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Abstract

Along with the development of the times, people are paying more and more attention to

health issues. The incorporation of machine learning technology has led to unprecedented de-

velopment in many disease studies that are concentrated on prevalent diseases. Unfortunately,

for many rare diseases, there are still many limitations.

Friedreich’s ataxia (FRDA) is a rare inherited neurodegenerative disorder that causes

progressive damage to nervous systems and performance deterioration of physical movements.

European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS), which is

funded by the European Union project, has integrated disease-related resources and assembled

a large pool of experts to promote FRDA research. FRDA baseline data analysis and

application play a crucial role in advancing the disease research, but there are many obstacles

that prevent EFACTS from collecting patient baseline data:

• Lack of the rare disease awareness (individual): For individuals, the disease can be

overlooked by the patients’ families due to less severe pre-disease symptoms and lack

of relevant medical knowledge.

• Lack of the rare disease awareness (local hospital): For doctors in local hospitals, they

might be unable to make correct and effective diagnosis in a timely manner because of

the complexity of the clinical manifestations of these diseases and the fact that local

hospitals are likely to lack specialists and knowledge in the relevant fields, etc.

• Medical system problems: There is a lack of detailed and effective diagnostic process

for rare diseases.

• Economic & physical reasons: Medical resources for rare diseases are concentrated

in large cities. Many patients in other regions do not have the financial or physical

conditions to go to big cities for diagnosis and treatments.
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There are three challenging issues in helping with FRDA baseline data collection from

computer science perspective: 1) how to develop appropriate strategies to overcome existing

difficulties to help the collection of diseases; 2) how appropriate machine learning methods

can be used for effective baseline data collection according to the actual situation of FRDA;

and 3) how to develop novel algorithms to ensure the accuracy of data collection based on

various scenarios that may occur.

In this thesis, machine learning techniques are used to address the difficulties on the

current baseline data collection and missing value prediction in FRDA. Based on the idea

of recommendation system (RS) in machine learning, a new collection strategy and some

improved algorithms have been proposed to address various possible difficulties in data

collection. The main work is as follows:

• To help FRDA baseline data collection, a novel data collection strategy is proposed

for the FRDA baseline data by using the collaborative filtering (CF) approaches. This

strategy is motivated by the popularity of the nowadays “RS” whose central idea is

based on the fact that similar patients have similar symptoms on each test-item. By

doing so, instead of having no data at all, the FRDA researchers would be provided

with certain predicted baseline data on patients who cannot attend the assessments

for physical/psychological reasons, thereby helping with the data analysis from the

researchers’ perspective. It is shown that the CF approaches are capable of predicting

baseline data based on the similarity in test-items of the patients, where the prediction

accuracy is evaluated based on three rating scales selected from the EFACTS database.

• With the aim to facilitate the baseline data collection with improved prediction accuracy,

the framework of the proposed algorithm is constructed based on a novel hybrid model

combining the merits of model- and memory-based CF methods. The proposed hybrid

algorithm exhibits the following two main features: 1) when a patient does not have

neighbors sharing similar baseline data, the model-based CF component is activated to

employ certain clustering method to find similar neighbors based on their attributes;

and 2) in the case that a patient does have neighbors, a novel similarity measure, which

accounts for more statistical characteristics by integrating rating habits and degree of

co-rated items, is developed in the memory-based component of the algorithm in order

to adjust initial similarities between the patients. To evaluate the advantages of the

proposed algorithm, the SARA is selected from the database of EFACTS.
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• In order to handle cold-start condition during FRDA baseline data collection, a

weighted-naive-Bayes based CF (WNBCF) algorithm is proposed by taking into

account the patient side-information. To be specific, the patient side-information is

treated as weighted attributes in the WNBCF algorithm to facilitate the prediction of

the severity of different bodily functions of FRDA patients. An attribute-weighting

algorithm is first presented based on the mutual information to support weight selec-

tion. To improve the performance of selected weights, the particle swarm optimization

algorithm is then exploited to optimize the weights obtained by the attribute-weighting

algorithm. In order to assess the superiorities of the proposed WNBCF algorithm,

real-world FRDA datasets are chosen from the database provided by EFACTS (the

European Friedreich’s Ataxia Consortium for Translational Studies).

• A modified collaborative filtering (MCF) algorithm with improved performance is

developed for recommendation systems with application in predicting baseline data of

FRDA patients. The proposed MCF algorithm combines the individual merits of both

the user-based CF method and the item-based CF method, where both the positively and

negatively correlated neighbors are taken into account. The weighting parameters are

introduced to quantify the degrees of utilizations of the user-based CF and item-based

CF methods in the rating prediction, and the particle swarm optimization algorithm is

applied to optimize the weighting parameters in order to achieve an adequate tradeoff

between the positively and negatively correlated neighbors in terms of predicting

the rating values. To demonstrate the prediction performance of the proposed MCF

algorithm, the developed MCF algorithm is employed to assist with the baseline data

collection for the FRDA patients.
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Chapter 1

Introduction

1.1 Motivation

With the improvement of living standards, people pay more and more attention to their

health. Machine learning has great potential in helping clinicians, physicians and researchers

discover patterns from existing data sets, thereby improving medical efficiency and quality of

care. It is well known that, in the past few decades, prevalent diseases have developed at an

unprecedented rate, mainly because of the large number of patients, the high social demand,

the strong research base and the ease of data collection. By contrast, there is still a lack

of adequate social attention to rare diseases. This thesis focuses on how machine learning

techniques can be applied to conduct the treatment for rare diseases such as Friedreich’s

ataxia (FRDA). It is hoped that our studies can bring more inspirations to researchers in the

study of rare diseases.

FRDA is a rare inherited neurodegenerative disorder affecting the multi-system of the

body. FRDA occurs more frequently in Europe and America than in other regions of the

world with morbidity of 2 to 4 per 100, 000 individuals. To date, there have been no effective

treatments for FRDA. To investigate the FRDA in a comprehensive way, a group of experts

formed the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) in

2010, aiming to build the first representative international European patient FRDA registry

(funded by the European Union project). EFACTS is committed to collecting and analyzing

different kinds of baseline data from FRDA patients including demographics, clinical rating

scales, quality-of-life measures, etc., which are of significant use in clinical trials. Up to now,

more than one thousand FRDA patient baseline data have been collected by EFACTS from
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19 study sites in 9 countries. Although the database is continuously updated every year, the

speed of the data collection is slowing down. There are several main difficulties for EFACTS

in collecting patient baseline data and follow-up data:

• Physical reasons: FRDA is a neurodegenerative disorder, which means FRDA patient’s

physical condition is not good and will slowly deteriorate so that many patients cannot

travel long distances to study sites for testing.

• Economic reasons: EFACTS study sites are all located in large cities. Many patients in

other regions may not have enough financial means to go to big cities for testing.

• Psychological reasons: Fear, worry, anxiety and so on.

According to the morbidity rate, Europe may have more than 28,000 FRDA cases.

Unfortunately, only about 3.6% of the FRDA patients are recorded in the EFACTS database.

Many studies have shown that the clinical sample sizes in many existing FRDA studies are

far too small to be convincing even if these studies have positive clinical results [108, 129,

109, 31]. In this case, there is an urgent need to introduce some advanced methods to help

EFACTS collect more patient data so as to provide better support in clinical trials. More

baseline data can not only provide sufficient clinical candidates for clinical trials but also

help promote better disease research in terms of effective biostatistical analysis. It should be

mentioned that the traditional baseline data collection method is through patient interviews,

questionnaires, observations and coordinated tests at the study sites. The doctor will give the

patient ratings on the corresponding test-items.

To overcome such challenges, in this thesis, we aim to adopt machine learning techniques

to find a quick, convenient, intelligent, and effective way to assist FRDA patient baseline

data collection. Inspired by the idea of the nowadays popular recommendation systems (RS),

recommendation techniques seem to be a good candidate to assist in collecting FRDA patient

baseline data. As one of the most famous recommendation techniques, collaborative filtering

(CF) has been widely used in practice due to its great success in modeling the characteristics

of users and items. The main idea of CF is to analyze user behaviors in order to seek a group

of users who share similar interests in the communities, and then the items are recommended

to the target user based on behaviors generated by his/her similar users.

The reasonable assumption is made that similar patients show similar symptoms, just like

similar users exhibit similar interests on items in RSs. Note that the main advantage of using

RS is that not all ratings are required for all test-items. FRDA patients do not have to go to
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study sites to take the assessments. As long as the patients/their family can provide some

reliable baseline data at home, the unprovided parts are considered as missing values. The

prediction of the missing rating values can be considered as a typical RS problem where the

patient is treated as a “user”, and the test-item is regarded as an “item”. By resorting to the RS,

the FRDA researchers would be provided with certain predicted baseline data (produced by

the proposed RS) on patients who cannot attend the assessments for physical/psychological

reasons, thereby helping with the data analysis from the researchers’ perspective.

In this thesis, the scientific problems can be summarized as follows:

1. Using suitable machine learning algorithms to reveal the relationship between the

known data provided by the patients and the unknown data during the data collection

process;

2. Conducting in-depth research on how to accurately describe the relationship between

patients through known data under different sparse conditions;

3. Studying the influence of the cold-start problem on the RS and exploring the effect of

user side-information to solve the cold-start problem;

4. Exploring the feasibility of combing the patients’ positive and negative neighbors and

test-items’ positive and negative neighbors in the RS.

The main purposes of this thesis are to 1) launch a major study on developing a novel

strategy using recommendation techniques to assist FRDA patient baseline data collection,

and 2) develop advanced algorithms to adapt different situations (sparsity situation, cold-start

situation and incomplete information situation) to improve the prediction accuracy of missing

values during the data collection process. In Chapter 3, a novel data collection strategy is

proposed for the FRDA disease based on the memory-based CF approaches. The proposed

strategy makes it possible to construct a new framework for data collection by using popular

CF methods. In Chapter 4, a novel hybrid CF framework is introduced, whose idea is to

switch between the model-based CF and the memory-based CF according to the actual

situation for the comprehensive use of incomplete FRDA baseline data. In Chapter 5, a

weighted-naive-Bayes based CF (WNBCF) is proposed to tackle the cold-start problem

during the FRDA patient-baseline data collection, which provides valuable support to the

clinical trials and further disease research. In Chapter 6, a modified CF (MCF) algorithm is

proposed, which not only combines the merits from the UBCF and IBCF methods but also
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makes full use of the positively and negatively correlated neighbors in predicting the missing

values.

1.2 Contribution

The main contributions of the thesis are listed as follows.

• To improve EFACTS baseline data collection, we aim to provide a novel strategy

by adopting the idea of the nowadays popular recommendation system (RS) which

is based on the fact that similar patients have similar symptoms on each test-item.

The proposed strategy makes it possible to construct a new framework for the data

collection by using popular CF methods. The proposed strategy does not have any

geographic restrictions on the required data and, as a result of the developed framework,

the predicted data provides an alternative database for FRDA data analysis that would

potentially assist clinical trials.

• We propose a hybrid CF algorithm for baseline data prediction of FRDA patients. The

proposed algorithm switches between model-based and memory-based CF techniques

according to degrees of the data sparsity and individual differences. More specifically,

the model-based CF is used to deal with the situation where a patient does not have

similar neighbors because of the sparsity, and the memory-based CF is exploited for a

patient who has neighbors but is under uncertainties arising from individual differences.

In the former case, the model-based CF is harnessed to find similar neighbors with

similar FRDA symptoms by clustering this patient into the class based on his/her

attributes. Here, it is quite challenging to choose key attributes for clustering because

1) we need to analyze what kinds of attributes FRDA patients can provide; 2) based

on the pathology of FRDA and basic statistical analysis, key attributes are picked out

from the results of the previous step to conduct the clustering; and 3) the most suitable

number of clusters is determined according to the clustering results. In the case of a

patient with similar neighbors, we adopt an advanced memory-based CF algorithm

with an improved similarity measure, where both the patient rating habits and the

number of co-rated test-items are taken into account from a unified viewpoint.

• A weighted-naive-Bayes based CF (WNBCF) recommendation algorithm is proposed

to solve the cold-start problem. The naive Bayes (NB) method is a popular classifica-
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tion method based on the Bayes’ theorem and the independence assumption between

the features. According to the characteristics of the NB method, in practical applica-

tions, the patient side-information (attributes) is adopted to discover the relationship

with ratings (classes) on test-items. The patient side-information is the basic and useful

information of a patient which include, but are not limited to, patients’ age, gender,

onset age and so on. The NB algorithm assumes that all the attributes have the same

importance for classification. In fact, different attributes may have different influence

on classification performance. As such, a weighted NB algorithm is developed whose

main idea is to assign different attributes with different weights according to their

significance in improving the performance of the classifier. In this situation, a chal-

lenging problem is to allocate proper weights for each attribute to achieve a superior

classification performance. In this context, the weight selection can be treated as an

optimization problem, and it becomes a rather challenging task on how to effectively

solve such a constrained optimization problem from the perspective of FRDA patient

baseline data collection.

To formulate an optimization problem, the utilization of reasonable constraints would

definitely help improving both the reliability and the accuracy of the optimization

results. In the optimization problem addressed in this thesis for the FRDA patient

baseline data collection, the first constraint is an inequality constraint that reflects

the relationship between the weights. The actual situation is that different patient

side-information has different effects on the ratings of test-items. To describe these

effects, mutual information (MI) is introduced in this thesis to investigate the mutual

dependence between the attributes and classes. The MI is chosen as an index to reflect

the importance of each attribute in the classification. The more important the attributes

are, the larger their weights would be. Another equality constraint is that the sum of

weights is required to be 1. As such, the problem becomes a constrained optimization

one. To facilitate the subsequent development of the optimization algorithm, the

penalty-function method is utilized to transform the constrained optimization problem

into a series of unconstrained ones.

Evolutionary computation algorithms have shown outstanding performance in solving

optimization problems in a wide range of real-world applications such as healthcare,

telecommunication, power systems, and so on. As a powerful member of the family

of optimization techniques, the particle swarm optimization (PSO) algorithm has
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been successfully employed to solve the optimization problems owing to its easy

implementation and relatively fast convergence towards satisfactory solution. In this

context, the PSO algorithm is exploited in this thesis to search for the optimal weights

for each attribute in WNBCF, where the selection of weights satisfies the constraints

mentioned previously. To test its superiority and effectiveness, our proposed method is

compared with some conventional algorithms and applied to the FRDA patient baseline

data collection problem under the cold-start condition.

• We propose a modified CF (MCF) algorithm in this thesis by combining the merits of

user-based CF and item-based CF methods. Through the utilization of the information

from both the positively and negatively correlated neighbors, the proposed algorithm is

capable of predicting the missing values in multi-aspects with satisfactory accuracy. In

particular, the PSO algorithm is dedicatedly exploited to determine (locally) optimized

weights of our proposed MCF algorithm so as to achieve: a) an adequate tradeoff

between the user-based and the item-based similarity measures; and b) a proper balance

between the positively and negatively correlated neighbors. To illustrate its application

potential, our proposed algorithm is applied to assist with the baseline data collection

for FRDA patients.

1.3 Publication

The related results in this thesis have been reported in the following publications:

• W. Yue, Z. Wang, H. Chen, A. Payne, and X. Liu, Machine learning with applications

in breast cancer diagnosis and prognosis, Designs, vol. 2, no. 2, art. no. 13, 17 pages,

2018. (Resulting from Chapter 2)

• W. Yue, Z. Wang, B. Tian, A. Payne, and X. Liu, A collaborative-filtering-based

data collection strategy for Friedreich’s ataxia, Cognitive Computation, vol. 12, no. 1,

pp. 249–260, 2020. (Resulting from Chapter 3)

• W. Yue, Z. Wang, B. Tian, M. Pook, and X. Liu, A hybrid model- and memory-based

collaborative filtering algorithm for baseline data prediction of Friedreich’s ataxia pa-

tients, IEEE Transactions on Industrial Informatics, 2020, DOI:10.1109/TII.2020.2984540.

(Resulting from Chapter 4)
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• W. Yue, Z. Wang, W. Liu, B. Tian, S. Lauria, and X. Liu, A novel collaborative

filtering approach for Friedreich’s ataxia baseline data collection under cold-Start

condition, under review (submitted to IEEE Transactions on Cybernetics). (Resulting

from Chapter 5)

• W. Yue, Z. Wang, W. Liu, B. Tian, S. Lauria, and X. Liu, An optimally weighted user-

and item-based collaborative filtering approach to predicting baseline data for Friedre-

ich’s ataxia patients, Neurocomputing, 2020, DOI:10.1016/j.neucom.2020.08.031.

(Resulting from Chapter 6)

1.4 Thesis structure

This thesis is organised into 7 chapters including the current chapter. The contents of the rest

chapters are summarized as follows:

In Chapter 2, we provide background information on knowledge that is closely related to

this thesis. This chapter begins with the background knowledge on RS. Following that, we

review one of the most successful techniques in the RS, CF. Then, we discuss the development

of the variant CF algorithms and their applications in healthcare field.

Starting by the motivation of the work, in Chapter 3, a novel data prediction algorithm for

FRDA has been proposed based on the CF methods including both the user-based and item-

based ones. By introducing the PCC to evaluate the similarities between different patients

and calculating the missing values of the patient-item matrices, the proposed algorithm has

been implemented to predict incomplete information of the new patients with an acceptable

accuracy. Numerical experiments have been carried out with four different cases (namely,

SARA, ADL, INAS, and SAI datasets) in order to demonstrate the effectiveness of the

proposed method. This proposed strategy can also be extended to facilitate the collection of

data for other diseases. New patient data made available in this way can be used to assist

patient selection for clinical trials and data analysts to achieve better management of the

underlying disease.

In Chapter 4, a hybrid model- and memory-based algorithm has been presented and

successfully applied to improve the prediction performance on FRDA baseline data. By

taking model-based CF into account, the drawback of the traditional similarity calculation

methods in finding neighbors in the sparse data condition has been overcome. Moreover,

an enhanced and more generalized similarity measure has been proposed in memory-based
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CF so as to provide a more comprehensive evaluation for the similarity degree between

two patients by considering the rating habits and degree of co-rated test-items. Large-scale

real-world FRDA experiments have been conducted, showcasing the validity and feasibility

of our algorithm.

In Chapter 5, a modified WNBCF algorithm has been proposed to solve the cold-start

problem in the FRRS. By employing the WNBCF algorithm, the patient side information is

utilized for the missing value prediction. In addition, the PSO algorithm has been applied to

automatically select appropriate weights in the WNBCF algorithm. The developed WNBCF

algorithm has been successfully applied to the actual FRDA baseline data collection problem

with satisfactory performance. In the situation that the patients are unable to provide any

rating data, our algorithm can produce reasonable prediction results, which gives a new

solution to aid the FRDA patient baseline data collection. Experiment results have shown

the feasibility and effectiveness of our proposed algorithm by comparing it with some

conventional algorithms.

In Chapter 6, an MCF algorithm has been presented and successfully employed to

deal with the data prediction problem of FRDA patient baseline data. The proposed MCF

algorithm has combined the merits of both the user-based CF method and the item-based

CF method, and has been shown to outperform the user-based CF method alone or the

item-based CF method alone. It should be pointed out that the positively and the negatively

correlated neighbors have also been taken into account in the MCF algorithm with hope to

improve prediction accuracy. In the developed MCF algorithm, the weighting parameters

have been employed to balance the usage of 1) the user-based CF method and the item-based

CF method; and 2) the positively and the negatively correlated neighbors. The PSO algorithm

has been applied to automate the selection of locally optimized weights so as to guarantee

the prediction accuracy. The MCF algorithm has been applied to deal with a real-world

disease, the FRDA, to justify its application potential. Experiment results have shown that

our proposed approach greatly improves the prediction accuracy with better performance

than either the user-based CF algorithm or the item-based CF algorithm.

In Chapter 7, we summarize the current work presented in this thesis and discuss several

directions for future research in the light of gaps in the work.
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Background

With the advent of the big data era, people enjoy the convenient services brought by infor-

mation technology, but at the same time, they are bothered by information overload. As an

efficient information filtering tool for assisting users in dealing with information overload,

recommendation system (RS) has been widely used in various fields, such as E-commerce,

movies, music, news and so on (more examples are shown in Fig. 2.1) [29, 83]. Various

recommendation algorithms is utilized in RS to learn user’s requirements from massive

user behavior data so as to recommend goods and services that users are actively inter-

ested in [57, 76, 152]. Meanwhile, according to the different user behaviors, the RS adjust

the recommended contents with the hope to provide personalized recommendations. At

present, state-of-the-art recommendation techniques can be roughly divided into CF-based,

content-based and hybrid recommendation techniques [4, 22, 36, 89].

In recent years, the health topic has gained increasing attention from people around the

world due to the rapid development of the modern society and the dramatic improvement of

living standards. More and more people are eager to live a healthy life and maintain a healthy

body state. The modern view of health tells us that health is no longer merely the absence of

disease. World Health Organization (WHO) defines health as a state of complete physical,

mental and social well-being but not merely the absence of disease or infirmity. On the one

hand, health contributes to longevity. On the other hand, health determines the quality of

life and career success to a large extent. Non-communicable diseases are currently the main

killers that endanger human health. Many common non-communicable diseases, including

cardiovascular diseases, cancer, chronic respiratory diseases, diabetes, etc., account for more

than 63% of the total deaths worldwide. The main causes of these diseases are occupational
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and environmental factors, as well as bad life and behavior. Generally, most of the causes

can be prevented, and behavior changes can effectively improve the current health state.

In terms of diet, people increasingly pursue green and healthy food. Physically, various

health checks are becoming more frequent. People also pay more and more attention to phys-

ical exercise. However, due to busy work, bad habits, lack of health knowledge, ambiguous

health-related information and other reasons, people cannot maintain a healthy life and may

often make wrong decisions that affect their physical and mental health. Generally speaking,

although people have different views on a healthy lifestyle, the key factors commonly consid-

ered to stay healthy are an optimistic mood, a healthy diet, and regular exercise. However,

how to maintain a positive mood? What is a healthy diet for me? And how much exercise

should I do every week? Health standards have different requirements for people of different

ages and genders. And for different individuals, the health status they pursue is also different.

Therefore, how to scientifically provide everyone with suggestions that meet their needs to

help them stay/promote/improve the health condition is a huge challenge.

In recent years, the RS for health has become a hot topic in the RS community [130]. Due

to the unique advantages of RS and its rapid development in recent years, experts believe that

RS can aid the healthcare field by providing valuable and accurate advice, including, but not

limited to, disease severity estimation, disease diagnosis and treatment, health management

and promotion, behavioral change [59, 65, 189, 32, 188, 47]. At the same time, applications

of the RS in the healthcare field also pose huge challenges to the RS community as never

before, for example, the accuracy of estimation, reliability of diagnosis, satisfaction and

diversity of recommendations, etc [46, 124, 165, 153, 71].

With the continuous development and the deepening applications of the RS in the health

field, new application scenarios are emerging one after another, which brings both new

opportunities and challenges to the RS community. The purpose of this chapter is to provide

a state-of-the-art overview of recommendation techniques with applications to healthcare. It is

aimed to provide the readers with a background on different recommendation techniques and

how such techniques are applied in different health scenarios. Recalling the existing literature,

a rather large number of results have been reported on ‘recommendation techniques over

health’. Among those results, it is found that the following topics are the most investigated:

dietary (or food) recommendation, lifestyle recommendation, training recommendation,

decision-making for patients/physicians, and disease-related prediction.
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In this chapter, we aim to review some most common techniques in RS, which are

content-based methods, CF methods and hybrid methods. We also provide their applications

in the healthcare field. First, a brief introduction of RS is given in Section 2.1. After that,

the content-based RS is briefly introduced in Section 2.2. Then, the background of the CF is

introduced in Section 2.3. We describe two types of methods in CF which are memory-based

CF and model-based CF, and then the typical examples of these two methods are shown

in Subsections 2.3.1 and 2.3.1. In Section 2.4, hybrid methods are provided and several

forms of hybrid systems are given. Finally, the applications of recommendation techniques

in healthcare field are presented in Section 2.6.

Recommendation 

Systems

Categories Recommendation 

Systems

Categories

E-commerce E-commerce

E-commerce Music

Music Music

Video Video

Movie Movie

Social network Social network

News News

Fig. 2.1 Examples of different recommendation systems in reality

2.1 Recommendation system

Given an RS consisting of m users and n items, the user profiles are denoted by a m×n matrix

called the user-item matrix Rm×n. Each row in the user-item matrix represents a user’s rating

for different items, and each column represents an item rated by different users. The sets

of users and items are defined as U = {u1,u2, . . . ,um} and I = {i1, i2, . . . , in}, respectively.

Each element ru,i in R represents that the user u rates the value r on the item i, where u ∈U ,

i ∈ I. If the user u has rated the item i, then r ∈ 1,2, . . . , r̃ (r̃ is the upper bound of the ratings).

Furthermore, ru,i = /0 if the user u does not rate the item i. Generally speaking, the commonly

used rating scale is numerical rating scale. For example, in a 5-star numerical rating scale,

the system allows respondents to rank their feedback on a 5-point scale form 1 to 5, where 1

indicates the worst score and 5 indicates the best score.
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Recommendation systems 

Content-based methods Collaborative filtering methods Hybrid methods

Memory-based Model-based 
User-based

Item-based

Clustering

Deep neural networks

Matrix factorization

Fig. 2.2 Different types of recommendation algorithms

2.2 Content-based filtering

Content-based filtering is one of the common techniques in building RS. In a content-based

RS, new items will be recommended to a user according to their item features similar to the

items that this user likes. The way to determine whether a user likes an item is usually based

on the user’s explicit feedback and implicit feedback. There is a typical example in Fig. 2.3

to show how content-based RS works, for example, if a user has watched an action movie,

then the system will suggest other action movies that the user has not watched before.

The high-level architecture of content-based RS mainly has the following three compo-

nents:

• Content analyzer (feature extraction): For structured information, the content features

can be easily extracted. For unstructured information, such as music or text files,

pre-processing is needed to extract the content features. The main function of the

content analyzer is to utilize feature extraction techniques to extract the item contents

from different data sources so as to facilitate the subsequent processing.

• Profile learner (user profile learning): The user preference data are used here, includ-

ing explicit feedback and implicit feedback, to build a user-specific interest model.

Machine learning techniques are often used to analyze preference data to construct an

accurate use profile.
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• Filtering and recommendation: In this step, the recommendations are given by match-

ing the user profile and item contents.

Similar movies

similar content

Content-based method 

Fig. 2.3 Illustration of content-based method

To sum up, the basic principle of the content-based method is to analyze the characteristics

of items that the target user has rated and then recommend new items containing these

characteristics to the target user. This recommendation method only depends on content

information, so it will be affected by two aspects, namely, one is limited content analysis,

and the other is over-specialized. Limited content analysis means that user information and

item information in the system are sometimes limited. Over-specialization refers to the lack

of differentiated recommendations.

2.3 Collaborative filtering

Since the appearance of the first papers on CF in the mid-1990s, over the decades, CF-based

techniques have not only been thoroughly studied in academia but also widely used in

industrial circles such as Amazon, YouTube, and Netflix. Unlike the content-based filtering,

the CF is to provide recommendations by processing a large amount of user behavior data

collaboratively. CF only utilizes the user behavior data and does not consider the content

information of the items, so it will not be restricted by limited content. As long as a user has
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new behaviors for different items, there are certain differences in the recommended content.

Therefore, CF can effectively solve the two disadvantages of content-based filtering.

The CF is to make recommendations by analyzing a large amount of user behavior data.

It is well known that in reality users tend to rate only a small number of items, so the rating

matrix is often sparse. Take the example of the movie review site, many users may only

rate a small number of movies, and these known ratings are referred to as observed ratings.

Unknown ratings are referred to as missing ratings or unobserved ratings. More generally,

the CF is to estimate unknown ratings from known ratings. According to the different data

analysis methods, the well-known CF-based methods can be categorized as memory-based

CF algorithms and model-based CF algorithms.

2.3.1 Memory-based CF algorithms

Memory-based CF algorithms are also known as neighborhood-based CF algorithms. De-

pending on the object, memory-based CF algorithms can be divided into the user-based CF

and item-based CF approaches. The main idea of user-based CF is to analyze user behaviors

to find a subset of users (named as neighbors) who are sharing similar tastes. Then, the

items will be recommended to a target user based on his/her neighbors’ tastes. Similar to the

user-based CF, the item-based CF considers the similarity between items rather than users,

and then recommends to a target user those items similar to the ones the active user preferred

in the past.

User-based CF

Specifically, the user-based CF approach is to utilize the neighbors who are similar to user u to

predict the rating ru,i that the user u is likely to give on item i by observing his/her neighbors’

ratings on that item. Based on the previous explanation, the user-based CF approach can

be divided into four parts: similarity computation, neighbor selection, rating prediction and

recommendation.

• Similarity computation: For any user, once he interacts with the platform, his behav-

ior data are stored in the system and described as a vector. The similarity between users

can be described by the distance relationship between the vectors. This part shows how

to calculate the similarity between two users by different similarity measures. Some

commonly used similarity measures include:
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Similar users

watched

watched

User-based Collaborative filtering

Fig. 2.4 Illustration of user-based CF method

Cosine:

SimCOS(u,a) =
∑i∈I(ru,i)(ra,i)√

∑i∈I(ru,i)2
√

∑i∈I(ra,i)2
(2.1)

where SimCOS(u,a) is the cosine similarity between users u and a; I = Iu ∩ Ia is the

subset of items that both user u and user a have rated together, with Iu (respectively, Ia)

representing all items that user u (respectively, a) has rated. ra,i means the rating value

that user a has rated on items i.

Adjusted Cosine:

SimAC(u,a) =
∑i∈I(ru,i − r̄i)(ra,i − r̄i)√

∑i∈I(ru,i − r̄i)2
√

∑i∈I(ra,i − r̄i)2
, (2.2)

where r̄i denotes the average value of all user ratings for item i.

Pearson Correlation Coefficient:

SimPCC(u,a) =
∑i∈I(ru,i − r̄u)(ra,i − r̄a)√

∑i∈I(ru,i − r̄u)2
√

∑i∈I(ra,i − r̄a)2
, (2.3)

r̄u and r̄a denote the average values of different items that users u and a have rated,

respectively.

Compared to cosine similarity, adjusted cosine (AC) and Pearson correlation coefficient

(PCC) do the data centralization. The difference between AC and PCC lies in the way
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of centralization. More specifically, AC is to subtract the average rating of all users for

this item, while PCC is to subtract the average rating of all items given by the current

user. Although many literatures have proved that using PCC similarity measure can

bring higher prediction accuracy in most cases, which similarity measure to choose

needs to be determined according to the actual situation [20, 52].

• Neighbor selection: This part selects the nearest k neighbors based on the similarity

degree to make subsequent predictions. Neighbors are a group of users that similar

to the target user. In a typical scenario, the number of k will be selected from the

following three main options:

1) Experience-based option: the number of neighbors is usually chosen between 20

and 50;

2) Experiment-based option: the optimal number of neighbors is selected by cross-

validation;

3) Rule-based option: This option usually sets a rule to help select, for example, the

similarity between users should be greater than 0.5 and joint rated items are more than

3.

Rating prediction: The target user’s rating of an unrated item depends on the ratings

of this item by his neighbors. Assume that ua is a set of neighbors of user u. The most

commonly used rating prediction formula is:

r̂u,i = ū+
∑ua Sim(ua,u)(rua,i − ūa)

∑ua Sim(ua,u)
, (2.4)

where r̂u,i is the predicted value of ru,i; ū is the mean value of different items provided

by user u; and ā is the mean value of items provided by the user a.

Compare to the formula that takes an average of all neighbors’ ratings, (2.4) takes

into account the effect of similarity between users on the results. Similarity can be

seen as the weight of a neighbor’s rating. The greater the weight, the more important

this neighbor’s rating is to the final result. The first part of the formula reflects the

overall rating habit of the target user, and we can also understand this part as the initial

expectation for the item. Then, the second part of the formula is to revise previous

expectation by using the neighbors’ ratings for this item.
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• Recommendation: This part ranks the items according to the size of the predicted

rating and then recommends the items with the highest ratings to the target user.

Item-based CF

Similar movies

(many people have 

watched both)

w
at

ch
ed

w
at

ch
ed

Item-based Collaborative filtering

Fig. 2.5 Illustration of item-based CF method

In 1998, the concept of item-based CF was proposed and used by Amazon.com [88].

Item-based CF is similar to user-based CF in terms of steps and purpose, but the starting

points of their hypothesis are different. The main idea of item-based CF is that you like

something similar to what you like before. An example is shown in the Fig. 2.5, if many

users have watched a movie A and a movie B at the same time, the item-based CF deems that

movies A and B are similar. Then, if the target user has watched movie A, the item-based

CF will recommend movie B to this user. To be specific, the first step of item-based CF is to

determine the similarity between items. Then, when the target user behaves toward an item,

the item-based CF method will recommend similar items to him.

Item-based CF and user-based CF have the same procedure. There are just some differ-

ences in similarity computation and rating prediction parts. Item-based CF considers the

similarity between items i and j rather than between users u and a. In the rating prediction

part, in order to predict user u’s rating on item i, item-based CF is to correct the average
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value of all users’ ratings on item i by using the ratings of other similar items that user u

likes. Here, we only list similarity computation and rating prediction parts:

• Similarity computation: This part calculates the similarity between items and three

commonly used similarity measures are as follows:

Cosine:

SimCOS(i, j) =
∑u∈U(ru,i)(ru, j)√

∑i∈I(ru,i)2
√

∑i∈I(ru, j)2
, (2.5)

where U =Ui ∩U j is the subset of users who have rated both items i and j, where Ui

(respectively, U j) denotes the users who have rated item i (respectively, j).

AC:

SimAC(i, j) =
∑u∈U(ru,i − r̄u)(ru, j − r̄u)√

∑i∈I(ru,i − r̄u)2
√

∑i∈I(ru, j − r̄u)2
, (2.6)

PCC:

SimPCC(i, j) =
∑u∈U(ru,i − r̄i)(ru, j − r̄ j)√

∑i∈I(ru,i − r̄i)2
√

∑i∈I(ru, j − r̄ j)2
, (2.7)

• Rating prediction: The target user’s rating of an unrated item is based on his ratings

on items that similar to this unrated item. Assume that i j is a set of neighbors of item i.

The rating prediction formula is:

r̂u,i = ī+
∑i j Sim(i j, i)(ru,i j − ī j)

∑i j Sim(i j, i)
, (2.8)

User-based CF vs. item-based CF

Although both user-based CF and item-based CF predict how user u will rate the item i, the

emphasis of the two methods is different according to the previous explanation. Item-based

CF usually recommends items that are similar to what have been purchased or viewed.

Similarity as defined here refers to the similarity of items being purchased or rated by

the users rather than the similarity of the item contents, and similarity calculations are

based on either explicit feedback (rating) or implicit feedback (viewing, purchase) of users.

Specifically, item-based CF does not take product attributes into account but rather calculates

the similarity between items by analyzing the user behavior history data. For example,

historical information shows that users who give high marks to the movie “Justice League”

tend to like the movie “Frozen” even though both movies are very different in content.
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Even so, if a user gave a high mark to Justice League, the item-based CF algorithm would

recommend Frozen to him.

User-based CF considers the hotspots in the community. There will be many similarities

between similar users, while at the same time there will be some differences, so user-based

CF will recommend something novel. Item-based CF and user-based CF each have their

own advantages and shortcomings. In terms of accuracy, item-based CF is usually superior

to user-based CF, while in terms of variety and novelty, user-based CF is usually better

than item-based CF. Therefore, user-based CF is more suitable for news recommendations,

while item-based CF is more suitable for e-commerce recommendations. In terms of time

complexity, the offline time complexity of UBCF and IBCF is O(m2 · n) and O(m · n2),

respectively, where m denotes the number of users and n denotes the number of items. If

there are too many users in the user-item matrix, then user-based CF will be very time-

consuming in calculating the similarity between users. Correspondingly, if there are too

many items, then item-based CF will be very time-consuming in calculating the similarity

between items. In the actual application, which algorithm should be used will depend on the

specific situations of the target requirements.

2.3.2 Model-based CF algorithms

With the advent of the big data era, the amount of data becomes larger and larger. This

leads to a very large size of the user-item rating matrix. In this case, the memory-based

CF methods will consume a lot of computing resources, resulting in a decrease of system

performance. The model-based CF recommendation algorithms can provide faster training

speed, occupy less memory and obtain better accuracy in most cases. First, the model-based

CF recommendation algorithms build a model and then predict the unknown information

by training the known information in the user-item rating matrix. This is similar to the

traditional classification methods in machine learning, so we can find that many classification

models are generalized to CF scenarios, such as decision tree, Bayesian classifier, support

vector machine, neural network, and so on. However, it is very difficult for these models to

complete the unknown information in the matrix when the matrix is very sparse. The matrix

factorization technique has always been favored and paid attention to by researchers because

of its advantages and scalability in dealing with sparse problems. Next, the basic matrix

factorization technique in RS is briefly introduced.
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Matrix factorization-based CF

Matrix factorization is one of the most commonly used algorithms in RSs [99, 104, 101, 102].

In the "Netflix price" contest, a large number of recommendation algorithms based on matrix

factorization technology have emerged. Because of its excellent accuracy and scalability,

matrix factorization technology has attracted more and more researchers’ attention.

When talking about matrix factorization techniques, singular value decomposition (SVD)

is the first thing that comes to mind because it has been widely used in the field of mathematics

for a long time. A fatal flaw in SVD is the requirement that the user-item matrix must be

dense, which is far away from the practice applications. Although some methods can be used

to simply fill in missing values, it is often not effective in the face of extreme sparseness of

user rating data. At the same time, when the number of users and products is very large, the

computation of traditional SVD is also huge.

In 2006, Simon Funk proposed the Funk-SVD, also called latent factor model (LFM) in

his blog, which has had an important impact on the RS community. Given an RS consisting

of m users and n items, the user profiles are represented by a m×n matrix called the user-item

matrix Rm×n. The user-item matrix is a sparse matrix containing the part of known elements

and the part of unknown elements. The LFM is a form in which user-item matrix Rm×n is

decomposed into user matrix Pm×k times item matrix Qk×n in order to obtain a new user-item

matrix R̂ with no missing values, where k is the dimension of the latent factor. Please note

that k determines the expression ability of the hidden vector. The greater the value of k, the

stronger the expression ability. In practical applications, the number of k is determined by

experiments.

By adjusting the elements in user matrix P and item matrix Q to minimize the difference

between the known elements in user-item matrix R and their corresponding elements in new

user-item matrix R̂, the predicted value of the unknown elements in R can be got in the new

matrix. The specific mathematical expression is as follows:

R ≃ P×Q = R̂, (2.9)

for the known value ru,i in the matrix R, its corresponding value in the matrix R̂ is:

r̂u,i =
K

∑
k=1

pu,kqk,i, (2.10)
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where K is the number of latent factor, pu,k represents the value at the uth row and kth column

in P and qk,i represents the value at the kth row and ith column in Q.

The loss function is to minimize the SSE between true and predicted values of rated

positions in R:

Loss = argmin∑
u,i

(ru,i − r̂u,i)
2 , (2.11)

The suitable user matrix P and item matrix Q are obtained by minimizing the SSE

between the known rating values in matrix R and the predicted value in the corresponding

position in R̂. After obtaining the user matrix P and the item matrix Q, the full rank matrix R̂

is obtained by multiplying these two matrices. From the R̂, the predicted ratings are obtained.

Next, the ratings can be sorted and then recommended to users.

Improvements to the LFM include the addition of regularization terms to prevent overfit-

ting due to oversize of an element inside user matrix P and item matrix Q. The equation is

shown as follows:

Loss = argmin∑
u,i

(ru,i − r̂u,i)
2 +λp ∑

u,k
∥pu,k∥2 +λq ∑

k,i
∥qk,i∥2, (2.12)

where λ1 and λ2 are the positive constants denoting the regularizing coefficients for user

matrix P and item matrix Q respectively.

Considering that many properties are unique to users or items, it is necessary to consider

the characteristics of users and items themselves. For example, some users have harsh ratings

and some users have loose ratings, or some items have good quality and some items have

good quality. Therefore, another improvement is the addition of bias terms, and (2.9) is

rewritten as follows:

r̂u,i = σ +bu +bi +
K

∑
k=1

pu,kqk,i, (2.13)

where σ is the average value of the matrix R, bu is the bias related to user u and bi is the bias

related to item i. The updated loss function is:

Loss = argmin∑
u,i

(ru,i − r̂u,i)
2 +λ1 ∑

u,k
∥pu,k∥2 +λ2 ∑

u,k
∥qk,i∥2 +λ3 ∑

u
∥bu∥2 +λ4 ∑

i
∥bi∥2,

(2.14)
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where λ3 and λ4 are the positive constants denoting the regularizing coefficients for bu and

bi.

Other advanced LFM model can be found in [103, 104, 169, 170, 136, 105, 106].

Fig. 2.6 Illustration of matrix factorization

Other model-based CF

Deep learning has flourished in areas of computer vision, pattern recognition, speech recog-

nition and so on. In recent years, the application of deep learning in RSs has also been very

widespread. A large number of deep learning models have been applied to the RSs, which

provide many novel recommendation frameworks to the recommendation community and

improve the performance of the RSs [190]. Deep learning can effectively mine the non-linear

relationship between users and items and learn the hidden features of users and items. Some

of the most commonly used deep learning models in RSs will be briefly introduced, which

are multilayer perceptron (MLP), autoencoder (AE), convolutional neural network (CNN)

and recurrent neural network (RNN). A comprehensive summary of the research on RSs

using deep learning techniques can be found in [190].

MLP is a feed-forward artificial neural network, which contains at least one hidden layer

between the input layer and the output layer. MLP is a model that represents the nonlinear

mapping between input and output vectors. Most of the existing recommendation algorithms

are linear methods, so the knowledge of MLP is able to provide nonlinear transformation

to existing methods. Neural CF [51] is the representative work of the MLP model in RSs.

Neural CF can achieve a significant result by using a neural architecture to replace the inner
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production on the user- and item-latent vectors in the MF model. By leveraging the neural

architecture of MLP, neural CF can learn the nonlinear interaction between the users and the

items. Other well-known works can be found in [86, 163, 85].

AE is a kind of artificial neural network that is used for unsupervised learning. By

taking the input data as the learning target in the output layer, AE is used for dimensionality

reduction or feature learning. In general, the data in the bottleneck layer represent the low

dimensional form of the input data. Representative AE models are denoising AE, sparse AE,

contractive AE and variational AE [74, 111, 122, 161]. AE is one of the most successful

and extensive deep learning models applied in the RSs. AutoRec [126] trains the AE model

so that the observed ratings in the output layer are as good as possible as the input layer.

In this way, the bottleneck layer can learn the user features through the observed ratings to

predict unobserved ratings. In the input layer, the ratings of unobserved part are set as 3. The

loss function only considers the observed ratings without taking into account the unobserved

ratings. The extension of AutoRec can be found in [139], which introduces side-information

to alleviate sparsity and overcome cold start problems. Other well-known works of different

AE models in RSs are [84, 150, 174].

CNN is a feed-forward neural network with deep structure. In general, CNN consists of

three structures which are convolution, activation and pooling. CNN can effectively capture

features from a large amount of data, so it has achieved great success in many research fields,

such as speech recognition, image recognition, natural language processing, etc. The main

application of CNN in the RS focuses on feature extraction of data from multiple sources,

which can help the RS effectively extract the features of users and items to improve the

recommendation accuracy. In the process of fashion consumption, consumers’ preference

for products has a great relationship with the visual appearance of products and will evolve

over time. In order to provide users with more accurate recommendations, He and McAuley

[49] have adopted the CNN model to extract visual features from the product images and

identify evolving trends to evaluate the complex and evolving visual elements considered

by the users in purchasing the products. A Deep Cooperative Neural Networks model has

been proposed in [194] which consists of two parallel neural networks. One neural network

consists of learning user behavior through the user comments, and the other one consists

of analyzing what the user has commented to determine the features of the product. These

two parallel neural networks first use the word embedding technique to obtain semantic

information in comments. Then, the CNN model is used to discover multilevel features for
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users and items from semantic information. Finally, the two networks are coupled together,

and factorization machine techniques are utilized to interact with the latent factors learned by

CNN to complete the final prediction.

RNN is a kind of neural network with short-term memory capabilities to describe the

relationship between the current output of a sequence and previous information. In RNN, a

neuron can receive not only information from other neurons but also its own information.

These neurons form a network structure with loops and memories. In general, RNN is used

for sequential data processing. In session-based recommendation, RNN can be used to

integrate current browsing history and browsing order to effectively model the dynamics

of user preferences to provide more accurate recommendations. GRU (gated recurrent unit,

a variant of RNN) has been used in [55] to model short session-based data. Other RNN

methods used in session-based Recommendation can be found in [90, 171, 142].

2.4 Hybrid algorithms

Hybrid methods

Ensemble design
Switching

Cascade

Feature augmentation

Feature combination

Meta level

Mixed 

Weighted

Monolithic design

Mixed system

Fig. 2.7 Illustration of hybrid algorithms

Hybrid algorithms are a class of algorithms that combine the advantages of content-based

and CF-based algorithms to process different data sources in order to improve prediction

accuracy [155, 72]. Three primary ways of creating hybrid RSs can be found in Fig. 7, which

are ensemble design, monolithic design and mixed system [6]. These three ways include 7
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commonly used methods, which are weighted, switching, cascade, feature augmentation,

feature combination, metal-level and mixed [22, 63, 6].

Ensemble design combines the results of different recommendation algorithms into a

single output by some rules. The commonly used methods are:

• Weighted: The weighted linear combination of the prediction results from different

recommendation techniques is used to obtain the final prediction result.

• Switching: According to current needs, this method switches between various recom-

mendation techniques.

• Cascade: This is a multistage method using the sequential design that the subsequent

recommendation techniques will optimize the results of the previous one in order of

priority.‘

• Feature augmentation: This is another multistage method using the sequential design

that the output of the previous recommendation technique is used as the input features

to the subsequent recommendation technique.

Monolithic design integrates multiple recommendation strategies into one algorithm. The

representative methods are:

• Feature combination: The features from different data sources, for example, the user

ratings and content features, are combined together and used to do the recommendation.

• Meta-level: The model generated by the previous recommendation technique becomes

the input of the subsequent recommendation technique.

Mixed system is to show a list of all the recommendation results obtained by different

recommendation techniques to users.

2.5 Evaluation of RSs

Typical metrics used in RSs can be divided into three groups on the basis of their particular

purposes:
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• Accuracy-based metrics: MAE (mean absolute error) [19] and RMSE (root mean

squared error) [14] are the most representative metrics in this group. The purpose of

accuracy-based metrics is to measure the average error between the true and predicted

values [44]. RMSE is more sensitive to large errors than MAE, therefore, RMSE

is more useful for the system where large errors are particularly undesirable. The

mathematical expression of MAE and RMSE are:

MAE =
1

|T | ∑
(u,i)∈T

|ru,i − r̂u,i| (2.15)

and

RMSE =

√
1

|T | ∑
(u,i)∈T

(ru,i − r̂u,i)2 (2.16)

where |T | represents the total number of predicted values in the testing set, ru,i is the

true value and r̂u,i is the predicted value.

• Decision-based metrics: The most popular metrics among these are Precision [79] and

Recall [28]. The purpose of decision support metrics is to distinguish right predictions

from those wrong predictions. Precision represents how many selected items are

relevant and recall represents how many items are selected:

Precision =
# of relevant recommendations

# of recommended items
(2.17)

and

Recall =
# of relevant recommendations

#of all possible relevant recommendations
(2.18)

Precision (respectively, recall) takes all recommended items (respectively, all pos-

sible relevant recommendations) into account. If only top N recommendations are

considered, P@N (precision at cutoff N) and R@N (recall at cutoff N) are used to

represent.

• Rank-based metrics: The RS generates a recommendation list for user by analyzing

his preference, and then rank-based metrics are used to evaluate the effectiveness and

accuracy of this recommendation list. The most representative rank-based metrics are
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MRR (mean reciprocal rank) and nDCG (normalized discounted cumulative gain) [64].

MRR measures the mean of the reciprocal ranks of multiple relevant items:

MRR =
1
|N|

|N|

∑
i=1

1
ranki

(2.19)

where ranki represents the rank position of i-th item when it first appears. And nDCG

is used to measure the ranking quality compared to the ideal situation:

nDCGp =
DCGp

IDCGp
(2.20)

where DCGp is the discounted cumulative gain accumulated at rank position p,

DCGp =
p

∑
i=1

2reli −1
log2(i+1)

(2.21)

and IDCGp is the ideal discounted cumulative gain accumulated at rank position p,

IDCGp =
|RELp|
∑
i=1

2reli −1
log2(i+1)

(2.22)

and reli denotes the graded relevance of the i-th item the and RELp denotes a list of

the first p items sorted by their relevance from big to small.

2.6 Applications of recommendation techniques in Health-

care

The rapid development of the times has made people’s life rhythm faster and faster. Busy

work, life pressure, irregular diet, and bad habits make more and more people in a sub-

health state. If the sub-health state is not improved in time, it will cause various diseases.

Experts believe that the recommendation technology can help people improve their health by

providing constructive personalized suggestions [159, 168]. COVID-19 pandemic in 2020

has swept across the world causing tremendous changes in people’s daily life and having

lasting impacts on the economy and society. The pandemic has also affected the entire

medical field and promoted the rapid development of health-oriented systems, services, and
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solutions, among which health RS is able to play an important role in assisting professionals

and individuals in clinical and non-clinical applications [160].

Before 2015, although there is not much work related to health RS, researchers have

noticed the great research and application potential of health RS [127]. The successful

holding of the first health RS workshop co-located with the 10th ACM Conference on RS in

2016 has provided a very good platform for communication and cooperation of researchers,

which promoted the spread and development of health RS. The experts have focused on how

to use the RS techniques to help people adopt a healthier lifestyle and improve their own

health, including the improvement of cognition, the deepening of understanding, and the

improvement of behavior.

After years of development, there is a lot of work to show that recommendation techniques

have been successfully applied to disease prediction, disease prevention, medical diagnosis,

and so on [81, 191, 115, 58, 116, 60, 144, 181]. Moreover, recent work has indicated

that health RS has developed from the applications of basic recommendation techniques

to the algorithm improvement and model innovation [62, 148]. Here, the applications of

recommendation techniques in healthcare are mainly divided into the following topics:

Dietary recommendations: The choice of healthy food is affected by many aspects

including culture, preferences, personality goals, and economic conditions. Improper choices

will not only affect physical and mental health but also pay high economic and time costs.

In general, the way that people choose healthy food is basically through active methods

rather than passive recommendations. Dietary (or food) recommendation is aimed at utilizing

recommendation techniques to provide users with personalized dietary recommendations

based on their needs, including healthier foods, correct diet combinations, and reasonable

eating methods.

In order to help people improve their health by providing healthier dietary recommen-

dations, a method of substitution among different foods has been proposed in [2], which

has used positive pointwise mutual information and truncated SVD to analyze the attributes

and contextual relationships among foods with the aim to find a set of similar alternative

foods that are healthier on the premise of satisfying the user needs. In [45], the content-based

recommendation technique has been adopted to design and implement a personal health

augmented reality assistant that can help people choose healthier alternative products in daily

life. A context-aware RS has been proposed in [8]. By analyzing whether two foods have

been consumed in similar situations to estimate the substitutability, a personalized dietary
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recommendation has been established to help people improve their eating habits instead of

simply providing general dietary guidelines.

Knowledge of eating habits is the cornerstone of the personalized dietary RS. In order

to explore the eating habits of users, Akkoyunlu et al. [9] have proposed a novel meal

based method. This method has used Doc2Vec technology to learn the similarity of meals

between users in the embedding space to determine the similarity between users and then

analyze the user eating habits through the clustering method. Food RS called DIETOS (DIET

Organizer System) has been mentioned in [5] for health profiling and diet management

in chronic diseases by using content-based filtering technique. DIETOS has provided

personalized dietary recommendations by analyzing the consumption data of healthy people

and diet-related chronic disease patients. In [24], multi-objective optimization technology

has been introduced into the RS to do healthy menus recommendation by considering healthy

nutrients, harmonization, and coverage of ingredients in the pantry. For different practical

situations, the objectives can be replaced, increased, or decreased. The knowledge-based RS

technique has been used in [70] to provide personalized health advice by using medical claims,

demographics, and symptoms. A mobile nutrition assistance system has been designed to

provide personalized persuasion for nutritional intake [82].

Ensemble topic modeling (EnsTM) based feature identification technique has been stud-

ied in [75] to achieve effective user modeling and recipe recommendation. This technique

has taken into account not only food tastes, demographics, and costs, but also user nutri-

tional preferences, which has helped users find recipes under different nutritional categories.

Alcaraz-Herrera and Palomares[10] have introduced an evolutionary RS, which has rec-

ommended diet plans and training packages to users based on their preferences and goals,

with the aim to provide users with a more comprehensive experience. As the user’s current

preferences may conflict with the new dietary goals and lead to a decline in recommendation

quality, Starke [138] has discussed how the Rasch model can be used to obtain changes

in user habits to help CF-based approaches. In order to provide valuable suggestions and

bring new thinking to the RS community, a series of CF and content-based algorithms have

been tested on food recommendations in a large online recipe dataset with the aim to give a

comprehensive analysis of different recommendation algorithms’ advantages and limitations

[148].

Healthy lifestyle recommendations: A healthy lifestyle can effectively improve peo-

ple’s health. Many experts and professional organizations have given suggestions and
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standards for healthy lifestyles. However, many people are unwilling to adhere to a healthy

lifestyle. Even if some people make a series of health plans, many of them may give up

halfway due to boredom. The personalized recommendation is an effective way to promote

their lifestyles.

A cyber-physical RS has been proposed in order to allow people to actively participate in

exergames rather than to immerse themselves in electronic media (smartphone and Internet)

in their spare time [7]. Exergaming is a form of physical exercise that can combine sports

and games to achieve the ultimate workout. This cyber-physical RS first has collected users’

measurable and implicit indicators through smartphone sensing technology, then analyzed

their preferences through the RS technology, and finally recommended the appropriate

exergames.

Siriaraya et al.[137] have introduced the project they are developing, which is a mobile

app used to record three happy things that are happened to users every day. The CF technique

has been used to analyze the historical behavior of a large number of users to find neighbors

with similar interests for the target users. Then, interesting activities and places nearby will

be recommended to the users according to their neighbors’ interests via mobile app, thus

helping users increase their sense of well-being.

Training recommendations: In order to achieve the ideal physical state, many people

may sign up for training programs or make individual exercise programs. However, users

may suddenly abandon the training programs because of decreased motivation and lack

of enthusiasm, which will make the training results fall short of success. In [157], some

model-based CF methods have been used to predict whether the users will give up their

training plan by analyzing the user behavior changes. If any abnormal situation has been

found, the RS will remind the coach in time. For the actual remote fitness platform e4fit, the

coach sometimes has to be responsible for multiple students and may not be able to help the

students in a timely manner. Boratto et al. [18] have adopted the RS technique to find the

problem in time by analyzing the student behavior data. Then, any problems have found that

will be notified to the coach, which not only effectively improves the user experience but

also reduce the burden on the coach.

The basic neighborhood-based CF method has been adopted to analyze the training plans

of a large number of runners to recommend appropriate elite training plans and competition

strategies to target users with the hope to make significant progress in a short time [15]. The

impact of two dimensions of visual aesthetics (classical and expressive) has been discussed in
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[151] on perceived credibility in fitness applications, which has provided valuable suggestions

for the design of health RS. A hybrid RS combining content-based filtering technique and

neighborhood-based CF technique has been proposed in [34]. By analyzing user preferences,

historical viewing information, and like-minded users’ information, the proposed hybrid RS

has recommended tailored fitness videos for users.

Decision-making for patients/physicians: For patients: An argumentation-based RS

called ArgoRec has been proposed to provide complex chronic patients with personalized

recommendations to effectively support their daily activities. ArgoRec has utilized argumenta-

tion for leveraging explanatory power and natural language interaction to improve the patient

experience and recommendation quality [35]. In [42], the neighborhood-based CF has been

applied to clinical decision support systems with the aim to provide the best-personalized

treatment plan for psoriasis patients.

For medical staffs: By analyzing the patient behavior, the most suitable patient ranking

list has been proposed to nursing staffs for increasing the number of closed care-gaps of

patients [147]. In order to provide consumers with timely and personalized suggestions to

improve the consumer’s medical experience, a mixed technology considering probabilistic

graphical models (PGM), random forest (RF), and CF techniques, has been proposed in [62]

to obtain a vector of recommendations. Then, an ensembler has been used to combine the

results and decide which results will be recommended to users.

Disease-related prediction: The essence of the RS can be seen as predicting unknown

data through the analysis of known data, so a large number of recommendation algorithms

are used for disease-related prediction work [11]. Most of these papers are based on the

assumption of “Similar users will have similar preferences for items” in which users and

items will be replaced by different patients and disease-related items. CircRNA, as a

marker of many diseases, is often used to identify the correlation with diseases. Lei et al.

[81] have employed a CF-based recommendation algorithm to predict circRNA–disease

associations. Based on the assumption that similar cell lines and similar drugs exhibit similar

drug responses, a hybrid interpolation weighted CF method has been adopted to predict the

missing drug response [191].

Other aspects: In addition to the five main aspects mentioned above, some work has

been proposed on the health RS improvement, sleep improvement, smoking cessation, and so

on. For improving user trust and overall experience of health RS, the prediction uncertainty

has been fully discussed in [54], which has made the recommendations of user health-related
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behaviors more transparent. In order to increase the understanding of health RS, Torkamaan

and Ziegler[146] have discussed multi-criteria grading with the aim to analyze the criteria

that users should consider when evaluating health promotion recommendations.

Context-aware lifestyle RS has been proposed to improve sleep [154]. In [56], a hybrid

RS has been used in the smoking cessation app. This app can push personalized information

to users at the right time to help them strengthen their confidence in quitting smoking.

There has been also a study designing hybrid RS through merging trust with health-sensitive

semantic information in a complex environment to accurately discover and recommend the

great potential collaborators to help medical product development [21]. Adaji et al. [3] have

discussed how hedonistic and meritocracy values affect their healthy shopping habits among

people of different ages. Pasta et al. [156] have extended the application to hearing aids. By

analyzing user preferences, the personalized hearing aid parameters have been configured for

users. More than 85 percent of participants have shown that their user experience has been

improved.



Chapter 3

A Collaborative-Filtering-Based Data
Collection Strategy for Friedreich’s
Ataxia

3.1 Motivation

Friedreich’s ataxia (FRDA) is the most common hereditary ataxia and was first identified

by a German pathologist and neurologist, Nikolaus Friedreich, in 1863 [38]. FRDA is an

autosomal recessive disease affecting the multisystem of the body regarding both neurological

and non-neurological cases, which consists of degenerative symptoms characterized by the

loss of position sense, muscle weakness, deep sensory loss, impaired coordination, dysarthria,

etc, see [25, 48]. To date, there have been no effective treatments for FRDA. To investigate

the FRDA in a comprehensive way, a group of experts formed the European Friedreich’s

Ataxia Consortium for Translational Studies (EFACTS) in 2010 with aim to build the first

representative international European patient FRDA registry. EFACTS is committed to

collecting and analyzing different kinds of baseline data from FRDA patients including

demographics, clinical rating scales, quality-of-life measures, etc., which are of significant

use in clinical trials. Most baseline data is collected through interviewing and observing the

patients without invasiveness except the blood sample for genetic testing.

A cross-sectional analysis in [118] has been reported, followed by 2-year study in [119]

using the FRDA baseline data from EFACTS. According to these earlier results, only 592

patients have been included in the database during the period from 15 September 2010 to 30
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April 2013, and the number of patients has increased to 605 by November 2013. Although

the database has been continuously updated, the speed of the data collection remains low,

which gives rise to the difficulties in making sense of data analysis. For example, only 949

FRDA patients have been involved in the database as of 31 May 2018, and the collected

data is insufficient in the statistical sense. Note that the current data collection relies on the

physical presence of the patients at the study sites who can take the tests, answer disease-

related questions and fill the clinical rating scales. Although EFACTS has 19 study sites in 9

countries now, the coverage is still far from adequate. What’s worse, the FRDA symptoms are

degenerating and the FRDA patients are usually progressively in poor physical conditions. As

in the experts’ opinions, the dilatory increase of the FRDA data size can be mainly attributed

to physical reasons such as mobility, psychological, economic ones. Furthermore, according

to the morbidity rate, there are as many as 28,000 FRDA patients across Europe, but there

are only less than 3.5% of them in the EFACTS database. As such, there is an urgent need to

improve the data collection for both new patients and follow-up assessments with hope to

enrich the baseline data required by the FRDA researchers to make meaningful research.

FRDA is a rare disease, in addition there is currently no effective therapy method to

cure this disease. For FRDA researchers, more baseline data would provide better bases for

research into this disease. Unfortunately, existing clinical studies suffer mostly from the fact

that sample sizes that are too small to be significant [107]. Many existing clinical trials have

shown tantalizing positive improvements in small numbers of FRDA patients, while the true

therapeutic potential of drug candidates still needs to be assessed on larger sample numbers

(including longitudinal studies and different onset ages) to lead to approval of a therapeutic

agent [108, 129, 109, 31]. In statistical analysis, large FRDA baseline data can be used for

discovering underlying patterns. Clearly, more significant statistical results can help identify

the health problems (occurring throughout the disease course), predict disease progression

and prognosis in a more reliable way [114, 131]. Motivated by the above discussions, it is of

vital importance to construct a practical and effective data collection strategy for enlarging

the sample size that facilitates the subsequent clinical analysis.

In this chapter, to improve EFACTS baseline data collection, we aim to provide a novel

strategy by adopting the idea of the nowadays popular recommendation system (RS) which is

based on the fact that similar patients have similar symptoms on each test-item. Note that the

main advantages of using RS is that not all ratings are required for all testing-items, which

means that the patients only need to provide some basic ratings in case they are unable to
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go to the EFACTS’ study sites. By resorting to the RS, instead of having very limited data,

the FRDA researchers would be provided with certain predicted baseline data (produced by

the proposed RS) on patients who cannot attend the assessments for physical/psychological

reasons, thereby helping with the data analysis from the researchers’ perspective. When

using RS, those important data from unattended patients are regarded as missing, and these

missing data can be predicted from RS with help from the testing ratings of the “similar”

patients.

A typical recommendation consists of users, items, and users’ ratings for certain items

[143]. The role of the recommendation system is to estimate the user preferences and model

the connection between users and items, thereby predicting ratings of the test-items. In

the context of the FRDA date collection, the patient is treated as a “user”, the test-item is

regarded as an “item”, and therefore the proposed prediction strategy is in the structure of

a recommendation system [191], which is named as the FRDA Rating Recommendation

System (FRRS). Collaborative filtering (CF) is a well-known technique used by recommen-

dation systems [121] and has been widely applied in a number of commercial companies

such as Amazon, YouTube, Netflix, etc.

Generally speaking, there are two common neighborhood-based CF approaches used in

the recommendation systems, namely, the user-based CF and item-based CF. The user-based

CF is one of the neighborhood-based CF [53] which can make automatic value prediction of

a current user by using the information collected from other similar users. In contrast, the

item-based CF approach focuses on the similarity among items (rather than the similarity

among users). Once the neighborhood-based CF method is selected, the patients are only

asked to provide certain/essential values of testing items, and then the similarities among

patients or test-items in the database can be calculated. According to the obtained similarities,

similar patients or test-items can be determined corresponding to the patients or test-items

with incomplete information. By doing so, the missing values can be adequately predicted

by using the neighborhood-based CF.

In this chapter, we use the CF approaches to predict baseline data according to the

similarity in test-items of the patients, where the prediction accuracy is evaluated based on

three rating scales selected from the EFACTS database. Experimental results demonstrate

the validity and efficiency of the proposed strategy. The main contributions of this chapter

are summarized as follows. 1) a novel data collection strategy is proposed for the FRDA

disease based on the neighborhood-based CF approaches. The proposed strategy makes it
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possible to construct a new framework for the data collection by using popular CF methods.

2) the proposed strategy does not have any geographic restrictions on the required data

and, as a result of the developed framework, the predicted data provides an alternative

database for FRDA data analysis that would potentially assist clinical trials. 3) extensive

experiments are conducted to verify the feasibility and the effectiveness of our strategy using

neighborhood-based CF approach..

The remainder of this chapter is organized as follows. In Section 3.2, an FRDA baseline

data collection mechanism is introduced. Section 3.3 presents CF algorithms including the

similarity computation, the similar neighbors selection and the FRDA score prediction. In

Section 3.4, the experimental results are discussed and, finally, concluding remarks are given

in Section 3.5.
new patient

FRRS

Self-assessed

FRDA data

Similar patient 

finding

Prediction Results

FRDA rating

prediction

Data pre-

processing

Data recoveryand 

recommendation

Fig. 3.1 Mechanism of the FRRS.

3.2 FRDA baseline data collection

The data for the EFACTS patient study has been collected through patient interviews, ques-

tionnaires, observations and coordinated tests at the study sites. Nevertheless, most FRDA

patients (and their families) can be relied upon to provide accurate information on some

features of their disease by long-term observation and dedicated caring. Patients (and their

families) recognize patients’ physical conditions and the collected data is this accurate enough
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for analysis purpose. For example, for the test-item “swallowing” in the ADL form, it is

divided into 5 levels, namely, normal, rare choking, frequent choking, soft food required

and feeding tube/gastrostomy. After a long period of self-cognition and care, patients (and

their families) are best placed to assess their level of impairment in such kind of test-items.

As such, it is natural in our strategy to assume that those patients (and their families) who

contribute more of the required data will obtain more accurate predictions on the test-item

values. Fig. 3.1 shows the FRDA baseline data collection mechanism, which is elaborated as

follows:

Table 3.1 Rating data formulation in SARA

Gait Stance Sitting Speech disturbance Finger chase Nose-finger test
right left mean right left mean

0 ∼ 8 0 ∼ 6 0 ∼ 4 0 ∼ 6 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4
Fast alternating hand movements Heel-shin slide SARA Totalright left mean right left mean
0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 40

Table 3.2 Rating data formulation in ADL

Speech Swallowing Cutting food&Use of Cutlery Dressing Personal hygiene Falls Walking
0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4

Sitting Bladder function ADL Total
0 ∼ 4 0 ∼ 4 0 ∼ 36

1. New patients or follow-up patients contribute some certain FRDA baseline data to

FRRS by some ways provided by EFACTS. Unfilled parts regard as missing values.

2. FRRS pre-processes the data into the same interval automatically (details will be shown

in Section 3.4.A).

3. FRRS compares added baseline data from new/follow-up patients with existing ones to

find the most similar neighbors. These similar neighbors are used for making missing

value predictions for the new/follow-up patients (technique details will be introduced

in Section 3.3.A and 3.3.B).

4. FRRS predicts the missing values by nowadays popular CF methods (see Section 3.3.C

for technique details).

5. FRRS feeds the predicted data back into the original data state. These processed data

are employed for FRDA rating recommendation (see Section 3.4.C for more details).
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6. New patients use the predicted values from FRRS as well as the recommendation results

to assist their decision making on missing parts. Once the values are determined, these

values will be stored in the database and used to assess clinical trial results, select

samples and identify the health problems.

Remark 3.1 The data collection strategy we propose exhibits the following distinctive

features: 1) as opposed to going to study site physically which is extremely inconvenient

for FRDA patients, they are now given more channels (for instance, through internet and

telephone) to submit their information without geographic restrictions; 2) the proposed

strategy is also applicable to other diseases baseline data collection, especially in rating

scales, for example, some famous scales like International Cooperative Ataxia Rating Scale,

Hamilton Rating Scale for Depression and National Institutes of Health Stroke Scale.

Table 3.3 Rating data formulation in INAS

Reflexes Reported Abnormalities
Biceps(BTR) Patellar(PTR) Achilles(ATR) Extensor plantar reflex Double vision Urinary dysfunction Cognitive impairment

0 ∼ 3 0 ∼ 3 0 ∼ 3 0 ∼ 3 0 ∼ 4 0 ∼ 4 0 ∼ 4

Ophthalmological findings Sensory symptoms
Broken up smooth pursuit Square wave jerks on fixation Downbeat-nystagmus on fixation Impaired vibration sense

0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 4 (Right foot) 0 ∼ 4 (Left foot)

Motor symptoms
Spasticity Paresis

Gait Upper Limbs Lower Limbs Face/tongue UL proximal UL distal LL proximal LL distal
0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4

Fasciculations Muscle atrophy
Face/tongue Upper Limbs Lower Limbs Face/tongue UL proximal UL distal LL proximal LL distal

0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4

3.3 CF algorithms

In this section, the user-based and item-based CF approaches are introduced to establish our

strategy, which can be divided into three steps, namely, the computation of the similarity, the

selection of the similar neighbors, and the prediction of the missing value. The FRRS consists

of p FRDA patients and q test-items, where the relationship between patients and test-items is

denoted by a matrix of the dimension p×q, which is referred to as the patient-item matrix R.

Define the sets of patients as U = {u1,u2, ...,up}, and sets of test-items as I = {i1, i2, ..., iq}.

Each element ru,i in this matrix represents rating value r of the patient u on the test-item

i, where u ∈ U , i ∈ I. r ∈ 1, ..., |r| if the item has been rated by the patient, and ru,i = /0 if
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the item has not been rated. Note that it is unavoidable to have randomly missing values in

the patient-item matrix because the patients (or their families) might have different levels of

awareness on different test-items.

3.3.1 Computation of the similarity

In this section, the similarity between the uth patient and the ath patient is measured by the

Pearson Correlation Coefficient (PCC). The PCC is a popular index for similarity computing

in CF that has been attracting an ongoing research interest, see [20, 52] for some represen-

tative works. A typical user-based PCC is exploited to reflect the similarity between the

u-th patient and the a-th patient based on their co-ratings on the test-items by the following

definition:

Sim(u,a),
∑i∈I(ru,i − r̄u)(ra,i − r̄a)√

∑i∈I(ru,a − r̄u)2
√

∑i∈I(ra,i − r̄a)2
(3.1)

where Sim(u,a) is the similarity between FRDA patients u and a; I = Iu ∩ IK is the subset of

test-items on which both patients u and a have rated, with Iu (respectively, Ik) denoting all

test-items that patient u (respectively, a) has evaluated; ru,i (respectively, ra,i) is a vector of

ratings of test-item i provided by patient u (respectively, a); and r̄u (respectively, r̄a) denotes

the average scores on different test-items that patient u (respectively, a) has rated. It follows

from (3.1) that the similarity of two patients is in the interval of [−1,1], where a higher

similarity indicates that patients u and a are more similar.

Another neighborhood-based CF method, known as item-based CF, focuses on the

similarity between test-items i and j with definition given as follows:

Sim(i, j),
∑u∈U(ru,i − r̄i)(ru, j − r̄ j)√

∑u∈U(ru,i − r̄i)2
√

∑u∈U(ru, j − r̄ j)2
(3.2)

where Sim(i, j) represents the similarity between test-items i and j; U =Ui∩U j is the subset

of patients who have provided ratings on both test-items i and j; ru,i is a vector of ratings of

test-item i provided by patient u and ru, j represents a vector of ratings of test-item j provided

by patient u; and r̄i and r̄ j are the average scores of test-items i and j provided by all patients,

respectively. It can be seen from (3.2) that, as with the user-based PCC, the similarity of two

test-items is also in the interval of [−1,1].
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3.3.2 Selection of similar neighbors

The basic idea of the user-based CF is that similar patients have similar ratings, and it is

therefore of great importance to identify the “similar” neighbors for a certain new patient

whose rating information is incomplete [30, 31]. For the purpose of choosing the similar

patients, we employ a top-n algorithm [197], in which we rank the similarities between users

in our database from high to low and then select the n patient with highest ratings. In case

that the patients do not have enough similar neighbors, the top-n algorithm will start to use

dissimilar neighbors to fill the vacancies which would unavoidably induce the inaccuracy. In

order to avoid such a problem, we propose some conditions on the user-based top-n algorithm

as follows. Let

Ŝ(a) = {au|au ∈ T (a),Sim(au,a)> 0,au ̸= a}, (3.3)

where Ŝ(a) denotes the set of similar patients for patient a that we choose to use in the

following experiments and T (a) is the set of top n similar patients of patient a. Similarly, the

condition on the item-based top-n selection is given by

Ŝ( j) = { ji| ji ∈ T ( j),Sim( ji, j)> 0, ji ̸= j}, (3.4)

where Ŝ( j) represents the set of similar test-items for test-item j that we select to employ in

the following experiments and T ( j) is the set of top n similar test-items for test-item j. The

neighbors that are not among the top n or whose correlation coefficients are below 0 will be

removed from the similar neighbor sets.

3.3.3 Prediction of the FRDA score

Prediction constitutes the most important step in CF algorithm [125]. After the top n

neighbors of the patient are determined, the values of unfilled test-items can be predicted by

combining similar patients Ŝ(a) according to the following [20]:

r̂a, j = ā+
∑au∈Ŝ(a)Sim(au,a)(rau, j − āu)

∑au∈Ŝ(a)Sim(au,a)
, (3.5)

where P(ra, j) denotes a vector of predicted values of the missing value ra, j in the patient-item

matrix; ā is a vector of average values of different test-items provided by patient a, and āu is

a vector of average values of test-items provided by the similar patient au.
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The missing value prediction of item-based CF can be calculated as follows:

r̂a, j = j̄+
∑ ji∈Ŝ( j)Sim( ji, j)(ra, ji − j̄a)

∑ ji∈Ŝ( j)Sim( ji, j)
, (3.6)

where j̄ denotes a vector of average values of test-item j provided by different patients; ra, ji

is a vector of rating values of similar test-item ji provided by the patient a; and j̄i is a vector

of average values of test-items provided by the similar test-item ji.

Table 3.4 MAE and RMSE of User-based CF and Item-based CF from density 20% to 80%.

User-based CF Item-based CF
SARA ADL INAS SAI SARA ADL INAS SAI

20%
MAE 0.2002 0.2182 0.2207 0.2348 0.2051 0.2292 0.1857 0.1841
RMSE 0.2714 0.3049 0.3313 0.3235 0.2637 0.2623 0.2880 0.2741

30%
MAE 0.1906 0.2063 0.1990 0.2111 0.1842 0.1962 0.1662 0.1654
RMSE 0.2548 0.2853 0.3091 0.3030 0.2463 0.2392 0.2706 0.2599

40%
MAE 0.1811 0.1938 0.1809 0.1901 0.1640 0.1877 0.1534 0.1509
RMSE 0.2402 0.2653 0.2897 0.2860 0.2219 0.2319 0.2551 0.2427

50%
MAE 0.1715 0.1829 0.1621 0.1620 0.1493 0.1696 0.1453 0.1346
RMSE 0.2269 0.2481 0.2712 0.2626 0.2037 0.2190 0.2509 0.2225

60%
MAE 0.1627 0.1734 0.1434 0.1426 0.1401 0.1607 0.1386 0.1283
RMSE 0.2147 0.2331 0.2543 0.2416 0.1867 0.2057 0.2390 0.2156

70%
MAE 0.1478 0.1664 0.1317 0.1314 0.1315 0.1601 0.1251 0.1261
RMSE 0.1976 0.2226 0.2422 0.2281 0.1811 0.2055 0.2252 0.2109

80%
MAE 0.1282 0.1569 0.1235 0.1229 0.1192 0.1549 0.1231 0.1225
RMSE 0.1750 0.2107 0.2321 0.2197 0.1643 0.2018 0.2203 0.2060

3.4 Implementation and experiments

In order to evaluate the performance of the proposed algorithms, three datasets have been

chosen from EFACTS database, which are the datasets for Scale for the Assessment and

Rating of Ataxia (SARA), Activities of Daily Living (ADL) and Inventory of Non-Ataxia

Symptoms (INAS) with respect to clinical rating scales and quality-of-life measures. These

three datasets include 80 test-items and 949 patients, and the details of each dataset are

explained as follows:

• SARA is an important clinical rating scale reflecting the severity of ataxia symptoms.

The reliability and validity of SARA have been confirmed in [175] and [119] on both



42 A Collaborative-Filtering-Based Data Collection Strategy for Friedreich’s Ataxia

ataxia and FRDA severity. As shown in Table I, there are 8 test-items, namely, gait,

stance, sitting, speech disturbance, finger chase, nose-finger test, fast alternating hand

movements and heel-shin slide. The last four test-items have three sub-items: left part,

right part and the mean of both parts. The total SARA scores range from 0 to 40 and

are calculated by summing scores on 8 test-items, where a larger score indicates a

more severe state of the patient. In our experiments, we use the left and right parts of

last four test-items, which mean that 12 test-items are considered.

• ADL is another important rating scale used for assessing the impairment of patients’

activities in daily living. ADL is a good complement to SARA and they two to provide

the insight on how the severity of FRDA symptoms interferes with patients’ daily

activities and quality of life. The 9 ADL test-items (e.g., speech, dressing, and sitting)

are shown in Table II with the total scores ranging from 0 to 36.

• INAS provides a checklist of non-ataxia signs in FRDA which is used to find corre-

sponding non-ataxia symptoms with different orders of FRDA severity. Non-ataxia

symptoms have 5 main features (i.e., reflexes, motor symptoms, sensory symptoms,

ophthalmological findings and reported abnormalities) which contain a total of 63

test-items. Some of the major items are displayed in Table III.

Based on the three selected datasets, we carry out the experiment as detailed in the

following subsections to show the effectiveness and merits of the proposed neighborhood-

based CF algorithms.

3.4.1 Data preprocessing

The chosen three datasets are mutually independent as they are reported on three separate

rating forms. Nevertheless, there seems to have potential relationships between the test-items

of different datasets and, with this concern in mind, we decide to carry out experiments not

only on each dataset separately but also on a combination of the three datasets. As shown in

Tables I, II and III, the test-items have different rating intervals, so we normalize the rating

values to a notionally common scale in the interval of [0,1] by using min-max normalization

as follows:

x′ =
x− xmin

xmax − xmin
, (3.7)
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where x′ is a vector of normalized values; x is the original value from each test-item; and

xmin and xmax are the minimum and maximum values in x given its range.

3.4.2 Experiment setup

There are totally four patient-item matrices in our experiments, namely, SARA patient-item

matrix of dimension 949×12, ADL patient-item matrix of dimension 949×9, INAS patient-

item matrix of dimension 949× 63, and SARA-ADL-INAS (SAI) patient-item matrix of

dimension 949×80. In order to verify the feasibility of the algorithm, we randomly remove

different numbers of entries and form the testing data. As such, the patient-item matrices

with different sparse densities (e.g. 70% and 80%) are constructed during our experiment.

For the propose of measuring prediction accuracy of the algorithm, the indices of Mean

Absolute Error (MAE) and Root Mean Square Error (RMSE) are taken into account, where

MAE is defined as

MAE =
1
N ∑

a∈Ad

∑
j∈Jd

|ra, j − r̂a, j|, (3.8)

and RMSE is calculated as follows:

RMSE =

√
1
N ∑

a∈Ad

∑
j∈Jd

(ra, j − r̂a, j)2, (3.9)

where N denotes the total number of predicted values, Ad is the user set of the testing data

and Jd is the test-item set of the testing data, ra, j is the actual value of test-item j provided

by patient a, and r̂a, j denotes the predicted value from the user-based CF.

3.4.3 Results and discussion

To demonstrate the validity of the proposed algorithms, user-based CF and item-based CF

have been tested in four patient-item matrices with densities from 80% to 20% incremented

by the interval of 10%, where the density refers to the ratio of number of entries presented

to the total number of the entries in the patient-item matrix. For example, the way that we

generate the density of 80% is to randomly keep 80% of the entries in the patient-item matrix.

In reality, unlike the recommendation system with abundant users/items, FRDA data

are quite limited in a quantitative at the moment, so we assume that there is indeed the

sparsity (e.g., densities of 20% and 30%) with the dataset which would result in few co-rating
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Fig. 3.2 Prediction for partial testing data (SARA dataset).
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Fig. 3.3 Prediction for partial testing data (ADL dataset).
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Fig. 3.4 Prediction for partial testing data (INAS dataset).
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Fig. 3.5 Prediction for partial testing data (All datasets).
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Fig. 3.6 Histograms of prediction error (SARA dataset).
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Fig. 3.7 Histograms of prediction error (ADL dataset).



3.4 Implementation and experiments 47

-1.5 -1 -0.5 0 0.5 1 1.5

Error

0

1000

2000

3000

4000

5000

6000

7000

C
ou

nt

INAS

Fig. 3.8 Histograms of prediction error (INAS dataset).

-1.5 -1 -0.5 0 0.5 1 1.5

Error

0

1000

2000

3000

4000

5000

6000

7000

8000

C
ou

nt

SAI

Fig. 3.9 Histograms of prediction error (ALL datasets).
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test-items and therefore certain inaccuracy of the prediction. Nonetheless, for the benefits of

comprehensive analysis, it would be interesting to see how the MAE/RMSE behaves in the

case of different degrees of sparsity.

We set the value of top-n as 5 in user-based CF, which means that the top 5 similar

patients will be considered in missing value prediction. We set top-n as 5 in item-based CF,

which means the top 5 similar test-items will be considered. Each experiment is repeated 100

times, and the average MAE and RMSE are used to show the estimation error. The MAE and

RMSE of the experimental results are displayed in Table 3.4, from which we observe that

1. The user-based CF and item-based CF can provide satisfactory prediction accuracy

with relatively small MAE (around 0.12) and RMSE (around 0.16).

2. According to the trend of MAE/RMSE with the density varying from 80%− 20%,

we can draw a conclusion that, with more values of test-items provided, a greater

prediction accuracy can be expected.

3. In the four datasets under investigation, SAI shows a relatively smaller MAE in most

density cases. This indicates that a larger amount of data would lead to a higher

accuracy of the algorithm.

4. SARA has the smallest RMSE, which implies that SARA has least predicted outliers

and the overall predicted values of SARA are closest to the actual values among the

four datasets.

Remark 3.2 Clearly, a large dataset in terms of both density and quantity would improve

the prediction accuracy of user-based/item-based CF algorithms because more co-rating

test-items give rise to more accurate similarity scores by using the PCC, thereby avoiding

some undesirable situations, such as the case where the PCC overrates the similarities

of some patients that are actually dissimilar but have similar ratings on a few co-rating

test-items. Consequently, as the density decreases, less co-rating test-items will lead to the

increase of the MAE. All these observations are illustrated in Table IV.

Variations of the MAEs with respect to the changes of data density in the different four

datasets are shown from Tab. 3.4. Results show that, during the density reduction, the

user-based CF is more suitable for the matrices with fewer test-items and item-based CF is

more suitable for the matrices with more test-items. This is because low density means fewer
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co-ratings, thereby affecting the prediction accuracy of (3.6) due to insufficient neighbors.

When the density exceeds 50%, these two neighborhood-based CF algorithms have similar

performance in terms of MAE.

In order to illustrate the prediction performance of neighborhood-based CF algorithms,

two other kinds of figures are presented to show the prediction error and the corresponding

distribution. As shown from Fig.3.2 to Fig.3.5, line graphs display 50 randomly selected

actual values and their predictions, where the blue “o” points represent actual values and

the red “*” points represent the corresponding predictions. The histograms from Fig.3.6 to

Fig.3.9 show the statistical distribution of the prediction errors.

Remark 3.3 The MAE index reflects the prediction error as compared with the actual values

in the same interval. As we can see from Fig.3.2 to Fig.3.5, some predicted values (red “*”)

are very close to the true values (blue “o”) but without overlapping. After converting the

data back to their original rating intervals/forms, the predicted values would be nearest

integer. It is shown in [141] that, if the rating system is integer-based, then rounding the

prediction results will reduce the error of MAE.

Having gone through the computation of the similarity, the selection of the similar

neighbors and the prediction of the missing value, we come to the last step of the CF-based

data analysis for FRDA database, which is to convert the data to their original intervals/forms,

where the detailed results are presented in Table V. For illustration purpose, we present part

of the user-based CF with densities 80%, 50% and 20%. From Table V, we can calculate

that 93.0% predicted outcomes in SARA dataset, 93.6% predicted outcomes in ADL dataset,

98.2% predicted outcomes in INAS dataset and 97.1% predicted outcomes in SAI dataset are

all within a margin of ±1% error at 80% density. When the density decreases to 50%, the

prediction accuracy is reduced to 87.1% (SARA), 91.6% (ADL), 96.7% (INAS) and 96.0%

(SAI), respectively. Furthermore, in the case of 20% density, the user-based CF can still

manage to have prediction accuracies of 76.4% (SARA), 85.4% (ADL), 94.3% (INAS) and

91.8% (SAI) within a margin of error of ±1%. Since the main purpose of our strategy is to

provide rating assistance and selecting samples of clinical trials, the prediction error at the

level of ±1% is considered to be reasonable as can be seen from Tables IV and V. Overall, we

believe that the proposed FRRS can be very helpful in assisting medical institutions to gather

new patient data, which further shows a great application potential in the area of clinical

trials.
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Table 3.5 Examples of predicted values within original intervals and forms.

Total 0 ±1 ±2 ±3 ±4 ±5
80%

SARA
0 ∼ 4 1693 1049 576 65 3 * *
0 ∼ 6 372 152 170 43 7 * *
0 ∼ 8 186 68 78 32 8 * *
Over-

all
2251 1269 824 140 18 * *

ADL
0 ∼ 4 1681 855 718 98 10 * *

INAS
0 ∼ 1 1945 1606 339 * * * *
0 ∼ 2 720 535 149 36 * * *
0 ∼ 3 8159 6814 1186 142 17 * *
Over-

all
10824 8955 1674 178 17 * *

SAI
Over-

all
14756 11177 3160 387 32 * *

50%
SARA

Over-
all

5628 3004 1895 577 121 20 11

ADL
Over-

all
4203 1964 1886 305 44 4 *

INAS
Over-

all
27059 20926 5244 782 105 2 *

SAI
Over-

all
36890 26912 8487 1295 180 15 1

20%
SARA

Over-
all

9005 3481 3401 1498 558 34 33

ADL
Over-

all
6725 2469 3272 846 129 9 *

INAS
Over-

all
43291 29541 11302 2213 227 11 *

SAI
Over-

all
59024 36286 17891 3903 866 52 26
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3.5 Conclusion

In this chapter, a novel data prediction algorithm for FRDA has been proposed based on the

CF methods including both the user-based and item-based ones. By introducing the PCC to

evaluate the similarities between different patients and calculating the missing values of the

patient-item matrices, the proposed algorithm has been implemented to predict incomplete

information of the new patients with an acceptable accuracy. Numerical experiments have

been carried out with four different cases (namely, SARA, ADL, INAS, and SAI datasets) in

order to demonstrate the effectiveness of the proposed method. This proposed strategy can

also be extended to facilitate the collection of data for other diseases. New patient data made

available in this way can be used to assist patient selection for clinical trials and data analysts

to achieve better management of the underlying disease. Our future research will focus

on improving prediction accuracy by considering demographic information and statistical

information.





Chapter 4

A Hybrid Model- and Memory-based
Collaborative Filtering Algorithm for
Baseline Data Prediction of Friedreich’s
Ataxia Patients

4.1 Motivation

In this chapter, we make one of the first few attempts to view the FRDA baseline data

prediction as a recommendation problem where patients correspond to users and test-items on

symptoms correspond to items. Intuitively, similar patients should exhibit similar symptoms

under reasonable conditions where the severity degree of symptoms can be reflected by

different rating values, and therefore the ratings between similar patients should be similar

as well [191]. For FRDA patients, it is often the case that they can only provide a moderate

amount of auxiliary baseline data of test-items, and there might be unfilled parts of the

data that can be regarded as missing values. The prediction of missing rating values can be

naturally considered as a typical design problem of the recommendation system, which is

referred to as the FRDA Rating Recommendation System (FRRS). The FRRS consists of U

FRDA patients and I test-items, the relationship between patients and test-items is denoted

by a U × I matrix, which is called as a patient-item matrix. FRRS can predict unfilled part

through retrieving the similarities between patients in EFACTS database.
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Due to its nature of recommendation system, the proposed FRRS should be capable of

achieving good prediction accuracy on FRDA missing value. Nevertheless, two possible

drawbacks with the FRRS are identified with the first one being the sparsity problem of

the database. In the progress of collecting new patient data, the CF algorithm generates

predictions by calculating the similarities between patients, and the corresponding accuracy

might not be guaranteed when the self-assessed data is very sparse. The second drawback

is that the commonly used similarity measures only consider the ratings on test-items but

largely overlook the uncertainty issue arising from individual differences (e.g. different rating

habits from different users in recommendation system). These individual differences stem

mainly from different physical condition, autognosis, treatment method and environment,

onset age, disease duration, and so on. For example, an adolescent patient and an adult

patient might have similar disease levels but with different specific symptoms. In this case,

the traditional CF algorithm might lead to the so-called overestimation problem of the patient

similarities. To this end, it is theoretically necessary and practically significant to improve CF

algorithms in FRRS by overcoming the emerging drawbacks, thereby achieving satisfactory

performance in a wider environment.

Motivated by the above discussions, in this chapter, we propose a hybrid CF algorithm

for baseline data prediction of FRDA patients. The proposed algorithm switches between

model-based and memory-based CF techniques according to degrees of the data sparsity

and individual differences. More specifically, the model-based CF is used to deal with the

situation where a patient does not have similar neighbors because of the sparsity, and the

memory-based CF is exploited for a patient who has neighbors but is under uncertainties

arising from individual differences. In the former case, the model-based CF is harnessed

to find similar neighbors with similar FRDA symptoms by clustering this patient into the

class based on his/her attributes. Here, it is quite challenging to choose key attributes for

clustering because 1) we need to analyze what kinds of attributes that FRDA patients can

provide; 2) based on the pathology of FRDA and basic statistical analysis, key attributes are

picked out from the results of the previous step to conduct the clustering; and 3) the most

suitable number of clusters is determined according to the clustering results. In the case of a

patient with similar neighbors, we adopt an advanced memory-based CF algorithm with an

improved similarity measure, where both the patient rating habits and the number of co-rated

test-items are taken into account from a unified viewpoint.

The main contributions of this chapter are outlined in threefold as follows:
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1. A novel hybrid CF framework is introduced whose idea to switch between model-based

CF and memory-based CF according to the actual situation for a comprehensive use of

incomplete FRDA baseline data.

2. By analyzing different attributes of the patients, the model-based component of the

hybrid CF framework deals with the situation for patients who cannot find neighbors

due to data sparsity. In the memory-based component, the Shannon information entropy

and Jaccard index are first combined together to describe the rating habits and degree of

co-rated test-items between patients, which provide a more comprehensive evaluation

for the similarity degree than basic PCC.

3. Comprehensive experiments are carried out to show that our proposed hybrid CF

algorithm improves the prediction accuracy of the FRDA baseline data, where the

optimal number of clusters for FRDA is determined in order to provide an appropriate

categorization to assist disease research.

The remainder of this chapter is organized as follows. In Section 4.2, the literature

review of memory-based CF, model-based CF and hybrid CF are discussed. Our proposed

hybrid model- and user-based CF algorithm is introduced in Section 4.3. In Section 4.4, the

implementation and experiments results are presented and, finally, concluding remarks are

given in Section 4.5.

4.2 Literature review

The CF algorithm is used to design recommendation systems and this algorithm was first

introduced in 1992 by Goldberg et al [41]. In this section, we review some major approaches

of CF that will be used in this chapter.

Memory-based CF approaches
The memory-based CF approaches (also called neighborhood-based CF approaches) are

among the most popular prediction techniques in the family of CF methods. In general,

the memory-based CF approaches can be classified into user-based and item-based CF

approaches according to the performance specifications [53]. The basic idea of the user-

based CF approach is to make interest prediction of a target user on an item by analyzing the

collective taste information of similar users. First, a user-based CF approach calculates the

similarity between a target user and other existing users. It then chooses the n most similar
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users as the nearest neighbors and their similarity values are regarded as weights. Finally, a

weighted average is employed to predict the rating of the target user. The only difference

between user-based and item-based CF approaches is that item-based CF approach focuses

on the similarity between items instead of users. Some commonly used similarity measures

include the Cosine, the adjusted Cosine, the Pearson Correlation Coefficient (PCC) and the

Spearman’s Rank Correlation Coefficient. As described in [20, 125], PCC similarity measure

can be easily implemented and can achieve a better overall performance than others.

Model-based CF approaches
The model-based CF approaches utilize different data mining and machine learning

algorithms to learn an appropriate model from the collection of ratings, which is then used

to predict users’ ratings on unrated items. The commonly used techniques are clustering,

Bayesian classifiers, probabilistic models, latent factor model, artificial neural networks and

so on. Clustering models work by clustering like-minded users into classes. The unrated

ratings of a target user can be predicted by averaging the ratings of other users in the same

cluster. In Bayesian classifiers, each node in a Bayesian network represents a class of

items, and the status of each node corresponds to the possible rating value for each item.

In [13, 77, 145], some clustering models indicate that each user could belong to multiple

clusters with different levels of participation which are expressed by degree of membership.

The prediction is given by averaging the ratings across the clusters that are weighted by the

degree of membership.

In recent years, different artificial neural network (ANN) models [51] (including deep

neural network models) have been widely applied in recommendation systems. Some rather

popular ANN models include, but are not limited to, restricted Boltzmann machine [66],

convolutional neural network [149], autoencoder [126] and so on [27]. Other well-known

model-based approaches are latent factor model and probabilistic model which involves

probabilistic semantic analysis, aspect modeling and probabilistic matrix factorization.

Compared to memory-based CF methods, model-based CF methods can better address

the problems of scalability and sparsity. Also, model-based CF methods can improve the

prediction performance and prediction speed. At the same time, model-based CF methods

have some disadvantages which are 1) model-building is a time- and resource-consuming

process, and 2) model-based CF methods have trade-off between scalability and prediction

performance.

Hybrid CF approaches
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In certain circumstances, memory- and model-based CF techniques have been combined

together to yield the so-called hybrid ones that would help the performance improvement [22].

Based on different cases, a hybrid CF approach can include two or more techniques, thereby

achieving a better overall performance than any individual one, and this is particularly true

when dealing with the data imperfection issues such as sparsity, individual differences and

loss of information. In this chapter, a hybrid CF approach is proposed, which combines

clustering-based and modified user-based CF methods, in order to achieve satisfactory results

on FRDA patient baseline data prediction.

4.3 Methodology

4.3.1 Data description

To implement the method for the addressed data collection problem, three data sets have

been chosen from the EFACTS database, which are Scale for the Assessment and Rating of

Ataxia (SARA), Demographics and Onset data sets.

SARA data set. SARA, first introduced in 2006 [175], is an effective assessment tool

for assessing the severity and treatment effectiveness of ataxia symptoms. SARA has

fewer assessment items than other well-known scales like International Cooperative Ataxia

Rating Scale (ICARS), thereby possessing the advantage of easier daily assessment of ataxia

symptoms. For a decade or so, many researchers have demonstrated the validity and reliability

of SARA in handling different kinds of ataxia, and EFACTS has thus used SARA to evaluate

the severity of FRDA. It can be seen from Table 4.1 that SARA contains 16 features in 8

categories reflecting neurologic manifestations of ataxia which are gait, stance, sitting, speech

disturbance, finger chase, nose-finger test, fast alternating hand movements and heel-shin

slide. A scale of 0 to n (n ∈ {4,6,8}) is created for each test-item to describe the order

of severity of FRDA, where 0 means the normal condition and n implies the most serious

situation. The total SARA scores reflect overall severity degree which is calculated by adding

scores of eight categories.

Demographics and Onset data sets. The Demographics data set includes demographic

information of the FRDA patient such as year of birth, country of birth, age and sex. Onset

data set contains onset information of FRDA patient, which includes age of first FRDA

symptoms, symptoms at onset and problems during neonatal period. After preliminary data
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analysis, two pieces of crucial yet essential information, namely, onset age and disease

duration, are extracted from the demographics and onset data sets.

4.3.2 Hybrid collaborative filtering framework

In this chapter, a hybrid CF framework is proposed in Algorithm 1, which is fairly general to

include the model-based CF and memory-based CF components and is particularly suitable

to solve the baseline data prediction problem for FRDA patients. Based on the circumstances,

the model-based CF and memory-based CF can switch back and forth between them over the

course of the execution of the algorithm.

Model-based CF component

In the model-based CF component, the clustering method is first used to divide existing

patients into different groups by using their side-information and SARA scores. When a new

patient who cannot find neighbors by using memory-based CF appears, K-NN is used to

identify which cluster this new patient belongs to. In this way, the missing values of this new

patient can be predicted by using the known values of patients in this cluster.

Clustering is a method to divide a set of data into a specific number of groups through

a form of association. There are many algorithms that can be used to do clustering. In

this chapter, we use K-means algorithm as the basic clustering algorithm with the aim of

evaluating the intrinsic nature and regularity of data by using unlabeled training samples

[176].

The main steps of K-means algorithm and how it is implemented in SARA dataset are

illustrated in Algorithm 1.

Algorithm 1 K-means algorithm

1. Load the data and set the value of K as the desired number of clusters

2. Choose K patients randomly as the initial cluster centroids

3. Allocate the remaining patients to the closest cluster centroids

4. Update the cluster centroids and re-evaluated the cluster-membership

5. Repeat step 3 and 4 until the cluster centroids do not update
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Fig. 4.1 Rating data formulation in SARA

Following the operation on existing patients based on the above clustering algorithm,

some traditional machine learning algorithms can be further applied to solve the sparsity

problem for the new patients. Here, K-NN is used for obtaining precise classification when

the new patients provide sparse data [26].

The K-NN algorithm is illustrated in Algorithm 2.

Algorithm 2 K-NN algorithm

1. Load the data and select the number of ǩ

2. Calculate the distance between new patient a and all existing patients u

3. Sort the calculated distances in ascending order

4. Get top ǩ patients and choose the most frequent class

5. Return the predicted class as new patient a’s class

After determining the class of new patient (specified as a), we retrieve the similar

neighbors who have same ratings on overlapped test-items within the same class. The

missing values of test-items can be predicted by the following equation:

P(ra,i) =
∑u∈K̂a

ru,i

|K̂a|
, (4.1)

where K̂a is a set of existing patients who have the same ratings with new patient a on

overlapped test-items in the same class, and |K̂a| denotes the number of matched patients.
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Table 4.1 Rating data formulation in SARA

Gait Stance Sitting Speech disturbance Finger chase Nose-finger test
right left meana right left meana

0 ∼ 8 0 ∼ 6 0 ∼ 4 0 ∼ 6 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4
Fast alternating hand movements Heel-shin slide

SARA Totalb
right left meana right left meana

0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 40

a: The mean value represents the average of right side and left side.

b: The total value represents the sum of the first 4 values and the 4 means.

Memory-based CF component

There are two kinds of methods for memory-based CF, which are user-based CF and item-

based CF method. In this subsection, we present the user-based CF method with an enhanced

similarity measure.

Let us start with the PCC, which is a popular similarity computation method in CF and

has been widely used in a number of recommendation systems owing to its capability of

achieving a high accuracy [197]. The similarity degree between patients u and a is calculated

by

Sim(u,a) =
∑i∈I(ru,i − r̄u)(ra,i − r̄a)√

∑i∈I(ru,i − r̄u)2
√

∑i∈I(ra,i − r̄a)2
, (4.2)

where Sim(u,a) is the similarity degree between FRDA patients u and a; I = Iu ∩ Ia is the

subset of test-items that both patients u and a have rated, with Iu (respectively, Ia) denoting

all test-items that patient u (respectively, a) has evaluated; ru,i (respectively, ra,i) is the rating

value of test-item i provided by patient u (respectively, a); r̄u and r̄a denote average ratings of

different test-items that patients u and a have rated, respectively. It can be easily seen from

(4.2) that the similarity of two patients takes value in the interval of [−1,1]. Clearly, a larger

similarity indicates that patients u and a are more similar.

The PCC index, though widely used, might suffer from the issue of overestimating the

similarities of patients who are actually dissimilar but happen to have similar symptoms on a

few co-rated test-items. In order to avoid such an issue, one can make use of the so-called

Jaccard index which is a sample statistic measuring the similarity and diversity of sample

sets as defined as follows:

J(u,a) =
|Iu ∩ Ia|
|Iu ∪ Ia|

=
|Iu ∩ Ia|

|Iu|+ |Ia|− |Iu ∩ Ia|
, (4.3)
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where |Iu ∩ Ia| represents the number of co-rated test-items of patients u and a; |Iu ∪ Ia|
denotes the number of total test-items that patients u and a have rated; and |Iu| and |Ia| are

the numbers of test-items rated by patient u and patient a, respectively.

Taking advantage of the diversity reflected in the Jaccard index, one can define the

following modified PCC (with hope to get rid of the overestimating issue):

SimJ(u,a) = J(u,a)×Sim(u,a), (4.4)

where SimJ(u,a) is a modified similarity measure.

Remark 4.1 When the number of co-rated test-items (i.e. |Iu ∩ Ia|) is small, the introduction

of Jaccard index J(u,a) in (4.4) helps reduce the similarity between patients u and a, thereby

mitigating the overestimating issue. Since the Jaccard index J(u,a) takes value in interval of

[0,1] and the PCC similarity varies in the interval of [−1,1], the new index SimJ(u,a) is still

in the interval of [−1,1].

Apparently, the similarity measure defined in (4.4) serves as a modified version of the

PCC index by taking into account the patients’ differences via the consideration of the co-

rated test-items. This modified similarity measure is, however, not sufficiently comprehensive

yet and there is still a room for further improvement. Specifically, we need to further examine

the individual rating distribution of the patients. In fact, the occurrence, the development and

the cure of a disease are influenced by various factors (e.g. climate, geographical environment,

constitution, sex and age) that give rise to the individual differences on the ratings through

filled forms. More specifically, there might be the case that two patients have similar order

of disease severity (i.e., similar overall ratings) but their score on the same test-items might

be significantly different, and such kind of differences needs to be reflected in the similarity

measurement. To this end, we introduce Shannon’s entropy concept to describe the individual

differences of the patients’ ratings through considering the degree of uncertainty/disorder of

the scores.

Shannon entropy, which has been applied on CF algorithms (see e.g. [40, 69]), is defined

as:

Hu =− ∑
r∈RD

Pu,r log2 Pu,r, (4.5)

where Hu denotes the entropy of patient u, Pu,r represents the frequency of value r which

has been rated by patient u on test-items, and RD denotes the rating domain which contains a
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finite number of discrete values. The PCC with entropy weighting has been defined in [78]

as follows:

SimE(u,a) =
1

1+ |Hu −Ha|
Sim(u,a). (4.6)

Clearly, when the values of Hu and Ha differ greatly, the similarity degree between patients u

and a is reduced accordingly. Also, it is easy to see that the value of SimE(u,a) remains in

the interval of [−1,1].

Having gone through the discussions on the PCC, the modified PCC and the PCC with

entropy weighting, we are now ready to present our proposed enhanced similarity measure

as follows:

SimEJ(u,a) =
1

1+ |Hu −Ha|
× J(u,a)×Sim(u,a) (4.7)

where SimEJ(u,a) is an enhanced similarity index, and the value of SimEJ(u,a) is clearly

within the interval of [−1,1].

Remark 4.2 Our proposed enhanced similarity measure (4.7) has the remarkable advan-

tages of 1) retaining the merits of the PCC such as clear practical insights and neat mathe-

matical property (i.e., invariance under location and scale changes in the two variables); 2)

accounting for the impact from the diversity of the patients; and 3) reflecting the individual

differences in rating scores. As such, the enhanced PCC (4.7) provides a unified basis to

quantify the similarity between the patients, which is more comprehensive than existing ones.

In fact, in addition to the establishment of the hybrid CF algorithm for FRDA baseline data

collection, this enhanced similarity measure (4.7) constitutes the second contribution of this

chapter.

The basic yet natural assumption for the CF algorithms is that similar patients should

have similar ratings on test-times and, therefore, appropriate selection of similar neighbors is

vitally important in improving the prediction accuracy. For this purpose, we employ a top-n

algorithm by which we first arrange the similarities between patients in the descending order

and then select the top n patients as the similar neighbors. In order to avoid using dissimilar

neighbors, some conditions [197] are added to the top-n algorithm as follows:

Ŝ(a) = {au|au ∈ T (a),Sim(au,a)> 0,au ̸= a}, (4.8)

where Ŝ(a) denotes a set of similar patients of patient a that is chosen to use in the following

rating prediction, and T (a) is a set of top n similar patients of patient a.



4.3 Methodology 63

After the top n similar neighbors of the patient are selected, the missing values of

test-items can be predicted by the following equation[20]:

P(ra,i) = ā+
∑au∈Ŝ(a)SimEJ(au,a)(rau,i − āu)

∑au∈Ŝ(a)SimEJ(au,a)
, (4.9)

where P(ra,i) denotes the predicted value of the missing value ra,i in the patient-item matrix,

ā is the average value of different test-items provided by patient a, and āu is the average

value of test-items provided by the similar patient au.

Remark 4.3 In this chapter, a new FRDA baseline data collection scheme is put forward

based on a combination of the merits of model- and memory-based CF methods with a

much enhanced similarity measure. The new data collection scheme exhibits the following

three distinctive characteristics: 1) it switches between model-based CF and memory-based

CF according to when a certain patient has neighbors sharing similar baseline data; 2)

a new yet comprehensive similarity index is proposed to take into account the individual

differences between patients by employing the Shannon information entropy and the Jaccard

index; and 3) extensive experiments are conducted in the next section to show the superiority

of the proposed scheme with the determination of optimal number of clusters for FRDA.

The proposed FRDA baseline data collection scheme is believed to be effective in assisting

disease research.
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Algorithm 1: Hybrid CF framework

• Given a new patient a with I rating test-items, onset age and disease duration;

• Analyze I rating test-items;

• If the new patient only provides single rating or multiple ratings with same

values (system switches to model-based CF);

The model-based CF component

1. Create K patient clusters by using the attributes: onset ages, disease

durations and total SARA scores;

(K-means algorithm is applied;) see 4.3.2)

2. Find n neighbors in the database with same rating test-items, then

averaging total scores of n neighbors as the initial SARA score Sa of

new patient a;

3. Classify the new patient a into cluster Ka by using the attributes of

onset age, disease duration and initial SARA score Sa;

(K-NN algorithm is applied;) see 4.3.2)

4. Retrieve n′ similar neighbors who have same rating test-items in cluster

Ka;

5. Predict the rating on the target test-item i for a by averaging the corre-

sponding values rated by n′ similar neighbors on the test-item i;

• else (system switches to memory-based CF)

The memory-based CF component

1. Calculate similarity SimEJ(u,a) between each existing u and new pa-

tient a by considering their PCC, Jaccard index and Shannon entropy;

(Technique details will be introduced in Section 4.3.2)

2. Select top-ñ similar users as the nearest neighbors of new patient a;

3. Predict the rating of the target test-item i for a by the behaviors of the

ñ nearest neighbors.
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Table 4.2 Baseline demographic characteristics

Age (years) Male Female Age of onset (years) Disease duration
(years)

Education (years) SARA

Aachen, Germany
(n=56[6%] 29(6-62) 29(52%) 27(48%) 13(0-25) 14(2-54) 14(0-49) 19(2-40)
Athens, Greece
(n=20[2%]) 25(8-42) 12(60%) 8(40%) 12(3-21) 10(4-22) 15(3-31) 23(7.5-40)
Bonn, Germany
(n=23[3%]) 39(20-59) 11(48%) 12(52%) 13(0-19) 20(9-50) 19(5-44) 20(3.5-31.5)
Brussels, Belgium
(n=52[6%]) 25(7-69) 26(50%) 26(50%) 12(9-21) 14(3-60) 11(1-38) 18(3-34)
Dublin, Ireland
(n= 8[1%]) 25(7-69) 6(75%) 2(25%) 15(10-19) 19(3-42) 11(4-19) 16(8.5-26)
Innsbruck, Austria
(n=57[6%]) 31(8-62) 31(54%) 26(46%) 11(2-18) 17(1.5-47) 13(2-35) 20(6-38)
Kassel, Germany
(n= 6[1%]) 44(23-73) 3(50%) 3(50%) 13(9-15) 19(10-40) 25(11-37) 23(8.5-40)
london, UK
(n=205[23%]) 33(15-77) 94(46%)a 110(54%)a 15(0-30) 14(1-55) 20(11-37) 22(1.5-40)
Madrid, Spain
(n=78[9%]) 32(6-65) 34(44%) 44(56%) 14(0-24) 14(2-44) 17(1-44) 21(5-37)
Milano, Italy
(n=195[22%] 34(7-70) 94(48%) 101(52%) 12(0-22) 16(3-61) 18(1-46) 22(3-39)
Munich, Germany
(n=66[8%]) 33(12-60) 35(53%) 31(47%) 12(0-22) 16(2-56) 17(2-45) 19(2-40)
Paris, France
(n=60[7%]) 37(19-76) 28(47%) 32(53%) 13(0-23) 20(3-65) 17(0-36) 23(5-39)
Rome, Italy
(n=17[2%]) 24(9-61) 7(41%) 10(59%) 9(3-21) 14(1-40) 10(2-22) 15(7-36)
Tübingen, Germany
(n=35[4%]) 35(14-74) 16(46%) 19(54%) 11(5-19) 18(0-46) 17(5-39) 22(7.5-39)

a: Data for sex was missing for one patient in London.

4.4 Implementation and experiments

4.4.1 Data preprocessing

The data set SARA is constantly updated. Until 31st December 2018, the SARA data

set has contained the information of 989 patients. It should be mentioned that the SARA

data includes missing values and redundant information. Hence, 111 patients are deleted

because their data is null, missing or abnormal. A total of 878 patients have been selected

for the follow-up experiments. The details of these patients are displayed in Table 4.2.

“Aachen, Germany(n=56[6%])” means the baseline data of 56 patients were collected in

Aachen (Germany) and accounted for 6% of the total patients. “29(6-62)” means average

age is 29 and spread between 6 to 62 years old.

4.4.2 Experimental setup

We divide the 878 patients into two parts, with the first part consisting of existing patients

and the second part containing the new patients. As mentioned in Section 4.1, there are

two situations that we need to consider. The first situation is that the new patients cannot

find neighbors from existing patients and the other situation is that new patients can find

neighbors. In the first situation, we randomly keep one rating value of new patients and set
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other values as testing data. In the second situation, we randomly remove different number

of elements to make the patient-item matrix sparser with different density (e.g., 50%, 60%,

etc.), where the density refers to the ratio of number of entries presented to the total number

of the entries in the patient-item matrix. The developed hybrid model- and memory-based

CF algorithm is employed for predicting the rating values of new patients’ unfilled parts.

For the propose of evaluating the prediction accuracy of the algorithm, the criteria of

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are taken into account,

which are defined as follows:

MAE =
1
N ∑

a∈Ad

∑
i∈Id

|ra,i −P(ra,i)|, (4.10)

RMSE =

√
1
N ∑

a∈Ad

∑
i∈Id

(ra,i −P(ra,i))2 (4.11)

where N denotes the total number of predicted values, Ad is the user set of the testing data

and Id is the test-item set of the testing data, ra,i is the actual value of test-item i provided by

patient a, and P(ra,i) denotes the predicted value from the developed CF method.

4.4.3 Performance comparison

This section is divided into two parts which describe two situations, one is that the new

patient does not have neighbors and the other one is that the new patient does have neighbors.

In these two situations, we compare our approach with other well-known approaches. In

the experiment, we set the value k = 7 during the K-means clustering. Fig. 4.2 shows the

experimental results. The clustering performance is evaluated by the silhouette coefficient

which is shown in Fig. 4.3.

The patient without neighbors

In this part, the single regression (SREGR) imputation and expectation-maximization (EM)

algorithms as well as four different mean imputation methods for missing value prediction

are employed to compare with our method. These mean imputation methods include the

rating-mean (RMEAN) imputation, user-mean (UMEAN) imputation, centered user-mean

(CUMEAN) imputation and adjusted user-mean (AUMEAN) imputation methods, where

the RMEAN approach employs the average of filled ratings of the current new patient, the

UMEAN approach utilizes the average SARA ratings of the existing patients in database to
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Fig. 4.2 K-means clustering diagram
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Fig. 4.3 Silhouette coefficient of K-means algorithm
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predict the new patient unfilled ratings, the CUMEAN approach considers the rating bias

by subtracting the mean value of each existing patient, and the AUMEAN approach uses

the average SARA ratings of the existing patients who have the same ratings on overlapped

test-items. The mathematical expressions for these four approaches are displayed as follows:

RMEAN : P(ra,i) = r̄a (4.12)

where r̄a is the average rating value of different test-items rated by the new patient a.

UMEAN : P(ra,i) =
∑

n
u=1 ru,i

n
(4.13)

where ru,i represents the rating value of test-item i rated by existing patient u in the database.

CUMEAN : P(ra,i) = r̄i +
∑

n
u=1(ru,i − r̄u)

n
(4.14)

where r̄u represents average rating value of different test-items rated by the existing patient u

in the database.

AUMEAN : P(ra,i) =
∑u∈Ŝ ru,i

|Ŝ|
(4.15)

where Ŝ is a set of existing patients who have the same ratings with new patient a on

overlapped test-items, |Ŝ| denotes the number of matched patients.

The detailed information of performance comparison of different approaches is displayed

in Table 4.3. To demonstrate the validity and the superiority of the proposed algorithm, we

randomly choose 10% of total patients and set them as new patients during each experiment.

In order to facilitate the situation of no neighbors, we only keep one rating value and remove

all remaining rating values by setting them as the unfilled part. Each experiment is repeated

50 times, and the average MAE and RMSE values are reported in Table 4.3. From the

experiment results, we conclude that:

1. Under all experimental settings, our approach obtains the smallest MAE and RMSE

values consistently, which indicates the best prediction accuracy.

2. Relative to AUMEAN (the best of the four different mean imputation methods) which

considering the all patients with same ratings on overlapped test-items, our approach

only consider the patients within the same class. Experimental results demonstrate
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the MAE of our approach is 15.6% better and the RMSE is 7.5% better than those

produced by AUMEAN.

Table 4.3 MAE and RMSE Comparison with four Basic Approaches

Metric Methods New patients(10%)
MAE RMEAN 0.1999

UMEAN 0.2880
CUMEAN 0.2038
AUMEAN 0.1644
SREGR 0.2025
EM 0.1498
Our approach 0.1388

RMSE RMEAN 0.2964
UMEAN 0.3442
CUMEAN 0.2421
AUMEAN 0.2163
SREGR 0.2765
EM 0.2097
Our approach 0.2001

The patient with neighbors

To evaluate the prediction performance on a new patient who has neighbors, we compare our

approach with four other approaches: MEAN imputation, SREGR imputation, user-based

CF using PCC (UPCC), user-based CF using PCC with entropy (UPCCE) and user-based CF

using PCC with Jaccard index (UPCCJ). UPCC only considers the performance of similar

patients to make the prediction according to (4.2). UPCCE considers the disorder degree

of the data and UPCCJ considers the overlapped part of the data. To study the impact of

our approach that combines the information entropy and Jaccard index, we implement our

approach on SARA dataset by employing the density decrementing from 90% to 50% with

the interval of 10%.

The results of the performance comparison with our proposed algorithm are shown in

Tab. 4.4, where the vertical coordinate represents the value of MAE/RMSE, and the horizontal

coordinate denotes the different degrees of density of the test data. Additionally, the detailed

experimental results are displayed in Table 4.4 from which we conclude that:

1. The proposed algorithm demonstrates its superiority over MEAN, SREGR, UPCC,

UPCCE and UPCCJ in terms of evaluation indices including the MAE and RMSE.
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Especially, compared to the most basic approach UPCC, our approach achieves a vast

improvement.

2. Experimental results show that it is better to consider both information entropy and

Jaccard index at the same time than anyone individually.

3. According to the changes of MAE and RMSE with the density varying from 90%−
50%, we can see that as the density of test data decreases, the superiority of our

algorithm can be reflected more significantly.

Table 4.4 MAE and RMSE comparison with basic approaches from density 50% to 90%.

MEAN SREGR UPCC UPCCE UPCCJ Our approach
50%

MAE 0.2639 0.1585 0.1650 0.1458 0.1444 0.1397
RMSE 0.3116 0.2307 0.2201 0.2007 0.1957 0.1936

60%
MAE 0.2632 0.1515 0.1579 0.1383 0.1332 0.1290
RMSE 0.3094 0.2240 0.2100 0.1912 0.1795 0.1792

70%
MAE 0.2661 0.1341 0.1417 0.1276 0.1215 0.1189
RMSE 0.3132 0.1879 0.1887 0.1768 0.1656 0.1649

80%
MAE 0.2628 0.1259 0.1260 0.1153 0.1130 0.1111
RMSE 0.3110 0.1806 0.1670 0.1598 0.1533 0.1531

90%
MAE 0.2698 0.1202 0.1039 0.1028 0.1031 0.1016
RMSE 0.3178 0.1668 0.1438 0.1456 0.1435 0.1426
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Fig. 4.4 k-means clustering(k:3).
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Fig. 4.5 k-means clustering(k:4).
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Fig. 4.6 k-means clustering(k:5).
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Fig. 4.7 k-means clustering(k:6).
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Fig. 4.8 k-means clustering(k:7).
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Fig. 4.9 k-means clustering(k:8).
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Fig. 4.10 k-means clustering(k:9).

0

10

60

20

40

30

du
ra

tio
n

40

40

30

onset

50

sara

2020
100

Fig. 4.11 k-means clustering(k:10).
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Fig. 4.12 clustering performance and prediction accuracy of k-means clustering with different
number of k

4.4.4 Impact from the number of the clusters

To examine the impact of the number of the clusters, we study three aspects of performance

with k taken from 2 to 10, which are 1) prediction accuracy, 2) interpretability of results at

the disease level, and 3) clustering performance. Then, we select the most suitable k based

on the comprehensive evaluation of these three aspects, where the prediction accuracy is

evaluated by (4.10), the interpretability of results is based on FRDA pathology and expert

advice, and the clustering performance is evaluated by comparing the silhouette coefficients

according to

s(i) =
b(i)−a(i)

max{a(i),b(i)}
, (4.16)

where b(i) denotes the smallest average distance of vector i to all points in other clusters,

a(i) represents the average distance of vector i to all points in cluster with i being a member.

The silhouette coefficient is in the interval of [−1,1]. Silhouette coefficient with the lager

value means the better clustering performance.

Figs. 4.4 to 4.11 show the clustering diagrams with different number of k. As shown in

Fig. 4.12, three clusters can provide the largest silhouette coefficient, but we can see from

Figs. 4.4 to 4.11 that they are rather difficult to explain the practical insights of the clustering

results whereas the prediction accuracy is not very good as well.

When the number of clusters takes the value from 4 to 7 , the silhouette coefficients

are similar. However, the 7 clusters can provide better prediction accuracy while, at the

same time, the clustering results can be well explained as follows: 1) “mild patients with

early&intermediate onset and short duration”; 2) “moderate patients with early&intermediate
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onset and middle duration”; 3) “severe patients with early&intermediate onset and long

duration”; 4) “mild patients with late onset and short duration”; 5) “Moderate patients with

late onset and middle duration”; 6) “severe patients with late onset and long duration”; and

7) “mild patients with very late onset and short duration”. Based on the comprehensive

comparison, the number of k = 7 is regarded as the best one for the clustering.

4.4.5 Discussion

Many existing clinical studies suffer from small sample sizes that cause the results to be

insignificant. In our research, the output of the algorithm is to assist in the collection of

baseline data for patients who cannot attend the assessments, thereby helping with the clinical

sample collection and data analysis from the researchers’ perspective. Once more and more

patient baseline data are collected, our follow-up plan will be carried out in the following

two ways.

• The first way is to increase the interpretability of the imputed data. The most common

view of the interpretability in recommendation system is to increase the algorithm

transparency, and this is particularly true in our research where reliable explanations

can largely increase the confidence of the end users (patients and/or doctors) in the

imputed data. Also, with a satisfactory interpretability of the imputed data, the end

users could evaluate the predicted ratings and make appropriate adjustments in real-

time based on the explanations, thereby providing us with more reliable data. Such a

cycle would help improve the performance of the developed recommendation system

with hope to have more accurate predictive information.

• The second way is to combine adequate machine learning algorithms with our proposed

method to classify patients accurately. As discussed in the introduction, we are

committed to helping EFACTS in collecting more patient data and assisting clinical

sample collection. In our chapter, we have divided patients into 7 categories by

clustering. In practical application, we could consider different patient-side information

and adjust our method according to the complicated actual situations. In this case,

the latest deep learning algorithms can be employed to classify the patients in a more

accurate way with hope to help doctors/researchers in the selection of clinical samples.

On the other hand, it is predictable that the future analysis will use longitudinal data rather

than only the baseline data. We are pleased that some FRDA patients are taking follow-up
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assessments every year for many years (leading to longitudinal data) but, unfortunately, we

are also aware that the number of return visits is decreasing every year, which is inevitable

because FRDA symptoms are degenerating and the FRDA patients are usually progressively

in poor physical conditions.

• In the context of FRDA patients, the existing longitudinal data do have certain limita-

tions and need to be further improved because 1) the number of patients in the EFACTS

database is very limited; and 2) these patients have different disease durations and onset

ages with different numbers of follow-up assessments. In order to make more sense

of the longitudinal analysis, we need to expand the number of patients to find enough

suitable samples in order to observe/study their disease progression, drug reaction and

so on. In this sense, our presented method can not only effectively increase the number

of potential clinical samples but also help the missing value prediction in longitudinal

data, which provides the expected assistance for future longitudinal data analysis.

• As potential disease-modifying therapies in FRDA are emerging, there is indeed an

urgent need to conduct longitudinal studies to identify and validate robust measures of

clinical progression so as to guide the design of future clinical trials. Our future work

will include the adoption of the advanced dynamic models for the time series analysis

of the disease progression, for which our purpose is to determine the long-term trends

and also consider the seasonal changes, cyclic fluctuations and irregular changes in the

time series, with the ultimate goal of making reliable statistical predictions. The above

analysis requires high quality of longitudinal data and we believe that our presented

method will definitely help EFACTS in improving the quality of longitudinal data.

4.5 Conclusion

In this chapter, a hybrid model- and memory-based algorithm has been presented and

successfully applied to improve the prediction performance on FRDA baseline data. By

taking model-based CF into account, the drawback of the traditional similarity calculation

methods in finding neighbors in the sparse data condition has been overcome. Moreover,

an enhanced and more generalized similarity measure has been proposed in memory-based

CF so as to provide a more comprehensive evaluation for the similarity degree between

two patients by considering the rating habits and degree of co-rated test-items. Large-scale
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real-world FRDA experiments have been conducted and the comprehensive experimental

results have shown the validity and feasibility of our algorithm. Finally, we have obtained

the best number of clusters which provides an important reference for disease research.

Future work can be summarized into three aspects: (1) how to further improve the

prediction performance of the FRDA baseline data by considering matrix factorization, deep

learning techniques and dynamics analysis; (2) how to extend our algorithm to other disease

baseline data collection problems and the wider health systems; and (3) how to provide

explanations for the recommended results. The explainable recommendation is our key

research direction because the effectiveness and persuasiveness of the recommended results

can be greatly improved if the system uses the easy-to-understand explanation to let the

patients know why the results are recommended to them. Interpretation of prediction results

can also assist doctors and patients to make the accurate decision about whether to accept

predicted results or to make reasonable adjustments.





Chapter 5

A Novel Collaborative Filtering
Approach for Friedreich’s Ataxia
Baseline Data Collection under
Cold-Start Condition

5.1 Motivation

Due to the physical condition of patients and other unexpected issues, it is impossible to

guarantee that all patients are physically capable of attending the assessments in the study

sites. Nevertheless, it is very likely that patients’ families can provide accurate baseline

data on some test-items at home after long-term daily care, and the unprovided parts can

then be treated as missing rating values. Based on the fact that similar patients show similar

symptoms, just like similar users exhibit similar interests in items in RSs, the prediction

of the missing rating values can be considered as a typical RS problem. In this context, it

seems natural to apply the CF algorithms to deal with the FRDA baseline data collection

problem, where patients amount to users and test-items for symptoms amount to items. As

such, the severity degree of different symptoms can be quantified based on the ratings on the

test-items.

The FRDA Rating Recommendation System (FRRS) was established in [179] to assist

FRDA patient baseline data collection. The FRRS analyzes the known ratings on test-items

of new patients and those of other existing patients in the EFACTS database. Then, the
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missing ratings of these new patients are predicted by FRRS based on the ratings of their

similar patients (neighbors). FRRS can achieve a good prediction accuracy on the assumption

that the patients or their families can provide some partially accurate rating data on test-items

[179, 180]. However, in reality, there are some cases where the newly recorded patients do

not have the ability to provide any baseline rating data. Such a “no-data” situation can be

seen as a cold-start problem as discussed in [199], and it is really difficult for the FRRS to

make valid predictions under this situation. Consequently, it is of practical importance to

design an advanced algorithm to provide relatively satisfactory prediction ratings under the

cold-start condition.

In this chapter, a weighted-naive-Bayes based CF (WNBCF) recommendation algorithm

is proposed to solve the cold-start problem. The naive Bayes (NB) method is a popular

classification method based on the Bayes’ theorem and the independence assumption between

the features. According to the characteristics of the NB method, in practical applications,

the patient side-information (attributes) is adopted to discover the relationship with ratings

(classes) on test-items. The patient side-information is the basic and useful information of a

patient which include, but are not limited to, patients’ age, gender, onset age and so on. The

NB algorithm assumes that all the attributes have the same importance for classification. In

fact, different attributes may have different influence on classification performance. As such,

a weighted NB algorithm has been developed whose main idea is to assign different attributes

with different weights according to their significance in improving the performance of the

classifier [184, 37]. In this situation, a challenging problem is to allocate proper weights for

each attribute to achieve a superior classification performance. In this context, the weight

selection can be treated as an optimization problem, and it becomes a rather challenging task

as how to effectively solve such a constrained optimization problem from the perspective of

FRDA patient baseline data collection.

To formulate an optimization problem, the utilization of reasonable constraints would

definitely help improving both the reliability and the accuracy of the optimization results.

In the optimization problem addressed in this chapter for the FRDA patient baseline data

collection, the first constraint is an inequality constraint that reflects the relationship between

the weights. The actual situation is that different patient side-information has different

effects on the ratings of test-items. To describe these effects, mutual information (MI)

is introduced in this chapter to investigate the mutual dependence between the attributes

and classes. The MI is chosen as an index to reflect the importance of each attribute in
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the classification. The more important the attributes are, the larger their weights would be.

Another equality constraint is that the sum of weights is required to be 1. As such, the problem

becomes a constrained optimization problem. To facilitate the subsequent development of the

optimization algorithm, the penalty-function method is utilized to transform the constrained

optimization problem into a series of unconstrained ones.

Evolutionary computation algorithms have shown outstanding performance in solving

optimization problems in a wide range of real-world applications such as healthcare, telecom-

munication, power systems, and so on [183, 185]. As a powerful member of the family of

optimization techniques, the particle swarm optimization (PSO) algorithm has been success-

fully employed to solve the optimization problems owing to its easy implementation and

relatively fast convergence towards satisfactory solution [91, 92]. In this context, the PSO

algorithm is exploited in this chapter to search for the optimal weights for each attribute in

WNBCF, where the selection of weights satisfies the constraints mentioned previously. To

test its superiority and effectiveness, our proposed method is compared with some conven-

tional algorithms and applied to the FRDA patient baseline data collection problem under

the cold-start condition. To this end, the main contributions of this chapter can be briefly

summarized as follows:

1. A modified CF algorithm is proposed to tackle the cold-start problem during the FRDA

patient-baseline-data collection, which provides valuable support to the clinical trials

and further disease research.

2. By combining MI with PSO algorithm, a novel computational framework is established

to fine tune the weights of our WNBCF method.

3. Comprehensive experiments are carried out to show that our proposed WNBCF algo-

rithm indeed provides satisfactory prediction accuracy under the cold-start condition

on the FRDA patient baseline data.

5.2 Methodology

Given an FRRS consisting of m̄ patients and n̄ test-items, the patients’ profiles are represented

by a m̄× n̄ matrix called the patient-item matrix Rm̄×n̄. The set of patients and test-items are

defined as U = {u1,u2, ...,um̄} and I = {i1, i2, ..., in̄}, respectively. Each element ru,i in this

matrix represents the case that the patient u gives a rating value r on the test-item i, where
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u ∈U , i ∈ I. Each patient has his/her own specific side-information which is described as

individual attributes. Some new patients might be incapable of providing any ratings on

test-items, which gives rise to a kind of cold-start situation. In this situation, the FRRS

is no longer applicable in finding similar patients in the patient-item matrix R, and it is

thus impossible to accurately predict the unfilled ratings of these patients. As mentioned in

Section 5.1, the main idea of our proposed method is based on the weighted NB, where the

classification results calculated by WNBCF correspond to the ratings on test-items. In what

follows, we give a brief introduction to basic weighted naive Bayes.

5.2.1 Weighted naive Bayes

Assume that A1,A2, . . . ,An are n attributes in patient side-information. A data sample is

represented by a vector E = (a1,a2, . . . ,an), where ak is the value of Ak (k ∈ {1,2, . . . ,n}).
All possible class labels are expressed as C. For any c ∈ C, based on Bayes theorem, the

posterior probability P(c|E) is written as:

P(c|E) = P(c)P(E|c)
P(E)

(5.1)

where P(c|E) is the conditional probability of c given E; P(E|c) is the conditional probability

of E given c; P(c) is the probability of c occurring and P(E) is the probability of E occurring.

In the NB, based on the conditional independence assumption, all attributes are independent

of each other with respect to class variables. In this case, P(E|c) is rewritten as:

P(E|c) = P(a1,a2, ...,an|c) =
n

∏
k=1

P(ak|c) (5.2)

and (5.1) is rewritten as:

P(c|E) = P(c)P(E|c)
P(E)

=
P(c)
P(E)

n

∏
k=1

P(ak|c) (5.3)

Since P(E) is the same for all classes, the NB classifier is expressed by:

hnb(E) = argmax
c∈C

P(c)
n

∏
k=1

P(ak|c) (5.4)
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where the data sample E is classified to the class with the maximum posterior probability,

hnb(E) represents the classification given by the NB algorithm and the conditional probability

∏
n
k=1 P(ak|c) is directly calculated from the training set.

The NB classifier assumes that all conditional attributes are independent of each other on

classification. In response to the influence of different attributes, the weighted NB classifier

has been proposed to achieve a better prediction accuracy than the NB classifier. A weighted

NB classifier is defined as:

hwnb(E) = argmax
c∈C

P(c)
n

∏
k=1

P(ak|c)wk (5.5)

where hwnb(E) represents the class given by the weighted NB algorithm and wk is the

weight of the attribute value ak. The larger the weight, the greater the impact. In addition,

the Laplace smoothing method is adopted in this chapter to prevent the problem of zero

probability, for example, if an attribute value appears with a class that is not in the training

set, the multiplication calculation of equation (5.5) is equal to 0. The Laplace smoothing

method is defined as follows:

P(c) =
|Tc|+1
|T |+ |C|

(5.6)

and

P(ak|c) =
|Tc,ak |+1
|T |+ |Ck|

(5.7)

where T is the training set; Tc denotes a set of samples belonging to class c in training

set; Tc,ak represents a set of samples with the value of ak on the k-th attribute in Tc; and Ck

represents possible classes to which the k-th attribute belongs.

5.2.2 Mutual information

The selection of weights plays an important role in the weighted NB algorithm. Because

of the good capability of MI on quantifying the interdependency of two random variables,

MI is utilized here to measure the mutual dependence between attribute variable and class

variable in this chapter. A larger MI value indicates a stronger association, so the importance

of attributes can be determined by the MI values.

For any attribute variable Ak and class variable C, the MI can be defined as:

MI(Ak,C) = H(Ak)+H(C)−H(Ak,C) (5.8)
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where H(Ak) is the information entropy of attribute Ak, H(C) is the information entropy of

class C, and H(Ak,C) is the joint entropy of attribute Ak and class C. H(Ak) is defined as

follows:

H(Ak) =− ∑
ak∈Ak

P(ak) log2 P(ak) (5.9)

where P(ak) is the frequency of occurrence of value ak in attribute Ak, and H(C) is defined

as:

H(C) =− ∑
c∈C

P(c) log2 P(c) (5.10)

where P(c) is the frequency of occurrence of value c in variable C, and H(Ak,C) is defined

as:

H(Ak,C) =− ∑
ak∈Ak

∑
c∈C

P(ak,c) log2 P(ak,c) (5.11)

where P(ak,c) is the frequency of simultaneous occurrence of values ak and c.

The MI value of each attribute is normalized to a notionally common scale with interval

of [0,1]. Let the sum of the MI values be one. The formulation is given by:

ŵk =
u(Ak,C)

∑
n
k=1 u(Ak,C)

(5.12)

where

u(Ak,C) =
2∗MI(Ak,C)

H(Ak)+H(C)
(5.13)

Based on (5.12), the weights of the attributes can be obtained. Then, one of the powerful

evolutionary computation algorithms, the PSO algorithm, is employed in our work to further

optimize the weights. In a PSO algorithm, the initial positions of the particles are randomly

chosen, and a good initial position could comprehensively improve the search performance

of the optimizer. In this case, the convergence speed and the probability of finding the

optimal solution are improved. In this chapter, the initial position of each particle satisfies

the multivariate Gaussian distribution N (Ŵ ,Σ), where

Ŵ =
[
ŵ1 ŵ2 · · · ŵn

]T



5.2 Methodology 83

and Σ is a covariance matrix. Additionally, MI values are used to determine the relationship

between attributes, and the correlation between the attributes is treated as a constraint in the

PSO algorithm.

5.2.3 PSO-based parameter design

The PSO algorithm, which is inspired by the simulation of social behavior of fish-schooling/birds-

flocking, is a well-known heuristic intelligent optimization algorithm. Given a set of data:

(E1,c1),(E2,c2), . . . ,(Es,cs), where E j = (a j1,a j2, . . . ,a jn) represents the values of attributes

in the j-th sample, c j ∈C represents the class of j-th sample.

The WNBCF method is a probability-based method, for example, if a data sample E j

appears in one class with the largest probability, then the sample E j belongs to this class.

Inspired by [87], the fitness function is designed based on the idea of maximizing the

probability that the data sample E j belongs to class c j and minimizing the sum of probability

that the data sample E j belongs to other classes. We modify the fitness function in [87] and

consider two constraints to achieve more reasonable and superior optimized results. We

define an n-dimensional weight parameter vector as W =
[
w1 w2 · · · wn

]T
. The fitness

function of our work is constructed as follows:

f (W ) =
s

∑
j=1

(
∑
ci∈C
ci ̸=c j

P(ci)
n

∏
k=1

P
(
a jk|ci

)wk

−P(c j)
n

∏
k=1

P
(
a jk|c j

)wk
)

(5.14)

where wk ∈W represents the weight of k-th attribute, ∑ ci∈C
ci ̸=c j

P(ci)∏
n
k=1 P

(
a jk|ci

)wk represents

the sum of probabilities of the data sample a j belonging to the classes except c j.

It should be noted that the selection of weights is required to satisfy two constraints: 1)

the relationship between weights satisfies the descending order according to the values of

(5.12), and 2) the sum of the weights is equal to one.
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The constrained optimization problem is defined as:

min f (W ) (5.15)

s.t. gk(W ) = wk −wk+1 ≥ 0,k = 1,2, . . . ,n−1

h(W ) =
n

∑
k=1

wk −1 = 0

To convert the addressed constrained minimization problem into a series of unconstrained

minimization problems, two penalty functions are introduced to (5.15) which leads to

minF(W,σ ,φ)

= f (W )+σ

n−1

∑
k=1

[max{0,−gk(W )}]2 +φ [h(W )]2

= f (W )+σ

n−1

∑
k=1

[max{0,−(wk−wk+1)}]2+φ

∣∣∣∣∣ n

∑
k=1

wk−1

∣∣∣∣∣
2

(5.16)

where σ ∑
n−1
k=1[max{0,−gk(W )}]2 and φ [h(W )]2 are two exterior penalty functions, and σ

and φ are penalty coefficients that are adjustable.

The position of the m-th particle (m ∈ {1,2, ...,N} with N being the size of swarm in

PSO algorithm) at the k̂-th iteration is expressed by a D-dimensional vector

Xm(k̂) =
[
xm1(k̂) xm2(k̂) · · · xmD(k̂)

]T
.

The velocity of m-th particle at the k̂-th iteration is represented by a D-dimensional vector

Vm(k̂) =
[
vm1(k̂) vm2(k̂) · · · vmD(k̂)

]T
.

The historical best position of the m-th particle at the k̂-th iteration is represented as

Pm(k̂) =
[

pm1(k̂) pm2(k̂) · · · pmD(k̂)
]T

,
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and the best particle of the swarm is denoted by Pg(k̂). The velocity and the position updating

equations of each particle are presented by the following two equations:

Vm(k̂+1) = w̄Vm(k̂)+ c1r1(Pm(k̂)−Xm(k̂))

+ c2r2(Pg(k̂)−Xm(k̂)) (5.17)

Xm(k̂+1) = Xm(k̂)+Vm(k̂+1) (5.18)

where w̄ indicates the inertia weight factor; c1 is a positive constant called the cognitive

parameter and c2 is another positive constant called the social parameter; r1 and r2 are two

uniformly distributed random numbers in the interval of [0,1]; and k̂ is the number of current

iteration. (5.17) is applied to determine the velocity of the m-th particle at (k̂+1)-th iteration,

and (5.18) updates the position based on the velocity of m-th particle at (k̂+1)-th iteration.

To improve the convergence speed and optimization performance of the PSO algorithm, a

large collection of variant PSO algorithms have been proposed, see in [91, 92]. In this chapter,

w̄ is formulated according to the relationship between current and maximum iterations number

as mentioned in [133, 134]. w̄ is given as follows:

w̄(k̂) =
k̂max − k̂

k̂max
× (w̄i − w̄ f )+ w̄ f (5.19)

where k̂ indicates the number of current iteration; k̂max represents the number of maximum

iteration in the experiment; w̄i is the initial value of the inertia weight when k̂ = 0; w̄ f is the

final value of the inertia weight when k̂ = k̂max. In general, w̄i is set as 0.9, and w̄ f is set as

0.4. It is worth mentioning that a large value of w̄ will contribute to the global exploration,

and a small value of w̄ will benefit the local exploitation.

The acceleration coefficients are important parameters to adjust the particle’s own ex-

perience and group experience to influence the particle’s motion trajectory. If the value of

c1 is small, the group experience will have a large impact on the particles. In this case, the

algorithm will converge quickly but it may converge to the local optima. A small c2 will

reduce the group interaction, and it is difficult for the particles to converge to the optimal

solution. In this chapter, c1 and c2 are chosen according to [117]:

c1 =
k̂max − k̂

k̂max
× (c1i − c1 f )+ c1 f (5.20)
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c2 =
k̂max − k̂

k̂max
× (c2i − c2 f )+ c2 f (5.21)

where c1i and c1 f denote the initial and final value of the acceleration coefficient c1, respec-

tively; c2i and c2 f are the initial and final value of the acceleration coefficient c2, respectively.

The values of c1i, c1 f , c2i and c2 f are set to be 2.5,0.5,0.5 and 2.5, respectively. The optimal

parameter vector W = Pg(k̂max) is obtained when the PSO algorithm terminates. Once the

optimal weights are determined, we can use the (5.5) to calculate the ratings on test-items

based on patient side-information.

Table 5.1 Key attributes in patient side-information

1 2 3 4 5 6 7
Disease duration
(year)

0 to 5 6 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 and
above

Onset age (year) 0 to 5 6 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 and
above

ISCED education
level

ISCED 0 ISCED 1 ISCED 2 ISCED 3 ISCED 4 ISCED 5 ISCED 6

Sex Male Female * * * * *
Children Yes No * * * *
Years of education 0 to 5 6 to 10 11 to 15 16 to 20 21 and

above
* *

Marital status Single Married Widowed Divorced Separated In a rela-
tionship

*

Employment Yes No * * * * *

To sum up, the proposed WNBCF algorithm is designed to solve the cold-start problem

of the FRRS under the condition that the new/follow-up patients cannot provide any ratings

on test-items. The pseudocode of the proposed WNBCF algorithm is shown in Algorithm

5.2.3.
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Algorithm 1: Hybrid CF framework

• Input: Patient side-information data, rating data on test-items, some parame-

ters in the PSO method;

1. Divide the known data into the training set, the validation set and the

testing set with a certain proportion;

2. Calculate the class prior probability P(c) (c ∈C) and the class condi-

tional probability P(ak|c) between each attribute and class in training

set;

3. Determine the Ŵ by (5.12);

4. Employ the PSO technique to select the optimal weight parameter

vector W (presented in Steps 5-16):

5. Initialize velocity for each particle;

6. Set the position for each particle that satisfies the multivariate normal

distribution N (Ŵ ,Σ);

7. for For k̂ = 0 to k̂max

8. forp = 1 to N

9. Calculate the probability of occurrence of each class by using

the weighted NB method based on (5.3);

10. Calculate the fitness value based on (5.14);

11. Obtain Pm(k̂);

12. end for

13. Obtain Pg(k̂);

14. Update each particle’s velocity and position based on (5.18);

15. end for

16. Set W = Pg(k̂max);

17. Calculate the posterior probability of each class with the corresponding

weights on attributes;

18. Predict the unfilled rating values in the testing set according to (5.5);

• Output: The predictions of unfilled rating values in the testing set.
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5.3 Implementation and experiments

5.3.1 Data description

In this chapter, the datasets of Demographics, Onset and Scale for the Assessment and Rating

of Ataxia (SARA) have been selected from the database provided by the EFACTS. Here, we

use the data of 874 patients in the experiments.

Side-information datasets: The side-information is extracted from the Demographics

dataset and Onset dataset. The Demographics dataset includes the basic demographic

information of FRDA patients. The Onset dataset includes information on the patient’s

first symptoms and basic diagnosis of FRDA. The main attributes in these two datasets for

algorithmic applications are listed in Table 5.1.

5.3.2 Data pre-processing

As we mentioned in the introduction section, different rating values of each test-item in

the SARA dataset correspond to the classes, and the side-information from Demographics

dataset and Onset dataset corresponds to attributes.

The rating values of test-items in the SARA dataset are from “0” to “4, 6 or 8”. In order

to facilitate the subsequent experiments, “0” sets as “class 1”, “1” sets as “class 2”, and so

on. The SARA overall score (0 to 40) is divided into 8 classes where the score (0 ∼ 5) is set

as “class 1”, (6 ∼ 10) is set as “class 2”, and so on.

Patient side-information is listed in Table 5.1, which are disease duration, onset age,

ISCED education level, and so on. Due to the reason that patient side-information has

different expressional forms, we unify them into discrete values from 1 to up to 7 respectively.

To sum up, we will use patient side-information which includes 8 attributes to predict

rating values (classes) of each test-item and SARA overall score.

5.3.3 Experiment setting

In our simulation, 874 patients are divided into the training set (70%), the validation set

(15%), and the testing set (15%). The training set is used to train parameters in our WNBCF

method. The initial positions of the particles satisfy the multivariate Gaussian distribution

N (Ŵ ,Σ) in Section 5.2.3. In this chapter, the elements on the diagonal of the covariance

matrix Σ are set to be 0.1. After that, the data in the training set are used to select the weights
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Table 5.2 Experimental results under different densities

Metrics Methods Name of test-items
Gait Stance Sitting Speech

disturbance
Right finger
chase

Left finger
chase

Right nose-
finger

MAE

IWNB-CF Minimum 1.0920 0.8514 0.7257 0.6857 0.5371 0.5486 0.6171
Mean 1.3065 1.0571 0.8771 0.8421 0.6274 0.6440 0.7217

NB Minimum 1.1552 0.8743 0.7543 0.7143 0.5314 0.5543 0.6629
Mean 1.3880 1.0934 0.9048 0.8477 0.6369 0.6672 0.7422

Weighted NB Minimum 1.1264 0.8914 0.7143 0.6914 0.5486 0.5714 0.6800
Mean 1.3144 1.0560 0.9069 0.8562 0.6341 0.6649 0.7629

RMSE

IWNB-CF Minimum 1.8352 1.4323 1.2259 1.0198 0.9196 0.8751 0.9681
Mean 2.0996 1.7136 1.3886 1.2375 1.0033 0.9960 1.0664

NB Minimum 1.9238 1.4501 1.2513 1.0850 0.8281 0.8685 0.9798
Mean 2.1792 1.7156 1.4035 1.2495 1.0057 1.0215 1.0841

Weighted NB Minimum 1.9579 1.4462 1.1735 1.0610 0.8816 0.8685 1.0226
Mean 2.1193 1.7295 1.4074 1.2663 0.9912 1.0172 1.1104

Metrics Methods Left nose-
finger

Right alter-
nating hand
movements

Left alter-
nating hand
movements

Right heel-
shin slide

Left heel-
shin slide

Sara total

MAE

WNBCF Minimum 0.6914 0.6629 0.6571 0.6514 0.6686 1.0743
Mean 0.7640 0.7916 0.7937 0.7629 0.7486 1.1625

NB Minimum 0.6514 0.6857 0.7086 0.6629 0.6057 1.0629
Mean 0.7795 0.8232 0.8013 0.7597 0.7467 1.1976

Weighted NB Minimum 0.6514 0.6514 0.6800 0.6286 0.6229 1.0114
Mean 0.7712 0.7930 0.7872 0.7472 0.7455 1.1981

RMSE

WNBCF Minimum 1.0057 0.9562 0.9289 1.0797 1.0823 1.4794
Mean 1.0997 1.1016 1.0852 1.2057 1.1722 1.6337

NB Minimum 0.8944 0.9739 1.0029 1.0744 1.0392 1.5062
Mean 1.1130 1.1311 1.1065 1.1967 1.1634 1.6669

Weighted NB Minimum 0.9562 0.9681 0.9651 0.9592 0.9914 1.4283
Mean 1.1110 1.1007 1.0905 1.1720 1.1682 1.6713

to minimize the fitness function by using the PSO algorithm. The validation set is used to

validate the effect of weights. In the testing set, the patient side information is regarded as

known, and all the ratings on test-items are unknown and need to be predicted. For any set of

patient side information, it corresponds to 13 test items. Two conventional algorithms which

are basic NB algorithm and basic weighted NB algorithm are employed to compare with our

WNBCF for the rating prediction accuracy.

To measure the prediction accuracy of algorithms, two most popular evaluation indicators

which are Mean absolute error (MAE) and root mean square error (RMSE) are introduced.

MAE and RMSE are two representative metrics of accuracy-based metrics. The accuracy-

based metrics is utilized to measure the average error between the ground truth and predicted

values. RMSE is more sensitive to large errors than MAE, therefore, RMSE is more useful

for the system where large errors are particularly undesirable. The MAE and RMSE between

actual ratings and predicted ratings are given as follows:

MAE =
1

|T | ∑
(u,i)∈T

|ru,i − r̂u,i| (5.22)

and

RMSE =

√
1

|T | ∑
(u,i)∈T

(ru,i − r̂u,i)2 (5.23)
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Fig. 5.1 MAE metric under different densities.

where |T | represents the total number of predicted values in the testing set; r̂u,i denotes the

predicted value generated in the testing set T .

In our simulation, experimental parameters are as follows: 1) the dimension of each

particle is D = 8; 2) the size of the swarm s is set to be 20; 3) the maximum iteration is set to

be K = 3000; 4) the search space is in the interval of (0, 1]; and 5) penalty coefficients σ and

φ are set to be 50.

5.3.4 Results and discussion

To comprehensively evaluate its effectiveness, the proposed WNBCF algorithm has been

applied to the FRDA patient baseline data prediction problem. The performance of the

WNBCF algorithm is evaluated by comparing it with the performance of other conventional

algorithms, including the basic NB algorithm and the basic weighted NB algorithm. In the

basic weighted NB algorithm, the weights are determined directly by using MI without using
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Fig. 5.2 RMSE metric under different densities.

the PSO algorithm to optimize. The patient side information is utilized to predict the ratings

on all the 12 test-items and the SARA total score. Each experiment is repeated 50 times to

avoid random influence. The minimum and average values of the MAE and RMSE on each

test-items are recorded.

Experiment results of the WNBCF algorithm, the NB algorithm and the weighted NB

algorithm are shown in Table 5.3. It can be seen that the proposed algorithm demonstrates its

superiority over the NB algorithm and the weighted NB algorithm in evaluation indices of

the MAE and RMSE. Compared to the basic weighted NB, the introduction of PSO has the

advantage of choosing suitable weights. In addition, most results of the weighted than that of

NB have the lower MAE and RMSE than NB which indicates that different attributes have

different degrees of importance to the result. Compared with other test-items in the same

interval, MAE and RMSE of the “Right finger chase” and “Left finger chase” are much lower

than others, which means that patient side-information has a greater impact on these two
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test-items than other test-items. To sum up, experiment results have shown the effectiveness

of the proposed WNBCF algorithm on the FRDA patient baseline data.

5.4 Conclusion

In this chapter, a modified WNBCF algorithm has been proposed to solve the cold-start

problem in the FRRS. By employing the WNBCF algorithm, the patient side information is

utilized for the missing value prediction. In addition, the PSO algorithm has been applied to

automatically select appropriate weights in the WNBCF algorithm. The developed WNBCF

algorithm has been successfully applied to the actual FRDA baseline data collection problem

with satisfactory performance. In the situation that the patients are unable to provide any

rating data, our algorithm can produce reasonable prediction results, which gives a new

solution to aid the FRDA patient baseline data collection. Experiment results have shown

the feasibility and effectiveness of our proposed algorithm by comparing it with some

conventional algorithms.

Our future work aims to 1) adopt the popular deep learning techniques to dig deep latent

factors of the FRDA patients and test-items from patient side information and disease-related

information; and 2) study the time-series modeling of disease progression of FRDA patients.



Chapter 6

An Optimally Weighted User- and
Item-based Collaborative Filtering
Approach to Predicting Baseline Data for
Friedreich’s Ataxia Patients

6.1 Motivation

During the past few decades, the recommendation systems (RSs) have received an ever-

increasing interest from various communities such as computer science, engineering research

and medical applications [192, 198, 93]. Owing to their outstanding performance in providing

users with product or service recommendations, the RSs have found successful applications

in a variety of domains including e-commerce, music, movies, news and so on [178, 95, 94].

In order to recommend goods and services that users are interested in, the RSs mainly employ

information filtering technology to analyze users’ requirements by mining user behavior data.

Collaborative filtering (CF), as one of the most successful recommendation techniques,

has been receiving considerable attention ever since the mid-1990s with fruitful applications

in the development of various RSs by Amazon, YouTube, Netflix and so on [17]. Generally

speaking, the well-known CF-based recommendation algorithms (RAs) include the user-

based CF (UBCF) algorithms and the item-based CF (IBCF) algorithms. The main idea

of the UBCF algorithms is to analyze the user behaviors to find similar users (named as

neighbors) in the communities. In this case, the items are recommended to a target user
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based on his/her neighbors’ interested items. Similarly, the IBCF algorithms make use of the

similarity between the items rather than users. The items that are similar to those in which

the target user is interested are recommended to the concerned user.

It should be noticed that the similarity measures play a critical role in the CF-based RAs.

Some commonly used similarity measures in the UBCF and IBCF algorithms include the ad-

justed cosine (AC), cosine, and Pearson correlation coefficient (PCC) measures. Nevertheless,

in the case that the user behaviors are complicated, the performance of the CF-based RAs

which use the PCC, cosine or AC as the similarity measure cannot be always guaranteed. As

such, tremendous efforts have been devoted to the design of more comprehensive similarity

measures [187, 40, 69, 78, 68, 197]. For example, the Shannon entropy has been employed

to quantify the users’ rating habits [69, 78], where the difference of entropy between users

has been utilized as the weight to adjust the result of similarity.

While the state-of-the-art similarity measures have helped improving the prediction

accuracy of the RAs, most of the measures take either users or items to predict the missing

values. It has been shown in some literature that the combination of the UBCF method and the

IBCF method could effectively improve the performance of the RSs [197, 198, 16, 113, 191].

In [197], the confidence weights, which use the degree of similarity of the neighbors as

a reference, have been utilized to balance the predictions obtained by the UBCF method

and the IBCF method. In the typical RAs, only positively correlated neighbors are utilized

to compute the similarity between the users/items. Nevertheless, the negatively correlated

neighbors are also useful in predicting the missing values from another perspective [73].

In this context, a seemingly natural idea is to combine the UBCF and IBCF methods by

developing a new prediction model where the positively and negatively correlated neighbors

in both methods are taken into account.

To balance the impacts from the UBCF method and the IBCF method, a typical approach

is to introduce the weighting parameters to predict the missing values, where the weighting

parameters are utilized to make an adequate tradeoff between the positively and negatively

correlated neighbors in the UBCF/IBCF methods. It is worth mentioning that, in the literature,

such weighting parameters have been manually selected according to engineering practice

by means of certain rules on an ad-hoc basis [197, 198]. Clearly, manual selection of

the weighting parameters requires in-depth domain knowledge and specific fine-tuning

techniques, which is not always possible in practice. As such, it makes practical sense to

automate the parameter selection algorithm with locally optimized performance.
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In search of an effective algorithm capable of locating optimally weighted parameters in

terms of improving the prediction performance, the Evolutionary computation (EC) algo-

rithms appear to be an ideal candidate. EC algorithms have shown distinguished advantages

in solving optimization problems in a diverse range of real-world applications including

telecommunication, signal processing, system science and so on [183, 185]. An effective yet

popular EC algorithm is the so-called particle swarm optimization (PSO) algorithm that owns

the distinctive advantages of easy implementation, quick convergence and great competence

in effectively searching the global optimum. So far, the PSO algorithm has gained much

attention from both academia and industry with successful applications in solving various

multi-objective optimization problems, see e.g. [91, 92]. Owing to its particular suitability,

the PSO algorithm is exploited in this chapter to optimize the weighting parameters in order

to achieve an adequate tradeoff between the positively and negatively correlated neighbors in

terms of predicting the rating values.

Motivated by the above discussions, we propose a modified CF (MCF) algorithm in this

chapter by combining the merits of UBCF and IBCF methods. Through the utilization of the

information from both the positively and negatively correlated neighbors, the proposed algo-

rithm is capable of predicting the missing values in multi-aspects with satisfactory accuracy.

In particular, the PSO algorithm is dedicatedly exploited to determine (locally) optimized

weights of our proposed MCF algorithm so as to further improve the prediction accuracy.

To illustrate its application potential, our proposed algorithm is applied to assist with the

baseline data collection for Friedreich’s ataxia (FRDA) patients. The main contributions are

summarized as follows:

1. An MCF algorithm is proposed which not only combines the merits from the UBCF

and IBCF methods but also makes full use of the positively and negatively correlated

neighbors in predicting the missing values.

2. The PSO algorithm is utilized to optimize the weights in the MCF algorithm so as to

achieve a) an adequate tradeoff between the user-based and the item-based similarity

measures; and b) a proper balance between the positively and negatively correlated

neighbors.

3. The developed algorithm is successfully applied to the FRDA assessment system to

assist clinical sample collection for FRDA patients who are unable to attend the tests

in the study sites.
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The remainder of this chapter is structured as follows. The detailed introduction of the

proposed MCF approach is presented in Section 6.2. The performance of our proposed MCF

approach is evaluated in the case of a real-world neurological disease in Section 6.3. Finally,

conclusions are drawn in 6.4.

6.2 Main results

Given an RS consisting of m users and n items, the user profiles are denoted by a m× n

matrix called the user-item matrix Rm×n. The sets of users and items are defined as U =

{u1,u2, . . . ,um} and I = {i1, i2, . . . , in}, respectively. Each element ru,i in R represents that

the user u rates the value r on the item i, where u ∈U , i ∈ I. If the user u has rated the item i,

then r ∈ 1,2, . . . , r̃ (r̃ is the upper bound of the ratings). Furthermore, ru,i = /0 if the user u

does not rate the item i.

6.2.1 Computation of similarity

The PCC is one of the most well-known similarity measures in RSs due to its high prediction

accuracy and easy implementation [20, 197]. In the UBCF algorithm, the PCC similarity

degree between user u and user a is calculated according to the following formula:

SimPCC
u,a =

∑i∈Iu,a(ru,i−r̄u)(ra,i−r̄a)√
∑i∈Iu,a(ru,i−r̄u)2

√
∑i∈Iu,a(ra,i−r̄a)2

(6.1)

where SimPCC
u,a is the PCC similarity degree between users u and a; Iu,a = Iu ∩ Ia is the subset

of items on which both users u and a have rated, where Iu denotes all the items that have

been evaluated by user u and Ia denotes all the items that have been evaluated by user a; ru,i

indicates the rating value of item i rated by user u and ra,i indicates the rating value of item i

rated by user a; r̄u is the mean rating value of items that user u has rated; and r̄a is the mean

rating value of items that user a has rated. The values calculated by (6.1) are in the range of

−1 to 1. A larger value of SimPCC
u,a means that the user u and user a are more similar.
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In the IBCF algorithm, the AC method is introduced to evaluate the degree of similarity

between the item i and item j by the following formula [125]:

SimAC
i, j =

∑u∈Ui, j(ru,i−r̄u)(ru, j−r̄u)√
∑u∈Ui, j(ru,i−r̄u)2

√
∑u∈Ui, j(ru, j−r̄u)2

(6.2)

where SimAC
i, j is the AC similarity between items i and j; Ui, j =Ui ∩U j is the subset of users

who have rated both item i and item j, where Ui denotes the users who have rated item i and

U j denotes the users who have rated item j; and ru, j denotes the rating value provided by

user u on item j. Notice that the values calculated by AC are in the range of −1 to 1.

6.2.2 Neighbor selection

Traditionally, the top-k algorithm is used to rank the neighbors based on their similarity

degrees in the descending order, and then the top k neighbors are chosen to predict the

missing values. As mentioned previously, the values of SimPCC
u,a and SimAC

i, j lie in the range

of [-1, 1]. The closer that similarity of PCC/AC is to 1, the more similar the users/items

are. Users with positive correlations can undoubtedly be used to make predictions. On

the contrary, negative correlation also expresses the relationship between two users from

the negative side. The closer that similarity of PCC/AC is to −1, the more dissimilar the

users/items are. For example, if users u and a have the similarity of −1, it means when user

u rates an item with a high value then user a will definitely give a low value on that item, and

vice versa. To sum up, the neighbors with both positive and negative correlations should be

utilized to forecast the missing values from different perspectives. The neighbor selection has

always been a key yet hot topic in RSs. A large number of neighbor selection strategies have

been designed with hope to improve the RS’s performance. Based on the neighbor selection

strategy suggested by Breese [20], the neighbors with high correlations are more valuable

than those with low correlations. Therefore, the positive and negative neighbor sets of user u

and item i are formed by:

Posu = {a+|SimPCC
u,a+ > 0.5,a+ ̸= u} (6.3)

Negu = {a−|SimPCC
u,a− <−0.5,a− ̸= u} (6.4)

Posi = { j+|SimPCC
i, j+ > 0.5, j+ ̸= i} (6.5)

Negi = { j−|SimPCC
i, j− <−0.5, j− ̸= i} (6.6)
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where Posu represents the set of similar users having positive correlation with user u; Negu

represents the set of similar users having a negative correlation with user u; Posi indicates

the set of similar items having positive correlation with item i; and Negi indicates the set of

similar items having negative correlation with item i.

6.2.3 Prediction of missing values

In the UBCF methods, the missing values on items are predicted by utilizing positively

correlated neighbors of users according to the following formula [20]:

r̂u,i = ū+
∑a+∈Posu SimPCC

u,a+(ra+,i − ā+)

∑a+∈Posu SimPCC
u,a+

(6.7)

where r̂u,i is the predicted value of ru,i; ū is the mean value of different items provided by user

u; and ā+ is the mean value of items provided by the user a+ who has the positive similarity

degree with the target user u. For the UBCF methods that utilize the negative correlation

neighbors, the missing values of the test-item are predicted by the following formula:

r̂u,i = ū−
∑a−∈Negu

SimPCC
u,a−(ra−,i − ā−)

∑a−∈Negu
SimPCC

u,a−
(6.8)

where ā− represents the mean value of items rated by the user a− who has the negative

similarity degree with target user u.

In the IBCF methods employing the positive neighbors, the missing values of the test-

items are determined based on

r̂u,i = ī+
∑ j+∈Posi SimAC

i, j+(ru, j+ − j̄+)

∑ j+∈Posi SimAC
i, j+

(6.9)

where ī represents the average values of item i rated by users, and j̄+ is the average value

of item j+ which has the positive similarity degree with the target item i. To be specific,

the missing values on items are predicted by utilizing the negatively correlated neighbors

according to the following formula:

r̂u,i = ī−
∑ j−∈Negi

SimAC
i, j−(ru, j− − j̄−)

∑ j−∈Negi
SimAC

i, j−
(6.10)
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where j̄− is the average value of the item j− which has the negative similarity degree with

the target item i.

In our work, the UBCF method and the IBCF method are combined where both the

positively and the negatively correlated neighbors are taken into account to predict the missing

values. Three weighting parameters are employed in the developed MCF algorithm in order to

achieve 1) a proper balance between the UBCF method and the IBCF method, 2) an adequate

tradeoff between the positively and negatively correlated neighbors in UBCF method, and

3) an adequate tradeoff between the positively and negatively correlated neighbors in IBCF

method. The formula for prediction is shown as follows:

r̂u,i

=α ×

(
ū+λ ×

∑a+∈Posu SimPCC
u,a+(ra+,i − ā+)

∑a+∈Posu SimPCC
u,a+

−(1−λ )×
∑a−∈Negu

SimPCC
u,a−(ra−,i − ā−)

∑a−∈Negu
SimPCC

u,a−

)

+(1−α)×

(
ī+β ×

∑ j+∈Posi SimAC
i, j+(ru, j+ − j̄+)

∑ j+∈Posi SimAC
i, j+

− (1−β )×
∑ j−∈Negi

SimAC
i, j−(ru, j− − j̄−)

∑ j−∈Negi
SimAC

i, j−

)
(6.11)

where α denotes the weight for the UBCF method; (1−α) denotes the weight for the IBCF

method; λ and (1− λ ) represent the weights of the positively correlated neighbors and

negatively correlated neighbors in the UBCF method, respectively; β and (1−β ) denote

the weights of the positively correlated neighbors and negatively correlated neighbors in the

IBCF method, respectively.

It is worth mentioning that the formula (6.11) would be degenerated into that for the

traditional UBCF algorithm when α and λ are equal to 1, and into that of the traditional

IBCF algorithm when α = 0 and β = 1.

6.2.4 PSO-based parameter selection strategy

The PSO algorithm, which is a popular evolutionary computation algorithm inspired by the

simulation of the social behavior of fish-schooling/birds-flocking, is applied in this chapter to

dispose of the parameter optimization problem because of its competitive strength in seeking
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a relatively satisfactory solution as well as its easy-to-implement feature [91]. Here, each

particle in the swarm indicates a candidate solution to the research problem.

In the proposed MCF algorithm, we select three appropriate weighting parameters to

guarantee the prediction performance. The weights are expressed by a 3-dimensional vector

as follows:

ω ,
[
α β λ

]T
.

Without loss of generality, we divide the user-item matrix R into the training set (with 60

percent of the data), the validation set (with 20 percent of the data) and the testing set (with

20 percent of the data). The training set is applied to train the weighting parameters, and

the validation set is utilized to validate the predicted results by using the trained weighting

parameters. As the prediction accuracy reaches the desired threshold, the trained weighting

parameters are applied to predict the results in the testing set.

The fitness function of the PSO algorithm is shown as follows:

fitness =
1
|V | ∑

ru,i∈V
|ru,i − r̂u,i| (6.12)

where V represents the validation set, |V | denotes the number of ratings in the validation set

and r̂u,i is calculated by formula (6.11).

Our attention is focused on choosing suitable ω so as to minimize the fitness function of

the PSO algorithm. The optimization problem in our work is defined by:

ω
∗ = argmin f itness (6.13)

In this chapter, the particles move at a certain speed in a 3-dimensional search space.

Denote

vm(k) =
[
vm1(k) vm2(k) vm3(k)

]T
,

ωm(k) =
[
ωm1(k) ωm2(k) ωm3(k)

]T

as the velocity and position of the m-th particle at the k-th iteration, respectively. The

historical best position of the m-th particle (m = 1,2, . . . ,N) at the k-th iteration and the
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global best position detected by the entire swarm are, respectively, denoted by

pm(k) =
[

pm1(k) pm2(k) pm3(k)
]T

,

g(k) =
[
g1(k) g2(k) g3(k)

]T
.

The velocity and the position of the m-th particle are updated by the following equation:

vm(k+1) = wvm(k)+ c1r1(pm(k)−ωm(k))

+ c2r2(g(k)−ωm(k))

ωm(k+1) = ωm(k)+ vm(k+1) (6.14)

where w is the inertia weight factor; c1 is the acceleration coefficient called the cognitive

parameter, and c2 is another acceleration coefficient called the social parameter; r1 and r2

are two random numbers that satisfy the uniform distribution in the range of 0 to 1; k is the

number of current iteration.

In order to enhance the search ability and reduce the possibility of getting trapped into

local optima, lots of improved algorithms have been proposed to adjust the parameters in

PSO algorithm. In this chapter, w is formulated according to the relationship between current

iteration and maximum iteration number as mentioned in [133, 134], which is given as

follows:

w(k) = w f +(wi −w f )×
kmax − k

kmax
(6.15)

where k and kmax are the number of current iteration and maximum iteration, respectively; wi

is the initial inertia weight value when k = 0, and w f indicates the final value of the inertia

weight when k = kmax.

In this chapter, the initial and final inertia weights values are set as wi = 0.9 and w f = 0.4,

respectively. In general, a large inertia weight will benefit the global exploration at the early

stage and a small inertia weight will help the local exploitation at the later stage. In addition,

the acceleration coefficients c1 and c2 are calculated by the following equations [117]:

c1 = c1 f +(c1i − c1 f )×
kmax − k

kmax
(6.16)

c2 = c2 f +(c2i − c2 f )×
kmax − k

kmax
(6.17)



102
An Optimally Weighted User- and Item-based Collaborative Filtering Approach to

Predicting Baseline Data for Friedreich’s Ataxia Patients

where c1i denotes the initial value of cognitive acceleration coefficient c1 and c1 f denotes the

final value of cognitive acceleration coefficient c1, c2i denotes the initial value of cognitive

acceleration coefficient c2 and c2 f denotes the final value of cognitive acceleration coefficient

c2. According to experiment experience, the values of c1i,c1 f ,c2i and c2 f are set to be 2.5,

0.5, 0.5, and 2.5, respectively. Finally, when the PSO algorithm terminates, we can obtain the

optimal parameter vector as ω∗ = g(kmax), where kmax represents the number of maximum

iteration.

Table 6.1 Description of SARA dataset

Gait Stance Sitting Speech disturbance Finger chase Nose-finger test
right left meana right left meana

0 to 8 0 to 6 0 to 4 0 to 6 0 to 4 0 to 4 0 to 4 0 to 4 0 to 4 0 to 4
Fast alternating hand movements Heel-shin slide

SARATotalb
right left meana right left meana

0 to 4 0 to 4 0 to 4 0 to 4 0 to 4 0 to 4 0 to 40

a: The mean indicates the average value of right and left sides.

b: The SARA Total indicates the sum of the values on first 4 test-items and the mean values on last 4 test-items.
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The pseudocode of the MCF algorithm is shown in Algorithm 6.2.4 on next page.

The MCF Algorithm

• Input: User-item rating matrix R, k in top-k method, parameters in the PSO

algorithm

1. Divide all the known data in R into the training set and the validation

set with a certain proportion;

2. Calculate the PCC similarity between users and the AC similarity

between items by utilizing the data in the training set;

3. Employ the PSO technique to select the optimal parameter vector ω∗

(presented in Steps 4-14) on the validation set:

4. Initialize velocity and position for each particle;

5. fork = 0 to kmax

6. forp = 1 to N

7. Predict the rating values on the validation set based on equation

(6.11);

8. Calculate the fitness value based on equation (6.12);

9. Obtain pm(k);

10. end for

11. Obtain g(k);

12. Update velocity and position for each particle based on equation

(6.14);

13. end for

14. Set ω∗ = g(kmax);

15. Calculate the PCC similarity between users and the AC similarity

between items by utilizing all the known data;

16. Predict the missing values in R by equation (6.11) according to the

values of α , β , λ in ω∗.

• Output: The predictions of missing values in rating matrix R
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6.3 Application in friedreich’s ataxia assessment system

6.3.1 FRDA assessment with the help of CF method

Friedreich’s ataxia (FRDA), which is defined by a German neurologist in 1863, is an inherited

neurodegenerative disorder that affects the nervous system and the heart with symptoms of

deep sensory loss, muscle weakness, kyphoscoliosis, dysarthria, heart disease and difficulty

in speech [25]. FRDA is the most common hereditary ataxia with 1-2 cases in every

50,000 white people. To comprehensively study FRDA, the European Friedreich’s Ataxia

Consortium for Translational Studies (EFACTS) has assembled a body of expertise to adopt

a translational research strategy for FRDA [118, 119].

EFACTS has been devoted to collecting and analyzing FRDA patient baseline data since

2010. Up to now, EFACTS has collected more than one thousand patients’ baseline data

from nearly twenty study sites in nine European counties, but the coverage is still far from

enough. According to the morbidity rate, the potential FRDA patients are huge. Due to the

limitations of physical, psychological or economic reasons, many patients may not be able to

go to the study sites for the FRDA medical assessment.

Note that most baseline data are collected through interviews, questionnaires, observations

and coordinated tests at the study sites without using any medical instruments. Here, the

detailed test methods and rating rules have been provided by EFACTS. Therefore, we make a

reasonable assumption that patients who are not able to go to the study sites can be assessed

at home and let their families (or themselves) act as examiners. The examiners can be

relied upon in providing certain reliable ratings in the portion of test-items during long-term

observation and care.

Intuitively, similar FRDA patients exhibit similar symptoms. The unfilled parts in test-

items are regarded as missing values. The prediction of missing values can be considered

as a typical RS problem, where the patients correspond to the users, and FRDA test-items

correspond to the items. Inspired by the idea of CF, the missing values can be predicted by

utilizing the certain values provided by the examiners and the data collected by EFACTS.

Therefore, the application of our proposed MCF algorithm in FRDA provides an alternative

way to assist patient baseline data collection. In this way, many more patient samples can be

exploited in clinical trials, which will provide better bases for FRDA research [179, 180].
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6.3.2 Data pre-processing

In this chapter, the scale for the assessment and rating of ataxia (SARA) dataset has been

selected from the database provided by the EFACTS. SARA is a new clinical scale that is

utilized to evaluate the treatment effectiveness and severity of different types of cerebellar

ataxia such as Friedreich’s, spinocerebellar and sporadic ataxia [175]. As shown in Tab. 6.1,

there are 12 test-items in 8 categories to assess a range of different impairments. The

categories are gait, stance, sitting, speech disturbance, finger chase, nose-finger test, fast

alternating hand movements and heel-shin slide. SARA has an accumulative score ranging

from 0 to 40 where 0 means no ataxia and 40 means most severe ataxia.

The number of patients in the SARA dataset is continuously updated. Up to now, the

SARA dataset has included the baseline data of 1029 patients. The user-item matrix R is

a 1029×12 matrix, where each row denotes an FRDA patient, and each column denotes a

test-item. As shown in Tab. 6.1, the rating intervals are different. Therefore, we normalize

the rating values into the 0-1 range based on

x′ =
x− xmin

xmax − xmin
(6.18)

where x′ is the normalized value, xmin and xmax are, respectively, the minimum and maximum

values of x which give the range of x.

Table 6.2 Experimental results under different densities

Metrics Methods density of matrix
90% 80% 70% 60% 50% 40% 30%

MAE
MCF 0.1132 0.1166 0.1302 0.1348 0.1449 0.1535 0.1684

UBCF 0.1198 0.1231 0.1356 0.1471 0.1543 0.1627 0.1740
(Improve) (5.51%) (5.28%) (3.98%) (8.36%) (6.09%) (5.65%) (3.22%)

IBCF 0.1157 0.1183 0.1314 0.1391 0.1486 0.1634 0.1841
(Improve) (2.16%) (1.44%) (0.91%) (3.09%) (2.49%) (6.06%) (8.53%)

RMSE
MCF 0.1583 0.1592 0.1722 0.1769 0.1907 0.1977 0.2265

UBCF 0.1634 0.1643 0.1811 0.1945 0.2065 0.2209 0.2389
(Improve) (3.12%) (3.10%) (4.91%) (9.05%) (7.65%) (10.50%) (5.19%)

IBCF 0.1601 0.1627 0.1802 0.1845 0.2012 0.2156 0.2431
(Improve) (1.12%) (2.15%) (4.44%) (4.12%) (5.22%) (8.30%) (6.83%)

6.3.3 Experiment setting

In our simulation, 1029 patients have been divided into the training set (70%), validation set

(15%) and testing set (15%). The training set and validation set are used for selecting the
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Fig. 6.1 MAE metric under different densities.

parameter vector ω to minimize the error. The data in the testing set is regarded as patients

who cannot take the tests in any study site. In this case, the patients in the testing set only

provide ratings on the portion of test-items. The proposed MCF method is utilized to predict

the rating values on patients’ unfilled parts.

To evaluate the prediction quality of the algorithm, the mean absolute error (MAE) and

the root mean square error (RMSE) used in our experiments are given as follows:

MAE =
1
N ∑

u∈Ud

∑
i∈Id

|ru,i − r̂u,i| (6.19)

RMSE =

√
1
N ∑

u∈Ud

∑
i∈Id

(ru,i − r̂u,i)2 (6.20)

where N represents the total number of predicted values in the testing set; Ud and Id represent

the user set and test-item set in the testing set, respectively; ru,i is the true rating value in the

testing set; and r̂u,i is the predicted value provided by our proposed CF algorithm.
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Fig. 6.2 RMSE metric under different densities.

The parameters of the PSO algorithm in the simulation are given as follows. The

dimension of each particle is 3; the population of the swarm is 20; the maximum iteration

number is set to be 1000; and the search space of α,β ,λ is in the interval of [0, 1].

6.3.4 Results and discussion

In this chapter, we implement our approach on the SARA dataset provided by EFACTS to

evaluate the effectiveness of our algorithm by employing the density of the testing set from

90% to 30% with a step size of 10%. We repeat each experiment 100 times to avoid random

influence, and the average values of MAE and RMSE have been recorded. To demonstrate

the superiority of our proposed MCF algorithm, we make a comparison of the UBCF and

IBCF methods with our proposed MCF method on the MAE and RMSE metrics.

Experiment results of the UBCF, IBCF and MCF methods are shown in Figs. 6.1 and

6.2. The vertical coordinate denotes the values of MAE or RMSE, and the horizontal



108
An Optimally Weighted User- and Item-based Collaborative Filtering Approach to

Predicting Baseline Data for Friedreich’s Ataxia Patients

coordinate represents the different densities of the user-item matrix. The MAE and RMSE

of different CF-based algorithms are displayed in Tab. 6.2. The results indicate that our

MCF algorithm has better MAE and RMSE values than the UBCF and the IBCF algorithms

under different densities. To sum up, the proposed MCF algorithm has shown satisfactory

prediction accuracy in the FRDA baseline data.

6.3.5 Complexity analysis

Classic UBCF (IBCF) algorithm involves the calculation of user-user (item-item) similarity

matrix in an offline way, which is computationally expensive. For both UBCF and IBCF,

the offline computation of similarity matrices is very time-consuming. The offline time

complexity of UBCF and IBCF is O(m2 ·n) and O(m ·n2), respectively, where m denotes

the number of users and n denotes the number of items. In MCF, the offline computation is

even more expensive because our proposed algorithm needs to compute both user-user and

item-item similarity matrices. The offline time complexity of the MCF is O(m2 ·n+m ·n2).

In the online phase, the time complexity of MCF method in the prediction part is the

same as that of UBCF/IBCF method, which is O(k) where k is the size of the neighbors of

the target user and item. To sum up, our proposed method improves the prediction accuracy

at the expense of extra offline computation.

6.4 Conclusion

In this chapter, an MCF algorithm has been presented and successfully employed to deal with

the data prediction problem of FRDA patient baseline data. The proposed MCF algorithm has

combined the merits of both the UNCF method and the IBCF method, and has been shown to

outperform the UNCF method alone or the IBCF method alone. It should be pointed out that

the positively and the negatively correlated neighbors have also been taken into account in the

MCF algorithm with hope to improve prediction accuracy. In the developed MCF algorithm,

the weighting parameters have been employed to balance the usage of 1) the UBCF method

and the IBCF method; and 2) the positively and the negatively correlated neighbors. The

PSO algorithm has been applied to automate the selection of locally optimized weights

so as to guarantee the prediction accuracy. The MCF algorithm has been applied to deal

with a real-world disease, the FRDA, to justify its application potential. Experiment results

have shown that our proposed approach greatly improves the prediction accuracy with better
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performance than either the UBCF algorithm or the IBCF algorithm. In the future, we aim to

investigate the application and improvement of different deep neural network models in RSs.





Chapter 7

Conclusions and Future Research

In this chapter, we first summarize our work in this thesis and then point out several possible

directions in further research.

7.1 Concluding remarks

For FRDA (Friedreich’s ataxia), insufficient clinical samples have led to uncertainty about

the effectiveness of existing clinical studies, even if many existing clinical trials have shown

positive effects. Traditional collection methods are not only slow, but also expensive. In

addition to taking into account the characteristics of this disease, the poor health of many

patients also makes data collection face unprecedented difficulties.

In this thesis, we propose a novel FRDA patient data collection strategy which is inspired

by the popularity of the nowadays “Recommendation System (RS)” and a series of advanced

collaborative filtering (CF) based methods. Specifically, to overcome physical/psychological

difficulties in recruiting new patients and collecting follow-up assessment data, a novel data

collection strategy for the FRDA baseline data by using the CF approaches is presented

(Chapter 3); a novel hybrid method combining the merits of model- and memory-based CF

methods is proposed for addressing the situations of patients that neighbors and patients

do not have neighbors (Chapter 4); a weighted naive Bayes based CF (WNBCF) algorithm

is proposed to assist the FRDA baseline data collection under the cold-start condition by

taking into account the patient side-information (Chapter 5); a modified collaborative filtering

(MCF) algorithm with improved performance is developed, which combines the individual

merits of both the user-based CF method and the item-based CF method, where both the
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positively and negatively correlated neighbors are taken into account (Chapter 6). Next, we

summarise the research results presented in each of these chapters.

Chapter 3 has presented a data collection strategy for the FRDA baseline data by using

the CF approaches. This strategy adopts the idea of the nowadays popular RS which is

based on the fact that similar patients have similar symptoms on each test-item. Note that

the main advantages of using RS is that not all ratings are required for all testing-items,

which means that the patients only need to provide some sure ratings at home instead of

going to the EFACTS’ study sites. The unfilled parts will be predicted by using one of

the most successful RS techniques, memory-based CF methods. It is shown that the CF

approaches are capable of predicting baseline data based on the similarity in test-items of

the patients, where the prediction accuracy is evaluated based on three rating scales selected

from the EFACTS database. Experimental results demonstrate the validity and efficiency

of the proposed strategy. The limitation in Chapter 3 is that based on what may happen

in reality, basic memory-based CF methods are able to overcome the problems of sparsity,

cold-start, and low prediction accuracy.

In Chapter 4, a hybrid model- and memory-based CF algorithm has been proposed in

order to improve the prediction accuracy of unfilled values when dealing with the situations

of patients who have neighbors and do not have neighbors. If patients have similar neighbors,

the enhanced memory-based CF method is adopted with an improved similarity measure,

where both the patient rating habits and the number of co-rated test-items are taken into

account from a unified viewpoint. If patients do not have any similar neighbors, the model-

based CF is harnessed to find similar neighbors with similar FRDA symptoms by clustering

this patient into the class based on his/her attributes. To evaluate the advantages of the

proposed algorithm, the Scale for the Assessment and Rating of Ataxia (SARA) is selected

from the EFACTS database. Experimental results demonstrate that our proposed hybrid CF

approach is superior to other conventional approaches. The limitation in Chapter 4 is that we

must assume that new patient must provide at least one rating value. If not, our proposed

method cannot handle this kind of situation.

In Chapter 5, a WNBCF algorithm has been proposed to tackle the cold-start problem

during the FRDA patient-baselinedata collection. In practical applications, the patient side-

information (attributes) with different weights according to their significance is adopted

to discover the relationship with ratings (classes) on test-items. By combining MI with

PSO algorithm, a novel computational framework is established to fine tune the weights



7.2 Recommendations for future research 113

of attributes. The superiorities of the proposed WNBCF algorithm is demonstrated over

some conventional algorithms in real-world FRDA datasets from the database provided by

EFACTS. The limitation in Chapter 5 is that the conditional probability is normally very

small because the equation for calculating the probability is continuous multiplication. This

can lead to unstable predictions.

In Chapter 6, an MCF has been developed by combining the merits of uer-based CF and

item-based CF methods. Through the utilization of the information from both the positively

and negatively correlated neighbors, the proposed algorithm is capable of predicting the

missing values in multi-aspects with satisfactory accuracy. The PSO algorithm is utilized to

optimize the weights in the MCF algorithm so as to achieve a) an adequate tradeoff between

the user-based and the item-based similarity measures; and b) a proper balance between

the positively and negatively correlated neighbors. The effectiveness of the proposed MCF

algorithm is confirmed by extensive experiments and, furthermore, it is shown that our

algorithm outperforms some conventional approaches. The limitation in Chapter 6 is that

the fitness function is used to minimize the overall mean absolute error, however, for each

patient, these weight parameters may not be necessarily good.

7.2 Recommendations for future research

In this thesis, we have presented a novel FRDA baseline data collection strategy that are

capable to assist EFACTS in overcoming existing obstacles and improving collection speed.

And we have also proposed several enhanced recommendation algorithms to improve the

prediction accuracy of missing values during data collection. Next, the work may be further

researched in a number of ways:

• Interpretability: The explainable recommendation is very important in today’s applica-

tions [1, 195], especially in medical and healthcare fields. If the designed RS can come

up with easy-to-understand explanation, the patients would know why the results are

recommended to them and, therefore, both the effectiveness and the persuasiveness of

the recommended results are greatly improved. Interpretation of the prediction results

can also assist doctors/patients to make the accurate decision about whether to accept

predicted results or make adjustments. As such, one of our future research directions

is to increase the interpretability of our designed RS.
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• Algorithm development: The algorithms we are improving now are mainly focused

on memory-based CF methods. Some model-based CF methods have been shown to

work very well in RSs, for example, matrix factorization [170, 67], deep learning [126,

51, 50, 166] and so on. In particular, the recommendation algorithms based on deep

learning models have ushered in explosive growth in recent years [39, 80, 162, 190].

In the future, we aim to focus on developing appropriate deep learning models to help

improve the prediction accuracy by extract useful patient characteristics.

• Other application scenarios: As we discussed in Section 2.6, RS techniques can be

applied to lots of different scenarios. For FRDA patients, our future work is to help

design an RS to provide personalized recommendations to effectively support their

daily activities, rehabilitation programmes and so on.

• Other disease applications: RS technology has been widely used in the medical and

healthcare fields. The proposed strategy in Chapter 3 is also applicable to other

diseases baseline data collection, especially in rating scales, for example, some famous

scales like International Cooperative Ataxia Rating Scale, Hamilton Rating Scale for

Depression and National Institutes of Health Stroke Scale, etc. How to extend our

proposed strategy and algorithms to other application scenarios will be the next topic

in our future research.

• Privacy preserving: Privacy preserving is very important, and it is also one of the

key directions of our next research [158, 12, 110, 135]. For example, the collected

patient data not only contains a large amount of personal information of users, but also

includes disease conditions, medication, and family information. Leakage of these

data will bring potential threats to patients and their families. Some simple encryption

methods sometimes do not guarantee data security, so our following work will design

a robust RS to defend against different types of attacks.
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