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Abstract

The tractability of discrete time affi ne term structure models (DTATSM)

is fully preserved when adding squared Gaussian shocks (SGS) to factor

processes. SGS guarantee non-negative factors under parameter restric-

tions that do not affect market prices of risk. Feller conditions are not

needed. Changes of measure can alter the conditional covariance of fac-

tors and yields through the flexible second order Esscher transform. Non-

negative factors can be conditionally correlated under the real measure

even if they are not under the risk-neutral measure. The empirical ev-
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idence from US Treasury yields shows that SGS models tend to predict

yields conditional volatility, yields unconditional moments and term pre-

mia better than corresponding autoregressive gamma (AG) models.

Key words: squared Gaussian shocks, discrete time affi ne term struc-

ture models, stochastic volatility, second order Esscher transform, affi ne

autoregressive gamma models.

JEL classification: G12; G13.

1 Introduction and literature

In recent years discrete time affi ne term structure models based on autoregres-

sive gamma processes (DTATSM-AG) have become popular (Gourieroux and

Jasiak (2006), Le, Dai and Singleton (2010), Gourieroux, Monfort, Pegoraro

and Renne (2014), Creal and Wu (2015), Monfort, Pegoraro, Renne and Rous-

sellet (2017)). DTATSM-AG have provided the discrete time counterparts of

the entire family of continuous time affi ne models AM (n) of Dai and Singleton

(2000, 2002), where n is the total number of factors and M (with 0 ≤ M ≤ n)

is the number of volatility factors. DTATSM-AG encompass AM (n) as special

cases, i.e. as their continuous time limits, admit more flexible specifications of

market prices of risk and are just as tractable as AM (n). This paper presents

other new tractable DTATSM with similar merits and new desirable features.

These new DTATSM add squared Gaussian shocks (SGS) to discrete time affi ne

factor processes and therefore we refer to them as DTATSM-SGS.

DTATSM-SGS too encompass models AM (n) as continuous time limits and
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are just as tractable. Mild parameter restrictions, which do not constrain the

market price of risk, can guarantee that factors and bond yields be non-negative.

Feller conditions are not needed. The factors zero lower bound is a reflecting

barrier, unlike in Sun’s (1992) discrete time approximation to the CIR model.

In continuous time affi ne models the market price of risk only alters the

drift, not the diffusion, of factors. Instead in DTATSM-AG and in DTATSM-

SGS the market price of risk can alter both the conditional mean and conditional

covariance of factors. Moreover in DTATSM-SGS this can be achieved through

the flexible second order Esscher transform of Monfort and Pegoraro (2012),

which gives DTATSM-SGS new freedom to correlate non-negative factors. The

shocks to non-negative factors can be correlated under the real measure even if

they are not under the risk-neutral measure.

DTATSM-SGS can be estimated through quasi-maximum likelihood, since

the conditional moments of factors and yields are known in closed form. The em-

pirical evidence from US yields shows that DTATSM-SGS tend to perform better

than corresponding DTATSM-AG when predicting the conditional volatility of

yields, term premia, the unconditional mean and standard deviation of yields,

and when fitting linear projections of yields. This is so even when the tested

SGS and AG models tend to the same continuous time limit, and cannot be

entirely explained by the risk premia of SGS models that alter the condi-

tional volatility and correlation of yields. Single factor versions of SGS and AG

models perform similarly. SGS and AG models perform similarly also when

fitting the cross sections of yields without regard to the times series of yields.
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In the immense literature on dynamic term structure models, three papers

are closest to this work, namely Le, Dai and Singleton (2010) (hereafter LSD),

Creal and Wu (2015) (hereafter CW) and Gourieroux and Monfort (2011). LSD

and CW present DTATSM-AG with flexible specifications of the market price

of risk. While the models in LSD and CW are based on affi ne autoregressive

gamma processes, the DTATSM-SGS of this paper are based on affi ne autore-

gressive processes with squared Gaussian shocks (SGS). Both processes con-

verge to the continuous time affi ne diffusions of Dai and Singleton (2000, 2002).

DTATSM-SGS are also related to the discrete time "bilinear" term structure

model of Gourieroux and Monfort (2011). As in DTATSM-SGS, also in the

bilinear model the shocks to the factors driving the short rate can be Gaussian

or can be the product of Gaussian shocks, but the bilinear model does not en-

compass DTATSM-SGS whose continuous time limits are AM (n) models, with

0 < M ≤ n.

2 Discrete Time Affi ne Term Structure Model

with Squared Gaussian Shocks (DTATSM-SGS)

The single factor version of DTATSM-SGS is

rt = zt

zt+1 = zt +
(
µQ + qQzt

)
∆ + σ

√
k + hztξ

Q
t+1

√
∆ + ψσ2

(
ξQt+1

)2

∆ (1)

ξQt+1 v N (0, 1)
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where: rt is the continuously compounded default-free short interest rate at time

t for the period [t, t+ 1]; ∆ is the length of the time period; all time periods are of

length ∆; zt is the time t value of the scalar stochastic factor z; qQ, µQ, σ, k, h, ψ

are parameters, with µQ, σ, k, h, ψ ≥ 0; qQ and µQ denote parameters under the

risk-neutral pricing measure Q; ξQt+1 is the time t + 1 random shock under the

risk-neutral pricing measure Q; N (0, 1) denotes the standard normal density

with mean 0 and variance 1. When ψ = 0, zt+1 may turn negative and the

DTATSM-SGS becomes the model proposed by Sun (1992). When k = 0 and

h 6= 0, the DTATSM-SGS extends the discrete time approximate CIR model

proposed by Sun (1992). As explained below, the parameters σ, k, h cannot all

be separately identified.

It is often fitting to impose that rt+1 and zt+1 be non-negative and have

zero lower bound. Throughout the paper we assume
(
1 + ∆qQ

)
> 0, since, even

if qQ < 0, ∆ is small in practical applications. For example ∆ = 1
260 if there

are 260 trading days in one year and if ∆ coincides with a trading day. Since

µQ > 0 and
(
1 + ∆qQ

)
> 0, the lower bound of zt+1 is exactly 0 if and only if

ψ =
h

4 (1 + qQ∆)
, k =

hµQ∆

1 + qQ∆
. (2)

When conditions 2 hold, h is not an identifiable parameter and can be normalised

by setting h = 1, and

zt+1 = zt +
(
µQ + qQzt

)
∆ + σ

√
µQ∆

1 + qQ∆
+ ztξ

Q
t+1

√
∆ +

σ2
(
ξQt+1

)2

∆

4 (1 + qQ∆)
(3)

=

(√
zt + (µQ + qQzt) ∆ +

σξQt+1

√
∆

2
√

1 + qQ∆

)2

.
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Therefore, when conditions 2 hold, zt+1 is never negative. In DTATSM-SGS the

lower bound of zt+1 could be set at any level, but in the rest of the paper it is set

at zero. In DTATSM-SGS the lower bound is a "reflecting barrier", therefore the

short rate cannot persist at the zero lower bound for extended periods, unlike in

the DTATSM-AG of Monfort, Pegoraro, Renne and Roussellet (2017) as applied

to the Japanese yield curve. Under Q the time t conditional expectation and

conditional variance of zt+1 in 3 are respectively

EQt [zt+1 − zt] =
(
µQ + qQzt

)
∆+ψσ2∆, V arQt [zt+1 − zt] = σ2 (k + zt) ∆+2ψ2σ4∆2

and taking the continuous time limits we obtain

lim
∆→0

EQt [zt+1 − zt]→
(
µQ + qQzt +

σ2

4

)
dt, lim

∆→0
V arQt [zt+1 − zt]→ σ2ztdt

since ∆2 = o (∆). dt denotes the infinitesimal time increment. Therefore the

continuous time limit of 3 is the following Feller-type stochastic differential

equation

dzt =

(
µQ + qQzt +

σ2

4

)
dt+ σ

√
ztdw

Q
t . (4)

dzt is the time t stochastic differential of z. dw
Q
t is the time t increment of a

scalar Wiener process under Q. In dzt the squared Gaussian shock disappears,

while the new term σ2

4 dt appears in the drift. When k = ψ = 0 and h = 1,

the Feller condition µQ ≥ 1
2σ

2 guarantees that the continuous time process in

4 does not reach 0. Instead for process 1 no Feller condition was needed, but

rather conditions 2. Conditions 2 restrict the parameters ψ and k, but these

two parameters are additional parameters that are absent in a Feller process.
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2.1 Multi-factor DTATSM-SGS

We now extend the above one factor DTATSM-SGS to n factors driving the

short interest rate. Then we define zt = (z1,t, .., zn,t)
′. zi,t for i = 1, .., n is the

time t value of the i-th scalar factor. For zt, zt+1 belonging to some domain

D ⊂ RN , assume that under the risk-neutral pricing measure Q

rt = ρ0 + ρ′1zt

zt+1 = zt +
(
µQ + QQzt

)
∆ + Σ

√
diag (k + Hzt)ξ

Q
t+1

√
∆ + ∆

∑n
i=1eiξ

Q′
t+1Σ

′Ψ (i) ΣξQt+1

(5)

ξQt+1 =
(
ξQ1,t+1, .., ξ

Q
n,t+1

)′
, ξQt+1 v N (0n×1, In)

where: ρ0 is a scalar parameter; ρ1 is an n× 1 vector of parameters; QQ, Ψ (i)

and Σ are n × n matrixes of parameters, µQ is an n × 1 vector of parameters;

QQ and µQ denote parameters under the Q probability measure; diag (k + Hzt)

is a diagonal matrix whose diagonal is the vector k + Hzt; k = (k1, .., kn)
′ and

H = [hi,j ] is an n× n matrix whose element in the i-th row and j-th column is

hi,j ; ξ
Q
t+1 is an n×1 Gaussian vector with mean 0n×1 and covariance In; 0n×1 is

an n× 1 vector of zeros; In is the n×n identity matrix; ei is the i-th column of

In; ξ
Q
i,t+1 for i = 1, .., n are time t+1 values of scalar Gaussian shocks under the

Q measure; Σ = [Σi,j ] is a n×n matrix whose element in the i-th row and j-th

column is the parameter Σi,j ; Ψ (i) for i = 1, .., n denote a set of n×n matrixes;

without loss in generality we assume that Ψ (i) are symmetric for all i; ιn is an

n×1 vector whose elements are all equal to 1. D =
{
0n×1,Rn+

}
under parameter

restrictions that make process z non-negative. The z process of equation 5 is the
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multi-factor discrete time "affi ne" autoregressive process with Squared Gaussian

Shocks (SGS) that is the focus of this paper. z is "affi ne" since its conditional

Fourier/pricing transform is exponential affi ne in zt. An Internet Appendix

presents the said transform and derives conditional and unconditional moments

of the z process.

2.2 DTATSM-SGS and discrete time quadratic term struc-

ture models (DTQTSM)

DTATSM-SGS and DTQTSM are similar, but different, and this subsection

compares DTATSM-SGS with DTQTSM. Under the risk-neutral pricing mea-

sure Q, the one factor DTQTSM is

rt+1 = z2
t+1 =

(
µQ∆ +

(
1 + qQ∆

)
zt + σ · ξQt+1

√
∆
)2

(6)

zt is the time t value of the scalar stochastic factor z and qQ, σ are constants.

Then under the risk-neutral pricing measure Q, the one factor DTATSM-SGS

can be written as

rt+1 = zt+1 =

(√
µQ∆ + (1 + qQ∆) zt + σ · ξQt+1

√
∆

)2

(7)

σ =
σ

2
√

1 + qQ∆
.

If we set zt+1 = z2
t+1 and

(
1 + qQ∆

)
=
√

(1 + qQ∆), process 6 is the same as

process 7 only when µQ = 0, whereas if µQ 6= 0 process 6 is not a special case

of 7 and process 7 is not a special case of 6. When rt = z2
t , bond prices are

exponential functions of zt and z2
t , and the conditional central moments of rt

are:

8



- EQt
[
z2
t+1

]
=
(
µQ∆ +

(
1 + qQ∆

)
zt
)2

+ σ2∆; therefore EQt
[
z2
t+1

]
is driven

by zt and z2
t ;

- V arQt
[
z2
t+1

]
= 4

(
µQ∆ +

(
1 + qQ∆

)
zt
)2
σ2∆+2σ4∆2; therefore V arQt

[
z2
t+1

]
is driven by zt and z2

t .

Instead when rt = zt, bond prices that are exponential functions of zt, as

shown below, and the conditional central moments of rt are:

- EQt [zt+1] = µQ∆ +
(
1 + qQ∆

)
zt + σ2∆; therefore EQt [zt+1] is driven only

by zt;

- V arQt [zt+1] = 4
(
µQ∆ +

(
1 + qQ∆

)
zt
)
σ2∆ + 2σ4∆2; therefore V arQt [zt+1]

is driven only by zt.

Comparing two factor models further highlights the difference between DTATSM-

SGS and DTQTSM. Under the risk-neutral pricing measure Q, a typical two

factor DTQTSM assumes

z1.t+1 = qQ12z2,t∆ + µQ1 ∆ +
(

1 + qQ1 ∆
)
z1,t + σ1ξ

Q
1,t+1

√
∆

z2,t+1 = µQ2 ∆ +
(

1 + qQ2 ∆
)
z2,t + σ2ξ

Q
2,t+1

√
∆

rt+1 = z2
1,t+1 =

(
qQ12z2,t∆ + µQ1 ∆ +

(
1 + qQ1 ∆

)
z1,t + σ1ξ

Q
1,t+1

√
∆
)2

and a corresponding two factor DTATSM-SGS with non-negative factors as-

sumes
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z1,t+1 =

(√
qQ12z2,t∆ + µQ1 ∆ +

(
1 + qQ1 ∆

)
z1,t + σ1ξ

Q
1,t+1

√
∆

)2

z2,t+1 =

(√
µQ2 ∆ +

(
1 + qQ2 ∆

)
z2,t + σ2ξ

Q
2,t+1

√
∆

)2

rt+1 = z1,t+1.

qQ12, q
Q
12, µ

Q
1 , µ

Q
2 , q

Q
1 , q

Q
2 , q

Q
1 , q

Q
2 , σ1, σ2 are parameters and ξ

Q
1,t+1, ξ

Q
2,t+1 v N (0, 1)

are independent standard Gaussian shocks under Q. Note that z1,t+1 still differs

from z2
1,t+1, even if µ

Q
1 = 0 and/or qQ1 , q

Q
1 = 0. Therefore also multi-factor

DTATSM-SGS with non-negative factors differ from multi-factor DTQTSM.

The difference in the empirical performance of DTATSM-SGS and

DTQTSM can be expected to be similar to the difference in per-

formance reported in the literature for continuous time affi ne and

quadratic models. For example Ahn, Dittmar and Gallant (2002)

compare continuous time affi ne models, which are the continuous

time limits of DTATSM-SGS, and continuous time quadratic models,

which are the continuous time limits of DTQTSM. They report the

better performance of quadratic models, partly because factors can be

freely correlated only in quadratic models. Leippold and Wu (2003)

confirm that "factor interactions" in quadratic models are needed to

match the dynamics of bond yields.

Quadratic models also have the merit of not needing non-negativity

constraints on factors. Instead affi ne models that feature non-negative

factors, including DTATSM-SGS, are hampered by the constraint
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that factors be non-negative. In-sample this constraint typically con-

sists in a penalty to the likelihood function that is triggered when

non-negative factors do turn negative. Out-of-sample it is not even

obvious how to impose such non-negativity constraint on the non-

negative factors.

Despite these merits, quadratic models are less tractable than

affi ne models: first, perfectly observed yields are diffi cult to "invert"

to determine the latent factors; second, bond prices are computed

less quickly, especially when the number of factors is four or more;

third, computing and re-computing interest rate swap prices as fac-

tors change over time is much quicker with affi ne models than with

quadratic models, if the factors are three or more.

3 Discount bond prices

Let Pt,m denote the price of a discount bond at time t with maturity at (t+m)

and face value 1, so that Pt+m,0 = 1. Under the assumption of equation 5 this

section shows that Pt,m = exp (Am + B′mzt), where Am is a scalar that only

depends on m and Bm = (B1,m, .., Bn,m)
′ is an n× 1 vector whose elements are

functions of m. To rule out arbitrage we impose

exp (Am + B′mzt) = EQt
[
exp

(
−rt∆ +Am−1 + B′m−1zt+1

)]
A0 = 0, B0 = 0n×1
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where EQt [..] denotes time t conditional expectation under the risk-neutral pric-

ing measure Q. 0n×1 is an n× 1 vector of zeros. To determine Am and Bm we

take logs of the last equation and obtain

Am + B′mzt = − (ρ0 + ρ′1zt) ∆ +Am−1 + B′m−1

(
zt +

(
µQ + QQzt

)
∆
)

+

+ lnEQt

[
exp

(
B′m−1

(
Σ
√
diag (k + Hzt)ξ

Q
t+1

√
∆ + ∆

∑n
i=1eiξ

Q′
t+1Σ

′Ψ (i) ΣξQt+1

))]

ln
(
EQt

[
eF
′ξQt+1+ξQ′t+1Σ′·Cm−1·ΣξQt+1

])
= ln (abs (|γ|)) +

1

2
F′γγ′F

F′ = B′m−1Σ
√
diag (k + Hzt)

√
∆, γ = (In − 2 ·Σ′Cm−1Σ)

−1/2
, Cm−1 =

n∑
i=1

Bi,m−1Ψ (i) ∆

ξQ′t+1Σ
′
Cm−1Σξ

Q
t+1 = B′m−1 ·∆

∑n
i=1eiξ

Q′
t+1Σ

′Ψ (i) ΣξQt+1.

ln (abs (|γ|)) is the natural logarithm of the absolute value of the determinant

of the matrix γ. It follows that

Am + B′mzt = − (ρ0 + ρ′1zt) ∆ +Am−1 + B′m−1

(
zt +

(
µQ + QQzt

)
∆
)

+ ln (abs (|γ|)) +
1

2
F′γγ′F

(8)

F′γγ′F = B′m−1Σ
√
diag (k + Hzt) · (In − 2 ·Σ′Cm−1Σ)

−1 ·
√
diag (k + Hzt)Σ

′Bm−1∆.

(9)

As Ψ (i) is symmetric so is Cm−1. We also assume that all the eigenvalues of

Ψ (i) are non-negative. Then γ is normally real valued, since normally Bi,m−1 <

0 for all i and m. However it is sometimes possible that under some parameter

values Bi,m−1 > 0, which may make γ complex valued if the time step ∆ is

large enough. Therefore in estimating the model we impose that parameters

be such that γ is real valued. A related issue concerns the moment generating

function. For example in the one factor model EQt [exp (zt+1)] is well defined
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only if 1 − 2σ2ψ∆ > 0. This condition, as we impose h = 1 and ψ = 1
4(1+qQ∆)

as above, becomes ∆σ2

1+qQ∆
1
2 ≤ 1 and is violated only when σ is extremely high.

To ensure that this condition is not violated, we can either shrink the time step

∆ or constrain the parameters of the z process under Q. A similar issue affects

also discrete time quadratic term structure models.

In what follows we concentrate on the case where ρ0 = 0, ρ1 = ιn and on

conditions that guarantee rt = ι′nzt ≥ 0, where ιn is an n × 1 vector whose

elements are all equal to 1. For all types of DTATSM-SGS QQ must be of full

rank. As discussed in the Internet Appendix, additional restrictions to identify

the parameters of QQ are not needed. We next consider further restrictions to

identify and normalise the parameters of the z process under the Q measure

for DTATSM-SGS families Asgsn (n), AsgsM (n), whose respective continuous time

limits are the model families An (n), AM (n) of Dai and Singleton (2000,2002).

3.1 Asgsn (n) models

Let H(i) be the i-th row of H. When
√
ki + H(i)zt 6=

√
kj + H(j)zt for i 6= j,

to retain exponential affi ne solutions for bond prices and transforms, γ needs

to be diagonal, which entails that also Σ and Ψ (i) for all i be diagonal. In

such case the continuous time limit of the resulting DTATSM-SGS belongs to

the An (n) models of Dai and Singleton (2000, 2002). For Asgsn (n) models we

set:

1) Σ = diag (σ) with σ = (σ1, .., σn)
′; therefore Σ is the diagonal matrix

with i-th diagonal element σi;
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2) Ψ (i) = ei · e′i · ψi; ψi is a scalar parameter; ei is the i-th column of In;

the matrix ei · e′i · ψi is an n× n diagonal matrix with all elements equal to 0,

except for the i-th diagonal element, which is ψi.

Assumptions 1) and 2) imply that

γ =
(
In − 2∆ · diag

(
σ2
i ψiBi,m−1

))−1/2

where diag
(
σ2
i ψiBi,m−1

)
is an n×n diagonal matrix with i-th diagonal element

σ2
i ψiBi,m−1. Under assumptions 1) and 2) models Asgsn (n) are such that

F′γγ′F = ∆ ·
n∑
i=1

(Bi,m−1 · σi · γi,i)2 ·
(
ki + H(i) · zt

)
Am = −ρ0∆ +Am−1 + B′m−1µ

Q∆ + ln (abs (|γ|)) +
1

2
∆
∑n
i=1

B2
i,m−1 · σ2

i · ki
1− 2 · σ2

i ·∆ ·Bi,m−1 · ψi

B′m = −ρ′1∆ + B′m−1

(
In + QQ∆

)
+

1

2
∆
∑n
i=1

B2
i,m−1 · σ2

i ·H(i)

1− 2 · σ2
i ·∆ ·Bi,m−1 · ψi

.

γi,i is the i-th diagonal element of γ. Moreover we impose that for i = 1, .., n

H(i) · zt = zi,t + Q(i)Qzt∆, ψi =
hi,i

4
(

1 + qQi,i∆
) , ki =

µQi ∆hi,i

1 + qQi,i∆
(10)

µQ ≥ 0n×1, qQi,j 6=i ≥ 0 for i, j = 1, .., n.

qQi,i is the i-th diagonal element of the matrix QQ. Q(i)Q is the i-th row of

QQ. hi,i is the i-th diagonal element of H. According to conditions 10, the

off-diagonal elements of QQ, namely qQi,j 6=i, need to be non-negative. q
Q
i,j is the

element in the i-th row and j-th column of the matrix QQ. Also the elements

of µQ need to be non-negative. Equations 10 encompass conditions 2. When
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equations 10 hold, hi,i is not identifiable and we normalise it by setting hi,i = 1.

Then, if conditions 10 hold, the lower bound of z is exactly 0n×1 and for all i

zi,t+1 =

√∆µQi + zi,t + Q(i)Qzt∆ +
σi · ξQi,t+1

√
∆

2
√

1 + qQi,i∆

2

. (11)

The continuous time limit of this process is

dzt =
(
µQ + QQzt

)
dt+ diag (σ) ·

√
diag (zt)dw

Q
t

dzt = (dz1,t, .., dzn,t)
′
, dwQ

t =
(
dwQ1,t, .., dw

Q
n,t

)′
.

We can summarise the above parameter restrictions for Asgsn (n) models as fol-

lows: ρ0 = 0 and ρ1 = ιn; Σ is diagonal; H = In and Ψ (i) = ei · e′i · ψi for

i = 1, .., n; finally to ensure that the lower bound of z is 0n×1, we impose con-

ditions 10 for all i, that µQ ≥ 0n×1 and that the off-diagonal elements of QQ be

non-negative.

3.2 AsgsM (n) models

The continuous time limits of AsgsM (n) fall in the AM (n) family of Dai-Singleton

(2000, 2002). In AsgsM (n) models the first M factors are non-negative and drive

yields volatility, while the last n −M factors do not drive yields volatility. In

AsgsM (n) models rt = ρ0 + ρ′1zt and

zt+1 =
(
zt +

(
µQ + QQzt

)
∆
)

+ Σ
√
diag (k + Hzt)ξ

Q
t+1

√
∆ + ∆

∑n
i=1eiξ

Q′
t+1Σ

′Ψ (i) ΣξQt+1

zt =

 vt

zt

 , µQ =

 µQv

µQ

 , QQ =

 QQ
v 0M×(n−M)

Q
Q
v Q

Q

 , Σ =

 diag (σM ) 0M×(n−M)

0(n−M)×M Σ

 ,

σM = (σ1, .., σM )
′
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where: ρ0 = 0 and ρ1 = ιn; vt is the vector of the M factors that drive

yields volatility; zt is the vector of the n −M factors that do not drive yields

volatility; QQ is a block triangular matrix, whose block 0M×(n−M) is necessary

for vt+1 ≥ 0M×1; q
Q
v,i,j denotes the element of the i-th row and j-th column

of the M ×M matrix QQ
v ; all the eigenvalues of the matrix

(
IM + QQ

v∆
)

must be less than 1 in absolute value in order for vt to be stationary;

to ensure that vt+1 ≥ 0M×1 it is necessary that 1 + qQv,i,i∆ ≥ 0 for i = 1, ..,M ,

that the off-diagonal elements of QQ
v be non-negative, i.e. q

Q
i,j,v ≥ 0 for i 6= j,

and that µQv ≥ 0M×1, where µQv is an M × 1 column vector of parameters; µQ

is an (n−M) × 1 column vector of parameters; Σ is a block diagonal matrix;

diag (σM ) is an M ×M diagonal matrix with i-th diagonal element σi; Σ is a

(n−M) × (n−M) matrix that is lower triangular without loss in generality;

ki = k,H(i) = h
′
for i = M + 1, .., n; h ≥ 0n×1 is an n× 1 vector of parameters

whose last n −M elements are all equal to 0; k ≥ 0 is a non-negative scalar

parameter; Ψ (i) for i = 1, .., n is a set of n diagonal matrixes each of size n×n;

we assume Ψ (i) = ei · e′i · ψi, so that
∑n
i=1Bi,m−1Ψ (i) = diag (Bi,m−1ψi),

where diag (Bi,m−1ψi) is a diagonal matrix with i-th diagonal element Bi,m−1ψi.

These assumptions aboutΨ (i) cover most cases of practical interest for AsgsM (n)

models. As the factors z have no squared Gaussian shocks, ψi = 0 for i =

M + 1, .., n. Under these assumptions the Internet Appendix shows that for
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AsgsM (n) models

F′γγ′F = w1 + w′2 · zt

w1 = ∆
∑M
i=1

σ2
iB

2
v,i,m−1ki

1− 2∆ψiBv,i,m−1σ2
i

+ Ωk∆

w′2 = ∆
∑M
i=1

σ2
iB

2
v,i,m−1H

(i)

1− 2∆ψiBv,i,m−1σ2
i

+ Ωh
′
∆

Ω = B′z,m−1Σ
(
In−M − 2∆Σ

′
diag (ψiBz,i,m−1) Σ

)−1

Σ
′
Bz,m−1

B′m−1zt =
(
B′v,m−1,B

′
z,m−1

) vt

zt


B′v,m−1 = (Bv,1,m−1, .., Bv,M,m−1) , B′z,m−1 = (Bz,M+1,m−1, .., Bz,n,m−1)

where Bv,i,m−1 is the i-th element of Bv,m−1, w1 is a scalar, w2 is a n× 1 row

vector and In−M is the (n−M)× (n−M) identity matrix. It follows that

Am = −ρ0∆ +Am−1 + B′m−1µ
Q∆ + ln (abs (|γ|)) +

1

2
w1

B′m = −ρ′1∆ + B′m−1

(
I + QQ∆

)
+

1

2
w′2.

To ensure that the lower bound of v is 0M×1, we further impose conditions 10

so that H(i)zt = vi,t + Q
(i)Q
v vt∆, ψi =

hi,i

4(1+qQv,i,i∆)
, ki =

µQi∆hi,i

1+qQv,i,i∆
for i ≤ M .

Again hi,i is the i-th element of the row vector H(i). When conditions 10 hold,

each hi,i for i = 1, ..,M is not identifiable and can be normalised by setting

hi,i = 1. It follows that

M∑
i=1

Ψ (i) =

 diag

(
1

4(1+qQv,i,i∆)

)
0M×(n−M)

0(n−M)×M 0(n−M)×(n−M)

 . (12)

Then to identify the parameters of the z process under the Qmeasure in AsgsM (n)

models with M < n we further impose:
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- that Q
Q
be such that QQ has full rank; except for this requirement the

matrixes Q
Q
v and Q

Q
inside the block matrix QQ are unconstrained;

- only the first element of µQ differs from zero while all other elements are

zero; as explained in the Internet Appendix, µQ so normalised is identifiable.

The empirical tests below consider models Asgs+M (n), which are the same as

AsgsM (n) except that ki = k,H(i) = h
′
for i = 1, .., n not just for i = M + 1, .., n,

and except that Σ is lower triangular not block triangular. Then for Asgs+M (n)

models

F′γγ′F = B′m−1Σ (In − 2 ·Σ′Cm−1Σ)
−1

Σ′Bm−1

(
k + h

′
zt

)
∆ = w+

1 + w+′
2 zt

w+
1 = B′m−1Σ (In − 2 ·Σ′Cm−1Σ)

−1
Σ′Bm−1k∆

w+′
2 = B′m−1Σ (In − 2 ·Σ′Cm−1Σ)

−1
Σ′Bm−1h

′
∆

Am = −ρ0∆ +Am−1 + B′m−1µ
Q∆ + ln (abs (|γ|)) +

1

2
w+

1

B′m = −ρ′1∆ + B′m−1

(
I + QQ∆

)
+

1

2
w+′

2 .

4 DTATSM-SGS under the real measure P

As with DTATSM-AG, also with DTATSM-SGS much freedom is available in

specifying the market price of risk to switch from the Q measure to the P

measure, without losing closed form solutions for the conditional moments of

factors and yields. We now specify the market price of risk to derive the z

process under P, and still assume the z process under Q of equation 5. The
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time t stochastic discount factor Mt is such that

Mt+1 = Mt · e−rt∆ ·
(
dQ
dP

)
t+1

,

(
dQ
dP

)
t+1

= e−(ln(abs(|γΦ|))+ 1
2 Λ′tγ

′
ΦγΦΛt∆)−Λ′tξ

P
t+1

√
∆−ξP′t+1Φt∆ξ

P
t+1

Λt = (In + 2Φt∆)
1
2 ·Λ∗t , γΦ = (In + 2Φt∆)

− 1
2 .

(
dQ
dP
)
t+1

denotes the Radon-Nykodim derivative between the Q and the P mea-

sures at time t + 1. The market price of risk is determined by Λt and Φt. Φt

is an n × n matrix at time t of continuous functions of zt. Λ∗t is a vector of

size n× 1 at time t of continuous functions of zt. Φt is symmetric without loss

in generality. An attractive property of process 5 is that, if the lower bound of

the affi ne SGS process zt under Q is 0n×1, so is also the lower bound of zt+1

under P, irrespective of the choice of Λt and Φt. A peculiarity of Mt+1 is the

term ξP′t+1Φt∆ξ
P
t+1, which adds new flexibility in specifying the market price

of risk through the matrix Φt. This term was first introduced in the discrete

time second-order Esscher transform of the option pricing model of Monfort

and Pegoraro (2012). Thus DTATSM-SGS can exploit the flexibility of the

second-order Esscher transform in switching from Q to P. Λt and Φt can be

chosen with much freedom as long as they are compatible with an equivalent

martingale measure to rule out arbitrage. Λt and Φt should also preserve the

ergodicity of z under the P measure, which in turn generally preserves the large

sample properties of the estimators of the z process parameters under P. LSD

(2010) detail conditions for ergodicity. For model estimation we need the time

t conditional expectation and covariance of zt+1 under P, which we respectively

denote EPt [zt+1] and CovPt [zt+1]. While z follows an affi ne SGS process under
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Q, z may not follow an affi ne SGS process under P, but, even so, EPt [zt+1]

and CovPt [zt+1] are usually known in closed form. Then it can be shown that

EPt

[
Mt+1

Mt

]
= e−rt∆ and

lnEPt

[
e−Λ′tξ

P
t+1

√
∆−ξP′t+1Φt∆ξ

P
t+1

]
= ln (abs (|γΦ|))+

1

2
Λ′tγ

′
ΦγΦΛt∆ = ln (abs (|γΦ|))+

1

2
Λ∗′t Λ∗t∆

where EPt [..] is the time t conditional expectation under the P measure. The

Internet Appendix shows that

ξQt+1 = (In + 2Φt∆)
1
2

(
ξPt+1 + (In + 2Φt∆)

−1
Λt

√
∆
)

= (In + 2Φt∆)
1
2 ξPt+1+Λ∗t

√
∆

(13)

where ξQt+1 v N (0n×1, In) are Gaussian shocks under the Q measure and ξPt+1 v

N (0n×1, In) are Gaussian shocks under the P measure. The change of measure

from Q to P and vice versa changes not only the conditional mean, but also the

conditional covariance of the shocks. The measure change turns process 5 under

Q into the following process under P

zt+1 = zt +
(
µQ + QQzt

)
∆ + Σ·

√
diag (k + Hzt)Λ

∗
t∆ (14)

+ ∆2 ·
∑n
i=1ei ·Λ

∗′
t Σ′Ψ (i) ΣΛ∗t

+ 2∆
3
2 ·
∑n
i=1ei ·Λ

∗′
t Σ′Ψ (i) Σ (In + 2Φt∆)

1
2 ξPt+1

+ Σ ·
√
diag (k + Hzt) (In + 2Φt∆)

1
2 ξPt+1

√
∆

+ ∆ ·
∑n
i=1ei · ξ

P′
t+1 (In + 2Φt∆)

1
2 ′Σ′Ψ (i) Σ (In + 2Φt∆)

1
2 ξPt+1.

In equation 14 Λ∗t drives the drift of z and Φt drives its conditional covariance

mainly through the term in the fourth line. However, even when Φt = 0n×n the

conditional covariance of zt+1 still changes with the measure change, because of
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the term in the third line of equation 14. In practice the terms of order O
(

∆
3
2

)
andO

(
∆2
)
in equation 14 are often negligible in estimation and would disappear

in continuous time as ∆ → 0. In particular with monthly time steps ∆ = 1
12

and terms of order ∆
3
2 and ∆2 may be omitted with little loss in estimation

accuracy. Then, if we neglect terms of order o (∆)

EPt [zt+1] w µQ∆ +
(
In + QQ∆

)
zt + Σ·

√
diag (k + Hzt)Λ

∗
t∆+

+ ∆
∑n
i=1ei · tr

(
(In + 2Φt∆)

1
2 ′Σ′Ψ (i) Σ (In + 2Φt∆)

1
2

)
CovPt [zt+1] w Σ

√
diag (k + Hzt) · (In + 2Φt∆) ·

√
diag (k + Hzt)Σ

′ ·∆.

Λ∗t affects E
P
t [zt+1] but not so much CovPt [zt+1]. Φt affects both EPt [zt+1] and

CovPt [zt+1] even when Λ∗t = 0n×1.

z is stationary under Q as long as all the eigenvalues of the feedback matrix(
In + QQ∆

)
are all less than 1 in absolute value. In this paper we focus on

specifications whereby the z process is affi ne not only under Q but also under

P, so that similar restrictions on the eigenvalues of the feedback matrix of the

z process under P guarantee process stationarity also under P. More generally,

when the z process is not affi ne under P, Λ∗t and Φt should be chosen so that z

under P satisfies the suffi cient conditions of Mokkadem’s Lemma for geometric

ergodicity. These conditions are discussed by Le, Dai and Singleton (2010, page

2217) and can be satisfied by many non-affi ne processes that exhibit SGS.
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4.1 Market prices of risk in DTQTSM and in DTATSM-

SGS

Quadratic models, be they in continuous time or in discrete time, need no

Feller conditions and no admissibility conditions. Also DTATSM-SGS need no

Feller conditions that restrict the market price of risk, but DTATSM-SGS need

non-negativity conditions that are similar to admissibility conditions for the

non-negative factors that appear under a "square root" and that drive yields

volatilities. These non-negativity conditions only need imposing under one mea-

sure, either P or Q, and they will automatically ensure non-negativity also under

the other measure, thanks to the SGS, and this is an advantage of DTATSM-

SGS over continuous time affi ne models. For example, we saw above that the

one factor DTATSM-SGS and the one factor DTQTSM respectively assume

rt+1 = zt+1 =

(√
µQ∆ + (1 + qQ∆) zt + σξQt+1

√
∆

)2

rt+1 = z2
t+1 =

(
µQ∆ +

(
1 + qQ∆

)
zt + σξQt+1

√
∆
)2

.

Then, since ξQt+1 =
√

1 + 2Φt∆ξ
P
t+1 + Λ∗t

√
∆, it follows that z2

t+1 and zt+1 are

non-negative, if real valued, irrespective of the market prices of risk Φt,Λ
∗
t ,

which are two scalars now. Therefore both DTQTSM and DTATSM-SGS

have the merit that market prices of risk cannot turn the short rate process

r negative. However the DTATSM-SGS needs the conditions 1 + 2Φt∆ ≥ 0,

µQ∆ +
(
1 + qQ∆

)
zt ≥ 0, in order for zt+1 to be real valued. Then the market

price of risk Λ∗t , which also needs to be real valued, can be both positive and
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negative both in DTATSM-SGS and in DTQTSM. For example, if

Λ∗t =
1

σ∆

(√
µP∆ + (1 + qP∆) zt −

√
µQ∆ + (1 + qQ∆) zt

)
µP∆ +

(
1 + qP∆

)
zt ≥ 0

where µP, qP are parameters under P, it follows that

zt+1 =

(√
µQ∆ + (1 + qQ∆) zt + σ

√
1 + 2Φt∆ξ

P
t+1

√
∆ + σΛ∗t∆

)2

=

(√
µP∆ + (1 + qP∆) zt + σ

√
1 + 2Φt∆ξ

P
t+1

√
∆

)2

.

Therefore Λ∗t can be both positive and negative, so that expected excess bond

returns can be both positive and negative, just as in the continuous time es-

sentially affi ne models of Duffee (2002). Also DTQTSM can have both pos-

itive and negative market prices of risk, as is well known. For example, if

Λ∗t = 1
σ

(
µP + qPzt −

(
µQ + qQzt

))
, it follows that

rt+1 = z2
t+1 =

(
µQ∆ +

(
1 + qQ∆

)
zt + σ

√
1 + 2Φt∆ξ

P
t+1

√
∆ + σΛ∗t∆

)2

=
(
µP∆ +

(
1 + qP∆

)
zt + σ

√
1 + 2Φt∆ξ

P
t+1

√
∆
)2

.

Again Λ∗t can be both positive and negative. Then also DTATSM-AG can have

market prices of risk that can be both positive and negative. Finally the second

order Esscher transform implies that the market price of risk Φt can cause

factors conditional covariance to differ under P and Q. Unlike DTATSM-AG,

DTATSM-SGS seem ideal for the second order Esscher transform, because of

their Gaussian shocks. However, the second order Esscher transform can be

applied to DTQTSM just as well as to DTATSM-SGS. We next consider the

z process under P for Asgsn (n) models.
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4.2 Asgsn (n) models under the real measure

Models Asgsn (n) assume process 11 under Q. Then, if Φt is diagonal and Φi,i is

its i-th diagonal element and is a parameter, and if

Λ∗t =
(
Λ∗1,t, ..,Λ

∗
n,t

)′
Λ∗i,t =

(√
∆µPi + zi,t + Q(i)Pzt∆−

√
∆µQi + zi,t + Q(i)Qzt∆

) 2
√

1 + qQi,i∆

∆σi
, i = 1, .., n

it follows that ξQi,t+1 =
√

1 + 2Φi,i∆ξ
P
i,t+1+Λ∗i,t

√
∆ and that the z process under

P can be written as diag (zt+1) · ιn, where

diag (zt+1) =

√diag (zt + (µP + QPzt) ∆) +
1

2
diag (σ)

√√√√diag

(
1 + 2Φi,i∆

1 + qQi,i∆

)
diag

(
ξPt+1

)√
∆

2

.

(15)

Recall that diag (xi) denotes the diagonal matrix whose i-th diagonal element

is xi. A model similar to this is Asgs3 (3), which is tested empirically below. The

continuous time limit of 15 (in vector format) is

dzt =
(
µP + QPzt

)
dt+ diag (σ) ·

√
diag (zt)dw

P
t

dwP
t =

(
dwP1,t, .., dw

P
n,t

)′
.

Other things equal, if Φt is unconstrained, then

diag (zt+1) =

(√
diag (zt + (µP + QPzt) ∆) +

1

2

(
diag

(
1 + qQi,i∆

))−1/2

· diag
(
SξPt+1

)√
∆

)2

(16)

with S = diag (σ)
√

In + 2Φt∆. Then we can set

√
In + 2Φt∆ = diag (p) ·Ξ, p = (p1,.., pn)

′
. (17)
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p is a vector of n risk-premium parameters. Ξ is an n × n lower triangular

matrix and ΞΞ′ = [ρi,j ]. [ρi,j ] is an n × n matrix whose element in the i-th

row and j-th column is ρi,j , which is the correlation coeffi cient between Ξ(i)ξPt+1

and Ξ(j)ξPt+1, where Ξ(i) and Ξ(j) denote the i-th row and j-th row of Ξ. Ξ

is computed through a Choleski decomposition of matrix [ρi,j ]. Note that 17

implies that factors shocks are correlated under P even as they are uncorrelated

under Q. If we neglect terms of order o (∆), 17 implies that

CovPt [zt+1] w diag (zt) · diag (σ) · diag (p) ·ΞΞ′ · diag (zt) · diag (σ) · diag (p) ·∆

and the continuous time limit of the z process under P (in vector format) be-

comes dzt =
(
µP + QPzt

)
dt+

√
diag (zt) ·diag (σ) ·diag (p) ·Ξ ·dwP

t . Processes

11 and 16 imply that z is non-negative both under P and under Q irrespective

of the market price of risk. Feller conditions effectively restrict market prices

of risk, while the non-negativity conditions of DTATSM-SGS do not. A model

similar to 16 and 17 is model Asgs3 (3) v tested below.

5 The tested models

This section details the DTATSM-SGS and DTATSM-AG that are later tested.

Comparisons of DTATSM-SGS with the many continuous time term structure

models in the literature are beyond the scope of this paper. This is not just due

to space limits, since LSD (2010) and others have already explained the benefits

of discrete time models and these benefits have already made DTATSM-AG

quite popular. Then the comparison between DTATSM-SGS and DTATSM-
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AG seems the most pressing one, because these models seem the only discrete

time affi ne counterparts, if we exclude Sun (1992), to the popular continuous

time models An (n) ,AM (n). For all models we use monthly observations so

that ∆ = 1/12 since time is measured in years. All tested models have three

factors. For all tested DTATSM-SGS we assume Ψ (i) = ei ·e′i ·ψi for i = 1, 2, 3.

5.1 Models Asgs+1 (3), Asgs+1 (3) v

Model Asgs+1 (3) assumes

rt = z3,t

v1,t+1 = v1,t +
(
µQ1 − q

Q
1 v1,t

)
∆ + σ1

√
v1,tξ

Q
1,t+1

√
∆ + ψQ1 σ

2
1

(
ξQ1,t+1

)2

∆

z2,t+1 = z2,t +
(
v1,t − qQ2 z2,t

)
∆ + σ2

√
v1,tξ

Q
2,t+1

√
∆

z3,t+1 = z3,t +
(
z2,t − qQ3 z3,t

)
∆ + σ3

√
v1,tξ

Q
3,t+1

√
∆

Covt

[
ξQt+1

]
= Covt

[
ξPt+1

]
=


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 , ξt+1 = (ξ1,t+1, ξ2,t+1, ξ3,t+1)
′

µQ1 ≥ 0, ψQ1 =
1

4
(

1− qQ1 ∆
) , 1− qQ1 ∆ ≥ 0, qQ1 ≥ 0.

ρ13, ρ23, ρ12 are correlation coeffi cients. Then under P all is the same except

that z3,t+1 = z3,t +
(
µP3 + z2,t − qP3z3,t

)
∆ + σ3

√
v1,tξ

Q
3,t+1

√
∆. Note that v1 is

mean reverting both under P and Q. Model Asgs+1 (3) v is the same as Asgs+1 (3)

except that z3,t+1 = z3,t+
(
µP3 + z2,t − qP3z3,t

)
∆ + p3σ3

√
v1,tξ

P
3,t+1

√
∆ under P,

where p3 is a risk premium parameter. Therefore in Asgs+1 (3) v the conditional

variance of rt differs under P and Q.
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5.2 Models Asgs3 (3) and Asgs3 (3) v

In model Asgs3 (3)

rt = v3,t

v1,t+1 = v1,t +
(
µQ1 − q

Q
1 v1,t

)
∆ + σ1

√
v1,tξ

Q
1,t+1

√
∆ + ψQ1 σ

2
1

(
ξQ1,t+1

)2

∆

v2,t+1 = v2,t + qQ2 (v1,t − v2,t) ∆ + σ2
√
v2,tξ

Q
2,t+1

√
∆ + ψQ2 σ

2
2

(
ξQ2,t+1

)2

∆

v3,t+1 = v3,t +
(
qQ3 (v2,t − v3,t)

)
∆ + σ3

√
v3,tξ

Q
3,t+1

√
∆ + ψQ3 σ

2
3

(
ξQ3,t+1

)2

∆

µQ3 = 0, µQ1 ≥ 0, Covt

[
ξQt+1

]
= Covt

[
ξPt+1

]
= I3, ξt+1 = (ξ1,t+1, ξ2,t+1, ξ3,t+1)

′

ψQi =
1

4
(

1− qQi ∆
) , 1− qQi ∆ ≥ 0, qQi ≥ 0 for i = 1, 2, 3.

Under P all is the same except that v3,t+1 = v3,t +
(
µP3 + qP3 (v2,t − v3,t)

)
∆ +

σ3
√
v3,tξ

P
3,t+1

√
∆ +

σ2
3(ξP3,t+1)

2
∆

4(1−qP3∆)
, with 1 − qP3∆ ≥ 0 and qP3 ≥ 0. v1, v2, v3 are

non-negative and mean reverting both under Q and P. Model Asgs3 (3) v is the

same as Asgs3 (3) except that Covt
[
ξPt+1

]
=


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

. In A
sgs
3 (3) v

factors shocks are correlated under P but not under Q.

27



5.3 Models AG3 (3), AG1 (3)

Model AG3 (3) follows Le, Dai and Singleton (2010) and is the AG counterpart

to Asgs+3 (3). The continuous time limit of AG3 (3) is

rt = v3,t

dv1,t =
(
µQ1 − q

Q
1 v1,t

)
dt+ σ1

√
v1,tdw

Q
1,t

dv2,t =
(
qQ2 (v1,t − v2,t)

)
dt+ σ2

√
v2,tdw

Q
2,t

dv3,t =
(
µQ3 + qQ3 (v2,t − v3,t)

)
dt+ σ3

√
v3,tdw

Q
3,t

with µQ3 = 0, qQ1 , q
Q
2 , q

Q
3 , µ

Q
1 ≥ 0. dvi,t are stochastic differentials and dwQi,t

are differentials of Wiener processes for i = 1, 2, 3 under Q. dt is the in-

finitesimal time increment. In AG3 (3) the variable vi,t+1

ci
for i = 1, 2, 3 is

distributed according to a Poisson mixture of standard gamma distributions,

i.e. vi,t+1

ci
∼ gamma

(
wQi + l

)
and l given vt is Poisson distributed, i.e. l ∼

poisson
(
ρ(i)vt
ci

)
=

(
ρ(i)vt
ci

)l
e
−
(
ρ(i)vt
ci

)

l! where vt = (v1,t, v2,t, v3,t), ρ(i) is the i-th

row of ρ, ρ = I3 + QQ∆, QQ =


−qQ1 0 0

qQ2 −qQ2 0

0 qQ3 −qQ3

 and 1
∆ > qQi > 0, ci =

σ2
i

2 ∆,wQi =
2µQi
σ2
i
for i = 1, 2, 3. Under the P measure all is the same except that

QP =


−qQ1 0 0

qQ2 −qQ2 0

0 qP3 −qP3

 replaces QQ and µP1 = µQ1 , µ
P
3 6= µQ3 ,w

P
i =

2µPi
σ2
i
for

i = 1, 2, 3. To improve model performance we do not impose the Feller con-

ditions wQ
i ,w

P
i ≥ 1 for i = 1, 2, 3. Then according to AG3 (3) the price of a
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discount bond is Pt,m = exp (Aagm + Bag′
m zt) with

Aagm = Aagm−1 +
∑3
i=1 ln

(
1− ci ·Bagi,m−1

)−wQ
i

Bag′
m = − (0, 0, 1) ∆ +

∑3
i=1

Bagi,m−1 · ρ(i)

1− ci ·Bagi,m−1

Aag0 = 0,Bag′
0 = (0, 0, 0) .

Model AG1 (3) is the counterpart of Asgs+1 (3). The continuous time limit of

AG1 (3) is

rt = z3,t

dv1,t =
(
µQ1 − q

Q
1 v1,t

)
dt+ σ1

√
v1,tdw

Q
1,t

dz2,t =
(
v1,t − qQ2 z2,t

)
dt+ σ2

√
v1,tdw

Q
2,t + θ1

(
dv1,t − EQt [dv1,t]

)
dz3,t =

(
µQ3 + z2,t − qQ3 z3,t

)
dt+ σ3

√
v1,tdw

Q
3,t + θ2

(
dv1,t − EQt [dv1,t]

)
where µQ3 = 0, θ1, θ2 are two constants and dw

Q
2,tdw

Q
3,t = ρ23dt. Now

v1,t+1

c1
∼

gamma
(
wQ1 + l

)
and l ∼ poisson

(
ρ(1)zt
c1

)
=

(
ρ(1)zt
c1

)l
e
−
(
ρ(1)zt
c1

)

l! ; zt = (v1,t, z2,t, z3,t),

ρ(1) is the first row of ρ, ρ = I3 + QQ∆, 1
∆ > qQ1 > 0 and c1 =

σ2
1

2 ∆,wQ1 =
2µQ1
σ2

1
.

Under the P measure all is the same except that QP replaces QQ, QP =
−qQ1 0 0

1 −qQ2 0

0 1 −qP3

, w
P
1 =

2µP1
σ2

1
, µP1 respectively replace and are the same

as wQ1 , µ
Q
1 , while µ

P
3 6= µQ3 . We do not impose the Feller conditions w

Q
1 ,w

P
1 ≥ 1.

The formulae for bond prices and factors conditional moments according to

AG1 (3) are reported in Creal and Wu (2015). In AG1 (3) only one of the three

factors drives factors stochastic volatility, while in AG3 (3) all three factors drive
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stochastic volatility. The symbols v1,t, v2,t, v3,t, z2,t, z3,t that denote the factors

in the AG models highlight the similarity between AG models and SGS models,

but such factors follow processes that differ from the SGS processes.

5.4 The Gaussian models

Gaussian models A0 (3) assumes that under Q

rt = z3,t

z1,t+1 = z1,t +
(
µQ1 − q

Q
1 z1,t

)
∆ + σ1ξ

Q
1,t+1

√
∆

z2,t+1 = z2,t + qQ2 (z1,t − z2,t) ∆ + σ2ξ
Q
2,t+1

√
∆

z3,t+1 = z3,t + qQ3 (z2,t − z3,t) ∆ + σ3ξ
Q
3,t+1

√
∆

Covt

[
ξQt+1

]
= Covt

[
ξPt+1

]
=


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 .

In A0 (3) the z process under P is the same as under Q, except that z3,t+1 =

z3,t +
(
µP3 + qP3 (z2,t − z3,t)

)
∆ + σ3ξ

P
3,t+1

√
∆. Finally, as term of comparison,

we estimate a discrete time quadratic Gaussian model, denoted as Q (3), which

assumes rt = z2
3,t while all else is as in A0 (3). This DTQTSM is a special case

of the one in Realdon (2006).

5.5 The market price of risk

The market price of risk of all the above models is similar and affects the drift of

factors z3 or z3 that drive the short rate r. Thus only yields "level risk" is priced,
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a parsimonious specification inspired by past literature, e.g. Cochrane and

Piazzesi (2008) and Bauer (2018). Asgs1 (3) v additionally assumes that the

conditional variance of z3 differs under P and Q. Instead Asgs3 (3) v additionally

assumes that factors correlation differs under P and Q, while factors conditional

variance is the same under P and Q.

6 First empirical tests

This section presents tests of SGS and AG models using US Treasury bond

yields. Yields are continuously compounded and observed monthly for all yearly

maturities from one year to twenty years. Yields are computed from discount

functions provided by Thompson-Reuters Eikon and the discount functions are

implied from Treasury bond prices. Table 1 reports yields descriptive statistics

for the sample period, i.e. from January 1995 to November 2017. All models

are estimated through (extended) Kalman Filters. All estimated models predict

ergodic yields as we constrain all model factors to be mean-reverting rather than

mean-averting. The prior distribution of the latent factors at the start of the

sample is Gaussian with mean and covariance equal to the unconditional mean

and covariance of the factors.

[Table 1]

In the Tables "A1(3)v" denotes Asgs+1 (3) v, "A3(3)v" denotes Asgs3 (3) v and

the names of the other SGS models are shortened similarly. Table 2 summarises

forecasting performance by reporting root mean squared errors (RMSE’s) for
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each estimated model and yield maturity. For example RMSE for the five year

maturity is computed as

√∑276
t=2(y5·12,t−EP

t−1(y5·12,t))
2

275 , where yt,m = − ln(Pt,m)
∆m .

Recall that Pt,m is the price of a discount bond at the end of month t with

maturity at the end of month t + m and that ∆ = 1/12 is the monthly time

step. Therefore y5·12,t is the five year (i.e. 60 month) discount bond yield at

the end of month t and EPt−1 (y5·12,t) is the Kalman Filter prediction of y5·12,t

made at the end of month t− 1. There are 276 months in the sample. The row

"Average" of Table 2 computes average RMSE across the twenty maturities.

The average RMSE of Asgs3 (3) v is 28 basis points and the lowest, while those

of AG1 (3) c and AG3 (3) are 59 and 77 basis points respectively and are the

largest. This highlights the relative weakness of the AG models. For the other

models Average RMSE’s range between 30 and 41 basis points.

[Table 2]

[Table 3]

Table 3 presents the estimated parameters for all models in the columns

"param" and the corresponding asymptotic standard errors in the columns

"stdev". Standard errors are computed with the "Sandwich" estimator. In

Tables 3 and 4 the parameters µQ.. , q
Q
.. , µ

P
.., q

P
.. are denoted respectively as µ

∗
..,

q∗.., µ.., q... s is the estimated standard deviation of yields observation errors,

which is assumed to be the same for all yield maturities to reduce parameter

over-fitting and to highlight differences in model fit to observed yields. s is about

8 to 9 basis points for most models, but is significantly higher for the affi ne mod-

els that rule out negative factors, i.e. Asgs3 (3) ,Asgs3 (3) v,AG3 (3). Unreported
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results show that, when the models were estimated under the assumption that s

varies across maturities, for each model the average of the estimates of s across

all maturities was very close to the estimate of s reported in Table 3.

For each model the row lk reports the value of the maximised Kalman quasi-

likelihood and the row AIC reports the Akaike Information Criterion (AIC).

AIC is best, i.e. lowest, for the quadratic model, which is followed by A0 (3)

and then by Asgs1 (3) v and Asgs1 (3). Models whose name ends with "v" feature

risk premia parameters related to the second order Esscher transform, namely

p3 for Asgs1 (3) v and ρ12, ρ13, ρ23 for Asgs3 (3) v. All these four parameters are

significant at conventional levels in Tables 3. This evidence is in favour of the

transform. Almost all estimates of ρ12, ρ13, ρ23 are significant across models,

thus supporting correlated factors. The Vuong likelihood ratio tests in Table 4

show a number of other results.

First, Asgs3 (3) v, whose factors are conditionally correlated under the real

measure but not under the risk-neutral measure, fits yields significantly better

better than Asgs3 (3), whose factors are uncorrelated under both measures. This

shows how the second order Esscher transform, which implies factors correla-

tion under the real measure, "helps" the SGS model with non-negative factors.

Then the Vuong tests show that Asgs3 (3) v outperforms AG3 (3) with a p-value

of 4%. However all the affi ne models that rule out negative factors, namely

Asgs3 (3) ,Asgs3 (3) v,AG3 (3), tend to under-perform the other models.

Second, the Vuong tests show that SGS models Asgs1 (3) v and Asgs1 (3) out-

perform their counterpart AG model AG1 (3). Third, Asgs1 (3) v outperforms
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Asgs1 (3) with a p-value of 3%, thanks to the Esscher transform and the risk

premium parameters p3, which causes the conditional volatility of the short

rate rt to differ under the real and risk-neutral measures. Finally the Vuong

tests show that the quadratic model neither outperforms not is outperformed

by any other model, while affi ne Gaussian model A0 (3) outperforms most other

models.

Overall the Vuong tests show that SGS models can fit in-sample yields better

than corresponding AG models. This is the case even though the tested SGS

and AG models converge to the same continuous time affi ne models. The second

order Esscher transform further enhances SGS models through risk premia that

alter factors volatility and correlation1 .

[Table 4]

1The tests in Table 4 and the estimates in Table 3 use the Gaussian "quasi-

likelihood" function of EKF. Note that the likelihood function of bond yields is

not Gaussian according to affi ne SGS and AG models and according to quadratic

models. Then the conditional variance of yields in affi ne SGS and AG models is

computed by using the mean of latent factors as estimated by EKF. This too is an

approximation since the exact value of latent factors is not known. As a result,

maximising the EKF "quasi-likelihood" gives parameter estimates that generally

lack asymptotic consistency to the true parameter values in the population, even

for a well-specified model.

However the Vuong tests in Table 4 that compare the different models seem

still relevant because all models are all estimated in the same way through EKF.

Moreover Vuong tests can even compare mis-specified likelihood functions.
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7 Further tests

This section presents further tests of the models reported in Table 3. These tests

compare the one factor versions of the models, the performance of the models

under the Q measure, the conditional volatility of yields and the term premia

implied by the models, linear projection of yields based on the models and the

unconditional mean and standard deviation of yields implied by the models.

7.1 Comparison of one factor models

To gain further insight, univariate models Asgs1 (1), AG1 (1), A0 (1), Q (1) have

been estimated through Kalman Filters using only the 1 year yield and the

results are reported in Figures 1 and 2 and in Table 5. Figure 1 shows Monte

Carlo simulated paths of the short rate rt according to models Asgs1 (1), A0 (1),

Q (1). These paths are computed using the same random Gaussian shocks and

the model parameters estimated through the Kalman Filter. The starting value

of the latent factor is found by "inverting" the 1 year yield observed in the first

month of the sample. The starting value of the latent factor of the quadratic

models is a parameter estimated by the Kalman Filter. Figure 1 shows that

models Asgs1 (1) and Q (1) can predict persistently low and non-negative paths

of the short rate rt.

Figure 2 plots a histogram of the 1 year yield observed monthly and also plots

one mixture of conditional densities for each of the models Asgs1 (1), AG1 (1),

A0 (1), Q (1). Each mixture is computed as
∑276
t=1z

(
y1·12,t;E

P
t−1 (zt−1) ,Θ

)
,

whereΘ are the parameters estimated by the Kalman Filter andz
(
y1·12,t, E

P
t−1 (zt−1) ,Θ

)
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is the density of y1·12,t, which is the one year (i.e. 12 month) yield at the end of

month t, conditional on Θ and on the expected value EPt−1 (zt−1) of the latent

factor z estimated by the Kalman Filter after observing the 1 year yield at the

end of month t−1. There are 276 monthly observations of yields in the sample.

Each month z
(
y1·12,t, E

P
t−1 (zt−1) ,Θ

)
is computed through a Monte Carlo sim-

ulation with 1000 iterations. Figure 2 shows the mixture of conditional densities

also for A0 (1) and for Q (1), but for these models the latent factor is z instead

of z. Figure 2 shows that the mixture of conditional densities for model Asgs1 (1)

and that for AG1 (1) match the histogram of the observed 1 year yield similarly

well, in particular when the 1 year yield is close to zero. Instead the mixture

of densities for Q (1) displays a hump between 6% and 9% that does not match

the histogram of the observed 1 year yield.

Table 5 reports Vuong likelihood ratio tests of the in sample fit of Asgs1 (1),

AG1 (1), A0 (1), Q (1) to the observed 1 year yield. These Vuong tests show

that A0 (1), which is the only one of these four models that allows the short

rate to turn negative, is outperformed by the other three models. Among the

other three models none significantly outperforms or under-performs. These

results are confirmed by the AIC in Table 5, although quadratic model Q (1)

fares slight better than the other models according to this metric. Panel C of

Table 5 also reports another set of root mean squared errors (RMSE’s), where

the errors are the differences between the one 1 yield forecasted by a model (i.e.

Asgs1 (1), AG1 (1), A0 (1) or Q (1)) and its observed value. The said forecast is

produced by the Kalman Filter after observing the 1 year yield of the previous
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month. The RMSE’s of Panel C of Table 5 are "out of sample" in that they are

computed over the second half of the sample, i.e. the last 138 months, after the

parameters of each model have been estimated in the first half of the sample, i.e.

in the first 138 months. These "out of sample" RMSE’s are lowest for Asgs1 (1)

and AG1 (1) at 18.1 basis points. Overall the one factor SGS and AG models

seem to match the one year yield similarly well.

[Table 5]

[Figure 1]

[Figure 2]

7.2 Performance under the Q measure of calibrated three

factor affi ne models

Panel D of Table 5 shows the RMSE’s of three factor affi ne models AG3 (3),

AG1 (3), Asgs3 (3), Asgs1 (3), A0 (3) when calibrated to the whole sample of ob-

served yields. Calibration of a model disregards information in the time series

of yields, i.e. the dynamics of yields under the P measure, and determines the

model parameters under the Q measure that minimise the sum of squared pric-

ing errors across all maturities and months in the sample, while assuming that

the 1 year, 10 year and 20 year yields are observed perfectly, so as to infer the

values of the latent factors for every month. Every month each model perfectly

matches the 1 year, 10 year and 20 year yield, and predicts yields of all other

maturities for that same month, not for future months. Therefore the RMSE’s

in Panel D refer only to the cross sectional yield predictions of the models. The
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errors are differences between observed yields and model predicted yields for all

maturities. Panel D shows that AG models AG3 (3) and AG1 (3) are slightly

more accurate than corresponding SGS models Asgs3 (3) and Asgs1 (3), but the

differences between the RMSE’s of these models are small, i.e. less than half

a basis point. The two models that rule out negative yields, namely Asgs3 (3)

and AG3 (3), have lower RMSE’s than the others models, which do not rule out

negative yields.

Figure 3 plots the time series of another set of RMSE’s for the same cali-

brated models AG3 (3), AG1 (3), Asgs3 (3), Asgs1 (3), A0 (3). These RMSE’s are

computed for each model across the 20 yield maturities each month. AG3 (3)

displays the highest RMSE during part of the low yields period after the great

recession of 2008-2009, but later also displays the lowest RMSE while yields

are still close to zero. Note that Asgs3 (3) v, Asgs1 (3) v are the same as Asgs3 (3),

Asgs1 (3) for the purposes of the said calibration. The yields predicted by Q (3),

which are not monotonic with respect to the latent factors, are cum-

bersome to "invert" to determine the said latent factors as required by

the calibration. Overall three factor SGS and AG models seem to predict the

cross section of yields similarly well.

[Figure 3]

7.3 Conditional volatility of yields

Figure 4 plots the monthly time series of the conditional volatility of the 1

year yield according to the data and the models. Figure 5 does the same for the
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conditional volatility of the 10 year yield. The (annualised) conditional volatility

of the 1 year yield at the end of month t according to the data is computed as

σdata1·12,t

√
252, where σdata1·12,t is the standard deviation of daily changes in the 1 year

(i.e. 12 month) yield computed over the last 21 trading days. Eikon provides

daily observations of yields. On average there are about 252 trading days in

one year in our sample. Effectively σdata1·12,t is the daily volatility of the 1 year

yield realised over the rolling window of the last 21 trading days at the end of

month t. The conditional volatility of the 10 year yield according to the data is

computed similarly.

The (annualised) conditional volatility of the 1 year yield implied by model

Asgs3 (3) at the end of month t is approximately computed as
−B′m·

√
diag(zt)·(σ1,σ2,σ3)′

m∆

with m = 12 and ∆ = 1/12. This approximation omits terms of order O
(
∆2
)

with little loss in accuracy. For the other models and for the 10 year maturity

the model-implied conditional volatility of yields is computed in a similar way,

mutatis mutandis.

Figures 4 and 5 show that the time series of conditional volatilities implied

by Asgs1 (3) v and Asgs1 (3) are closer to realised volatilities than the conditional

volatilities implied by AG1 (3). The latter are just too high. Then Figure 4

shows that the time series of conditional volatilities for the 1 year yield im-

plied by Asgs3 (3) are closer to realised volatilities than the conditional volatil-

ities implied by AG3 (3) and by Asgs3 (3) v, which are just too low. Figure 5

shows that Asgs3 (3) v predicts too low volatility also for the 10 year yield, while

Asgs3 (3) matches the realised volatility of the 10 year yield slightly worse than
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AG3 (3). If we define the 10 year yield "volatility error" as the difference be-

tween σdata10·12,t

√
252 and the model implied volatility of the 10-year yield at the

end month t, the corresponding "volatility RMSE" for the 10 year maturity

across the 276 months in the sample is 46.5 basis points for Asgs3 (3) and 41.4

basis points for AG3 (3). The SGS models seem to match the rolling windows of

realised volatilities better than their corresponding AG models, as confirmed

by Panel F of Table 5, but AG3 (3) tends to best match the volatility of

long term yields, such as the 10 year yield.

Panel E of Table 5 summarises Figures 4 and 5 through correlations

between realised yield volatilities and model implied yield volatilities,

and through regressions of the former volatilities on the latter volatil-

ities for one year and ten year yields. For the one year yield the said

correlations between market and model volatilities are in the range of

0.35 to 0.44 and are quite similar for SGS and corresponding AG mod-

els. Instead for the ten year yield AG3 (3) outperforms all other mod-

els with a correlation of 0.43, while the correlations of SGS models

under-perform those of AG models. Panel E also reports the R2 and

point estimates of the intercept and slope coeffi cients from regressing

the realised volatility of the one (ten) year yield on model implied one

(ten) year yield volatilities. For the one year yield volatility the slope

estimates are respectively closer to 1 for SGS models Asgs3 (3) ,Asgs1 (3)

than for the corresponding AG models AG3 (3) ,AG1 (3), and the in-

tercept estimate for AG1 (3) is more negative than for Asgs1 (3). This
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confirms that SGS models beat AG models in matching the one year

yield volatility. Instead for the ten year yield volatility the slope es-

timate is much closer 1 for AG3 (3) than for Asgs3 (3), thus confirming

that the former better matches the dynamics of the ten year yield

volatility.

Finally Panel F of Table 5 reports clearly lower, i.e. better, "volatil-

ity" RMSE for SGS models than for AG models, as yields of all matu-

rities are considered. When computing "volatility RMSE" the "volatility

error" for the x-year maturity is again the difference between σdatax·12,t

√
252 and

the model implied volatility of the x-year yield at the end of every month t.

"Volatility" RMSE in Panel F of Table 5 is computed across all yield maturities

and months for each model. In Panel F models Asgs1 (3) and Asgs1 (3) v display

the lowest "volatility" RMSE, 41 basis points, followed by Asgs3 (3) with 46 basis

points and then by AG3 (3) with 60 basis points, while AG1 (3) seems very dis-

appointing with 240 basis points. Relatively disappointing is also Asgs3 (3) v with

"volatility RMSE" of 79 basis points. The Esscher transform makes the fac-

tors of Asgs3 (3) v correlated under P even if not under Q, but this does not help

Asgs3 (3) v fit yields conditional volatility better then Asgs3 (3), quite the opposite.

The Esscher transform does not help Asgs1 (3) v fit the conditional volatility of

yields better than Asgs1 (3) either, despite being model flexible. Panel F of Table

5 confirms that SGS models match the dynamics of yields volatility better than

corresponding AG models, but this outperformance is not due to the Esscher

transform.
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Overall SGS models seem to match the conditional volatility of all yields

more closely than AG models, even though no model closely matches the dy-

namics of yields volatility in the data.

[Figure 4]

[Figure 5]

7.4 The time series of term premia

Figures 6 displays the time series of the term premium for the 1 year maturity

predicted by models AG3 (3), AG1 (3), Asgs3 (3), Asgs1 (3), Asgs3 (3) v, Asgs1 (3) v.

Figure 7 does the same for the 10 year maturity term premium. The term

premium at the end of month t for the discount bond whose maturity is at the

end of month t+m is

c∗t,m = yt,m −
∆ · EPt

[∑m−1
i=0 rt+i

]
∆ ·m .

Therefore the term premium at the end of month t for the 10 year maturity is

y10·12,t−
∆·EP

t

[∑10·12−1
i=0 rt+i

]
10 , where for the models in this paper EPt

[∑10·12−1
i=0 rt+i

]
can be computed by solving a system of difference equations. The term pre-

mium for all other maturities is computed similarly, mutatis mutandis. The

term premium just defined is not "pure", because it reflects also the effect of

bond price convexity with respect to the latent factors, but is adopted in this

paper because it is the definition of term premium typically used in tests using

linear projection of yields, which are reported below.
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The term premia predicted by A0 (3) andQ (3) are not reported because they

were so disappointing as to fall out of the scale of Figures 6 and 7. Figures 6 and

7 show that the term premium predicted by AG1 (3) is often strongly negative

and less plausible than that of the other models. Figure 6 also shows that the

1 year term premium predicted by AG3 (3) is persistently negative at around

-20 basis points after the 2008-2009 great recession. Instead the 1 year term

premium predicted by the SGS models drops close to zero, but usually not below

zero, after the great recession. This evidence confirms that the 1 year maturity

is often viewed as a safe heaven by investors "flying to quality and liquidity"

and by investors who "park money without chasing yield". Then Figure 7

shows that AG3 (3) and, to a lesser extent, also Asgs1 (3) v predict negative 10

year term premia after the great recession, which appear less plausible than the

negative 1 year term premium, since 10 year bonds are not typically viewed as

safe heavens. Apart from Asgs1 (3) v, the other SGS models predict non-negative

10 year term premia after the 2008-2009 great recession, although such premia

are lower than before the great recession. Overall the time series of term premia

for the 1 year and the 10 year maturities lend more support to SGS models than

to corresponding AG models.

[Figure 6]

[Figure 7]
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7.5 Linear projections of yields and unconditional mo-

ments of yields

For each of the affi ne models in Table 3, Table 6 presents the slope coeffi cient

estimates from the linear projections of yields LPYi and LPYii of Dai and

Singleton (2002). LPYi regression equations are

yt+1,m−1 − yt,m = δm + φm
yt,m − yt,1
m− 1

+ εt,m

where δm and δm are two constants, and εt,m is the regression error term with

zero mean. Again m is the yield maturity measured in months. This regression

predicts the monthly change in a discount bond yield using the slope of the yield

curve yt,m−yt,1
m−1 as predictor. If the expected excess bond return is constant over

time, i.e. if δm is constant over time in the population, then φm = 1 in the

population, but it it notorious that LPYi regression estimates of φm that use

observed yields significantly differ from 1. LPYii regression equations are

yt+1,m−1 − yt,m −
(
c∗t,m−1 − c∗t+1,m−1

)
+
p∗t,m−1

m− 1
= φm

yt,m − yt,1
m− 1

+ εt,m

p∗t,m = ft,m − EPt [rt+m] , ft,m = − 1

∆
ln
Pt,m+1

Pt,m
.

For each of the affi ne models in Table 3, the term premia c∗t,m−1, c
∗
t+1,m−1 and

the forward premium p∗t,m−1 are computed each month using the parameters

estimated through Kalman Filter. LPYi regressions measure how well a model

matches the dynamics of yields under the real measure P, while LPYii regres-

sions measure how well a model matches the dynamics of yields under the risk-

neutral measure Q. Following Dai and Singleton (2002), the population slope
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coeffi cients of the LPYi regressions were estimated for each affi ne model in Table

3 while assuming that the parameters estimated through Kalman Filter coincide

with the population parameters. These estimates are reported for each model

in Table 6 in the rows "LPYi population". Under the same assumption of es-

timated parameters coinciding with population parameters, 1000 time series of

276 monthly term structures of yields were simulated for each of the affi ne mod-

els in Table 3. 276 is the number of months in our sample. Then for each of

these 1000 simulated time series an LPYi regression was run. Table 6 reports

the mean, the 5th percentile and the 95th percentile of these 1000 estimates for

each slope coeffi cient φm of LPYi regressions for each model and each yearly

maturity. These are respectively reported for each model and each maturity in

the rows "LPYi Mean, LPYi 5th percentile, LPYi 95th percentile".

For all models Table 6 reports large differences between population slope

coeffi cient estimates and the corresponding mean estimates computed on sim-

ulated yields. These differences are due to small sample bias in the estimates

of the LPYi regression slope coeffi cient. The said bias affects all models, but is

smaller for SGS models than for AG models. Then the estimated population

slope coeffi cient of the LPYi regression is generally outside the range between

the 5th and the 95th percentile for the AG models, but inside the said range for

the SGS models. This is the case for almost all maturities. For these reasons

LPYi regressions seem to provide more support to SGS models than to AG

models.

For each model we can also compute dslope = 1
19 ·
∑20
i=2abs

(
φLPY i−data12·i − φLPY i Mean−model

12·i
)
,
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where abs (..) is the absolute value operator. dslope is average across 19 matu-

rities of the absolute value of the difference between the LPYi slope estimated

on the data, which is φLPY i−data12·i for the i-year maturity, and the mean of the

LPYi slopes estimated on model simulated yields, which is φLPY i Mean−model
12·i

for the i-year maturity. dslope is 43.2 for AG3 (3), 3.7 for AG1 (3), 1.87 for

Asgs1 (3) and Asgs3 (3), 1.61 for Asgs1 (3) v, 1.4 for Asgs3 (3) v and 1.36 for A0 (3).

Therefore dslope shows that SGS models match the slopes of LPYi regressions

run on the data more closely than AG models. Again LPYi regressions seem to

provide more support to SGS models than to AG models.

In Table 6 the rows "LPYii" report the estimates of φm from LPYii regres-

sions for each maturity and each model. For a model that properly describes

the dynamics of yields under Q, the estimated term premia c∗t,m−1, c
∗
t+1,m−1 and

forward premium p∗t,m−1 should be such that the LPYii regressions give esti-

mates of the slope coeffi cient φm close to 1 for all maturities. This is the case for

none of the estimated models and is not surprising. Andreasen and Meldrum

(2019) show that the protracted stay of US yields close to the zero lower bound

after the great recession worsens the estimates of the slope coeffi cient φm of

LPYi and LPYii regressions. However the slope coeffi cient estimates of LPYii

regressions tends are closer to 1 for the SGS models than for the AG models for

all maturities other than the one year maturity. In this sense LPYii regressions

provide more support to SGS models than to AG models.

For each model in Table 3 and for each maturity, the rows "unconditional

mean" and "unconditional stdev" in Table 8 report the unconditional mean and
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standard deviation of yields, which are computed using the parameters esti-

mated through the Kalman Filter. For all models the unconditional mean and

standard deviation of yields appear realistic, except for AG3 (3), whose uncondi-

tional standard deviation of yields is far too high and whose unconditional mean

of yields also seems too high, i.e. between 16% and 24%. Asgs1 (3) v exhibits the

lowest unconditional standard deviation of yields for all maturities, around 2%.

The said standard deviation is relatively high for A0 (3), around 10%. On the

other hand AG1 (3) exhibits the lowest unconditional mean of yields, hovering

around 0% for all maturities, which seems too low. We conclude that the uncon-

ditional mean and unconditional standard deviation of yields of the four SGS

models seem more plausible than those of the AG models.

Overall the linear projections of yields and the unconditional moments of

yields lend more support to SGS models than to AG models.

[Table 6]

7.6 Conclusions from the tests

The empirical results of this section highlight that the main advantage

of SGS models over AG models is the better fit to the dynamics of

yields under the real measure P. AG models can fit the cross section

of yields slightly better than SGS models, as shown in Panel D of

Table 5. Therefore AG models can fit the dynamics of yields under

the risk measure Q slightly better than SGS models, but this modest

advantage seems to be outweighed by the better fit of SGS models
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to the dynamics of yields under the real measure P, when models are

estimated through Kalman Filter. This conclusion emerges especially

from the information criterion (AIC) in Table 3, from the Vuong

tests in Table 4, from the fit to yield volatilities in Panel F of Table

5, and from the volatility plot in Figure 4. This same conclusion is

also supported by the term premia in Figures 6 and 7, by the linear

projections of yields and by the model implied unconditional mean

and standard deviation of yields in Table 6.

Finally the SGS and AG models whose factors are all non-negative,

namely A3 (3) and AG3 (3), report markedly lower RMSE in the cali-

bration of Panel D of Table 5. The reason is that these models, which

rule out negative yields, can fit yields during the zero lower bound

period better than the other affi ne models, which do not rule out

negative yields.

8 Conclusion

This paper has presented discrete time affi ne term structure models (DTATSM)

based on affi ne factor processes with squared Gaussian shocks (SGS). The con-

tinuous time limit of SGS models is the same as that of popular autoregressive

gamma (AG) models. In SGS models flexible risk premia can alter even the

conditional correlation of factors and yields. The empirical evidence from US

yields shows that SGS models tend to perform better than corresponding AG
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models when predicting the conditional volatility of yields, term premia and the

unconditional mean and standard deviation of yields.
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