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Abstract

In this paper we derive a new expression for the point source Green's
function for the reduced wave equation, valid in an angular sector, whose
angleis equal to arational multiple of =. This Green's function is used
to find new expressions for the field produced by the diffraction of a
spherical wave source by a wedge, whose angle can be expressed as arational
multiple of =. The expressions obtained are in the form of source terms
and real integrals which represent the diffracted field. The general result
obtained includes as special cases Macdonald's solution for diffraction by a
half plane; asolution for the problem of diffraction by awedge of open
angle 37t/2, i.e. acorner; a new representation for the solution of the problem
of diffraction by a mixed soft/hard half plane; and a new representation for
the point source Green's function for Laplace's equation, valid in an angular

sector whose angleis equal to arational multiple of .






1. Introduction.

In two previous papers Rawlins (1986a) and (1986b) the solution to the
problem of diffraction of a plane and cylindrical wave by arational wedge is
given in terms of geometrical acoustic terms, and real integrals representing
the diffracted field. Here we shall give an analogous solution to the problem
of diffraction of a spherical acoustic wave by a wedge whose angle can be ex-

pressed as a rational multiple of 7.

The exact solution of the problem of diffraction by a soft or hard wedge
of any angle, in the three dimensional case of spherical acoustic wave incidence
has been given by a number of authors, Macdonald (1902) and (1915), Wiegrefe
(1912), Bromwich (1915) and Carslaw (1920). The solution in all these works was
given in the form of a complex contour integral. For the special case of a

wedge which reduces to a half plane, Macdonald (1915) showed how the contour
integral could be reduced to an elegant form involving real integrals. Though

the form of Macdonald s solution is extremely simple the method used to derive

it involved a lot of tedious analysis. The problem of the diffraction of a point
source by a half plane had been solved earlier by Carslaw (1899) using a method
based on that used by Sommerfeld (1896) in considering diffraction by a plane
wave. Carslaw s solution was also expressed in terms of real integrals, however,

it was of adifferent (though equivalent) form to that of Macdonald's. These

are the only cases known to the author where the solution to wedge diffraction
problems involving a point source can be expressed in terms of real integrals.
Here we shall show that such solutions can be given for any wedge whose angle

can be expressed as a rational multiple of & .

Our starting point is to use the complex integral representation for the
periodic Green's function for an arbitrary angle wedge. We then consider the
special case of a wedge whose angle can be expressed as a rational multiple of

n . Itisthen shown, by means of an appropriate integral representation for
a Bessel function of order one half that the Green's function for a spherical

point source can be derived from the plane wave Green's function for a rational



wedge. This enables us to obtain a representation for the Green's function for
a spherical source, in the form of source and image terms and real integrals
which are convenient for calculation of the diffracted field. We remark that
recently there has been much work done on uniform asymptotics for the wedge,
see Ciarkowski et al (1984). The results presented here offer a new approach,
in that a wedge of any angle can be approximated to any order of accuracy by a
rational wedge of angle pz/q (p and q integers), and the real integrals obtained
in this paper can be asymptotically evaluated without difficulty.

In section 2 we shall give the periodic Green's function for a spherical

wave source and a wedge of arbitrary angle. The Green's functionisin the

form of a complex contour integral. Some of the important properties of the

Green's function are stated, and appropriate expressions, in terms of this

Green's function, are given for various diffraction problems. In section 3 we
shall consider in detail the special case of evaluating the complex contour
integral representation of the Green's function for a wedge whose angle can be
expressed as a rational multiple of 7z . In section 4 we shall give expressions,

for the Green's function for special cases of wedge angles. In section 5 we

shall give solutions to three specific problems in diffraction theory which are

special cases of the more general result obtained in section 4. The first
problem is that of diffraction by a soft or hard half plane by a spherical

source whose solution was given in different forms by Carslaw (1899), and
Macdonald (1902), (1915). The second is the diffraction by a soft or hard wedge
of open angle 37 /2 by a spherical source; this corresponds to a physical
situation often met in applications, viz diffraction around corners of buildings.
No solution in the form presented here has hitherto appeared in the scientific
literature. The last is anew result for the problem of diffraction by a

soft/hard half plane by a spherical source. Finally in section 6 we shall

give the appropriate Green's function for Laplace's equation by taking the long
wave limit in the Green's function for the reduced wave equation. This Green's
function, for a point source and a rational wedge, is required for the solution



of boundary value problemsinvolving rational angle wedges in compressible
fluid dynamics, electrostatics, etc...

In order not to disrupt flow of the arguments in the main text of the
paper, various proofs of results needed have been placed in appendices at the

end of the paper.

2. Periodic Green's function for a wedge.

The periodic Green's function G, (r,9,z, ro,eo,zO ;k) for athree dimensional
wedge situation in aspace 0<r <o, 2t —a< 0 < 2x, —© < z< o, where (r,0, z)
are circular cylinder coordinates has been shown by Carslaw (1920) to be given

by

—ikR(C) -
G (10,210,05.25iK) = = | sin(nG /) d, (1)

2ai « R(0) " cog(n/ @) ~ cos(n(0-6)/a)

whereR(() = \/rz +12 +(z-2,)*—2rr,cos¢, and the square root is specified by
—nl/2<argR({) < n/2. The contour of integration C is such that the starting
point is given by i« + ¢, and the termination point is given by i« + ¢, where
-n<C <0,nm<2r. The contour of integration C lies below the branch
point C:oc:cosh_2 ((r2 + r§+(z—zo)2)/2rr0) and does not intersect the branch

cut: Re =0,0<Im( < 8, seefig 2.
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It has been shown by Carslaw that Ga(r,e,z,ro, 020 k) has the
following properties

2 2 2
(i) (V2+k2)G =0, Wherevzzﬁ—2+}£+ ]é 824_8_2
* orc T or 0% oz

for all pointsP = (r,6,z), Po = (ry,0,,2,), such that P, = P.
(i) G(r,0,2,r,,0,,2, ; =G (r, 0 + 28,2, 1y, 0,,2, ;K -

(iii) G (r,0,z, o eo 20 ;k) isfinite and continuousfor al P = R, .

(iv) GOL(r,O,zr0 0’ 0,k) G (rO 0’ O,re,z;k).
—|kR(9—90)
(v)G (r,0,z,r, 0’ 0, 0,k) R(T%),asp—mo,
~0,85r > . 2

One can use the Green’s function given above to derive solutions to various
diffraction problems in wedge shaped regions. To be specific we shall discuss
acoustic waves. The solution uy, or us of the problem of a spherical wave’

~ikR(0-0,)
Ug=" , 3
R(0-6p)

diffracted by arigid wedge ou, /00 = O for =0and 6 = a) or a soft wedge
(us=0for 6=0and 6 = a) isgiven by

:Ga(r,e,zr K)+G (rezro, 0’ 0,k) 4

Yn 0'Y0'%0"

:Ga(r,e,zr 0,,2,:K)-G (rezr

0'%Zo° 0% Zp:K) ©)

Yh
respectively.
The solution ugp of the problem of a spherical wave (3) diffracted by a

wedge whose face 6 = 0 isrigid (duy,,i/06=0) and whose face 6 = o is soft
(Uys=0)isgivenby u,,, =G, (r,0,2,1,,0,,2,;k)+ G, (r,0,2,1,,—-0,,2,; K)
-G, (10,z,1,,200-0,,2,;K) — G, (r,0,Z,1y,—20 + 0,; K). (6)

( Footnote: The wave is assumed to have time harmonic variation €, but

this factor will not be shown explicitly in the rest of the paper.)



3. Point source Green's function for arational wedge

For a wedge, whose angle a can be expressed as a rationa multiple of = ,

i.e. o = pn/q where p and q are integers, the point source Green's function

becomes
1 e KR gsin(a%/ p)
Con 0210 % 207 = 55 IR costat /) - cox(0-0g)arp)
q

We can use the results of Rawlins (1986b) to give the representation
2
__@; HIR(O)
RO i\2) JkR@)

k™4 0 ——(t+k2R ©/) g
= | e (8)
Var ©+ic t/z

where ¢ > O, (the contour of integration is as shown in fig 5 appendix A in awlins(1986b
By substituting the representation (8) into the expression (7) and inter-
changing the order of integration (which is permissible since the integrals are

uniformly convergent) gives

ké™* @ L@ arz—z0d10 k2ry. dt
G T (I’,@,Z,ro,eo,zo,k)=—— e 2 G ﬁ(r,e,eo 0)
% v 2 0+iC % t/
where 9)
(1.0,0.:K) :i_ Ieikrcosq gsin(qt/p) o, (10)
pr 0" 2nip |, cos(Ca/p) —cos((0 - 6)a/ p)

q
i.s the plane wave Green's function for arational wedge. It has been shown

Rawlins (1986a) that the integral (10) can be written in the alternative form:

g-1 )
G pr (1,6,80:K) = D" > Hx—[0— 6, + 2zmp/ g+ 27pN]] g'krcost0-00+2nmp/a)

q m=0 N

+— 1 3 lelkrcos(e 60+2mmp/ q)-in/(2p) Sm(e 60 + anp/q)sm(n/p)

2P o sin((6 -8, + 2nmp/ q)/ p)

kr —ix cos(e—eo+2nmp/q)H(12) (x)dx
'[ e 1
p

0



1 g-1p-2 ei kr cos(6—0g+2mmp/ q) {

+_
2ip mmonm SIN((6— 0, + 2nmp/ q)

kr —ix cos( 6-0g+2nmp /q)H(z)

sin ((n+1)(9—90+2nmp/q)sin(nn/p)J-e %

L+ @inn/(2p) (x)dx

(oo}

—i 0-00+2 /
kr ix cos( 0+2nmp q)H(z)

: d
— e/ (NDTA2P) o (o~ 0 + 2nmp 1 q)sin(( n + 1)) p).[ e (p‘l)”)(x) "
(11)
where the summation over N isfor all integer values of N which can make the
1x>0
argument of the Heaviside step function {H[x] =% x =0; non negative.
O0x<0
Thus on substituting the expression (11) into (9) and interchanging the order
of integrations results in having to evaluate integrals of the form:
ke|TC/4 0 —iE(t+k2(r2+r02+(Z—z0)2/t)eier ro cos y /t errO/t —ix cos 4
—-—F € I € WH(Z)(x)dx 2 nu
/271 0+IC 0 v 3

t/ 2

which is shown in appendix A to be equal to

vz ikR (7—it)

_227J-w cosh(vt) e
n  “0 cosht+cosy R(m-—it)

dt.

Thus

—ikR(6—6g+2mmp/q)

R(6—-0,+2mmp/Qq)

1
G (1,6,2,10,00,20;K) = qzz H[m—|0 -0, + 2rmp/ g+ 2rpN|]

q m=0 N
_ 1 &sin(0-0, + 2nmp/ g)sin(n/ p) fw cos(t/p) g R it
mp = SiN((0—6,+2rmp/q)/p) O cosht+cos(0—-6,+2mmp/q) R(m—it)

o

1 G [sn((n+1)(6-6, +2mmp/ g)/ p)sin(nz/ p)
p e sin((6—6, +2mmp/q)/p)

[N

[ oslp-mt/p) e

-dt
0 cosht+cos(0—-6,+2mnmp/q) R(m—it)

sin(n(6—6, + 2nrmp/q)/p)sin(n+Yr/p)
sn((6—-90, + 2mmp/q)/p)

[ _cosp-1-nt/p ey dt}, (12)

Yo cosht +cos(0—0,+2nmp/q) R(n—it)



where Z means that summation is only carried out for those values of N which
N

satisfy theinequality —mt<6-6, + 2mmp/q + 2rnpN < ..

Thus the solution u(r,0) of the problem of diffraction of the spherical

source u, = e *(%) /R(9—-0,) by a soft or hard wedge of open angle a = pr/q

isgiven by
u, (r,0,2) :Gm(r,e,z,ro,eo,zo;k) —Gm(r,e,z,ro,—eo,zo;k) (13)
q q
and
u, (r,6,2) =G, (r,0,z,1,,0,,2;k) +G_ (r,6,2,15,0,,2,;K) (24)
q q

where G, isgiven by the expression (12). Similarly the solution of the problem
q

of diffraction of the point source u, = e "*?®%) /R(6-0,) by awedge whose
face 6 = 0 is soft, and whose other face 6 = pr/qishardis given by

Ugn (1,0,2) =G, (1,6,2,15,04,2Z0;K) + G, (1,0,2,15,-0,,24;K)

q q
~G 5 (10,2, 1, =207 + 00,2, K) =G, (1,0,2,15, 5 = 05, 243 K) , (15)
q q
where G, (r,0,z,1y,0,,2,;k) is given by the expression (12) with p replaced
q
by 2p.

An asymptotic expression for G (r,0,z,1y,0,,2,;K) can be obtained from the
q

asymptotic expression for the plane wave Green's function, see Rawlins (1986a),

and using the result of appendix B. Thusfor kr — o« we have

©ikR (0-00+27mp/q)

-1
G, (r,6,2,15,04,20;K) = qZZH[n—|9—90 +2nmp/ o+ 2pN|]

q m=0'N R(6-6,+2rmp/q)

+_q‘1 sin(0 — 0+ 2xmp/ q) sin(r/ p) _
2ip &= sin((6 - 0, + 2nmp/ q) / p)|cos((0 — 6, + 2rmp/ ) / 2)|

) J‘i(eo) ng)[kR(e -0, +2nmp/ q) cosh&]dg,

q-1 p-2 1
+—— Z Z ; B _
2ip £=%5 sin((6 - 0, + 2nmp/ q) / p)|cos((0 — 6, + 2xmp/ q) / 2)|



sin((n+1)(0 -0, + 2nmp/ 6)/ p)sin(/ p) [~ HP[KR(0 0 + 2nmp/ q) cosh E]dk

o0

~sin(n(8 -0 + 2xmp/q)/ p)sin((n+ D/ p)[ > HP[KR(8 0, + 2xmp/ g) cosh a]dg}

0

+0((kR)™'?) (16)
Where
£(60) :sinh‘l{z‘/r ro|cos(e—90+2nmp/q)/2|}' 17)
R(6—-06,+2mmp/Qq)

The integrals appearing in the above expression (16) can be expressed in terms
of the Fresnel integrals, whose properties are well known, for details see
Jones’' book (1986) p 562.

4, Specia cases of wedge angles

P=1

—ikR(6—6g+2mm/q)

R(0—0, +2xm/q)

g-1
G, (r,0,2,15,04,20;K) = D> H[n—|0—0, +2nrm/ g+ 2nN]] (18)

q m=0 N
=1
_ikR(6-00)
G (r,6,2,19,00,20; K) =%H[n—|9—90+2npN|]R(e—_eo)

_ikR (n-it)

_isin(e—eo)sin(n/p)J‘oo cos(t/p) e
mp  sSin((0-06,)/p) “° cosht+cos(6—-0,) R(m—it)

_ipzz sin((n+1)(0-0,)/psin(nr/p) = cosh((p—n)t/p) e "R N
P o sin((6-0,)/p) 0 cosht+cos(0-0,) R(m-it)

_sin(n(0-0,)/p)sin((n+1)r/p) (= cos((p—1-n)t/p) e = gl (19
sn((6—-06,)/p) 0 cosht+cos(0—-6,) R(m—it)



P=2

—ikR(6—6g+4mm/q)

g-1
G, (1,6,2,19,00,20;K) = D > H[m—|0 -0, + 4nm/ g+ 4nN]]

F m=0 N R(e_eo +4Tcm/CI)
ot — 0 ikR (i
—1200 (6-6,+4mm/q) J- cosh(t/2) E-ikR( _t) at (20)
T =0 2 © cosht+cos(0—-0,+4rmm/q) R(n—it)

The last expression (20) can be put in an alternative form by using the results

of appendix C. Thus

@-ikR(6-6y+4mm/q)

G, (r0,2,1,0,,2,k H[n—-0—06, +4nm/q+4nN
zqn( 0,00,20;K) = mZ,)ZN: -] Tmig-+an |]R(9—60+475m/q)

2

m=0

ik &5 (0-0,+4nm/aQ) )| = 2
+o ngn{co L(em HP[KR(0-0, +4nm/ 2)cosh&]ds , (21)

where

£(6y) =sinh™ 2ﬁ|cos(e 90+4Ttm/q)/2|
R(0—0,+4nm/q)

5. Some specific .problemsin diffraction theory.

M acdonald's solution for a half plane.

In terms of the Green's function, the solution for the problem of diffraction
of aspherical wave u,(r,0) = e **®%) /R(0-0,) by asoft, or hard half planeis
given by

u, (r,6,2) =G, (r,0,2,1,,0,,2,,k) +G, (r,0,2,1,,-0,,2,;K)

22
u, (r,0,z) =G, (r,6,2,1,,0,,2,;k) —G,,(,6,2,1,,—6,,2,;K) (22)

respectively .
Putting g = 1 in the expression (21) gives

o IkR(0-60)

G, (r,0,2,1,,0,,2,: k) = H[r-{0-0,+4nN|]] ——
2n( 0,00,20;K) ZN: [m | o TAT |] R(6-6,)

haan oo 200 )| 5 Wt 0-0 cometa @)



(24)

here : (90)=sinh‘1{2 rr cos((e—eo)/Z)}_

R(0—6)

Now for 0 < 6p < 2%, and 0 < 6 < 2x, then | 6-6¢ | < 2=, so that the argument of

the Heaviside step function in (23) can only be positiveif N = 0. Hence

G, (r,0,2,19,00,29;K) = H [n—|0—-0,[] RO /R(0-0,)

_%sgn[COS((O—GO)IZ] [ 5 @R - 0,) cosnE] o |

e—ikR(e—@o) ik
= H[COS((G—OO)/Z]W—Esgn[cos((e—eo)/Z] .
0

_ J~ o(\)E..(eo)\ HP[KR(0-0,) cosh&] d&.

If cos((6—-6,)/2)>0 then

Ly €RO0 ik g0 )
Gzn(f,e,Z,ro,eo,ka):R(e—_eo) —ELO H;”[KR(6—04)cosh&] dg -

Now using the fact that

—ikR(0-00)

eR(efe) __ %j_‘”w HP[KR(6—6,) cosh] d,
0

we can write

GZn(r,e,z,ro,eo,zo;k)=—%{ [+ ™ }Hf) [KR(0—6,) cosh&] &,

—00

_ K J‘é(eo

H{? [KR(6—6,) coshg] d - (25)

2 J—xo

If cos((6—-6,)/2)<0 then

G, (1,0, 2,15,0, 29 K) = % 0 HOKR(8 - 0,) coshiE] de,
=20 R - 0p) coshil e - (26

Hence for any sign of cos((0—-6,)/2) we have

G, (1,0, 215,00, 29 K) = % 00 L@[KR(6 - 0,) cosh €] & - @27)

—00



The expression for G, (r,6,z,1y,04,24;k) can be found in exactly the same

manner for 0< 0 + 09 < 4nr, i.e.

EgikR(9+90)
G (16,2,15,-0, Z; k) = H [m—|(0+6,)[] R(0+6y)
e IkR(0+00) )
+H [n—|(0+0,—4n)[] MG—W—ESQn[COS((e—eo)/Z] :
[ 5 HO IR0+ 0,) cosh ] de, (28)
where
(-0) :s'nh-l{z : ;ﬁe@:? O)/Z)} | -
Hence
Gy (1,0,2,15,-00,20;K) = H[COS((0+05)/2)] ) /R(0+0,)
_%sgn[cos((9+eo)/2] [5 HP[KkR(0 +0,) coshE] de |
_ _% ) H@[KR (0 +0,) cosh €] de (30)

Thus the solution of the problem of diffraction of a spherical wave by a hard
or soft half plane is given by substituting the expression (27) and (30) into
(22) giving

£(00)

u, (r,6,2) = -%j 7 HP[KR(0-6,) cosh] de

_k [ HP[KR(0 + 6,) coshe]

2 -0

(31)

K &(60)

u(r,0,z) = — > H{@[kR(0-0,) cosh&] dg

—00

+ [ IR + o) cosel e,

where &(£0,) are given by (24) and (29) respectively. This result agrees
with that of Macdonald (1915).

If we use the expression (20) with g = 1 in (22) we obtain directly Carslaw's
(1899) solution.



Diffraction by aright angle wedqge, (acorner) .

In terms of the Green's function the solution for the problem of

diffraction of the spherical wave u,(r,0) = e **%) /R(6-6,) by asoft,

or hard wedge of open angle o = 3n/2 is given by

ug (r,0,2) Gg, (r,0,2,1y,05,29;k) ¥ G, (1,6,2,15,—04,24;K)
where G, (r,6,2,1,,0,,2,;K) isgiven by puttingp=3and g =2 in the

expression (12). After some simplification it is not difficult to show that

G (1,0,2,15,00,25;K) = > H [n—|0-0, +6nN|]e X0 /R(0-0,)

2

2 2

3

N

+> H[n-|0-0y+(3+6N)n|1e""*% /R(6-0,)
N

Now using the identity siny/(2siny/3) — 1 = cos2y /3 and the fact that for

3

-1<0-0,<(3+6N)r < m isnot satisfied by any integer N , then

G, (1,0,2,19,00,2g;K) = H [0 —0,[]e 0 /R(0-0,)

2

1 o
—Ecos((e—eo)/s) jo

L cos((0-0,)/3) [

23\ sin((0-0,)/3)

1 sin(0-0,) 1 ro cosh(t/3)  eRt=
0 cosht+cos(0-6,) R(n-it)

2/3r\ sin((6-6,)/3)

cosh(2t/3)  eRt=
cosht+cos(6—-0,) R(m—it)

cosh(2t/3)  eRt=
cosht—cos(6—-6,) R(n—it)

3

3

cosh(t/?3) g KR(x-1)

1 sn(0-0y) 4 r@ cosh(t/3) e it
0 cosht—-cos(6—-6,) R(n—it)

cos(2(0—0,)/3) j:

1
213 cosht+cos(6—0,) R(m—it)

cosh(t/3) g KR(x-I)

cos(2(0—0,)/3) j:

1
213 cosht-cos(6—0,) R(m—it)

cosh(2t/3) &Rt
cosht+cos(6—-0,) R(m—it)

1 0
-Ecos((e—eo)/s) jo

(32)

7<6—90 < 7,—n<9—90+6nN<n will only be satisfied by N =0, and



cosh(2t/3)  e"Rt=
cosht—cos(6-0,) R(n—it)

\/_n ——cos((0—6,)/3) j (33)

Similarly for 0< 6 + 6p < 3n it can be shown that

G, (1,6,2,15,00, Z5;K) = H [ —| 0+ 6| 1eF %) /R(0+ 6,)
3

+H [n—|0+0, +3n|]e "% 1 R(9+ 0, + 3m)

cos(2(0+6,)/3) I cosh(t/3) o IkR(n-it)
0 0 cosht+cos(9+60) R(m—it)

n\/_

_ikR (n—it)
cos(2(0+6,)/3) [ cont/s) e

n\/_ 0 cosht—cos(0+0,) R(t—it)

cosh(2t/3) &Rt
cosht+cos(0+6,) R(n—it)

\/_n cos((0+6,)/3) j

_ikR (n—it)
+%cos((6+8 )3 [ con2t/sy e

(34)
0 cosht—-cos(6+6,) R(n-it)

If we substitute (33) and (34) into (32) we get the exact solution for the
diffraction of a spherical wave by a soft or hard wedge.

Diffraction by a hard/soft half plane.

In terms of the Green's function the solution for the problem of diffraction
of the point source u,(r,0) = e *R®*%) /R(0-0,) by ahard/soft half planeis
given by

Upss (1,6,2,15,00,29) = Gy, (1,0,2,15,00,24:K) + Gy, (1,0,2,15,—04,24:K)

-Gy, (1,0,2,15,41-0y,20;k) — G, (1,6,2,15,—4n+6,,24;K) - (35)

By putting p = 4 in the expression (19) we obtain

_ikR(6-60)

e
G, (r,0,2,1,,0,,2,Kk) = H[r-|0-0,+8nN|]] ———
an( 0:00,20;K) % [ | 0 |] R(0—0y)

1 sin(6-6,) [ cosh(t/4) ™R
An2 Sn((0—6,)/4) Yo cosht+cos(6-60,) R(n-it)
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For -2n < 0 - 09 < 2r theonly value of N which satisfies-n <60 -00+8n <n

isN = 0. Hence
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In asimilar manner it is not difficult to show that
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By substituting the expressions (38) to (41) into (36) gives the solution for
diffraction by a hard/soft half plane as:
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6. Green's function for the Laplacian for arationa wedge.

In this final section we remark that if welet k =0 in all the previous
results we obtain the appropriate expressions for the solution of Laplace's

equation for arational wedge. For example the general Green's function given

by (12) would become
G, (r,0 60)§ZH[|662/2N|] 1
r,0,2,1,00,20;0) = 7 =000 +27mp/q+27p
% 0:90,2Z PR 0 R(6—-6,+2mmp/Qq)
149 sin(9—90+2nmp/q)sin(n/p)j°0 cosn(t/p) dt
0

pr o  SNR(0-0,+2tmp/q)/p cosht+cos(0 -0, +2nmp/g)R(m—it)

sin(((6—06, + 2mtmp/q)/p)

np m=0n=1

iqipz‘f { sn((n+1)(6 -6, + 2rmp/q)/p)sin(nt/p)

. ro cosh((p—n)t/p) dt
0 cosht+cos(0—-0,+2nmp/g)R(n—it)

_ sin(n(@—04 +2mmp/q)/p)sin((n+1)r/p)
sin((6—-6, +2mmp/q)/p)

_ ro cosh((p—1-n)t/p) dt } (43)

0 (cosht+cos(0—6,+2mmp/q))R(m—it)

where z means that summation is only carried out for integer values of N which
N

satisfy the inequality -t < 8-00 + 2 mmp/2 + 2 pN < 7t . The expression (43)
satisfies al the conditions (i)-(v) of (2) with k set equal to zero.



Appendix A

Here we derive an alternative representation for the expression
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We use the result (see Rawlins (1986b) appendix B)
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Appendix B

Here we evaluate the integral
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Appendix C

We shall here give an alternative representation for the integral
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We now use the integral representation, see Rawlins (1986b)
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