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Abstract A convergence analysis for studying the continuity and 

differentiability of limit curves generated by uniform subdivision 

algorithms is presented. The analysis is based on the study of 

corresponding difference and divided difference algorithms. The 

alternative process of "integrating" the algorithms is considered. A 

specific example of a 4-point interpolatory curve algorithm is 

described and its generalization to a surface algorithm defined over 

a subdivision of a regular triangular partition is illustrated.      

Key words: Subdivision algorithms, Control polygon, Interpolation, 

Shape control. 

1.  Introduction 

Subdivision algorithms which generate curves and surfaces play an 

important role in the subject of computer aided geometric design. 

The basic idea is that a given initial "control polygon" is 

successively refined so that, in the limit, it approaches a smooth 

curve or surface. We will consider uniform binary subdivision 

algorithms for curves of the following form: 

At the k+l'st step of the algorithm, k = 0,1,2,..., let fk denote 



 

the control polygon in RN with "control point" vertices Zi,NR
i
kf ∈∈   

Then the control polygon fk+1 has vertices defined by the rule 
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  Where ℓ < m 

Our motivation for studying uniform subdivision schemes of the 

form (1) is based on the particular example of a 4-point interpol-

atory rule defined by 
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see Dyn, Gregory, Levin (1987).Here, w acts as a shape control 

parameter. The case w = 0, namely 
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has control polygons fk+l = fk for all k, hence in this case the 

limit curve is the initial control polygon f0 . The need to construct 

a convergence theory for the more general case ω ≠ 0 leads us to 

consider the more general form (1). 

Figure 1 illustrates the application of the interpolatory sub-

division scheme defined by (2) to a finite open polygon in R2, where 

ω = 1/16. (The case ω =1/16 is of significance, since it gives a rule 

which reproduces cubic polynomials with respect to data defined on a 

diadic point parameterization.)  It  should  be noted that, since the 



binary subdivision scheme is local, the scheme is well defined in the 

case of finite initial data, where control points at each end of the 

initial polygon act as end conditions on the  final  limit  curve. 

 

 

Figure 1.  Example of 4-point interpolatory algorithm 

Subdivision algorithms have been studied in a general setting by 

Micchelli and Prautzsch (1987a, 1987b, 1987c). Here, however, we 

review a convergence analysis presented in Dyn, Gregory and Levin 

(1988), for schemes defined by a rule of the specific form (1). The 

reader is referred to the 1988 paper for many of the proofs and this 

allows us to simplify the presentation. Also, our approach here is 

different in that the analysis is presented as a study of a 

fundamental solution of the scheme. In the final section a new 

interpolatory subdivision scheme for surfaces is introduced. 

 
          For the purposes of the analysis we will consider, without loss of 

  generality, the basic scheme (1) with ℓ = 0.   This scheme with 

    coefficients a = [a0...,am] and b =[bo....,bm] will be denoted 

symbolically  by  S(a,b).  Thus S(a,b) with initial data {f0i
 ∈ RN/ 

i ∈ Z} is defined by the rule 



                     i  ∈  Z ,  k  = 0,1,2,...           (4) 
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2.  The fundamental solution 

In order to study the limiting behaviour of the sequence of control 

polygons ∞
=0K}

k{f produced by the scheme S(a,b) applied to the initial 

Data Z}/i0
i{f ∈  we will consider the special case of initial data 

{δi,0/i ∈ Z}
 
We  first,  however,  describe a parameterization by   

which the control polygons can be represented in function form. 

    Since the process is one of binary subdivision, the initial con- 

troll points  are associated wthi the integer mesh points 0
if

0
it :=i, 

i ∈ Z, and in general, the control points k
if  are associated with the 

diadic mesh points 

k
it  = i/2k ,  i ∈ Z ,  k = 0,1,2,... . (5) 

The polygon fk can now be represented by the piecewise linear Inter-polant 
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and properties of the limit process can be studied with respect to 

the parameterization t. 

 

Let φk (t) be the control polygon with vertices  for the 
⎭
⎬
⎫

⎩
⎨
⎧ ∈zi /kiϕ

process  S(a,b)  applied to the initial data  . Thus 
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                     ,  i  ∈  Z ,  k = 0,1,2,... ,     (7) 
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Then 
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is the control polygon with vertices z}/ik
i{f ∈  for arbitrary initial 

data  
 
Suppose 
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∞→k
lim  φ k(t) = φ(t) (10) 

uniformly on C(-∞,∞). Then we call φ (t) the fundamental solution of 

the binary subdivision process S(a,b) and φk(t) the k'th discrete 

fundamental solution of the process. 

The local nature of the subdivision process is reflected in the 

fact that φk and φ have local support. The  support of φk is 

contained in the support of φ which is at most 
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0 ma  for    (-2m,1)
 (11) 

(In  calculating  the  support we assume bm ≠ 0 without loss of  

generality since otherwise the equivalent process S(b,a) can be 

considered.)  It follows that if lim φk = φ, then 
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Hence the convergence properties of the algorithm for arbitrary  

initial data are determined by the nature of the convergence of the 

sequence }{ ϕϕ to0k}k =∞  

 

3.  Conditions for a C0 limit 

 

We consider conditions under which the sequence of control polygons 

{ } 0kk =∞ϕ  converges uniformly to a continuous  limit  curve φ. From (7) 

we immediately obtain: 

 

Lemma 1. A. necessary condition for uniform convergence to a 

continuous limit curve with respect to the diadic point parameter-

ization is that 
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Assuming the necessary condition (13), we then obtain from (7) the  

difference scheme 

 

  , i  ∈   Z  ,  k = 0, 1, 2,...,       (14) 
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Here 
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defines a forward difference and we denote the scheme symbolically 

by ΔS(a,b) := S(c,d).  We now have the following convergence 

theorem: 

 

Theorem 2  (convergence)  The  process  S(a,b) has a discrete fund-     

amental solution sequence }{ 0kk =∞ϕ  which converges uniformly to a 

con-tinuous fundamental solution φ, if and only if the difference 

process ΔS(a,b) has a discrete fundamental sequence }{ 0kk =∞ϕ  say,  

which  con- 

verges uniformly to the zero function θ(t) = 0. 

Proof. It is sufficient to consider the function sequences defined    

on  the  largest  possible  domain of local support [-2m,1]. 

Observe 

also that the difference process (14) has control polygons 

φ k(t+l/2k) - φk(t) = θ k(t+l) - θk(t) ,  k = 0,1,2… .    (17) 

Suppose lim φ k = φ uniformlyin C[-2m,l]. Then, from (17), 

θk(t+l) - θk(t) converges uniformly to zero.  Now 

θk(t) = θk(t) - θk(t+2m+i) =  ∑
=

2m

0i
{θk(t+i) -θk(t+i+i)}, t ∈ [-2m,1] 

since θk(t+2m+l) has local support within (l,2m+2). Hence θk(t)  

converges  uniformly to zero. Conversely, suppose  lim   θk=θ,  

θ(t) = 0,  uniformly  in  C[-2m,l]. Then  the control polygons  (17) of  

the difference process (14) converge  uniformly to zero. Consider  

this difference process from  level k  to  k+L.  Then the control  

polygon at level k+L can be represented as 
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cf. (9)).  In particular,
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where j0 = [J/2L] and the summation is restricted to a finite set of  

2m+l integers since θL has local support within (-2m,l). Since θL  

converges uniformly to zero it follows that given 0 < α < 1, there 

exists L such that 
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It can now be shown that this contractive property of the differences  

implies that defines a Cauchy sequence in C[-2m,l] (see Dyn,  
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Gregory, Levin (1988)) which completes the proof. 

 

4. A matrix analysis of convergence 

 

Observe from (15) that cm = 0 and dm = am in the difference scheme  

(14) and define the n1+1 difference vector 
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transformations 
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We call the (n1+1) x (n1+1) matrices C0 and C1 the control point  

matrices of the difference scheme ΔS(a,b). (Here, n1 has been  

calculated to give square matrices of lowest possible order.) 

From (21) it follows that all transformations between the k'th and 

k+L'th differences can be accomplished by transformation matrices 

consisting  of all permutations of products of length L of the  

matrices C0 and C1. The contractive property (18) in the proof of  

Theorem 2 then leads to the following: 

 

Theorem 3 (convergence) The discrete fundamental solutions of  

Δ S(a,b) converge uniformly to zero if and only if given 0 < α < 1, 

there exists a positive integer L such that 

 

∞1i
C...

L
jC   < α  U ij ∈ {0,1} , j = 1,...,L .      (23) 

  

Corollary 4 A necessary condition that the discrete fundamental 

solutions converge uniformly to zero is that the spectral radii of 

C0 

and C1 satisfy 

p(C0) < 1 and p(C1) < 1 .                     (24) 

 

The analysis is, in fact, very rich in matrix theory. For  example 

    C0  and C1 share nearly all common eigenvalues. They also share 

common eigenvalues with the (n1+2) x (n1+2) control matrices, A0 and  

A1  say, of the basic scheme S(a,b) (excluding the one eigenvalue 

unity given by the necessary condition (13)). For details of these 

results  we refer the reader to Dyn et al (1988).     (See also 



Micchelli and Prautzsch (1987a) for their treatment in terms of 

invariant subspaces.) 

         The difference scheme ΔS(a,b) has control point matrices of one 

less order than the basic scheme S(a,b). Likewise, if there exist 

higher order difference schemes these will have control point 

matrices of lower order. This suggests the application of Theorem 3 

to such higher order difference schemes since we have: 

 

Theorem 5 Assume the necessary condition (24) and that there exists  

the difference scheme ΔℓS(a,b),ℓ>1. Then the difference process  

ΔS(a,b) has discrete fundamental solutions which converge uniformly  

to zero if and only if ΔℓS(a,b) has discrete fundamental  solutions  

which converge uniformly to zero. 

 

Remarks 6. Given ΔℓS(a,b), the existence of ΔℓS(a,b) requires that 

the sum of the coefficient vectors of Δℓ-1S(a,b) be identical.For 

example, if Σcj = Σdj for the difference scheme AS(a,b) = S(c,d),  

then there exists the scheme Δ2s(a,b) = ΔS(c,d).  Moreover, these  

sums will be eigenvalues of the control point matrices C0 and C1 and  

must thus have magnitude less than unity by the necessary condition  

(24). 

5.   Conditions for a Cℓ limit 

 

To study differentiability of the limit process we consider the 

behaviour of  the divided  differences 
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of the vertices of the control polygon φk. From (14) it follows that the 

divided  differences  satisfy  the  scheme 
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Thus there exists the divided difference scheme which we denote by 

DS(a,b) := S(a,b) = 2S(c,d), where the necessary condition (13) has 

been assumed. We then have: 

Theorem 7. (C1 convergence)   If  the divided difference  scheme  has 

discrete fundamental solutions which converge uniformly to a  C0  

limit,  then the basic  scheme  S(a,b)  has  discrete   fundamental 

solutions which converge uniformly to a C1 limit φ. Moreover, the 

limit of the divided difference process (26) (i.e. with initial data 

{ } .is)zi,oiΔ0
id 'ϕϕ ∈=  

  Theorem 7 suggests that the C0 convergence theory of sections 3  

and 4 can be applied to the divided difference process in order to 

analyse   differentiability. For C0 convergence of this process, with 

respect to the diadic point parameterization, it is necessary that 
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This condition together with (11) is equivalent to: 

 

Proposition 8. A necessary condition for uniform convergence of the 

divided difference process to a C0 limit with respect to the diadic 

point parameterization is that 
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It can be shown that if (29) holds, then the diadic point 



parameterization  defined  by (5) is an appropriate one for the  

analysis.If (29) does not hold, there may be some  parameterization 

defined by differentpoints { }kit  in which the limit curve may be diff-

erentiable.  (The equivalent condition to (29) is then 
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for parametric points { }kit  which become dense in the limit.) 

   An immediate generalization of Theorem 7 is: 

Theorem 9. (Cℓ convergence) Suppose there exist the v'th divided  

difference schemes DvS(a,b) = DS{a(v-1),b(v-1)) =  S(a(v),b(v)), 

 v = 0,...,ℓ, where 

         (30)l0,...,v,1(v)
jb

(v)
ja ==∑+∑

Then if Dℓ-S(a,b) has discrete fundamental solutions which converge 

uniformly to a C0 limit, the basic scheme S(a,b) has discrete fund-

amental solutions which converge uniformly to a Cℓ  limit φ. 

 

Remark 10. Condition (30) implies that each v'th divided difference  

scheme has control point matrices with one eigenvalue unity. Since  

DvS(a,b) = 2vΔvS(a,b),it can then be shown that the control matrices  

C0 and C1 of the difference scheme  ΔS(a,b) (and hence of the basic  

scheme S(a,b)) must have eigenvalues 1/2V, v = 1,...,ℓ. 

 

6. A calculus of schemes 

 

Given the basic scheme 

 

S(a,b) , a = [a0,...,am] , b = [b0,...,bm]                   (31) 

 

where Σai = Σbi = 1, we have defined the divided difference scheme 
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with coefficients given by (27),   Conversely,  there exists an  

integral scheme 
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whose  divided  difference  scheme  is  the  basic  scheme,  i.e.  

DIS(a,b) = S(a,b).  The coefficients of this scheme are given by 
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Given that S{a,b) has fundamental solution φ,let DS(a,b) and  

IS(a,b) have fundamental solutions x and ψ respectively. From  

Theorems 7 and 9 we have that if x ε C0(∞,∞), then φ ε C1 (∞,∞)and 

ψ € C2 (-∞,∞)   More  precisely,  we  can  relate  the  fundamental 

solutions in the following way: 

Consider the divided difference scheme applied to the initial data 

zΔδi,0/i0
iΔ ∈=ϕ  Then the limit curve is 

φ'(t) ≡ X(t+1> - X(t) .                      (35) 

Thus, noting the local support of X, 
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 Applying this convolution result to the integral scheme thus gives: 



Theorem 11. Let S(a,b) have discrete fundamental solutions which 

converge uniformly  to φ ∈ C(-∞,∞). Then IS(a,b) has discrete fund- 

amental solutions which converge uniformly to 

 

                              ψ = φ * B1                             (38) 

 

and, in general, IℓS (a,b), ℓ > 1, has discrete fundamental solutions 

which converge uniformly to 

 

ψ * Bℓ := ψ * B1 * . . . * B1 . (39) 

 

We thus see that ℓ' th order integral schemes (and Cℓ basic 

schemes) have fundamental solutions which are defined by convolutions 

with ℓ'th order B-splines, which confirms a conjecture of  

C.A. Micchelli. 

 

7.  An interpolatory subdivision scheme for surfaces 

 

We have so far described a theory for the analysis of convergence of 

univariate uniform subdivision algorithms defined by a rule of the  

form (1). The motivation for this work is the  specific example of  

the 4-point interpolatory curve scheme defined by (2). Application  

of  the  theory  to this specific case (with L = 2 in the matrix  

analysis of section 4) gives -0.375 < w < 0.39 and 0 < w < 0.154 as 

sufficient conditions for a C° and C1 limit curve respectively, see  

Dyn et al (1988). Taking higher values of L and using similarity 

transformations on the control point matrices suggested by  

M.J.D. Powell gives improved ranges for w. For example numerical 

experiments indicate that |w|< 1/2 is a sufficient condition for a  

C0 limit, where for negative w we have used the result of Micchelli  

and Prautzsch (1987b) using the positivity of the coefficients in (2) 

(|w|)l < 1/2 is also necessary by application of Corollary 5). 

We conclude by describing a bivariate interpolatory subdivision 

scheme for surfaces whose parameterization can be defined on a "type  

1" regular  triangulation.   Clearly,  tensor  product type  surface 



 

schemes can be derived immediately from the univariate theory but our  

interest here is in the development of triangular based schemes. The 

scheme is defined as follows: 

Let fk denote a control polygon in R3 with control points 

3Rj,kif ∈  , 
 
(i,j) ∈ Z2 , and consisting of triangular faces with 

vertices  {fi,j,fi+1,j,fi,j+1) and {fi+1,j,fi+1,lfi,j+1}.Then fk+1  

has vertices defined by the rule 
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As with the univariate rule (2), varying w in (40) gives some control 

on the shape of the limit surface. The case w = 0 gives fk+1 = fk  

for all k and hence the limit surface is the initial control polygon 

f0 . The case w = 1/16 corresponds to a rule which has  bivariate  

cubic polynomial precision with respect to the diadic point para-

meterization:  being defined at k
ji,f

kj/2,k(i/2:k
ji,t =

                                       
(41) 

The scheme (40) then corresponds to a symmetric rule defined on a 



 

uniform subdivision of a "type 1" regular triangulation. 

A convergence analysis of this algorithm is currently being 

developed which suggests that the limit surface will be C1 for a 

range of w which includes w = 1/16. This indicates the existence of 

a C1 interpolant on a regular triangulation whose fundamental 

solutions (i.e. cardinal basis functions) have local support. The    

subdivision algorithm is illustrated by the following example: 

     The first figure of Figures 2 shows a set of control points 

defined on the surface of a sphere with two control points pulled 

away from the spherical surface to give the initial control polygon 

f0. The remaining Figures show a shaded picture description of the 

results of the subdivision algorithm through four levels of recursion 

with w = 1/16 and where appropriate additional control points have 

been defined as boundary conditions on the algorithm external to the 

surface shown. The results indicate a smoothing process suggested by 

a C1 limit. 
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Figures 2. Example of  interpolatory surface algorithm 
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