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Abstract 

Second, fourth and sixth order methods are developed and analysed for 

the  numerical   solution   of   linear   second   order  boundary   value   problems. 

The  methods   are  developed  by   replacing   the  exponential   terms   in 

a   three—point   recurrence   relation  by   Padé   approximants. 

The  methods   are  tested  on  a  problem  from  the   literature. 
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1.        INTRODUCTION 

Consider  the  general   linear,   variable coefficient,   second-order boundary 

value problem given  by 

y"(x)   =  f(x)y(x)   + g(x)   ,     α0   < x <  α1 

y(α0)    =  A0    ,      y(α1)   =  A1  , 

(1) 

(2) 

where  α0   ,α1   ,A 0  ,A1     are  finite  real  constants.      It  will  be  assumed  that 

a  unique  solution,  y(x) ,   to   (1)   and   (2)   exists  for  x  є   [α0   ,α1]   (for  a 

discussion  of  existence  and  uniqueness   to   (1)   and   (2)   see  Henrici   [8], 

for  instance).     It  will  further  be  assumed  that  f(x),   g(x)   and  y(x)   are 

sufficiently  often  differentiable  with  respect   to  x  for  x  є   [α0   ,α1  ] , 

The  literature  on  the  numerical   solution  of   (1)  with   (2)   is 

large.     Collocation  methods   are  discussed  by,   among  others,   Russell 

and  Shampine   [13];     shooting  methods  are  discussed  by  Henrici   [8]   and 

Roberts   and   Shipman   [12],   for   instance;     the   problem  is   solved  using 

variational   techniques   in  Burden et al   [5];     and  commonly  used  finite 

difference  methods  are  discussed  by  many  authors,   see,   for  instance, 

Lambert   [11].     Ahlberg et al   [1]   investigated  the  possibility  of  using 

spline  functions   to  obtain  a  smooth  solution  to   (1)   with   (2);     following 

this   spline  functions  were  also  used  by  Ahlberg  and  Ito   [2],     Albasiney 

and  Hoskins   [3],   Bickley   [4]   Fyfe   [6],   Khalifa  and  Eilbeck   [10],   and 

Usmani  and  Warsi   [16],     Albasiney  and  Hoskins   [3]   particularly  emphasized 

the  connection  between a cubic   spline  solution  and  the   solution  obtained 

using  the  well-known  Numerov  method.     The  book  by  Jain   [9]   gives  an 

introduction  to  many  of   the  above  methods  of   solution. 

In  the  present  paper,   multiderivative  methods,   based  on  a  three-point 

recurrence  relation,   are  developed,   analysed  and  tested  on  a  problem  from 

the  literature. 
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2. A   RECURRENCE   RELATION 

Suppose   the   independent  variable  x   is   incremented  using  a  constant   step 

size  h   =   (α1    -α0   )/(N+1)   where  N   is   a   positive   integer.      The   solution 

will  be  computed   at   the  points   x r    =  α0   +  rh   (r   =   1,2,...,N)   and   the 

notation  yr    will  be   used   to   denote   the   solution   of   a  numerical   method 

at   xr    (it   is   obvious   that  y0   = A0   and   yN + 1  =  A1  ). 

It   is   convenient   to  consider  the  model   equation 

y"(x)   =  a2y(x)    ,      α0   <   x  <  α1                                                       (3) 

together  with   the  boundary  conditions   (2).     The  general   solution  of 

(3)   has   the  form 

y(x)   =  c 1 e ax       +  c2e-ax                                                     (4) 

where  c1     and  c 2    are  arbitrary  constants,   and   it   is   easy  to  verify   that 

(4)   satisfies   the  recurrence  relation 

-y(x-h)   +   (eah + e-ah)y(x)   -  y(x+h)   =   0   .                                (5) 

It   is   this   three-point   relation  which   forms   the  basis   for   the   family  of 

multiderivative  methods   for   the   solution   of   (1)   with   (2). 

Using   this   relation,   each  numerical  method  will   determine   the 

solution  vector Y  =   (y1   ,y2,.. . ,yN) τ ,  τ denoting  transpose,   implicitly. 

The   family  of  multiderivative  methods   arising   from   (5)   will  be   developed 

by  using  Padé  approximants   to  the  exponential   terms   eah       and  e- ah .For 

some   scalar  θ,  the   (M,K)   Padé approximant   to   eθ     takes   the  form 

eθ   =  PK(θ)/QM(θ)   +   0(θM+K+1)   , 

where   PK(θ)   and   QM(θ)   are  polynomials   in θ  of degrees  K and  M  respectively. 

Using   any   such   approximant   in   (5),   and  clearing   all   denominators,   leaves 

powers   of   a  which   are  multiples   of   two. This   indicates  that   the  right  hand 
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side   of   (1)   and   its   second,   fourth,   sixth,   etc.,   derivatives  will   appear 

in   the   resulting  multiderivative  method,   higher  order  Padé  approximants 

requiring  higher  derivatives   of   this   right  hand   side. 

Clearly,   the  need   to   differentiate   the   right  hand   side   of   (1)   implies 

that   y'(x)   becomes   involved-      This   derivative   is   estimated   to   the   required 

accuracy  by  using   enough   terms  of   the  appropriate  backward,   central,   or 

forward  differentiation  formula  given,   for  example,   in   the  text  by 

Gerald  and  Wheatley   [7]. 

The   local   truncation   error  associated  with   the  numerical  method  based 

on  the   (M,K)   Pade  approximant  at  the  point  x  =  x r  ,   takes   the  form 

t r  ≡   t(x r  )   =  C p + 2 h p + 2 y ( p + 2) (xr) + c p + 4  h p + 4y ( p + 4) (xr) + . . .          (6) 

where  p   =   2[½(M+K)].      In   the  usual   notation,   p   is   the  order   of   the 

multiderivative  method  and   the  C q    (q   =  p+2,p+4,,..)   are  constants; the 

leading   term  Cp+2 is   the   error   constant   of   the  method.     For   consistency, 

p  ≥  1   and   so   the  methods   based   on   the  use  of   the   (0,1)   or   (1,0)   Padé 

approximants   in   (5)   are   inconsistent.     The   error   constants   for   eleven 

of   the  multiderivative  methods arising from  various   values   of   M  and  K 

are  given   in  Table   1. 

Table   1   here 
 

         

    All   the  numerical  methods  to  be  examined  in   the  paper  have  the  form 

    ∑
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∑
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N(7)1,2,...,r0,(vi)

mry**ma6h(iv)
mry*ma4h

1
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mryma2hry2δ
 

where   δ2      is   the  central   difference  operator   defined  by 

δ2yr    = y r - 1      -  2yr   + yr + 1    ,                                   (8) 
 

and the am,a*m 
,
 ,a**m(m=-1,0,1) are parmeters dependent upon the padé
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approximant chosen for use in (5). Equation (7) incorporates members 

of the family of multiderivative methods of orders two, four and six; 

for  higher  order  methods,   further   even  powers  of  h  must  be  added. 

3. SECOND   ORDER  METHODS 

There  are   five   second  order  methods   in   the  family   of  multiderivative 

methods.     Three  of   them,   in  fact,   could  also  be  classified  as   linear 

  multistep methods (each has for m =-1,0,1); furthermore 0**ma*ma ==

the  method  based  on  the   (0,2)   Padé  approximant   is   the  classical   linear 

multistep  method 

-yr - 1+   2yr     -  y r + 1+  h2y"r   =  0                                  (9) 

for  which  C4    =  -
2
1

  

Looking  at   the  error  constants  of   each  of  the  five  second  order 

methods  of   the  family   (Table   1),   it   is   seen  that  the  numerical  methods 

based  on  the   (1,2)   and   (2,1)   Padé  approximants  are   the  most  accurate. 

  The parameters 
**ma*ma,ma =

of equation (7) for the method bases on the 
 

(1,2)   Pade  approximant  are  given  by 

 

                           (10)1,0,1)0.(m**ma*ma,(1,7,1)/9)1a,0a,1(a −====−

  while a quick calculation shows that for the methid bases 0*
1a*

1a ≠=−

on  the   (2,1)   Padé  approximant.      This   indicates   that,   for   the   latter 

method,   the  second  derivative  of   the  right  hand  side  of   (1)   is   required 

and   it  may   be  concluded   consequently   that   the   (1,2)   method   is   the  most 

accurate  and   economic   of   the   second  order  methods   of   the   family  arising 

from  the   recurrence   relation   (5). 

Every  method  discussed   in  the  paper  may  be  written   in  matrix  form  as 

                                                           (A+Q)Y   = b                                               (11) 
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in  which  Q  =   [q i , j ]   (i,j   =   1,2,.., ,N)   and  b  =   (b1   ,b2   ,. - . .bN   )τ    are 

different   for  each  method,   and   A  is   the  well-known  tridiagonal   matrix 

given  by 

                                                                  (12) .
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⎢
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In  the  case  of   the  method  based  on  the   (1,2)   Pade  approximant  defined 

by   (7),   (8)   and   (10),   the  matrix  Q  has   the  form 

                                                    Q   =  h2BF                                                            (13) 
 
in Which 
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···
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9
1

B                                                   (14) 

and  F  =  diag(f r ),  with  f r  =  f (xr  ) . The  vector  b  for  this  numerical  method 
is   given  by 

                     

,)1NgN7g1N(g2h
9
1

1)A1Nf2n
9
1

(1Nb

,1N2,3,...,r),1rgr7g1r(g2h
9
1

rb

),2g17g0(g2h
9
1

0)A0f
2h

9
1

(11b

+++−−+−=

−=+++−−=

++−−=

                                     (15)

where  gr  =  g(xr),  r  =  0,1,...,N+1. 

 

The  vector  y  =  (y(x1),y(x2) , . . . , y(xN)) τ    satisfies 

(A + Q)y  =  b  + t ,                                               (16) 
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where  t   =   (t1 ,t2,...,tN   ) τ     is   the  vector  of   local   truncation  errors 

associated  with  a  particular  method.     Defining  z  by  z  =  y  -  Y   it 

follows   that   z  satisfies 

(A + Q) z  =  t                                                     (17) 
so   that 

 
               || z || ≤ || A - 1||. ||t ||/ (1- || A -1 || . || Q || ) , (18) 

in  which   the  norm  is   the  maximum  norm. 

It   is   well   known  that ||A-1|| = (α1 - α0   ) 2/(8h2)   and   from   (6)   it 

is   seen   that   || t || =  0(h p + 2)   for  every  member  of   the  family   of  methods 

yielded  by   (5). It   then  follows   that 

|| z ||   =  0(hp) (19) 

provided 

                                                     || A -1 || . || Q || < 1 .                                                    (20)    

In the case of the method based on the (1,2) Padé approximant 

|| B || =1 (in (14)) and || t || = 0(h 4), and so it follows from (20) 

that   this  method   is   second   order  convergent   provided 

 

 (21).2)0α18t/(α|rf|maxr −<  

4. FOURTH   ORDER  METHODS 

There   are  nine  Padé  approximants   to   the  exponential   function  which   lead 

to  fourth  order  methods.     The  error  constants  of   three  of   these  methods 

are  given   in  Table   1.     It   is   an  easy  exercise  to  derive  the   error  con- 

stants   of  the  other  six  methods;     having  done  so   it  will  be   seen  that 

these   six  methods   are  no  more  accurate   than   the   three  displayed   in  Table   1. 
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It   is   evident   that   the  use  of   the   (2,3)   Padé   approximant   in  the 

recurrence  relation   (5)   leads   to   the  multiderivative  method  with  smallest 

modulus error constant. The parameters  (m=-1,0,1) for this 
**ma,*ma,ma

method  are  given  by 

 

1,0,1).(m0**ma

3)/1200,3,34,()*
1a,*

0a,*
1(a0,(3,44,3)/5)1a,0a,1(a

−==

−−=−=−
                   (22) 

 
Nothing that 1,0,1),0(m**

ma −=≠ it follows that the second derivative 
of   the  right  hand   side  of   equation   (1)   is  required  in  the   implementation 

of   this  multiderivative  method.     As  noted  in  §1   this  implies  that  y' 

is   involved  in  the  method.     This  derivative  may  be  approximated  by  the 

finite  difference  replacements 

                                 

),20(h)1r3yr4y1r(y1(2h)'
1ry

(23)),20(h)1ry1ry(1(2h)'ry

),20(h)1ryr4y1r3y(1(2h)'
1ry

+++−−
−=+

+−+−−−=

++−+−−−=−

 

 (see,   for  instance,   Gerald  and  Wheatley   [7]);     in   (23)   r  =   1,2,...,N. 

After  making  these  replacements  wherever  appropriate,   the  multi- 

derivative  method  based  on  the  (2,3)   Padé  approximant  takes  the  form 

(11)   where,   now, 

)"
rfrdiag(f)rf~diag(F~before,)asrdiag(fF(24),In

.F~
3C4h2C3hF1C2hQ

+===

++=
                                             (24)          

,
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⎢
⎢
⎢

⎣

⎡
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⎢
⎢
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⎣

⎡
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2
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2
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01η1ψ
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1

2C                                    (26) 

                 

with 

            ,'
1r9f'

f34f'
1r3frη,'

1r12f'
1r12frψ'

1,r3f'
1r34'

1r9frφ +−→−=++−−−+−+−−=

 

and                    

                                   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
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⎢
⎢
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⎢
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⎣

⎡

−

−−

−−

−
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33430

...
...

...
3343

0334

1200
1

3C                                         (27)

                            

The  vector  b  in   (11)   is  now  defined  by 

),1Ng~3Ng~341Ng~3(
1200

4h

)1N3gN44g1N(3g
50

2h
1)A1Nf~

400

4h
1Nη

1200

3h
1N

50

23h
(1Nb

(28)1N2,....,r)1rg~3rg~341rg~3(
1200

4h
)1r3gr44g1r(3g

50

2h
rb

),2g~31g~340g~(3
1200

4h
)23g144g0(3g

50

2h
0)A0f~

400

4h
0φ

1200

3h
0f

50

23h
(11b

+−+−−−

+++−−+++−+−=

−=+−+−−−+++−−=

−+−++−+−−=

f

 

where 

        1).N,0,1,......(r'rgrgrfrg +=+=~

It   is   clear   that

(29)1
30||3C|||,'rf|maxr

300
29

||2C||1,||1C|| ≤≤≤  

and  a   standard  convergence  analysis   reveals,   from   (20),   that   the  multi- 

derivative  method  based  on   the   (2,3)   Padé  approximant   is   second  order 

convergent  provided 
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( ) (29)2400.|rf|
max
r210h|'rf|maxr29h|rf|maxr3002

0α1α <++− ⎥⎦
⎤

⎢⎣
⎡

5. SIXTH   ORDER  METHODS 

A  check  of   the   local   truncation  errors  of   the   sixth  order  multi- 

derivative  method  yielded  by   (5)   shows  that   the  (3,4)   and   (4,3)   Padé 

approximants   lead   to   the  methods  with   the   smallest  moduli   error  con- 

    stants .The (3,4) method ,hoeener ,requires ,a team in on 
(viii

3r
8yh +

   right hand side of (7) whereas the (3,4) method needs only terms up 

to and including  and so is easier to implement 
(iv)

mr
6yh +

 

The  parameters   for   the  method  based   on  the   (3,4)   Padé  approximant 

are  given  by 

(30)88200./3)31,(2,)**
1a,**

0a,**
1(a

/2940,3)131,3,()*
1a,*

0a ,*
1(a,49/)2,45,(2,)1a,0a,1(a

=−

−−=−=−

 

   Nothing that in (300), it follows that the second -1,0,1)0(ma *
m =≠

  Derivative of the right hand side of (1) is required in the application 

of the method. The (m=-1,0,1) are multiplied by h
*ma 4 and so,to 

match   the  overall   0(h8)   local   truncation  error  of   the  method,   the   first 

derivatives   of   y   (which  arise   in  the   second  derivations   of   the  right 

baiid   side  of   (1))   must  be  replaced  by  0(h4)   approximants.   Such  approx- 

imants   are 

                       

).40(h)ry
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25

1r4y2r3y3ry
3
4

4ry
4
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(1h'
ry

),40(h)1ry
4
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6
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1

3ry
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1
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),40(h)2ry
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1
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3
2

1ry
3
2

2ry
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1
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),40(h)3ry
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1
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2
1

1ry
2
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6
5

1ry1
4(1h'
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)40(h)4ry
4
1

3ry
3
4

2r3y1r4yry
12
25

(1h'
ry

++−−−+−−−
−=

++++−−−+−−−=
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−=

++++−−+−−−−=

++−+++−++−−=

       (31) 
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     Nothing also that (m=-1,0,1) implies futher that the fourth 0**ma ≠

     Derivative of the right hand side of (1) is required.This again, 

Involves y’(x)and as the parameters  are multiplied by h
**ma 6 the first 

 derivative  must,   this   time,   be  replaced  by  0(h2)  approximates  if  the 

 overall   0(h8)   local   truncation  error  of   the  multiderivative  method   is 

  to  be  maintained.  Such  approximants  are  given  by   (23). 

After  making  these  replacements,   as   appropriate,   the  multiderivative 

method  based   on  the   (3,4)   Padé  approximant   takes   the  form   (11)   where,   now, 

4inas)"
rf2

rdiag(f)rf~diag(F~and)rdiag(fF(32),In

(32).5D6h4D5hF~3D4h2D3hF1D2hQ

+===

++++=
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...
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⎥
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⎦
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13d(2)
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N
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1r3f(2)
1rr,d

+++−−=+−−=−

+++−=−+−−−−=−

−=+−−−=++−+−=+

 

            

                            
2940

1D3 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

−

1313

313130

...
...

...
31313

03131

;     (36)    

                        

                       
88200

1D4 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−−−

(4)
NN,d(4)

1NN,d

(4)
N1,Nd(4)

1N1,Nd(4)
2N1,Nd

...
...

(4)
23d(4)

22d(4)
21d

0
(4)
12d(4)

11d

             (37) 

 

  with      

                                    

1r6ur31u1r2u(4)
1rr,d

1r8u1r8u(4)
rr,d,1r2ur31u1r6u(4)

1rr,d

+++−−=+

+−−=++−−−=−

 

where 

andbelow);_bvectortheinusedare(4)
1NN,dand(4)

10d1,2,....N(rfor

"'
r4f

'
r

f
r3frU

+=

+=
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88200
1D =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−−−

(5)
NN,d(5)

1NN,d0

.

(5)
N1,Nd.(5)

1N1,Nd.(5)
2N1,Nd.

...
..

...
0(5)

23d(5)
22d(5)

11d

(5)
12d(5)

11d

 

 

           with 

                            r31v(5)
rr,d,1r2v(5)

1rr,d =
±

=±

where                   

   
)._binusedare(5)

1NN,dand(5)
10N(d1,2,.....,rfor

(iv)
rf"

rfr6f2)'
r4(f"

rfrf3
rfrV

+=

++++=

 
                                     The vector b for this sixth order method is defined by 

                                                

]

),22w131w0(2w
88200

6h
)2g31g1310g3(

2940

4h
)22g145g0(2g

49

2h

0A0V
44100

6h
2u

44100

5h
1u

88200

531h

0u
14700

h
0f980

h'
2f

5880
h'

1f5880
131h'

0f5880
25h

0f49
2h

[11b

++−−+−−++−

−−+

++−−=

~~~

~ 544332

 

         

),32w231w1(2w
88200

6h
)2g32g1311g3(

2940

4h

0A'
3f

2
1'

2f
6

131'
1f2

3
2940

3h
)32g245g1(2g

49

2h
2b

++−−+−−

++−++−=

~~~

 

              

,N2W1N31w2N(2w
88200

6h
)Ng~31Ng~1312Ng~3(

2940

4h

1A'
Nf

2
3'

1Nf
6

131'
2Nf

2
1

2940

3h
)N2g1N45g2N(2g

49

2h
1Nb

2,N3,.......,r),1r2wr31w1r(2w
88200

5h

)1rg~3rg~1311rg~3(
2940

4h
)1r2gr45g1r(2g

49

2h
rb

+−+−−−−+−−−

−−−−−−+−+−−=−

−=+++−−

+−+−−−+++−−=

⎟
⎠
⎞

⎜
⎝
⎛
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(39)),1N2WN31w1N(2w
88200

6h

)1Ng~3Ng~1311Ng~3(
2940

4h
)1N2gN45g1N(2g

49

2h

1)A1NV
44100

5h
1Nu

14700

5h
Nu

88200

531h

1-Nu
44100

5h
1Nf~

980

4h'
1Nf3h

5880

325h'
1Nf3h

5880

3131h'
1Nf

5880

3h
1Nf

49

22h
(1Nb

+++−−

+−+−−−+++−−

+−+−−

++++++−−−+−=

 

where 

           .1N,......,1,0r,)iv(
rgrg''

rf6'
rg'rf4''

rgrfrg2
rfrw +=++++=

 

The   solution  vector  Y  for   this   numerical   method   is   obtained   by 

solving  a  linear  system  of   the  form  (11).    Unfortunately,   because  of 

the  matrix  D     given  by   (34)   and   (35) ,   the  coefficient  matrix  A+Q is no 

longer   tridiagonal.      In  fact   it   is  not   even  quindiagonal   though  a   pre- 

elimination  makes   it   so   and   any   decomposition   algorithm  for   a   quin- 

diagonal   linear   system  may   then  be  used   to   obtain  Y (see,   for   instance, 

Twizell   [14]) . 

It  may  be   shown   that 
 

|rv|
max

r2520
1||5D|||,ru|

max

r44100
47||4D||

2940
137||3D|||'

rf|
max

r3528
989||2D||,1||1D||

≤≤

≤≤≤

         (41) 

   

and   a   convergence   analysis   shows   that   the  multiderivative  method  based 

on   the   (3,4)    Pade   approximant   is   sixth   order  convergent   provided 

                         

                                 |fmax
r[882002)0α1(α − r|+24725h |    |+4110hmax

r
'
rf 2

max
r |fr|                   (42) 

 
                                             +94h3

max
r |ur|+35h4 max

r   |Vr| < 705600. 
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6.        NUMERICAL   EXPERIMENTS 

The  tnultiderivative  methods   developed   in   §§3,4,5   were   tested   on   the 

following  problem  from  the  literature 

Problem   (Usmani   [15]) 

3x2,
x
1

x
2"y <<=−  

with  boundary  conditions 

y(2)   =  y(3)    =   0   . 

The  analytical   solution  of   the  problem  is 

y(x)   =   (19x-5x2 - 36x-1)/38   . 

Clearly  f(x)   =  -2/x  and   g(x)   =   1/x   and   the   derivatives   of   these   functions 

are   easily   obtained   for  use   in   the  multiderivative  methods,   as  appro- 

priate. 

The   step   size  h  was   given   the  values  h = 2 -m       (m=3,4,...,7)   so 

that N = 2 m   -1    (m=3,4,...,7)   respectively  and   the  problem  was   solved 

using   the  methods  based   on   the   (1,2),    (2,3)   and   (3,4)   Padé   approximants 

which,   respectively,   are   second,   fourth   and   sixth   order  convergent. 

For  comparison  purposes,   numerical  results  were  also  obtained  using 

the   classical   second   order  method   (which   is,    in   fact,  "based   on   the 

use   of   the   (0,2)   Padé  approximant   in.  (5);      see  also  Henrici   [8]),   the 

fourth   order  Numerov  method   (Lambert   [11])      and   the  fourth   order  method 

of  Usmani   and  Warsi   [16],   and   the   sixth  order  method   of  Usmani   [15]. 

The  values   of   ||y -Y||   for  each  numerical   experiment,   are  contained 

in  Tables   2,   3,   4,   respectively,   for   the   second,   fourth  and   sixth  order 

methods.      It   is   noted   from  these   tables   that   the  methods   developed   in 

the  present  paper  give  superior  results   to   the  competing  methods   listed 

above.      It   is  also  noted   that  halving   the  step  size  h  reduces    ||  y - Y|| 

by  a   factor   2 - p   approximately  where  p   is   the  order  of   the  method. 



15 

The   results  were  obtained  using  a  Honeywell   68   computer. 

                                         

SUMMARY 

Second,   fourth  and   sixth   order  multiderivative  methods  have  been 

developed   for   the  numerical   solution   of   the  variable  coefficient, 

linear,   second   order  boundary   value  problem  y"(x)   =  f(x)y(x)  + g(x), 

α0   <  x   <   α1   ,   with   y(α0   )   =  A 0    and   y(α1   )   =  A 1  . 

The  methods   were   developed  by   replacing   the   exponential   terms 

in  a   three—point   recurrence   relation  by   Padé  approximants.     The  second 

order  method  with   smallest   error   constant  was   also   seen  to   fall   into   the 

general   class   of   linear   two—step  methods   for   second   order  boundary  value 

problems. 

The   computed   solution  vector  was   obtained  by   solving   a  linear  system: 

in  the  cases   of   the   second   and  fourth  order  methods   this   linear   system 

was   seen   to  have  a tridiagonal  coefficient  matrix,   while in the case of 

the   sixth  order  method   the  coefficient  matrix,   after  a  pre-elimination, 

is   seen   to  be   quindiagonal. 

The  methods  were  tested  on  a  problem  from  the  literature. 



16 

Table   1. Error   constants 
 

order Padé 
approximant 

error 
constant 

2 
      (1,1) 

(0,2) 

(1,2) 

(2,1) 

(2,0) 

      

12
7

4C

36
1

4C

36
1

4C

12
1

4C

6
1

4C

−=

−=

=

=

=

 

4       (2,2) 

(1,3) 

(2,3) 

(3,2) 

        

3600
1

6C

3600
1

6C

2880
7

6C

360
1

6C

=

−=

=

=

 

6       (3,3) 

(3,4) 
      

705600
1

8C

50400
1

8C

=

=
 

Table   2.Maximum  error  moduli   for second  order  methods   with  h = 2-m
 

 
 
m

            Method  

      (0,2) 
(classical) (1,2) 

3 

4 

5 

6 

7 

0.41(-4) 

0.10(-4) 

0.26(-5) 

0.65(-6) 

0.16(-6) 

0.14(-4) 

0.35(-5) 

0.80(-6) 

0.22(-6) 
0.54(-7) 
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Table   3. Maximum  error  moduli  for fourth order methods   with   h =2- m
 

 Method   
     
 
    m 
     Numerov Usmani   and 

Warsi   [16] (2,3) 

3 

4 

5 

6 

7 

0.17(-6) 

0.11(-7) 

0.69(-9) 

0.43(-10) 

0.27(-11) 

0.31(-7) 

0.29(-8) 

0.22(-9) 

0.14(-10) 

0.89(-12) 

0.12(-7) 

0.74(-9) 

0.46(-10) 

0.29(-11) 

0.18(-12) 

Table   4.     Maximum  error  moduli  for sixth order methods  with  h=2 -m
 

                      Method   
 
 

m 

                Usmani   [15]      (3,4) 

3 

4 

5 

6 

7 

0.50(-7) 

0.10(-8) 

0.19(-10) 

0.31(-12) 

0.49(-14) 

0.99(-11) 

0.17(-12) 

0.28(-14) 

0.46(-16) 

0.77(-18) 
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