such, in this paper, it is assumed that the
measurement outputs are accessible for only a small fraction of the n neuron nodes to better reflect
the engineering practice. Second, it is well known that the phenomenon of the packet dropout would
inevitably degrade the system performance in a network environment. For the sake of decreasing
the occurrence rate of packet loss, the redundant channel mechanism is employed in this paper,
i.e. the communication network is equipped with additional N − 1 channels to enhance the trans-
mission reliability. All N channels are sequentially detected whether the data packet is delivered
to the receiver side until one of channels successfully transmits the data packet. Third, under the
N -channel-based communication scheme, the probability of packet dropouts is ΠN

i=1ᾱi, which is far
less than ᾱi (i = 1, 2, . . . , N). To this end, an alternative and feasible approach is to increase
the number of redundant channels to improve the reliability of the data transmission. However, it
should be pointed out that the implementation of such a strategy needs some additional detection
devices at each channel terminal to check whether the packet loss occurs. Therefore, one would
like to fine-tune the number of redundant channels so as to play the balance between the cost of
equipment/energy and the estimation performance.

Based on (3), the following estimator is designed for the neuron i:

x̂i,k+1 =aix̂i,k +
n∑

j=1

bijfj(x̂j,k) +
k−1∑

l=k−d

n∑
j=1

cijgj(x̂j,l) + li(yi,k − γ̄x̂i,k), i ∈ Na

x̂i,k+1 =aix̂i,k +

n∑
j=1

bijfj(x̂j,k) +

k−1∑
l=k−d

n∑
j=1

cijgj(x̂j,l), i ∈ N/Na

x̂i,k =φ̂i,s, s = −d,−d+ 1, . . . , n

(5)

where γ̄ , ᾱ1d1 +
∑N

l=2

{∏l−1
s=1(1− ᾱs)ᾱldl

}
and li is the estimator gain to be determined.

Denote by ei,k , xi,k − x̂i,k the estimation error whose dynamics can be written as

ei,k+1 =aiei,k +
n∑

j=1

bij f̃j(ej,k) + āixi,kwk +
k−1∑

l=k−d

n∑
j=1

cij g̃j(ej,l)

− limivi,k − li(γ̃kxi,k + γ̄ei,k), i ∈ Na

ei,k+1 =aiei,k +
n∑

j=1

bij f̃j(ej,k) + āixi,kwk +
k−1∑

l=k−d

n∑
j=1

cij g̃j(ej,l), i ∈ N/Na

(6)
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where

f̃j(ej,k) , fj(xj,k)− fj(x̂j,k), g̃j(ej,k) , gj(xj,k)− gj(x̂j,k)

γ̃k , γk − γ̄, γk , α1,kd1 +
N∑
l=2

{
l−1∏
s=1

(1− αs,k)αl,kdl

}
.

For notational simplicity, we denote

ek , [e1,k, e2,k, . . . , en,k]
T , vk , [v1,k, v2,k, . . . , vp,k]

T , xk , [x1,k, x2,k, . . . , xn,k]
T

f̃(ek) , [f̃1(e1,k), f̃2(e2,k), . . . , f̃n(en,k)]
T , g̃(ek) , [g̃1(e1,k), g̃2(e2,k), . . . , g̃n(en,k)]

T

f(xk) , [f1(x1,k), f2(x2,k), . . . , fn(xn,k)]
T , g(xk) , [g1(x1,k), g2(x2,k), . . . , gn(xn,k)]

T

A , diag{a1, a2, . . . , an}, B , [bij ]n×n, Ā , diag{ā1, ā2, . . . , ān}, C , [cij ]n×n

M , diag{m1,m2, . . . ,mp}, L , diag{l1, l2, . . . , lp}, L̄ , [LT 0]Tn×p

Γ̄ , [Ip ⊗ γ̄ 0]p×n, Γ̃k , [(Ip ⊗ γ̃k) 0]p×n, θi,k ,


α1,k, i = 1

i−1∏
l=1

(1− αl,k)αi,k, 2 ≤ i ≤ N

θk , [θ1,k, θ2,k, . . . , θN,k]
T , θ̄i , E{θi,k}, θ̄ , [θ̄1, θ̄2, . . . , θ̄N ]T , θ̃k , θk − θ̄k

ϕ̄1 , diag2n{ϕ1, . . . , ϕ1}, ψ̄1 , diag2n{ψ1, . . . , ψ1}, ϕ̄2 , diag2n{ϕ2, . . . , ϕ2}
ψ̄2 , diag2n{ψ2, . . . , ψ2}, H ,

[
0p×n Ip 0p×(n−p)

]
, d̄ , [d1, d2, . . . , dN ]T

Σ , E{(θ̃kθ̃Tk )}, d̃ , d̄T d̄, σ̄ , d̄TΣd̄.

Then, the error dynamics (6) can be written in a more compact from:

ek+1 = (A− L̄Γ̄)ek +Bf̃(ek) +
k−1∑

l=k−d

Cg̃(el) + Āxkwk − L̄Mvk − L̄Γ̃kxk. (7)

Furthermore, the plant (1) can be compactly denoted as

xk+1 = Axk +Bf(xk) +
k−1∑

l=k−d

Cg(xl) + Āxkwk. (8)

Letting ξk ,
[
eTk xTk

]T
, one has

ξk+1 =Aξk + BF(ξk) +
k−1∑

l=k−d

CG(ξl) + Āξkwk − L̄1Mvk − L̄1Γ̃1,kξk (9)

where

A ,
[
A− L̄Γ̄ 0

0 A

]
, Ā ,

[
0 Ā
0 Ā

]
, G(ξk) ,

[
g̃(ek)
g(xk)

]
, F(ξk) ,

[
f̃(ek)
f(xk)

]
L̄1 ,

[
L̄
0

]
2n×p

, Γ̃1,k ,
[
0 Γ̃k

]
p×2n

, B , diag{B,B}, C , diag{C,C}.

For the sake of sequel developments, we provide the following definition and lemma.
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Definition 1. The estimation error dynamics (9) is said to be exponentially mean-square bounded
if there exist constants ϑ > 0, π > 0 and ϱ ∈ (0, 1) such that the inequality

E{∥ξk∥2} ≤ ϑϱk sup
k=−d,−d+1,...,0

E{∥ξk∥2}+ π (10)

holds for all k.

Lemma 1. [22] Given a positive semidefinite matrix Y ∈ Rn×n, a vector zi ∈ Rn and constants
ζi ≥ 0 (i = 1, 2, . . . , s). The following inequality holds(

s∑
i=1

ζizi

)T

Y

(
s∑

i=1

ζizi

)
≤

(
s∑

i=1

ζi

)
s∑

i=1

ζiz
T
i Y zi. (11)

3. Main results

In this section, a sufficient condition is established to ensure the exponential boundedness of the
estimation error in the mean square sense. Then, the estimator gain is obtained in the sense of the
minimum of an asymptotic upper bound of the estimation error.

Theorem 1. Given the scalar 0 < µ < 1. Considering the system (1) under redundant channels
(3), assume that there exist positive definite matrices P1 and P2, positive scalars ϵ1 and ϵ2 such
that the following inequalities

Ω2 ,


Ω̄11 Ω̄12 Ω̄13 Ω14

∗ Ω̄22 0 Ω24

∗ ∗ Ω̄33 0
∗ ∗ ∗ Ω44

 < 0 (12)

hold, where

Ω̄11 , Ω11 − ϵ1
ϕ̄T1 ϕ̄2 + ϕ̄T2 ϕ̄1

2
− ϵ2

ψ̄T
1 ψ̄2 + ψ̄T

2 ψ̄1

2

Ω̄12 , Ω12 + ϵ1
ϕ̄T1 + ϕ̄T2

2
, Ω̄13 , ϵ2

ψ̄T
1 + ψ̄T

2

2

Ω̄22 , Ω22 − ϵ1I, Ω̄33 , Ω33 − ϵ2I

Ω11 , ATP1A+ ĀTP1Ā+ (µ− 1)P1 + σ̄HT L̄T
1 P1L̄1H

Ω12 , ATP1B, Ω14 , ATP1C, Ω22 , BTP1B

Ω24 , BTP1C, Ω33 , dP2, Ω44 , CTP1C +
(µ− 1)d

d
P2.

Then, the estimation error satisfies the exponential boundedness in the mean square sense. More-
over, an asymptotic bound is δ

ρµ , i.e. limk→∞ E{∥ek∥2} = δ
λmin{P1}µ where δ , tr{MT L̄T

1 P1L̄1M}.

Proof. Construct the Lyapunov-Krasovskii functional as

Vk = V1,k + V2,k (13)
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where

V1,k , ξTk P1ξk, V2,k ,
k−1∑

j=k−d

k−1∑
l=j

(1− µ)k−l−1GT (ξl)P2G(ξl).

Calculating the term ∆Vk + µVk and taking the mathematical expectation result in

E{∆V1,k + µV1,k}
=E{V1,k+1 + (µ− 1)V1,k}

=E

{(
Aξk + BF(ξk) +

k−1∑
l=k−d

CG(ξl) + Āξkwk

−L̄1Mvk − L̄1Γ̃1,kξk

)T
P1 (Aξk + BF(ξk)

+
k−1∑

l=k−d

CG(ξl) + Āξkwk − L̄1Mvk − L̄1Γ̃1,kξk

)}
=E

{
ξTk (ATP1A+ ĀTP1Ā)ξk + FT (ξk)BTP1BF(ξk)

+

(
k−1∑

l=k−d

G(ξl)

)T

CTP1C

(
k−1∑

l=k−d

G(ξl)

)
+vTkM

T L̄T
1 P1L̄1Mvk + ξTk Γ̃

T
1,kL̄T

1 P1L̄1Γ̃1,kξk

+2ξTk ATP1BF(ξk) + 2ξTATP1C

(
k−1∑

l=k−d

G(ξl)

)

+2FT (ξk)BTP1C

(
k−1∑

l=k−d

G(ξl)

)
+ (µ− 1)ξTk P1ξk

}
(14)

and

E{∆V2,k + µV2,k}

=E


k∑

j=k−d+1

k∑
l=j

(1− µ)k−lGT (ξl)P2G(ξl)

−
k−1∑

j=k−d

k−1∑
l=j

(1− µ)k−lGT (ξl)P2G(ξl)


=E


k−1∑

j=k−d

 k∑
l=j+1

−
k−1∑
l=j

 (1− µ)k−lGT (ξl)P2G(ξl)


=E

dGT (ξk)P2G(ξk)− (1− µ)d
k−1∑

j=k−d

GT (ξj)P2G(ξj)

 . (15)
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Next, we pay our attention to the term Γ̃T
1,kL̄T

1 P1L̄1Γ̃1,k. First, noting that γ̃k =
∑N

i=1 θ̃i,kdi, we
derive

Γ̃1,k =

(
N∑
i=1

θ̃i,kdi

)
⊗H = (θ̃Tk d̄)⊗H. (16)

Then, setting P , L̄T
1 P1L̄1, one has

E{Γ̃T
1,kPΓ̃1,k} =E{(θ̃Tk d̄)⊗H)TP((θ̃Tk d̄)⊗H)}

=E
{
((θ̃Tk d̄)

T (θ̃Tk d̄))⊗ (HTPH)
}

=(d̄TΣd̄)⊗ (HTPH)

=σ̄HTPH.

(17)

According to Lemma 1, it is not difficult to see that

−
k−1∑

l=k−d

GT (ξl)P2G(ξl) ≤ −1

d

(
k−1∑

l=k−d

G(ξl)

)T

P2

(
k−1∑

l=k−d

G(ξl)

)
. (18)

Therefore, we conclude from (14)–(18) that

E{∆Vk + µVk}
= E{∆V1,k + µV1,k +∆V2,k + µV2,k}
≤ E

{
ξTk (ATP1A+ ĀTP1Ā+ (µ− 1)P1 + σ̄HT L̄T

1 P1L̄1H)ξk

+FT (ξk)BTP1BF(ξk) + dGT (ξk)P2G(ξk)
+vTkM

T L̄T
1 P1L̄1Mvk + 2ξTk ATP1BF(ξk)

+

(
k−1∑

l=k−d

G(ξl)

)T (
CTP1C +

(µ− 1)d

d
P2

)( k−1∑
l=k−d

G(ξl)

)
(19)

+2FT (ξk)BTP1C

(
k−1∑

l=k−d

G(ξl)

)
+ 2ξTk ATP1C

(
k−1∑

l=k−d

G(ξl)

)}
, E{ηTk Ω1ηk}+ tr{MT L̄T

1 P1L̄1M}

where

ηk ,
[
ξTk FT (ξk) GT (ξk)

∑k−1
l=k−d GT (ξl)

]T
Ω1 ,


Ω11 Ω12 0 Ω14

∗ Ω22 0 Ω24

∗ ∗ Ω33 0
∗ ∗ ∗ Ω44

 .
It follows readily from (2) that

(F(ξk)− ϕ̄1ξk)
T (F(ξk)− ϕ̄2ξk) ≤ 0, (20)
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which is equivalent to

(F(ξk)− ϕ̄1ξk)
T (F(ξk)− ϕ̄2ξk)

2
+

(F(ξk)− ϕ̄2ξk)
T (F(ξk)− ϕ̄1ξk)

2
≤ 0. (21)

As a result, we have

Θ1,k , FT (ξk)F(ξk)−
FT (ξk)ϕ̄2ξk

2
− FT (ξk)ϕ̄1ξk

2

− ξTk ϕ̄
T
2 F(ξk)

2
− ξTk ϕ̄

T
1 F(ξk)

2
+
ξTk ϕ̄

T
1 ϕ̄2ξk
2

+
ξTk ϕ̄

T
2 ϕ̄1ξk
2

≤0.

(22)

Similarly, one has

Θ2,k , GT (ξk)G(ξk)−
GT (ξk)ψ̄2ξk

2
− GT (ξk)ψ̄1ξk

2

− ξTk ψ̄
T
2 G(ξk)
2

− ξTk ψ̄
T
1 G(ξk)
2

+
ξTk ψ̄

T
1 ψ̄2ξk
2

+
ξTk ψ̄

T
2 ψ̄1ξk
2

≤0.

(23)

Therefore, it is known from (19)–(23) that the following inequality holds

E{∆Vk + µVk} ≤E{ηTk Ω1ηk − ϵ1Θ1,k − ϵ2Θ2,k}+ tr{MT L̄T
1 P1L̄1M}

,E{ηTk Ω2ηk}+ δ.
(24)

Then, it follows from (12) that

E{∆Vk + µVk} ≤ δ. (25)

Through straightforward algebraic manipulations, we have

E{Vk} ≤(1− µ)k
(
E{V0} −

δ

µ

)
+
δ

µ

≤(1− µ)kE{V0}+
δ

µ
.

(26)

It is easily seen from (26) that

λmin{P1}E{∥ek∥2} ≤ λmin{P1}E{∥ξk∥2}
≤λmin{P1}E{∥ηk∥2} ≤ E{Vk}

≤(1− µ)kE{V0}+
δ

µ

(27)

and one further has

E{∥ek∥2} ≤ (1− µ)k

λmin{P1}
E{V0}+

δ

λmin{P1}µ
. (28)
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Then, letting k → ∞, one has

lim
k→∞

E{∥ek∥2} =
δ

λmin{P1}µ
. (29)

As a consequence, the proof of this theorem is complete.

Having established a sufficient condition to ensure the exponential boundedness of the estimation
error dynamics (9), next, we are interested in providing an analytical solution of the desired esti-
mator gain and developing an optimization problem to obtain an asymptotic upper bound of the
estimation error.

Theorem 2. Given the scalars 0 < µ < 1 and ρ > 0. Considering the system (1) under redundant
channels (3), suppose that there exist a positive definite diagonal matrix P1 , diag{p11, . . . , p2n,2n},
a positive definite matrix P2, a real-value matrix X , [X1 0]

T ∈ R2n×p with X1 , diag{χ11, χ22, . . . , χpp} ∈
Rp×p, positive scalars ϵ1, ϵ2 and ϱ such that the following inequalities

Ω4 ,



Ω̃11 Ω̃12 Ω̃13 0 Ω⃗15 Ω̃16 Ω⃗17

∗ Ω̃22 0 0 Ω̃25 0 0
∗ ∗ Ω̄33 0 0 0 0

∗ ∗ ∗ Ω44 Ω̃45 0 0

∗ ∗ ∗ ∗ Ω̃55 0 0

∗ ∗ ∗ ∗ ∗ Ω̃66 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̃77


< 0

ρI − P1 ≤ 0[
−ϱI MTXT

−P1

]
< 0

(30)

hold, where

Ω̃11 , (µ− 1)P1 − ϵ1
ϕ̄T1 ϕ̄2 + ϕ̄T2 ϕ̄1

2
− ϵ2

ψ̄T
1 ψ̄2 + ψ̄T

2 ψ̄1

2

Ω̃12 , ϵ1
ϕ̄T1 + ϕ̄T2

2
, Ω̄13 , ϵ2

ψ̄T
1 + ψ̄T

2

2
, Ω̃77 , −P1

Ω̃22 , −ϵ1I, Ω̃33 , dP2 − ϵ2I, Ω̃44 , (µ− 1)d

d
P2

Ω⃗15 ,
[
ATP11 − Γ̄T [XT

1 0] 0
0 ATP22

]
, Ω̃25 , BTP1

Ω̃45 , CTP1, Ω̃55 , −P1, Ω̃16 , ĀTP1, Ω̃66 , −P1

Ω⃗17 ,
√
σ̄HT [XT

1 0], P11 , diag{p11, . . . , ppp}
P22 , diag{p(p+1),(p+1), . . . , p2n,2n}.

Then, the estimation error is exponentially bounded in the mean square sense, whose asymptotic
upper bound is limk→∞ E{∥ek∥2} = ϱ

ρµ . Furthermore, the minimum of this asymptotic upper bound
can be derived by solving the following minimization problem

min{ϱ} (31)
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subject to the LMI constraints (30). The estimator gain can be given as

li = p−1
ii χii, i = 1, 2, . . . , p. (32)

Proof. Substituting X1 = P1L̄ into the first and second inequalities in (30) yields

Ω3 ,



Ω̃11 Ω̃12 Ω̃13 0 Ω̃15 Ω̃16 Ω̃17

∗ Ω̃22 0 0 Ω̃25 0 0
∗ ∗ Ω̄33 0 0 0 0

∗ ∗ ∗ Ω44 Ω̃45 0 0

∗ ∗ ∗ ∗ Ω̃55 0 0

∗ ∗ ∗ ∗ ∗ Ω̃66 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̃77


< 0 (33)

where Ω̃15 , ATP1 and Ω̃17 ,
√
σ̄HT L̄T

1 P1. Then, applying the Schur Complement Lemma to
(33), one easily obtains the first inequality of (30).

Then, according to the second inequality of (30), we have

E{∥ek∥2} ≤ (1− µ)k

ρ
E{V0}+

δ

ρµ
. (34)

Furthermore, with the help of the Schur Complement Lemma, it is easily seen from the third
inequality of (30) that

δ , tr{MT L̄T
1 P1L̄1M} < ϱI. (35)

Combining (34) and (35) results in

E{∥ek∥2} ≤ (1− µ)k

ρ
E{V0}+

ϱ

ρµ
. (36)

Consequently, it can be concluded that an asymptotic bound of E{∥ek∥2} is ϱ
ρµ and the minimum

of this asymptotic bound can be derived by minimizing ϱ, which is equivalent to the optimization
problem (31). The proof of this theorem is ended.

Remark 2. So far, the analysis and synthesis problem has been successfully solved by resorting
to the Lyapunov stability theory, the stochastic analysis technique and the linear matrix inequality
method. To be more specific, Theorem 1 has established a sufficient condition to guarantee the
resulting estimation error systems (9) to achieve the overall exponential mean-square boundedness.
However, notice that these conditions are non-convex with respect to the estimator gain matrix L̄1.
To this end, by means of the Schur Complement Lemma, Theorem 2 has been established where
the required estimator gain matrix can be acquired by solving an optimization problem with cer-
tain matrix inequality constraints. It should be particularly emphasized that all important elements
affecting the estimation performance have been involved in the matrix inequalities in Theorem 2,
which includes the system parameters, time-delay length, damping exponent and probabilities of the
packet dropout.
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Remark 3. It should be stressed that the computational complexity of a standard LMI system is
polynomial-time, which is bounded by O(MN 3 log(V/ϵ)) where M is the total row size of the LMI,
N is the total number of scalar decision variables, V is a data-dependent scaling factor, and ϵ is
the relative accuracy set for the algorithm. In view of this, we focus our attention on the state
estimation problem for delayed neural networks (1) where the number of neuron nodes is n, and the
dimensions of network variables are, respectively, xk ∈ Rn, wk ∈ R and vk ∈ Rp. From Theorem 1,
we can easily observe that M = 8n and N = n2+n+2, and therefore the computational complexity
of the LMI-based stability criterion of the estimation error is O(8n3). Similarly, from Theorem 2,
the computational complexity of the LMI-based state estimator design problem for delayed neural
networks (1) is O(7n3+35n2). Obviously, the computational complexity of the LMI-based estimation
algorithm is dependent polynomially on the number of neurons. Fortunately, with the accelerated
development of the computer technology, the computing speed has been not a main concern, which
greatly facilitates the application of the LMI-based technology in the large-scale network.

4. An illustrative example

In this section, a numerical simulation is presented to illustrate the effectiveness of the devel-
oped estimator design scheme. A neural network consisting of four neurons is considered with the
following parameters:

A =


0.4 0 0 0
0 0.2 0 0
0 0 0.3 0
0 0 0 0.1

 , Ā =


0.31 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.2

 , B = C =


0.5 0.2 0.3 0.1
0.2 0.2 0 0
0.2 0 0.2 0
0.1 0 0 0.1

 .
The activation functions fi(·) and gi(·) (i = 1, . . . , 4) are selected as

f1(x1,k) = tanh(0.2x1,k), f2(x2,k) = tanh(0.5x2,k)

f3(x3,k) = tanh(0.4x3,k), f4(x4,k) = tanh(0.2x4,k)

g1(x1,k) = tanh(0.5x1,k), g2(x2,k) = tanh(0.35x2,k)

g3(x3,k) = tanh(0.24x3,k), g4(x4,k) = tanh(0.2x4,k),

which satisfy the sector-bounded condition (2) with

ϕ1 = diag{−0.2,−0.5,−0.4,−0.2}, ϕ2 = diag{0.2, 0.5, 0.4, 0.2}
ψ1 = diag{−0.5,−0.35,−0.24,−0.2}, ψ2 = diag{0.5, 0.35, 0.24, 0.2}

where xk = [x1,k x2,k x3,k x4,k]
T .

The outputs are measured by four sensors. Assume that, during the transmission of the mea-
surement outputs, there exist one redundant channel for the sake of improving the success rate of
signal transmission. The corresponding parameters are set as d1 = d2 = 0.5, m1 = 0.16, m2 = 0.18,
m3 = 0.2, m4 = 0.25, ᾱ1 = 0.9 and ᾱ2 = 0.8. The length of the time-delay is d = 1. The initial

values are given as x0 =
[
0.25 0.3 −0.2 0.1

]T
and x̂0 =

[
0 0 0 0

]T
.

Due to the harsh measurement environment and the limited measurement technology, only
partial measurements can be available, which is divided into three cases in this simulation. Case I:
only the measurement from node 1 can be obtained; Case II: only the measurements from nodes 1
and 2 can be obtained; and Case III: all measurements from nodes 1–4 can be obtained.
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For Case II, according to Theorem 2, the state estimation problem can be solved by using LMI
Toolbox. The corresponding parameters are computed as

p11 = 1.2329, p22 = 2.1213, χ11 = 0.1966, χ22 = 0.1627.

Then, based on the relationship li = p−1
ii χii (i = 1, 2), the estimator gains are l11 = 0.1594 and

l22 = 0.0767. The simulation results are shown in Figures 1–5 where Figures 1–4 plot the trajectories
of actual states and their estimates and Figure 5 plots the estimation errors.

Figure 6 and Table 1 reveal the influence of the number of available nodes on the estimation per-
formance. Obviously, with the increase of the obtained measurement information, the mean-square
error defined by MSE= 1

T

∑T
k=1(e

T
k ek) and the optimized upper ϱ

ρµ accordingly decrease, which im-
plies that the more nodes’ information is used and better estimation performance is achieved. The
simulation has well confirmed the effectiveness of our theoretical results.

Table 1: The asymptotic upper bound ϱ
ρµ

for different cases

Case I Case II Case III
5.1797 3.8505 2.3922

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

Figure 1: State trajectory x1 and its estimate.

5. Conclusions

In this paper, the state estimation problem has been discussed for a class of time-delay neural
networks subject to the state-dependent noises under the redundant channel transmission mecha-
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Figure 2: State trajectory x2 and its estimate.
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Figure 3: State trajectory x3 and its estimate.
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Figure 4: State trajectory x4 and its estimate.
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Figure 5: Estimation errors.
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Figure 6: MSE.

nism. Additional transmission channels have been employed in order to decrease the occurrence
probability of packet loss. A redundant-channel-based estimator has been designed by using a small
fraction of the measurement outputs. In the simultaneous presence of both the redundant channels
and the state-dependent noises, a sufficient condition has been established to ensure that the esti-
mation error dynamics achieves the exponential mean-square boundedness. The required estimator
gain has been derived by means of the solution to an optimization problem with certain matrix
inequality constraints. In the end, the effectiveness of the designed estimator has been illustrated
via a numerical simulation. Further research topics would include the extension of our results to
1) the partial-neurons-based state estimator design problem for ANNs with various communication
protocols [5, 18, 19, 20, 35] and 2) time-varying probability distributions of packet dropouts [37, 40].
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