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Abstract

In this paper, the fusion estimation problem is investigated for a class of multi-rate power systems with randomly occurring
delays in supervisory control and data acquisition (SCADA) measurements. The power system is measured by the SCADA
and the phasor measurement unit (PMU), and the state updating period of the power system is allowed to be different from
the sampling periods of the SCADA and the PMU. The phenomenon of the randomly occurring SCADA measurement delays
is characterized by a set of Bernoulli distributed random variables. To facilitate the state estimator design, a new approach
is developed to transform the multi-rate power system into single-rate one. First, two local state estimators are designed,
respectively, based on the SCADA and the PMUmeasurements such that upper bounds of the local estimation error covariances
are guaranteed at each sampling instant, and such upper bounds are subsequently minimized by appropriately designing the
gains of both local state estimators. Then, the asynchronous estimates from the local state estimators are fused by recurring
to the covariance intersection fusion scheme. Finally, a simulation experiment is carried out on the IEEE 14-bus system to
illustrate the effectiveness of the proposed fusion estimation scheme.
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1 Introduction

As a key module of the energy management systems
(EMS), efficient yet accurate state estimation (SE) plays
a vital role in the operation and control of the power
systems [7–9,12,41]. Traditional SE algorithms based on
the classical static weighted-least-square (WLS) method
has been widely applied in practice, where the measure-
ments generated by the supervisory control and data ac-
quisition (SCADA) unit are used to estimate the state
of the power system. In practice, however, the tradition-
al SCADA measurements might exhibit the features of
low sampling rate and low accuracy, which makes it dif-
ficult to reveal the dynamic behavior of the power sys-
tems correctly, thereby impairing the real-time capabil-
ity and reliability of the state estimation [6, 22,34,41].

In order to overcome the weakness of the SCADA, the
phasor measurement unit (PMU) has been playing an
increasingly important role in the power systems. Com-
pared with the SCADA, the PMU has much higher sam-
pling rate which facilitates accurate yet timely measure-
ments [22]. In this sense, the PMUs are particularly suit-
able for dynamic state estimation (DSE) of power sys-
tems. Unfortunately, due to the high cost of implement-
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ing PMU and the limited bandwidth of the communi-
cation network, it is impractical to deploy the PMU on
every node of the power system in the foreseeable fu-
ture. As such, an effective way is to simultaneously u-
tilize the measurements from both the SCADA and the
PMU in order to achieve an adequate tradeoff between
the estimation accuracy and the implementation cost.
Consequently, it is of vital importance to develop a SE
scheme to use both SCADA and PMU measurements to
estimate the state of the power systems [20,21].

Recently, the SE problem for power systems with mixed
SCADA and PMU measurements has attracted increas-
ing research attention, and there are mainly two kinds
of estimation schemes in the literature [21, 22]. One es-
timation scheme is to use a single state estimator where
the measurements from the PMUs are mixed with those
from the SCADA, see [5, 20, 27]. For instance, a sin-
gle state estimator for power systems has been designed
in [20] by augmenting the measurements from the S-
CADA and the PMUs. Unfortunately, most of the ex-
isting results based on such kind of scheme cannot ex-
ert the predominance of the PMU since the SE is only
performed at the coarse SCADA time-scale. The second
kind of SE scheme is the hybrid one where the estimate
from the SCADA-based state estimator is ameliorated
by a second estimator which utilizes measurement from
PMU only, see [10, 17, 29]. For example, a novel hybrid
SE scheme has been proposed in [10], where the SCADA-
based estimate and the PMU-based estimate have been
obtained independently and then fused. In practical ap-
plication, however, the advantages of the PMU would be
lost if the hybrid estimator is simply worked at the coarse
SCADA time-scale while the communication and com-
putation burden would be increased if the hybrid estima-
tion is performed at the PMU sampling rate. It should
be pointed out that despite the wide deployment of the
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static WLS method in power systems, the drawback-
s such as poor robustness in the presence of non-ideal
measurements may degrade the performance of the WL-
S method severely [18, 30]. Moreover, the WLS method
can only forecast the current system states while can-
not provide the estimates for the next time step [18]. As
such, there is a practical need to develop new approach-
es for DSE and online monitoring of the power systems
with the mixed SCADA and PMU measurements.

So far, Kalman-filter-based DSE approaches have been
widely applied in the power systems, see [21, 22, 41]. To
estimate the state of the power systems in the presence
of the nonlinear measurement, the extend Kalman fil-
tering algorithm has been adopted in [13,15,20]. On the
other hand, some filtering algorithms have been devel-
oped to reduce the computation burden of calculating
the Jacobian matrix and better handle the nonlinearities
in the power systems, see [29,40]. For example, in [29], a
hybrid DSE method has been proposed, where the SCA-
DA and the PMU measurements have been processed
in parallel based on the cubature Kalman filtering algo-
rithm, and then the estimates have been fused. In [40],
a robust unscented Kalman filtering algorithm has been
designed for DSE for power systems, and the proposed
filtering algorithm performs well in the presence of non-
Gaussian process and measurement noises.

In a power system with both the PMUs and the SCA-
DA, the measurements are generated with different rates
due to the fact that the PMU has a sampling rate of 10–
120 samples per second while the SCADA samples ev-
ery 0.5–2 seconds [16]. Such kind of multi-rate systems
with asynchronous measurements have received consid-
erable research attention in the past decade [16, 28, 33].
For example, in [16], based on the fusion scheme in [33],
the fusion estimation problem for the power systems
with multi-rate measurements has been studied, while
the asynchronicities among the SCADA and PMU have
been ignored. Nevertheless, when it comes to the pow-
er systems, the fusion estimation problem for multi-rate
multi-sensor systems with asynchronous measurements
has not received adequate research attention yet despite
its promising engineering significance. Therefore, it is of
great necessity to investigate the fusion estimation prob-
lem for power systems with both SCADA and PMUs,
and this motivates our current research.

In most existing results concerning the state estimation
problems, there have been an implicit assumption that
the measurement outputs are associated with the cur-
rent state of the system [1,2,14,38]. This assumption is
quite restrictive in practice since the measurement out-
puts are often subject to unavoidable delays due to the
time skewness and long-distance communication [21,37].
Compared with the synchronized PMUmeasurements u-
tilizing global position systems (GPS), the phenomenon
of time skewness is often encountered in asynchronous
SCADA measurements. On the other hand, tradition-
al communication medias (e.g. power line and telephone
line), which may suffer from the randomly occurring
network-induced communication delays due to limited
bandwidth, are still extensively used in the SCADA sys-
tems. Since the delayed measurements could largely af-
fect the system stability [21,22], it is of vital significance
to design state estimators that are capable of mitigat-
ing the side-effects caused by time delays. Up to now, s-

tate estimation problems with measurement delays have
received much attention, see e.g. [30, 37]. Despite the
progress made so far, little research attention has been
paid on the state estimation problem for power systems
with randomly occurring SCADA measurement delays.
Based on the above mentioned issues, the main motiva-
tions of this paper are to: 1) establish a novel SE frame-
work for the mixed SCADA and PMU measurements
which not only takes the advantages of the high sampling
rate of the PMU but also efficiently utilizes the SCADA
measurements; 2) develop a mechanism to transform the
multi-rate system into a single-rate one for the conve-
nience of estimator design; 3) design an appropriate es-
timator which can better tackle the randomly occurring
SCADA measurement delays; and 4) propose a fusion
scheme which has a satisfactory performance. As such,
in this paper, we aim to solve the fusion estimation prob-
lem for multi-rate power systems with randomly occur-
ring SCADA measurement delays. The main contribu-
tions of the paper can be highlighted as follows: 1) the
fusion estimation problem is, for the first time, investi-
gated for dynamic state estimation of power systems with
multi-rate measurements and randomly occurring SCA-
DA measurement delays; 2) an augmentation method is
applied to transform the multi-rate system into a single-
rate one, and two local state estimators are then designed,
respectively, based on the SCADA and the PMU mea-
surements such that the upper bounds of the local estima-
tion error covariances are minimized at each sampling
instant; and 3) a fusion estimation scheme is proposed
by recurring to the covariance intersection (CI) fusion
method to fuse the asynchronous local estimates. Final-
ly, intensive numerical simulation is carried out on the
IEEE 14-bus system in order to illustrate the effective-
ness of the proposed fusion estimation scheme for power
systems.
Notation The notations used here are fairly standard.
diag{· · · } and diagm{∗} represent the block-diagonal
matrix and diag{∗, · · · , ∗︸ ︷︷ ︸

m

}, respectively. colm{∗} stand-

s for col{∗, · · · , ∗︸ ︷︷ ︸
m

}. ◦ is the Hadamard product which is

defined as [A ◦B]ij = Aij ×Bij .

2 Problem Formulation

2.1 Power System Model

In this paper, it is assumed that the power system oper-
ates in the quasi-steady state. Let us consider a power
system containing N buses described by [13,20–22]:

x(k+1)h = Axkh +Bu+ wkh (1)

where xk ∈ R2N is the state vector evolving at a basic
period h (h is omitted for brevity in the sequel), xk =
[V1,k V2,k · · · VN,k θ1,k θ2,k · · · θN,k]

T with Vl,k and
θl,k representing the voltage magnitude and the voltage
phase angle of the bus l (l = 1, 2, . . . , N), respectively.
u ∈ R2N is the expected steady state, A ∈ R2N×2N is
the transition matrix, B , I −A is associated with the
trend behavior of the state trajectory, and wk is a zero
mean Gaussian white noise with covarianceWk > 0. The
initial value x0 of the state is a random variable with
mean η0 and covariance Σ0|0.
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2.2 SCADA Measurement Model with Randomly Oc-
curring Delays

The ideal measurement output z⃗s,n1k ∈ Rm1 col-
lected by the SCADA units with a sampling pe-
riod n1h (n1 is a positive integer) can be mod-
eled as z⃗s,n1k = [PT

n1k
QT

n1k
PT
f,n1k

QT
f,n1k

]T

where Pn1k , [P1,n1k P2,n1k · · · Pnp,n1k]
T and

Qn1k , [Q1,n1k Q2,n1k · · · Qnp,n1k]
T denote the active

and reactive bus power injection measurements, respec-
tively. Pf,n1k , [Pf1,n1k Pf2,n1k · · · Pfns,n1k]

T and

Qf,n1k , [Qf1,n1k Qf2,n1k · · · Qfns,n1k]
T are the active

and reactive power flow measurements, respectively. np
and ns represent the number of SCADA units placed at
the selected buses and transmission lines, respectively.

Let us consider the typical π-model of a branch i–j, the
explicit element for each measurement mentioned above
can be expressed as follows (n1k is omitted for brevity):

Pi = Vi

∑
j∈Ni

Vj

(
Gij cos(θi − θj) +Bij sin(θi − θj)

)
,

Qi = Vi

∑
j∈Ni

Vj

(
Gij sin(θi − θj)−Bij cos(θi,k − θj)

)
,

Pf,i = V 2
i (gsi + gij)− ViVj

(
gij cos(θi − θj)

+ bij sin(θi − θj)
)
,

Qf,i = −V 2
i (bsi + bij)− ViVj

(
gij sin(θi − θj)

− bij cos(θi − θj)
)

(2)

where Gij + jBij is the (i, j)-th element of the complex
bus admittance matrix, gij + jbij is the admittance of
the series branch connecting buses i and j, gsi + jbsi
is the admittance of the shunt branch connected to bus
i, and Ni is the set of bus numbers which are directly
connected to bus i.

Taking the measurement noise and the randomly occur-
ring measurement delays into consideration, we obtain
the following measurement model for SCADA units:

zs,n1k = Λn1kz⃗s,n1k + (I − Λn1k)z⃗s,n1(k−1) (3)

where

z⃗s,n1k , hs(xn1k) + vs,n1k. (4)

Here, hs(·) is determined by (2). zs,n1k is the actual mea-
surement output. vs,n1k is the measurement noise on
the SCADA units, which is a Gaussian white noise with
zero mean and covariance Rs,n1k > 0. Λn1k is defined

as Λn1k , diag{λ1,n1k λ2,n1k · · · λm1,n1k} with λi,n1k

(i = 1, 2, . . . ,m1) being mutually independent random
variables. λi,n1k is also uncorrelated with wk, νs,n1k and
x0. Furthermore, the random variable λi,n1k satisfies
Bernoulli distribution and takes values on 0 or 1 with

Prob{λi,n1k = 1} = µi, Prob{λi,n1k = 0} = 1− µi

where µi ∈ [0, 1] is a known scalar.

2.3 PMU Measurement Model

The measurement zp,n2k ∈ Rm2 of the PMUs with a
sampling period n2h (n2 is a positive integer) can be
modeled as zp,n2k = [zTp,1,n2k

zTp,2,n2k
· · · zTp,m2,n2k

]T .

Suppose that the l-th PMU (l = 1, 2, . . . ,m2) is in-
stalled at the bus i, and the bus i is directly connect-
ed to bus j. Then, zp,l,n2k is described as zp,l,n2k =
[Ir,ij,n2k Ii,ij,n2k]

T where Ir,ij,n2k and Ii,ij,n2k are the
real and imaginary current between the bus i and j, re-
spectively. To be more specific, Ir,ij,n2k and Ii,ij,n2k can
be described as follows (n2k is omitted for brevity):

Ir,ij =Vi

(
(gsi + gij) cos θi − (bsi + bij) sin θi

)
− Vj

(
gij cos θj − bij sin θj

)
,

Ii,ij =Vi

(
(bsi + bij) cos θi + (gsi + gij) sin θi

)
− Vj

(
gij sin θj + bij cos θj

)
. (5)

Taking the measurement noise into consideration, we
obtain the following measurement model for PMUs:

zp,n2k = hp(xn2k

)
+ vp,n2k (6)

where hp(·) is determined by (5), vp,n2k is the measure-
ment noise on the PMU that is also a Gaussian white
noise with zero mean and covariance Rp,n2k > 0.

2.4 State Estimator

Let us convert the multi-rate system into a single-rate
one. By applying the relation (1) recursively, for i = 1, 2
and a nonnegative integer l, we have

xnik+l+1 =Axnik+l +Bu+ wnik+l

=A(l+1)xnik +
l∑

i=0

Ai(Bu+ wnik+l−i). (7)

Denoting

Ãi ,Ani , Āi ,
[
Ani−1 Ani−2 · · · I

]
,

B̄ ,colni{B}, w̄nik ,
[
wT

nik
wT

nik+1 · · · wT
ni(k+1)−1

]T
,

we have (for i = 1, 2) that

xni(k+1) =Ãixnik + ĀiB̄u+ Āiw̄nik. (8)

Then, the local state estimators using the measurements
from SCADA units (denoted by LSES) and PMUs (de-
noted by LSEP) are of the following form:

LSES


x̂n1k|n1(k−1) =Ã1x̂n1(k−1)|n1(k−1) + Ā1B̄u,

x̂n1k|n1k =x̂n1k|n1(k−1) +Kn1k

(
zs,n1k

− Λ̄hs(x̂n1k|n1(k−1))

− (I − Λ̄)hs(x̂n1(k−1)|n1(k−2))
)
(9)

and

LSEP


x̂n2k|n2(k−1) =Ã2x̂n2(k−1)|n2(k−1) + Ā2B̄u,

x̂n2k|n2k =x̂n2k|n2(k−1) +Gn2k

(
zp,n2k

− hp(x̂n2k|n2(k−1))
)

(10)

where x̂nik|ni(k−1) and x̂nik|nik are the one-step pre-
diction and the estimate of xnik (i = 1, 2), respec-
tively. Kn1k and Gn2k are the local state estimator
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gain matrices to be designed, and Λ̄ , E{Λn1k} =
diag{µ1, µ2, . . . , µm1}.
The purpose of this paper is to:

(1) design the asynchronous local state estimators in
the form of (9) and (10) such that the upper bounds
of the local estimation error covariances are min-
imized at the corresponding sampling instant by
choosing appropriate local state estimator gain ma-
trices Kn1k and Gn2k; and

(2) develop a fusion scheme to fuse the asynchronous
local estimates generated by the local state estima-
tors (9) and (10).

3 Main Results

The flowchart of the proposed estimation scheme is sum-
marized in Fig. 1.

Power system under 

quasi-steady condition (1)

Mixed SCADA and PMU 

measurements 

System after 

transformation 

Local estimator scheme

Estimation error 

covariances 

Upper bounds of the 

estimation error 

covariances 

Local estimator gain 

SCADA with 

sampling rate n1 (4)

System with 

sampling rate n1 (8)

LSES (9)

(19) and (20)

(21) and (22)

 (24)

CI fusion scheme (33-35)

PMU with 

sampling rate n2 (6)

System with 

sampling rate n2 (8)

LSEP (10)

(27) and (28)

(29) and (30)

 (32)

Measurement 

from SCADA
Measurement 

from PMU

Design 

of  

LSES 

Design 

of  

LSEP 

Fig. 1. Flowchart of the proposed fusion estimation scheme.

Lemma 1 [32] Given matrices A, H, F , and M with
compatible dimensions such that FFT ≤ I. Let U be a
symmetric positive-definite matrix and a be an arbitrary
positive constant such that a−1I − MUMT > 0. Then,
the following matrix inequality holds:

(A+HFM)U(A+HFM)T

≤ A(U−1 − aMTM)−1AT + a−1HHT .

Lemma 2 For matrices X, Y and a positive scalar λ,
the following inequality holds:

XY T + Y XT ≤ λXXT + λ−1Y Y T .

Lemma 3 [19] LetA = [aij ]n×n be a real-valued matrix
and B = diag{b1, b2, . . . , bn} be a diagonal stochastic
matrix. Then

E{BABT } =


E{b21} E{b1b2} · · · E{b1bp}

E{b1b2} E{b22} · · · E{b2bp}
...

...
. . .

...

E{bpb1} E{bpb2} · · · E{b2p}

 ◦A

where ◦ is the Hadamard product.

Denote the one-step prediction error x̃nik|ni(k−1) ,
xnik − x̂nik|ni(k−1) and the estimation error x̃nik|nik ,

xnik−x̂nik|nik, respectively (i = 1, 2). By using the Tay-
lor series expansion for hs(xn1k) and hp(xn2k) around
x̂n1k|n1(k−1) and x̂n2k|n2(k−1), respectively, we have

hs(xn1k) =hs(x̂n1k|n1(k−1)) +Hs,n1kx̃n1k|n1(k−1)

+ os(|x̃n1k|n1(k−1)|), (11)

hp(xn2k) =hp(x̂n2k|n2(k−1)) +Hp,n2kx̃n2k|n2(k−1)

+ op(|x̃n2k|n2(k−1)|) (12)

where

Hs,n1k , (∂hs(xn1k)/∂xn1k)|xn1k=x̂n1k|n1(k−1)
,

Hp,n2k , (∂hp(xn2k)/∂xn2k)|xn2k=x̂n2k|n2(k−1)
.

Following [3] and [23], the high-order terms of the Taylor
series expansion os(|x̃n1k|n1(k−1)|) and op(|x̃n2k|n2(k−1)|)
can be transformed into:

os(|x̃n1k|n1(k−1)|) = Cs,n1kℵs,n1kLs,n1kx̃n1k|n1(k−1),
(13)

op(|x̃n2k|n2(k−1)|) = Cp,n2kℵp,n2kLp,n2kx̃n2k|n2(k−1)

(14)

where Cs,n1k and Cp,n2k are the problem-dependent s-
caling matrices, Ls,n1k and Lp,n2k are the tuning matri-
ces providing extra freedom degrees, ℵs,n1k and ℵp,n2k
are the unknown time-varying matrices accounting for
the linearization errors satisfying

ℵs,n1kℵT
s,n1k 6 I, (15)

ℵp,n2kℵT
p,n2k 6 I. (16)

3.1 Design of the LSES

From (8), (9), (11) and (13), the one-step prediction error
and the estimation error of the LSES are obtained as

x̃n1k|n1(k−1) =Ãx̃n1(k−1)|n1(k−1) + Ā1w̄n1(k−1) (17)

and

x̃n1k|n1k

=(I −Kn1kΛn1kΦs,n1k)x̃n1k|n1(k−1)

−Kn1k(Λn1k − Λ̄)hs(x̂n1k|n1(k−1))−Kn1kΛn1kvs,n1k

−Kn1k(I − Λn1k)Φs,n1(k−1)x̃n1(k−1)|n1(k−2)

+Kn1k(Λn1k − Λ̄)hs(x̂n1(k−1)|n1(k−2))

−Kn1k(I − Λn1k)vs,n1(k−1) (18)

where Φs,n1k , Hs,n1k + Cs,n1kℵs,n1kLs,n1k.

The one-step prediction error covariancePs,n1k|n1(k−1) ,
E{x̃n1k|n1(k−1)x̃

T
n1k|n1(k−1)} is given by

Ps,n1k|n1(k−1)

=Ã1Ps,n1(k−1)|n1(k−1)Ã
T
1 + Ā1W̄n1(k−1)Ā

T
1 (19)

where W̄n1(k−1) , E{w̄n1(k−1)w̄
T
n1(k−1)} can be written

as W̄n1(k−1) = diag{Wn1(k−1),Wn1(k−1)+1, · · · ,Wn1k−1}.
Similarly, the estimation error covariancePs,n1k|n1(k−1) ,
E{x̃n1k|n1(k−1)x̃

T
n1k|n1(k−1)} can be written as

Ps,n1k|n1k

4



=Θ1,n1kPs,n1k|n1(k−1)Θ
T
1,n1k

+Kn1kΛ̃ ◦ E{Ψn1k|n1(k−1)}KT
n1k

+Kn1kΛ̄Rs,n1kΛ̄K
T
n1k

+Θ2,n1kPs,n1(k−1)|n1(k−2)Θ
T
2,n1k

+Kn1kΛ̃ ◦ E{Ψn1(k−1)|n1(k−2)}KT
n1k

+Kn1k(I − Λ̄)Rs,n1(k−1)(I − Λ̄)KT
n1k

− L1,n1k − L T
1,n1k − L2,n1k − L T

2,n1k

− L3,n1k − L T
3,n1k + L4,n1k + L T

4,n1k

+ L5,n1k + L T
5,n1k − L6,n1k − L T

6,n1k (20)

where

Θ1,n1k , I −Kn1kΛ̄Φs,n1k,

Θ2,n1k , Kn1k(I − Λ̄)Φs,n1(k−1),

Θ3,n1k , Kn1k(Λn1k − Λ̄),

Ψn1k|n1(k−1) , hs(x̂n1k|n1(k−1))h
T
s (x̂n1k|n1(k−1)),

Λ̃ , diag{µ1 − µ2
1, µ2 − µ2

2, . . . , µm1 − µ2
m1

},
L1,n1k , Θ1,n1kE{x̃n1k|n1(k−1)h

T
s (x̂n1k|n1(k−1))}ΘT

3,n1k,

L2,n1k , Θ2,n1kE{x̃n1(k−1)|n1(k−2)

× hT
s (x̂n1(k−1)|n1(k−2))}ΘT

3,n1k,

L3,n1k , Θ1,n1kE{x̃n1k|n1(k−1)x̃
T
n1(k−1)|n1(k−2)}Θ

T
2,n1k,

L4,n1k , Θ1,n1kE{x̃n1k|n1(k−1)

× hT
s (x̂n1(k−1)|n1(k−2))}ΘT

3,n1k,

L5,n1k , Kn1kΛ̃ ◦ E{hs(x̂n1k|n1(k−1))

× x̃T
n1(k−1)|n1(k−2)}Θ

T
2,n1k,

L6,n1k , Θ3,n1kE{hs(x̂n1k|n1(k−1))

× hT
s (x̂n1(k−1)|n1(k−2))}ΘT

3,n1k.

Theorem 1 For positive scalars γ1,n1k and εi,n1k (i =
1, . . . , 6) under the initial condition Σs,0|0 = Ps,0|0 > 0,
assume that the following two difference equations

Σs,n1k|n1(k−1) =Ã1Σs,n1(k−1)|n1(k−1)Ã
T
1

+ Ā1W̄n1(k−1)Ā
T
1 (21)

and

Σs,n1k|n1k =κ1,n1kΘ̄1,n1kΩ
−1
s,n1k

Θ̄T
1,n1k

+Kn1kΥn1kK
T
n1k (22)

where

Υn1k

,κ1,n1kγ
−1
1,n1k

Λ̄Cs,n1kC
T
s,n1kΛ̄

+ κ2,n1k(Λ̃ ◦ tr(Ψn1k|n1(k−1))I)

+ κ3,n1k(I − Λ̄)Hs,n1(k−1)Ω
−1
s,n1(k−1)H

T
s,n1(k−1)(I − Λ̄)

+ κ3,n1kγ
−1
1,n1(k−1)(I − Λ̄)Cs,n1(k−1)C

T
s,n1(k−1)(I − Λ̄)

+ κ4,n1k(Λ̃ ◦ tr(Ψn1(k−1)|n1(k−2))I)

+ Λ̄Rs,n1kΛ̄ + (I − Λ̄)Rs,n1(k−1)(I − Λ̄)

with

Θ̄1,n1k =I −Kn1kΛ̄Hs,n1k,

Ωs,n1k =Σ−1
s,n1k|n1(k−1) − γ1,n1kL

T
s,n1kLs,n1k,

κ1,n1k =1 + ε1,n1k + ε3,n1k + ε4,n1k,

κ2,n1k =1 + ε−1
1,n1k

+ ε5,n1k + ε6,n1k,

κ3,n1k =1 + ε2,n1k + ε−1
3,n1k

+ ε−1
5,n1k

,

κ4,n1k =1 + ε−1
2,n1k

+ ε−1
4,n1k

+ ε−1
6,n1k

have positive-definite solutions Σs,n1k|n1(k−1) and
Σs,n1k|n1k such that the following constraint

γ−1
1,n1k

I − Ls,n1kΣs,n1k|n1(k−1)L
T
s,n1k > 0 (23)

is satisfied. Then, the matrix Σs,n1k|n1k, which is an up-
per bound of Ps,n1k|n1k, can be minimized with

Kn1k =κ1,n1kΩ
−1
s,n1k

HT
s,n1kΛ̄(κ1,n1kΛ̄Hs,n1k

× Ω−1
s,n1k

HT
s,n1kΛ̄ + Υn1k)

−1. (24)

3.2 Design of The LSEP

From (8), (10), (12) and (14), the one-step prediction
error and the estimation error of the LSEP are derived
as

x̃n2k|n2(k−1) = Ãx̃n2(k−1)|n2(k−1) + Ā2w̄n2(k−1) (25)

and

x̃n2k|n2k = Πp,n2kx̃n2k|n2(k−1) −Gn2kvp,n2k (26)

where

Πp,n2k ,I −Gn2kΦp,n2k,

Φp,n2k ,Hp,n2k + Cp,n2kℵp,n2kLp,n2k.

The one-step prediction error covariancePp,n2k|n2(k−1) ,
E{x̃n2k|n2(k−1)x̃

T
n2k|n2(k−1)} is given by

Pp,n2k|n2(k−1)

=Ã2Pp,n2(k−1)|n2(k−1)Ã
T
2 + Ā2W̄n2(k−1)Ā

T
2 (27)

where W̄n2(k−1) , E{w̄n2(k−1)w̄
T
n2(k−1)} can be written

as W̄n2(k−1) = diag{Wn2(k−1),Wn2(k−1)+1, · · · ,Wn2k−1}.

Similarly, the estimation error covariance Pp,n2k|n2k ,
E{x̃n2k|n2kx̃

T
n2k|n2k

} can be written as

Pp,n2k|n2k

=Πp,n2kPp,n2k|n2(k−1)Π
T
p,n2k +Gn2kRp,n2kG

T
n2k. (28)

Theorem 2 For positive scalar γ2,n2k with initial con-
dition Σp,0|0 = Pp,0|0 > 0, if the following two difference
equations

Σp,n2k|n2(k−1)

=Ã2Σp,n2(k−1)|n2(k−1)Ã
T
2 + Ā2W̄n2(k−1)Ā

T
1 (29)

and

Σp,n2k|n2k
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=Π̄p,n2kΩ
−1
p,n2k

Π̄T
p,n2k + γ−1

2,n2k
Gn2kCp,n2kC

T
p,n2kG

T
n2k

+Gn2kRp,n2kG
T
n2k (30)

with

Π̄p,n2k =I −Gn2kHp,n2k,

Ωp,n2k =Σ−1
p,n2k|n2(k−1) − γ2,n2kL

T
p,n2kLp,n2k

have positive definite solutions Σp,n2k|n2(k−1) and
Σp,n2k|n2k such that the following constraint

γ−1
2,n2k

I − Lp,n2kΣp,n2k|n2(k−1)L
T
p,n2k > 0 (31)

holds, then thematrixΣp,n2k|n2k, which is an upper bound
of Pp,n2k|n2k, can be minimized with the estimator gain

Gn2k =Ω−1
p,n2k

HT
p,n2k

[
Hp,n2kΩ

−1
p,n2k

HT
p,n2k

+ γ−1
2,n2k

Cp,n2kC
T
p,n2k +Rp,n2k

]−1
. (32)

Remark 1 Due to the existence of the nonlineari-
ties and the randomly occurring SCADA measurement
delays, it is impossible to obtain the exact values of
Ps,n1k|n1k and Pp,n2k|n2k. An alternative way is to look
for their locally minimal upper bounds by appropriately
designing Kn1k and Gn2k. Moreover, the conservative-
ness can be reduced effectively by adjusting the scalars
γ1,n1(k+1), εi,n1(k+1) (i = 1, . . . , 6) and γ2,n2(k+1).

Remark 2 Up to now, under the quasi-static model
framework mentioned in (1), two local estimators have
been designed. However, when it comes to the complex
situations such as the fault estimation or the decentral-
ized control, the Markov process is a useful tool [4,31,39]
and the latest results have been reported in [35,36].

3.3 Fusion Scheme

Denote the least common multiple of n1 and n2 as L.
We aim to fuse the local estimates at time instants k =
mkL (mk = 0, 1, 2, . . . , n). By recurring to the CI fusion
scheme in [11], the fusion scheme is given as follows:

x̂0
k|k =Σ0

k|k
(
ω1Σ

−1
r,mkL|mkL

x̂mkL|mkL,n1

+ ω2Σ
−1
p,mkL|mkL

x̂mkL|mkL,n2

)
,

Σ0
k|k =

(
ω1Σ

−1
r,mkL|mkL

+ ω2Σ
−1
p,mkL|mkL

)−1
(33)

where x̂0
k|k and Σ0

k|k are the fused estimate and covari-

ance, respectively, and ωi ≥ 0 (i = 1, 2) are the weights.

The objective is to minimize the performance index J ,
i.e.:

minJ = min{tr{Σ0
k|k}},

s.t.
2∑

i=1

ωi = 1, ωi ≥ 0. (34)

Theorem 3 For the multi-rate system (8) with local es-
timators (9) and (10), the CI fusion scheme (33)–(34)
is consistent, that is

Σ̄k|k = E{(xk|k − x̂0
k|k)(xk|k − x̂0

k|k)
T } ≤ Σ0

k|k. (35)

Remark 3 For the fusion estimation problem, a signif-
icant number of schemes have been proposed, see e.g.
[11, 24–26, 28]. It should be pointed out that most of the
fusion approaches are obtained under the single-rate en-
vironment, and it is difficult to expand these results to the
multi-rate multi-sensor systems. Moreover, in many sce-
narios, the cross-covariances cannot be solved due to the
complexity of the algorithms or the unknown terms [11].
In order to cope with such situations, some schemes such
as the CI fusion and the sequential fusion have been pro-
posed, see [11, 28]. As such, in this paper, we use the CI
fusion scheme to derive the fused estimate.

Remark 4 In this paper, we take a close look at the fu-
sion estimation problem for a class of multi-rate power
systems with randomly occurring SCADA measurement
delays characterized by a set of Bernoulli distributed ran-
dom variables, where the measurements from both the S-
CADA and the PMUs are utilized. The overall system is a
multi-rate one since the state updating period of the pow-
er system is allowed to be different from that of the SCA-
DA and the PMUs. A new approach is first developed to
transform the multi-rate power system into a single-rate
one. In Theorems 1 and 2, two local state estimators are
designed, respectively, based on the SCADA and the P-
MU measurements such that upper bounds of the local es-
timation error covariances are ensured at each sampling
instant, and such upper bounds are subsequently mini-
mized by appropriately designing the gains of both local
state estimators. Then, in Theorem 3, the asynchronous
estimates from the local state estimators are fused by re-
curring to the CI fusion scheme. Numerical simulation is
finally carried out on the IEEE 14-bus system to validate
the usefulness of the proposed fusion estimation scheme.

Remark 5 In this paper, a systematic investigation is
initiated on the fusion estimation problem for multi-rate
power systems with unconventional measurements from
both the SCADA and the PMUs. The main novelties of
this paper are outlined as follows: 1) the research prob-
lem addressed is new that represents the first of few at-
tempts to deal with the dynamic state estimation of pow-
er systems with multi-rate measurements and randomly
occurring SCADA measurement delays; 2) the two local
estimation algorithms based on the SCADA and the P-
MU measurements are new that ensure the existence and
the minimization of the upper bounds of the local estima-
tion error covariances at each sampling instant; and 3)
the fusion estimation scheme is new that applies the CI
fusion method to fuse the asynchronous local estimates.

4 Simulation Results

In this section, the proposed fusion estimation scheme
is tested in the IEEE 14-bus system with the aid of
Matpower package [42]. The IEEE 14-bus system is
modeled as (1) with parameters A = diag28{0.9},
B = diag28{0.1} and Wk = diag28{0.012}. The expect-
ed steady state u is given in Table 1. The initial value x0
is a random variable with mean value u and covariance
Σ0|0 = diag28{0.012}. The measurement configuration
is the same as the one used in [20]. The covariances of
the measurement noises are Rs,n1k = diag42{0.02} and
Rp,n2k = diag22{0.022}. Other parameters are taken
as ε1,n1k = 1, ε2,n1k = 4, ε3,n1k = 50, ε4,n1k = 10,
ε5,n1k = 1, ε6,n1k = 2, Lr,n1k = 0.001I28, γ1,n1k = 100,
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γ2,n2k = 5, Cr,n1k = 0.01I42, Lp,n2k = 0.001I28 and
Cp,n2k = 0.01I22. The mean square error (MSE)
is applied to evaluate the estimation accuracy, i.e.,

MSEi(k) = 1
T

∑T
t=1(xi(k) − x̂i(k))

2 , where T is the
number of samples. For the sake of saving space, only
the voltage of bus 2 (i.e., x2

k) is taken for illustration.

Table 1
Expected States of IEEE 14-bus System

Bus 1 2 3 4 5 6 7

V (p.u.)1.060 1.045 1.010 1.018 1.020 1.070 1.062

θ (◦) 0.000 -4.983 -12.725-10.313-8.744 -14.211-13.360

Bus 8 9 10 11 12 13 14

V (p.u.)1.090 1.056 1.051 1.057 1.055 1.050 1.036

θ (◦) -13.360-14.939-15.097-14.791-15.076-15.156-16.034

Case 1 Conventional Method Versus the Proposed
Method
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Fig. 2. Test results under case 1. (a) x2
k and its estimate. (b)

Log(MSE) of x̂2
k.

In this case, comparisons between the conventional
method and our proposed one are carried out. The
probability density function for the delay Λn1k is
Prob{Λi,n1k = 0} = 0.3 (i.e., µi = 0.3). The simulation
results based on the conventional approach are plotted
as red line in Fig. 2, where the randomly occurring
SCADA measurement delays are not handled and the
algorithm is simply performed at the coarse SCADA
time-scale (i.e., n1 = n2 = 3). Moreover, the simulation
results with our proposed method are plotted as green
line in Fig. 2, where the randomly occurring SCADA
measurement delays are handled and the different sam-
pling rates of SCADA and PMU are also considered (i.e.,
n1 = 3, n2 = 2). From Fig. 2 (a), we can find that the
local estimates from the LSES and the LSEP are plot-
ted in the first and second subfigures, respectively, and
the third subfigure depicts the fused estimate. Similarly,
the corresponding log(MSEs) of the local estimates and
the fused estimate are plotted in Fig. 2 (b), respectively.

From Fig. 2, we can find: 1) the randomly occurring S-
CADA measurement delays are better tackled; and 2)

the multi-rate measurements are properly handled in-
stead of processing them at a coarse time resolution likes
the conventional one.

Case 2 Different SCADAMeasurement Delay Probabil-
ities
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Fig. 3. Test results under fixed delay probability 0.4. (a) x2
k

and its estimate. (b) Log(MSE) of x̂2
k and its upper bound.
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Fig. 4. Test results under random delay probability. (a) x2
k

and its estimate. (b) Log(MSE) of x̂2
k and its upper bound.

In this case, different probabilities of the randomly oc-
curring SCADA measurement delays are considered.
The sampling rates of the SCADA and PMU are chosen
as n1 = 3 and n2 = 2, respectively. For comparison,
first, we chose the Λn1k as Prob{Λi,n1k = 0} = 0.4.
Then, a more general case is considered where Λn1k is
chosen as Prob{Λi,n1k = 0} = µi with µi obeys the
uniform distribution over the interval [0.4, 0.8] at each
iteration. The corresponding results are shown in Figs. 3
and 4, respectively.

From Figs. 3 and 4, we can find that: 1) the performance
index is satisfied since the MSE stays below the relevant
upper bound; 2) the fused estimate outperforms the lo-
cal estimates since not only the advantages of the high
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sampling rate of the PMU are taken but also the SCA-
DA measurements are efficiently used; and 3) the fusion
estimation accuracy is still acceptable even with the se-
vere SCADA measurement delays.

5 Conclusion

In this paper, we have investigated the fusion estimation
problem for multi-rate power systems with randomly oc-
curring SCADA measurement delays. A set of Bernoulli
distributed random variables have been used to charac-
terize the random SCADAmeasurement delays. In order
to maximize the advantages of the high sampling rate
of the PMU and utilize the SCADA measurements effi-
ciently, an augmentation method has been proposed to
process the asynchronous measurements with different
sampling rates. Two local state estimators have been de-
signed based on, respectively, the SCADA and the PMU
measurement such that the local estimation error co-
variances have certain upper bounds. Then, such upper
bounds have been minimized at each sampling instan-
t by properly designing the local state estimator gain-
s. Furthermore, the asynchronous local estimates have
been fused by utilizing the CI fusion method and the
consistency of the fused estimate has been guaranteed.
Finally, a simulation based on the IEEE 14-bus system
has been provided and the corresponding results have
illustrated the effectiveness of the proposed fusion esti-
mation scheme since: 1) the proposed fusion estimation
scheme outperforms the conventional one; 2) the impact
of the randomly occurring SCADA measurement delays
has been better tackled; and 3) the fusion estimate out-
performs the local estimates.

A Proof of Theorem 1

First, let us handle the right-hand side of (20) term by
term. From Lemma 1, we have

Θ1,n1kPs,n1k|n1(k−1)Θ
T
1,n1k

≤Θ̄1,n1kΓ
−1
s,n1k

Θ̄T
1,n1k + γ−1

1,n1k
Kn1kΛ̄Cs,n1kC

T
s,n1kΛ̄K

T
n1k,

Θ2,n1kPs,n1(k−1)|n1(k−2)Θ
T
2,n1k

≤Θ̄2,n1kΓ
−1
s,n1(k−1)Θ̄

T
2,n1k

+ γ−1
1,n1(k−1)Θ̄3,n1kCs,n1(k−1)C

T
s,n1(k−1)Θ̄

T
3,n1k

with

Γs,n1k =P−1
s,n1k|n1(k−1) − γ1,n1kL

T
s,n1kLs,n1k,

Θ̄2,n1k =Kn1k(I − Λ̄)Hs,n1(k−1),

Θ̄3,n1k =Kn1k(I − Λ̄)

if

γ−1
1,n1k

I − Ls,n1kΣs,n1k|n1(k−1)L
T
s,n1k > 0.

Moreover, the second and fifth terms on the right-hand
side of (20) can be tackled as the following form:

Kn1k(Λ̃ ◦ E{Ψn1k|n1(k−1)})KT
n1k

≤Kn1k(Λ̃ ◦ tr(Ψn1k|n1(k−1))I)K
T
n1k.

By using Lemmas 2 and 3, it is obvious that

L1,n1k + L T
1,n1k

≤ε1,n1kΘ1,n1kPs,n1k|n1(k−1)Θ
T
1,n1k

+ ε−1
1,n1k

Kn1k(Λ̃ ◦ E{Ψn1k|n1(k−1)})KT
n1k,

L2,n1k + L T
2,n1k

≤ε2,n1kΘ2,n1kPs,n1(k−1)|n1(k−2)Θ
T
2,n1k

+ ε−1
2,n1k

Kn1k(Λ̃ ◦ E{Ψn1(k−1)|n1(k−2)})KT
n1k,

L3,n1k + L T
3,n1k

≤ε3,n1kΘ1,n1kPs,n1k|n1(k−1)Θ
T
1,n1k

+ ε−1
3,n1k

Θ2,n1kPs,n1(k−1)|n1(k−2)Θ
T
2,n1k,

L4,n1k + L T
4,n1k

≤ε4,n1kΘ1,n1kPs,n1k|n1(k−1)Θ
T
1,n1k

+ ε−1
4,n1k

Kn1k(Λ̃ ◦ E{Ψn1(k−1)|n1(k−2)})KT
n1k,

L5,n1k + L T
5,n1k

≤ε5,n1kKn1k(Λ̃ ◦ E{Ψn1k|n1(k−1)})KT
n1k

+ ε−1
5,n1k

Θ2,n1kPs,n1(k−1)|n1(k−2)Θ
T
2,n1k,

L6,n1k + L T
6,n1k

≤ε6,n1kKn1k(Λ̃ ◦ E{Ψn1k|n1(k−1)})KT
n1k

+ ε−1
6,n1k

Kn1k(Λ̃ ◦ E{Ψn1(k−1)|n1(k−2)})KT
n1k.

Summarizing the above discussions, we have

Ps,n1k|n1k

≤κ1,n1kΘ̄1,n1kΓ
−1
s,n1k

Θ̄T
1,n1k

+ κ1,n1kγ
−1
1,n1k

Kn1kΛ̄Cs,n1kC
T
s,n1kΛ̄K

T
n1k

+ κ2,n1kKn1k(Λ̃ ◦ tr(Ψn1k|n1(k−1))I)K
T
n1k

+ κ3,n1kΘ̄2,n1kΓ
−1
s,n1(k−1)Θ̄

T
2,n1k

+ κ3,n1kγ
−1
1,n1(k−1)Θ̄3,n1kCs,n1(k−1)C

T
s,n1(k−1)Θ̄

T
3,n1k

+ κ4,n1kKn1k(Λ̃ ◦ tr(Ψn1(k−1)|n1(k−2))I)K
T
n1k

+Kn1kΛ̄Rs,n1k Λ̄KT
n1k + Θ̄3,n1kRs,n1(k−1)Θ̄

T
3,n1k.

Based on the mathematical induction method, it is not
difficult to verify that Ps,n1k|n1k ≤ Σs,n1k|n1k.

Next, taking the partial derivatives of Σs,n1k|n1k with
respect to Kn1k and letting the derivative be zero, we
have

∂tr(Σs,n1k|n1k)

∂Kn1k

=− 2κ1,n1kΘ̄1,n1kΩ
−1
s,n1k

HT
s,n1kΛ̄

+ 2κ1,n1kγ
−1
1,n1k

Kn1kΛ̄Cs,n1kC
T
s,n1kΛ̄

+ 2κ2,n1kKn1k(Λ̃ ◦ tr(Ψn1k|n1(k−1))I)

+ 2κ3,n1kΘ̄2,n1kΩ
−1
s,n1(k−1)H

T
s,n1(k−1)

(
I − Λ̄

)
+ 2κ3,n1kγ

−1
1,n1(k−1)Θ̄3,n1kCs,n1(k−1)C

T
s,n1(k−1)(I − Λ̄)

+ 2κ4,n1kKn1k(Λ̃ ◦ tr(Ψn1(k−1)|n1(k−2))I)

+ 2Kn1kΛ̄Rs,n1kΛ̄ + 2Θ̄3,n1kRs,n1(k−1)(I − Λ̄) = 0.

Based on the above equation, the estimator gain Kn1k

that minimizes Σs,n1k|n1k is obtained as (24). The proof
is complete.
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B Proof of Theorem 2

Based on Lemma 1, the first term of the right-hand side
of (28) satisfies

Πn2kPp,n2k|n2(k−1)Π
T
n2k

≤Π̄n2kΓ
−1
p,n2k

Π̄T
n2k + γ−1

2,n2k
Gn2kCp,n2kC

T
p,n2kG

T
n2k

with

Γp,n2k = P−1
p,n2k|n2(k−1) − γ2,n2kL

T
p,n2kLp,n2k

if

γ−1
2,n2k

I − Lp,n2kΣp,n2k|n2(k−1)L
T
p,n2k > 0.

Then, we have

Pp,n2k|n2k ≤Π̄n2kΓ
−1
p,n2k

Π̄T
n2k + γ−1

2,n2k
Gn2kCp,n2k

× CT
p,n2kG

T
n2k +Gn2kRp,n2kG

T
n2k.

Again, based on the mathematical induction approach,
we can conclude that Pp,n2k|n2k ≤ Σp,n2k|n2k.

Next, taking the partial derivatives of Σp,n2k|n2k with
respect to Gn2k and letting the derivative be zero, we
have

∂tr(Σp,n2k|n2k)

∂Gn2k

=− 2Π̄n2kΓ
−1
n2k

HT
p,n2k + 2γ−1

2,n2k
Gn2kCp,n2kC

T
p,n2k

+ 2Gn2kRp,n2k = 0.

Through some algebraic manipulations, the estimator
gain Gn2k that minimizes Σp,n2k|n2k is obtained as (32).
The proof is complete.

C Proof of Theorem 3

The proof of Theorem 3 is readily accessible from [11],
and is thus omitted here.

References
[1] M. V. Basin, A. G. Loukianov, and M. Hernandez-Gonzalez,

Joint state and parameter estimation for uncertain stochastic
nonlinear polynomial systems, International Journal of
Systems Science, vol. 44, no. 7, pp. 1200–1208, 2013.

[2] R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-
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