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ABSTRACT

A family of finite difference methods is developed for the numerical
solution of the simple wave equation. Local truncation errors are cal-
culated for each member of the family and each is analyzed for stability.
The concepts of A, -stability and L, -stability, well-used in the literature
on other types of partial differential equation, are discussed in relation

to second order hyperbolic equations. The numerical methods are extended
to cover two-dimensional wave equations and the methods developed in the

paper are tested on three problems from the literature.
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1. INTRODUCTION

The simple wave equation 0°u/ét> = 0%u/éx’, with appropriate initial and
boundary conditions specified, is solved by approximating the space deriv-
ative 0’u/dx® by the familiar three point central different replacement
and solving the resultant linear system of second order ordinary differ-
ential equations for u.

It was shown in [1] that the theoretical solution of this system
satisfies a recurrence relation involving the matrix exponential function.
The family of numerical methods developed is found by replacing this matrix
exponential function with Padé approximants; the family is seen to contain
the most widely used explicit and implicit finite difference methods and
the explicit method of Twizell [1]. Local truncation errors are calculated
for each method.

In the numerical analysis of finite difference methods for second
order parabolic equations and first order hyperbolic equations, recent
papers have emphasised the concepts of Ag-stability and L,-stability (see,
for instance [2,3,4]). It is shown in §3 of the present paper that, by
rewriting the recurrence relation on which the novel methods are based
as a system of relations, these stability concepts can be used in the
study of numerical methods for second order hyperbolic equations also,
and that they are connected to the conventional methods of analysis.
Following Lawson and Morris [3] and Gourlay and Morris [4], and using
their terminology in relation to second order parabolic equations, ampli-
fication symbols are drawn for the numerical methods developed in §2.
The graphs of these symbols enable the quick classification of a numerical
method as Ay-stable, L,-stable, conditionally stable, or unstable.

The extension to the wave equation in two space variables 1is carried

out in §4 and in §5 the numerical methods developed in § §2,4 are tested on



two problems from the literature on the one-dimensional wave equation and

one problem on the two-dimensional wave equation.

2. THE ONE-DIMENSIONAL WAVE EQUATION

2.1 The space discretization and a recurrence relation

Given the simple wave equation in one space variable

82u 3 82u 2.1
a2 ox? '
over a region R = [0<x<1] x [t>0] with boundary conditions
u(0,t) = u(l,t) =0 ; t >0
. - 2.2)
and initial conditions
ou
ux.0) = fx), x, 0 = gX) 0 < x <1, (2.3)
t

where f(x) and g(x) are continuous functions of X, one method of solution
is to replace the space derivative in (2.1) with a suitable finite diff-
erence approximation and then to solve the resulting linear system of
second order ordinary differential equations in which t is the independent

variable.

The interval 0 < x < 1 is divided into N + 1 subintervals each of
width h and a uniform grid of width h is superimposed on the space variable
so that (N+1)h =1. The independent variable t is discretized in steps
of length €. The region R and its boundary O0R have thus been discretized
at the points (mh,nt) where m = 0,1,...,N+1 and n = 0,1,2,... . The solu-

tion u(mh,nt) of (2.1) at the mesh point (mh,nl) will be denoted by U

the theoretical solution of an approximating finite difference scheme by

U , and the numerical value actually obtained by Om -



Following Twizell [1], the space derivative in (2.1) may be replaced

2
0 ; = h?{u(x-h,t) - 2uxt) + u(x+h,t)} + 0% . (2.4)

0x

Then, (2.1) with (2.4) are applied to all N interior mesh points at time

level t=nf (n = 0,1,2,...) to produce a system of N second order ordinary

equations given by

U

2

=AU(® . (2.5)
dt -

In (2.5),y™ = y (nt) 1is the vector of order N having, as elements, the

values Um (m - 1.2,...N; n = 0,1,2,...). The matrix A is given by

-2 1 0 i

1 -2 1

1 -2 1
o . .
A=h oo R . 2.6)
1 -2 1
0 1 -2

which has eigenvalues Ay =-4h? sin*{sn/2(N+1)}, s = 1,2,...,N.

It is known (Twizell [1]) that the solution of (2.5) with (2.3)

satisfies the recurrence relation

U(t-t) - (exp(tB) + exp(-tB)} U (t) + U (t-¢) =0 (2.7)
with t = £,2,..., where 0 is the zero—vector of order N and B 1is a
matrix such that B? = A. It 1s this recurrence relation which forms the

basis for a family of finite difference methods for solving (2.1) with

(2.2), (2.3).



2.2 Solution at the first time level

Starting values for (2.7) are given by the vector of initial conditions

U 0) = f, obtained from the first equation of (2.3), and the vector IJ () .

This vector at time t={ is not contained explicitly in the initial con-

ditions and must be estimated from(2.3). The estimated vector must be at

least as accurate in time as the vectors U (t) for t = 2£,3¢,... to be

determined from (2.7).

It is easy to verify that

U ) = d+%A)f + tg + o) (2.8)

Uy =a+102a+ 1 %a2yrr1a+Li2a) gvo?),
U 2 24 f 6 g
(2.9)
_ 1,2 1 ,4,2, 1 ,6,3 1,2 14,2 7
Q(Z)—(I+2€ A+24€ A +720€ A )£+€(I+6€ A+1202 A )§+O(€ )
(2.10)

are, respectively, second-, fourth— and sixth-order accurate approximants

to U (£) where I is the identity matrix of order N. The choice of (2.8),

(2.9) or (2.10) will obviously depend on the accuracy in time of the finite

difference method arising from (2.7) with which [j (€) will be used.

2.3 Some known difference schemes
Any numerical solution of (2.7) will depend for its accuracy on the approx-
imation to the matrix exponential functions exp(x{B). Using the (M,K) Pade

approximant to exp({B) of the form

Ry, x (EB) = [Qu(IB)]'Pk (¢,B) + 0(e™ ™ "h | (2.11)

where Py and Qy are matrix polynomials of degrees K and M, respectively,
leads to a family of finite difference methods for the solution of (2.1)

with (2.2) and (2.3).



The low order (0,1) and (1,0) Pade approximants given, respectively
by exp(¢B) ~ I + (B and exp({ B) ~ (I-¢B)"' , lead to inconsistent finite
difference replacements. for (2.1). Using the (1,1) Pade approximant, given
by exp(¢B) ~ (I-%tB)"' (1+ %EB), in (2.7) leads to the well known nine-
point implicit scheme given, for example, by Smith [5; p.178], while the
use of the (0,2) Padé approximant (the first three terms of the Maclaurin
expansion of exp({B)) leads to the familiar five-point explicit scheme given,
for instance, in Smith [5; p.177]. Conventional stability analyses show
that this implicit scheme is unconditionally stable and that this explicit
scheme is stable provided, r =£/h < 1 (for r = 1 this explicit scheme is
exact). These two methods will be known as MI11 and MO2, respectively.

Twizell [1] used the (0,4) Pade approximant to exp({B) in (2.7);
this leads to method MO04 given by

2

U+ 0)—@ +02A + 50t

1 2 _ 0y =
AU +UE-0)=0 (2.12)
which, when applied to the mesh point (mh,nf), gives a seven point explicit
schem which is stable for r < V3. Due to the presence of A’ in (2.12), a
modified form of the general difference scheme is required for m =1 and

m = N.

2.4 Looal truncation errors

The principal part of the local truncation error of every finite difference
scheme obtained by replacing the matrix exponential terms in (2.7) by Pade

approximants, has the form

2 8qu
atd

4
1 -
_ L h? 8_u+ Cq 1

(2.13)
12 ox 4

at each interior mesh point where the scheme may be applied. The component

—1—h264u/6x4 arises from the space discretization and the use of (2.4).
12



The term C,, where ¢q = M+K+ 1 for M+ K odd and ¢ = M+ K +2 for M+ K even,
is an error constant in time which is related only to the chosen (M,K) Pade
approximant. The error constants relating to the Pade" approximants dis-

cussed in the present paper are given in Table 1.

Improvements in the time components of the local truncation errors for
second order parabolic equations were effected in different ways by Lawson
and Morris [3], Gourlay and Morris [4] and Twizell and Khaliq [2], for first
order hyperbolic equations by Khaliq and Twizell in [6], and for fourth order
parabolic equations by Twizell and Khaliq in [7]. In none of these papers
was there any attempt to improve the space components of the principal parts
of the local truncation errors. Nevertheless, the numerical results reported

in these six papers showed that the improvements in time were justified.

In [6], where the matrices analogous to matrix A defined in (2.6) were
also squared, the resulting finite difference schemes were shown, theoretically,
to lose accuracy at points adjacent to the boundaries. The numerical results
showed, however, that this loss of accuracy did not affect the stability or
convergence of the methods. Oliger [8] proved that such loss of accuracy
near the boundaries does not affect the overall stability or convergence of
numerical methods for solving first order hyperbolic equations. In view of
the fact that (2.1) can be written as a system of first order equations, and
of the formulation of the numerical methods in §3, Oliger's theory easily

carries over to second order hyperbolic equations of the form (2.1).

2.5 The use of higher order Padé approximants

The higher order approximants to be considered are the (2,0), (1,2), (2,1)
and (2,2) Padé approximants to the matrix exponential function. The resulting
finite difference schemes may be represented in matrix form as follows:

(1) Method M20. Using the (2,0) Padé approximant given by exp({B)

(I - B+ %e*B?)"' , the recurrence relation (2.7) becomes



a+Letafuern-@+2myum+a+LetatHue-n=o, (2.16)

which, when applied to the general mesh point (mh,nl), yields a consis-

tent, thirteen point, implicit, finite difference scheme. The numerical

solution vector U (t+ €) is found by solving a linear system having a quin-

diagonal coefficient matrix,

(i1) Method M12. The (1,2) Padé approximant is given by exp(LB) ~

(I—%KB)_I(IJr%KBvL%EZBz). Using this replacement in (2.7) the recurrence

relation becomes

I-&2AUE+ O -@+F2A U@+ A-52A) UE-1)=0 2.17)
which, when applied to any mesh point (mh,nl) at time t = nf, gives a
nine point implicit scheme. The vector [J (t+£) is found by solving a tri-

diagonal linear system.

(iii) Method M21.{yging the (2,1) Pade approximant, given by exp({B) ~

a-%m+L2B2) tas L), in @7 gives

2 4,2 2

I-d2as A uern-@+Feraum=a-,r

4,2
1 + A+ TATYU - 1). (2.18)

36

The solution vector U (t+ £) 1is computed by solving a quindiagonal linear

system and the implicit finite difference scheme resulting from (2.16)
involves thirteen mesh points.
It is seen from Table 1 and the expression given in (2.13) that method

M12 has the same principal local truncation error as method M21 and from

(ii) and (iii) it 1is seen that the solution vector U (t+f) is obtained more

economically using method MI12. Preference for method M12 is, however, dulled

by its inferior stability property as will be seen in §3.

(iv) Method M22, The (2,2) Pade approximant is exp({B) =
a-+m+d?8?)y ta-LiB+ L r?B?)A fifteen point, implict finite diff -

erence scheme is obtained by using this approximant in (2.7) which becomes



(- ra+tatues -+ 22 +7—12e4A2)g(t) = (- Ao tatue-n=c

(2.19)
and the solution vector U (t+) is obtained by solving a quindiagonal

linear system.

It is seen from Table 1 and (2.13) that method M22 has the same
principal.local truncation error as the explicit method MO04[1]. However,
as will be seen in §3, method M22 has a superior stability property enabling
larger time steps to be used.

Deleting the terms in A from (2.19) gives the method

I- A UC+0)-@ +22A0UM =0 -5 2AUE-0=0 (2.20)
) . ) 1 .
for which the error constant in time is C6 =——0 the principle part

of the local truncation error of the nine-point mplicit finite difference

scheme resulting from (2.18) also contains the component—%h284u/8x4.

Strictly speaking, this method is not a member of the family which evolves
from (2.7) and is, in fact, based on the well known Numerov method for the
numerical solution of second order ordinary differential equations; it

will be known as method MN.

The order of its error constant in time (though larger in modulus) is
the same as the method M22 and, having obviated the need to square the
matrix A, formula (2.18) is clearly an attractive alternative to (2.17),
the solution at each time step being obtained by solving a tridiagonal
linear system instead of a quindiagonal linear system. Unfortunately, the

sacrifice to be made is in stability, as will be seen in §3.
3. STABILITY PROPERTIES OF THE METHODS

The recurrence relation (2.7) can be written as

U™ =cu"- U™ , C = exp(tB) + exp(-(B) . 3.1



Defining V" = U"" ', so that V™' = U", (3.1) can be written as
n+1 n
Y _fe-1] Y
y b+l I 0 v R

which is a two-time level scheme of the form

W W (32)
Clearly, the constant square matrix Q is of order 2N and the vector
Vy = (IJ,Y) T, T denoting transpose, has 2N elements. The known necessary

condition for stability is r (Q) < 1.

The eigenvalues B, (r = 1,2,...,2N) of the matrix Q are given by
- -1
det [“S P } =0, s=12.. N

1 - P

where us (s = 1,2,...,N) are the eigenvalues of the matrix C. Thus

B2 - usp + I =0 (s = 1,...,N)

and
1 1
Brg=slis+ s —H21LB,y = Flug+ @i -42) (3.3)
for s = 1,...,N. These are the eigenvalues of Q and are also know as
amplification factors (Smith [5]). For stability, therefore, it 1is nec-
essary that [Bj | < 1 (;j= 1,2, s = 1,2,...,N), but the damping or

growth of the wave will depend on the real part of the amplification

factors.
Using the terminology of Lawson and Morris [3] and Gourlay and Morris
[4] relating to second order parabolic equations, the real parts of the

amplification factors will be called the amplification symbols or symbols.
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For some s = 1,2,...,.N the real part of p;will be denoted by S(z)

and the real part of f, will be denoted by S (zs ), where 7z, = -0\

and A; is an eigenvalue of A; clearly z,>0 and Bj, = Bjs (z) for

j o= 1,2. More specifically, the symbols relating to the numerical method

based on the (M,K) Pade approximant will be denoted by S mk(z) and Syk(z),

the subscript having been dropped from z g .

In [2,3,4] the terms Ay-stable and Ly-stable are used in the context
of second order parabolic equations, while in most widely used texts
(Smith [5] 1is a notable example) the terms unstable, conditionally stable
and unconditionally stable are used in relation to all time-dependent
partial differential equations. In relation to the present treatment of
second order hyperbolic equatons, of which the simple wave equation 1is a

test problem, the two sets of terms may be connected by the following de-

finitions :
Definition 3.1. A numerical method is said to be unstable if |B;,s | >1
and |B.s | > 1 for some s = 1,2,...,N.

Definition 3.2 . A numerical method is said to be conditionally stable if
Bis] <1 and |Prs | <1 (s = 1,...,N) only for some interval of values of

the ratio r.

Definition 3.3. A numerical method is said to be wunconditionally stable
if |Bis/< 1 and [Bas| < 1 for all s = 1,2,...,N.
Definition 3.4. The method based on the (M,K) Padé approximant is said

to be A -stable if |Suk(z)| < 1 and |§M,k(z)| <1 for all z>0. Clearly

an unconditionally stable method 1is A,-stable.

Definition 3.5. The method based on the (M.,K) Padé approximant is said

to be L, -stable 1if it 1s Ap-stable and 1in addition

ZIE)noo SM, K (zy =0 and Z1i_r>nOO S M, K (z)y =0.
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A wave modelled by an A, -stable method will not grow in amplitude while
a wave modelled by an L, -stable method will be damped.

The stability properties of the numerical methods discussed in §2
will now be analyzed in the light of these definitions (the nomenclature

relating to the amplification factors will be simplified to f;, and B, ):

(1) Method M11. The amplification factors are given by
br=Ta i, Pt i
1+ZZ 1+ZZ 1+ZZ 1+ZZ (34)

giving the single symbol

Sii(z) = S (2) = (1 -%z)/(1 (3.5)

+%z)

for this method; the symbol is depicted in Figure 1. The curve tends
monotonically to -1 and method M 11 is A, -stable. (The method is well

known to be unconditionally stable and this is verified by (3.4) where

IBil = [B2| = D.

(i1) Method MO02. For this method the amplification factors are

1 1
- L 1,242 1L, g, - L,2y2
Bl—l zZ + i(z 42 ) ,[32—1 22 i(z 4z ) (3.6)
giving
So.n = Soa(» T ' - %z ,  Z<4. (3.7)
However, if z >4, there are two distinct amplification symbols; they are
2 1 _ 5 1
S, @ =1-tz- 2t -2 s02 @ =1-Lt2- (27 -2 (3.8)

The symbols are depicted in Figure 2 from which it is seen that S (z)

exceeds unity in modulus for z>4 and that -1 < S, ., (2), S 0.2 (z) < 1 for

0 < z < 4. Sincez < 4r2, this verifies the well known result that MO02

is stable only for r < 1.

(iii) Method M04. ( Twizell [1]). Here, the amplification factors are



1
2 . 2 3 4
Bl—l 5—24—#2 +1(z—%—z +2142 —#z )2
3.9
1 1 2 1.2 1 .3 1 4 7
- 1_ 1 1 _ i, - L 1 __1 2
By =l-gz+o542" —iz 327 + 542" —57572 ")
giving
S (z)=S_()4(z)=1—1—z+1—z2 z <12
0,4 ’ 2 24 = (3.10)
and
1
I - Ly -
80,4(2)—1 2+ 5y 2 T AR z )~ ,
(3.11)
q 1 12 1 4 1 .3 1.2 >
- 1_ L1 1 N _ 1 1 _ 2
S04 (z) =1 >Zt 5y (576Z a2 t 3z z),
for z> 12. The graphs of the amplification symbols are shown in Figure 3.
It is easy to show that |[S¢o 4 (2)| = |§0’4(z)| < 1 for z< 12 and that
S 0.4 (z) exceeds unity for z> 12, Hence r < V3 for stability, since
z < 4r* | this result agreeing with that in [1].
(iv) Method M20. The amplification factors for this method are
1 1.2 1 .3 T
1 1 2
B, B _l—jz +i(z+2z +16z) (3.12)
"2 1+5—z2 l+41TZ
giving
S, () =820 () = -Laya +1,2) (3.13)
2,0 ’ 2 2 :

It is easy to show that S, ¢ (z) and §2,0 (z) attain a minimum value of

-l/z(\/E-l) at z = 2 + V2 and that each tends to zero as z— o. Method M20
is thus L, - stable; the graph of the symbol is given in Figure 4.
(v) Method M12. Here, the amplification factors are

1
7 5,22
_1oggz 57 (3.14)
B] Bz_ 1 1 1
’ I+5z I+5z
9 9

giving the amplification symbols

S1, @ =812 (@ = (1 - F2 +F2, 25365 (3.15)
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and
5 1
S1o @ =l -qgz-(52" -2V + 52,
(3.16)
_ 5 1
S12 (@) =[1 -5 z- (2" -22W1 + &2
for z > 36/5. The symbols for the method are depicted in Figure 5 from
which it is clear that S, , (z) exceeds unity in modulus for z>36/5.
This is equivalent in a von-Neumann analysis of instability arising
whenever r > 3\/§ /5.
(vi) Method M21. For this method, the amplification factors are
1.2, 1 3 1 4l
7 L 1 1 452
1--L 7 (z 0% T1e2% * z")
> 1 1.2 1 1 2
l+5z+--z2 l+5z+--z
97" 36 97 36
giving the single symbol
S, (2 =821 (@) =(-2L2l +Lz+1-22) (3.18)
2,1 ’ 18 9 36 ’
which is graphed in Figure 6. It may be shown that the symbol attains
a minimum value of (392 -441+/2)/392 = -0.59 at z = 18(1 +2+/2)/7 = 9.84
and that it tends monotonically to zero as z — . Method M21 is clearly
L, -stable.
(vii) Method M22. The amplification factors for this method are
1
5 1 2 1 2 1 3 2
—q5 2t 2 (z-+2"+3755727)
By = Mo L (3.19)
1.1 1. 1
1+122+144z 1+122+144z
and there 1is just one amplification symbol, given by
Srp (2) =822 (@) = (1 -2z + L pa + 1,41 ;2
) J 12 144 12 144 ’ (3.20)

which 1is depicted in Figure 7. A simple analysis shows that the symbol

attains its minimum value of -1 at z=12 and tends monotonically to +1
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as z — o ; this shows that the method is A -stable.

(viii) Method MN. As noted in §2, this method is derived from M22 and

its amplification factors may be written down from (3.19). They are
2 7 2 5
1—%2 '(z—é—z )2 1—%2 .(z—é—z )2
Blzl I + 1 1 I ,[32:1 1 -1 1 I . (3.21)
+ EZ + EZ + ﬁZ + ﬁZ

The symbols for the method are

SMN (z) = SMN (z) = 1—1,2 <6 (3.22)
+ 52
12
and
5 1
Syn @ =l -rz-(+z° -2 210 + -2,
(3.23)
- 5 1
SMN (2) =[1—%z—(%z -2 270 +%z),
for z>6. The symbols are shown in Figure 8 from which it 1is seen that
| Sun(z) >1 for z>6. This shows that the associated finite difference
scheme is stable provided r < 3v2/2% 2.12.
4. THE TWO-DIMENSIONAL WAVE EQUATION
Consider the two-dimensional wave equation
2 2 2
azu:a;+a;;0<x,y<l,t>0 (4.1)
ot 0x oy
together with the boundary conditions
(4.2)

u(x,y,t) = 0 ; VvV (x,y) € OR , t > 0,

where OR is the boundary of the square region R = {(x,y) : 0 < x,y < 1},

and the 1initial conditions
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u(x,y,0) = F(x,y) , oJu(x,y,0)/o0t = G(x,y) ; 0 < x,y <1 . (4.3)

This is the problem of a vibrating square membrane fixed round its edges.
The functions F(x,y), G(x,y) are given continuous functions of x,y.

The intervals 0 < x <1 and 0< y < 1 will each be divided into
N+ 1 subintervals each of width h, so that (N+1)h = 1. A square mesh
of width h is thus superimposed on the unit square R; the discretiz-
ation has N? mesh points within R and N + 2 equally spaced points along
each side of OR.

The independent variable t will be discretized in steps of length

¢ as in §2, so that t=n{ with n = 0.1,2,... . The notations u"y .,
U/ . at the mesh point (x,y,t) = (kh,mh,nt), which are simple extensions
of those of §2, will be used and the U"y , (k,m=1,.,.,N; n=0,1,2,...)

will be elements of the vector

n n n n N n n n n n
U - (U 1,1 b) U 2’1 LEEET) U N’l ) U 1,2 b} U 2,2 PEEET) U N,2 PEEET) U 1, N b) U 2’ N PEEER) U N, N )- (4-4)

~

The space derivatives in (4.1) are approximated by the finite diff-

erence replacements

0 S=h P - hy, - 2u(x v, 0+ ux +hoy, 0} +0h %) 4.5)
0x
and
0 2u -2 2
5> =h 7 {ukx y-h ) - 2ukx v, ) +ux y+h ) +0h 7). (4.6)
oy

The differential equation (4.1) is now applied to all N? interior mesh
points at time level t=nf, in the order indicated by (4.4), with the
space derivatives replaced by (4.5), (4.6). These applications result
in a system of N? second order ordinary differential equations of the
form (2.5).

Recalling that U =0 everywhere on OJR, the matrix A in (2.5) 1is now
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of order N* and may be split into the constituent matrices C, D such
that A =C + D. The matrix C arises from the use of (4.5) in (4.1); it

is block diagonal with tridiagonal blocks, is of order N* and has the form

¢l

C
1 Q
c-h2 .

. (4.7)
where C is the tridiagonal matrix of order N given by
L . -
1 -2 0
1 (4.8)
Cl = .
1
0 -2 . 1
The matrix D arises from the use of (4.6) in (4.1); it is block tri-
diagonal with diagonal blocks, if of order N* and has the form
[-21 I ]
I -2 1 O
i . . .
D=h : : : (4.9)
O I =21 I
L I - 21
where [ 1is the identity matrix of order N. The eigenvalues of A are
now given by
K..=—4h_2 sinzL-ksinzL
LJ 2N +1) 2(N +1)

for i,j = 1,2,...,N so that each A;; < 0.
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Solving (4.1) subject to (4.2), (4.3), the analytical solution may,
again, be shown to satisfy a recurrence relation of the form (2.7) for
t = £,20, ... . Estimates for the solution of the membrane problem at

the first time step may be obtained from (2.8), (2.9) or (2.10).

As in §2, Padé approximants to the matrix exponential functions can
be made in (2.7). Using the (0,2) and (1,1) Padé approximants leads to
the well known explicit and implicit methods discussed in most relevant
texts. The use of higher order Padé approximants leads to a new family
of methods which have the same stability classifications as the novel
methods for the one-dimensional wave equation discussed in §§2,3. Having
used the same space step in the x and y directions it 1is easy to verify

that the method based on the (1,2) Padé approximants is stable for the two-

dimensional problem whenever r < 3\/5/10.

The principal part of the local truncation error of the numerical
method for solving {(4.1),(4.2), (4.3)} based on the (M,K) Pade approximant

is given by

4 4 q
1 2{0™n 0O'u 20"
- b g [+ CattT (4.10)
12 Ox oy ot
where q= M+ K+1 forM+ K odd and q = M+ K +2 for M+ K even. The time
error constants C, are the same as those of §2 and are given in Table 1.

To avoid confusion in §5 the methods M11, MO02, etc. of §2 will be named

T11, TO02, etc., respectively, in two space variables.

5. NUMERICAL EXPERIMENTS

To test the behaviour of the methods developed in §§2,4 they were tested
on three problems from the literature.

Problem I [1], This problem consists of { (2.1), (2.2),(2.3)} with f(x) =simnx
and g(x) = 0. The theoretical solution of the problem is
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u(x,t) = sinzwTxcosmt .

The space step h was given the value 0.1, so that N =9, and the time
step € was given the values 0,2,0.1,0.05,0.01 giving r = 2,1,0.5,0.1 re-
spectively. It is mnoted that for r=2 methods MO02, M04, M12 are unstable
and, for r=1 method MO02 1is exact.

The numerical results obtained are largely in keeping with Table 1
and the analyses of §2.4 and §3, and are presented in Table 2. Ranking the
errors in the four columns of Table 2 in increasing magnitude shows that,
for larger values of the time step €, the higher order new methods and
the existing method of Twizell [1] give the best results. As the time
step decreases, it is seen that, to two significant figures, all eight
methods produce very similar errors. This indicates that, for small values
of C, the space component of the principal part of each local truncation
error is dominant. Methods MO02, M04, M12 which are unstable for r=2 have,
in fact, given very acceptable results for this problem with this wvalue
of r. Every error recorded in Table 2 arose at x = 0.5, the midpoint of
the space interval, and the computations were carried out using single
precision arithmetic on a Honeywell 68 computer. This explains the un-
expectedly high error modulus for r= 1 wusing method M02 which is an exact
representation of the simple wave equation for this value of r.

Problem 2 [1]. This problem also consists of {(2.1),(2.2),(2.3)}; here
f(x) =sinx and g(x) =0 so that there is a discontinuity between boundary
and initial conditions for x= 1. The analytical solution is given by

% (=1 K+l

sinl sin kzx cos kmt.

o0
ux, t) = >

The same numerical experiments were carried out as for Problem 1 and the

maximum relative errors, defined by \(u—ﬁ)/u\, are given in Table 3.
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This time, there 1is obvious evidence of the instability of the
established methods MO02, MO04 and of method M12 for r = 2; method MO02
does, however, give the lowest relative error for r=1 for which wvalue
it is, theoretically, an exact representation of (2.1). Table 3 also
shows that, for r =2 which is close to its stability limit, method MN
is beginning to show some evidence of instability. For all other methods,
the relative errors are in keeping with the indications of Table 1 and

expression (2.14). There is evidence also that the Ly-stable method M21
gives better results than A, -stable method M11 which has the same order.

This observation was also noted for parabolic problems with discontinu-

ities between initial and boundary conditions in [2,3,4].

Problem 3 [9]. This problem has two space dimensions and is described by
{(4.1),(4.2),(4.3)} with F (x,y) = sin=m xsinny and G(x,y) = 0 ; there are no
discontinuities between F(x,y) and G(x,y) for x =0 or y =0. The theoret-

ical solution is given by

u(x,y,t) = sin nX sin Try cos \/Ent

1
and the new methods T20, T12, T21, T22 were tested with h=H (giving 100

grid points at each time level) and ¢=0.06 giving r= 0.66. Results for
these wvalues of h and ¢ were reported in [10] enabling comparisons to be
made with the methods of Lees; results were also determined for the exist-
ing methods TI11 and TO2 which are contained in the family of methods due to
Lees as well as the family arising from (2.7). In keeping with [10] ab-
solute errors were computed and the maximum absolute errors which, at each
time level, occur at the four mesh points nearest the centre of the square
bounded by the lines x=0, x=1, y=0, y=1, are given in Table 4 for

t =0.3(0.3)3.0.

It is seen from Table 4 that the new methods compare favourably to

those of Lees [9]. The CPU times for the new method T12 were less than
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the methods of Lees while the new methods T20, T21, T22, which involve the
solution of a quindiagonal system at each time step, were slightly more
expensive; the CPU times for the methods of Lees, are very similar to the
CPU time for method T11.The improvements in accuracy achieved by T20 and

T222, as well as T12, are worth the small extra cost.

6. SUMMARY

A family of finite difference methods for the solution of the simple wave
equation in one- and two-space variables has been developed and analyzed
in this paper. The concepts of A,-stability and L, -stability, familiar

to readers of the literature on second order parabolic equations, were

discussed in relation to second order hyperbolic equations.

The new methods were tested on three problems from the literature.
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Figure 1: Amplification symbol for method M11.



23

Figure

2:

Amplification

symbols

for method MO2.



24

Figure 3: Amplification symbols for method MO04.
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Figure 5: Amplification symbols for method M12.
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Table 1: Error constants in time for the consistent finite

difference schemes

Method Error constant
M 11 Cy= -
MO 2 Cs =12
MO4 Cs = '/360
M20 Cs= "/
M12 Cs ="/
M21 Cs ="z
M22 Co =60
Ce= -1/240

MN
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Table 2: Errors in solving Problem 1 for x=0.5, t =1 .0 using h=0.1

Method £ =02:1=2.0 £=0.1,r= 1.0 £=0.05,r =0.5 £ =0.01,r =0.1
Ml1 -0.38E-2 -0.63E-3 -0.18E-3 -0.86E-4
M02 -0.90E-3 +0.22E-7 -0.49E-4 -0.80E-4
Mo4 -0 .97E-4 -0.84E-4 -0.83E-4 -0.83E-4
M20 -0.24E-1 -0.20E-2 -0.32E- 4 -0.91E-4
M12 -0.32E-3 -0.4 4E-3 -0.9 7E-4 -0.83E-4
M21 -0.15E-5 -0.44E-4 -0.71E-4 -0.83E-4
M22 -0.89E-4 -0.84E-4 -0.83E-4 -0.83E-4

MN -0.79E-4 -0.82E-4 -0.83E-4 -0.83E-4
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Table 3: Maximum relative errors in solving Problem 2 at time t = 1.0using h=0.1

Method £=02,r=2.0 £=0.1, r=1.0 £=0.05,r=05 £=0-01,r=0.1
MI11 0.12 0.68E-1 0.99E-1 0.38E-1
MO02 0.43E+3 0.55E-5 0.20E - 1 0.38E-1
Mo04 0.43 0.24E-1 0.27E-1 0.31E-1
M20 0.14 0.12 0.44E-1 0.37E-1
M12 0.28E+1 0.14E-1 0.46E-1 0.33E-1
M 21 0.14 0.45E-1 0.21E-1 0.30E-1
M22 0.33 0.14E-1 0.29E-1 0.31E-1

MN 0.40 0.15E-1 0.29E-1 0.33E-1
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Methods
Table 4: Maximum absolute errors for Problem 3 at time t 0.3(0.3)1.0
with h =, 1=0.06(r = 0.06)
t Methods
Lees
T11 T02 T20 T12 T21 T 22

n =1 n="% n=>%
0.3 0.65E-1  0.12 0.11 0.91E-1 0.13 0.13 0.34E-1  0.18E-1  0.94E-2
0.6 0.31E-1 0.61E-1 0.36E-1  0.46E-1  0.63E-1  0.32E-1  0.40E-1  0.20E-1 0.10E-1
09 0.14E-1 0,10 0.55E-1  0.23E-2  0.10 0.75E-1 0.90E-1 047E-1  0.25E-1
1.2 0.74E-2  0.10 0.33E-1  0.18E-1 0.12 0.75E-1 0.15 0.74E-1  0.38E-1
1.5 0.14E-1 049E-1 0.17E-1 0.13E-1  0.52E-1  0.45E-1 0.57E-1  0.35E-1  0.20E-1
1.8 0.32E-2 0.13 0.10E-2 0.68E-2  0.15 0.85E-1 0.26 0.13 0.69E-1
2.1  0.78E-1 0.13E-1 0.11E-1 0.30E-1 0.18E-1 0.74E-2  0.76E-1  0.27E-1 0.11E-1
24 0.13 0.12 0.36E-1 0.31E-1 0.15 0.69E-1 0.31 0.16 0.87E-1
2.7 0.26E-1 0.74E-1 0.40E-1  0.53E-1  0.89E-1 0.29E-1  0.28 0.13 0.62E-1
3.0 0.20 0.94E-1 0.54E-1 0.30E-2 0.11 0.63E-1 0.22 0.13 0.76E-1
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