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Abstract

An explicit representation of a C' piecewise rational cubic
function is developed which can be used to solve the problem of
shape preserving interpolation. It is shown that the interpolation
method can be applied to convex and/or monotonic sets of data and
an error analysis of the interpolant is given. The scheme includes,
as a special case, the monotonic rational quadratic interpolant
considered by the authors in [1] and [5]. However, the requirement
of convexity necessitates the generalization to the rational cubic

form employed here.



1. Introduction

The problem of shape preserving interpolation has been considered
by a number of authors. Fritsch and Carlson [4] and Fritsch and
Butland [3] have discussed the piecewise cubic interpolation of mono-
tonic data. Also, McAllister, Passow and Roulier [6] and Passow and
Roulier [9] consider the piecewise polynomial interpolation of mono-
tonic and convex data. In particular, an algorithm for quadratic
spline interpolation is given in McAllister, and Roulier [7]. An altern-
ative to the use of polynomials, for the interpolation of monotonic
data, is the application of piecewise rational quadratic functions, as
described by the authors in references [1] and [5].

In this paper we describe a piecewise rational cubic function which
can be used to solve the problem of shape preserving interpolation.
The rational cubic includes the rational quadratic function as a special
case. However, the rational quadratic is not necessarily applicable to
the interpolation of convex data and this necessitates the generalization
to the rational cubic form employed here.

The paper begins with a definition and error analysis of the
rational cubic interpolant. The application of the interpolant to
monotonic and/or convex sets of data is then discussed in Section 3.
It is shown that O(h*) error bounds can be expected when exact derivative
information is given at the data points. For the case where the deriv-
atives are not known, these have to be estimated and various schemes for
this are considered. Finally, in Section 4, examples of the rational

interpolants applied with various derivative schemes are given.

2. The Rational Cubic Interpolant

Let (xi,fj) 1 =1,...,n be a given set of data points, where

X] <X, <..<Xx, Let



hi = x4, —xq,
Ai= (Fy B)/h; @.1)

A piecewise rational cubic function s € C [x; Xxp] is defined as

follows. For x € [xj, Xj+1] let
0=(x—-—xi)/h; . (2.2)

Then
s(x) = Pi(®)/Qi(0), (2.3)

where

Pi(0) = fi41 0 ° + (rj fi41 — hj dj+1) 67 (1- 0) + (r; f; + hj dj )O(1- 0)” + f; (1- 0)° ,

(2.4)
Qi(0)= 0"+ 1 [6°(1-0) + 0 (1-0)"] + (1-0)°
=1+ (r;-3)6 (1-0). (2.5)
The rational cubic has the following interpolatory properties
s(xi) = fi, s&in) =T,
sVxi) = di, sV (xir1) = disr, (2.6)

where s denotes differentiation with respect to x and the d;
denote derivative values given at the knots xj.

The parameter rj is to be chosen such that

> - 1 (2.7)

which ensures a strictly positive denominator in the rational cubic.

When ri=3 the rational cubic clearly reduces to the standard cubic



Hermite polynomial. For our purposes r; will be chosen to ensure that
the interpolate preserves the monotonic or convex shape of the data.
This choice requires a knowledge of s (x) and s'® (x) which are given

in the relevant sections below.

Remark It should be noted that the interpolant will define a non-linear
operator, since the ri. will be dependent on the data. However the inter-

polant to the zero function is zero. Also, the interpolant to the data
K+ f; i=1,...,n, where K is a constant, is K. + s(x), provided the
ri, are independent of such translations. This will be the case for the
choices of r; in this paper.

An error bound for the rational cubic is given by the following

theorem.

Theorem 2.1 Let f € C*[xi, xo] and let s be the piecewise rational cubic

interpolant such that s(x;) = f(x;) and s (x;) = d;, i=1,...,n.

|

Then for x € [X;, Xj+1]

If(x) —s(x) < hi max{fi(l) — d
4c

i

I
S —di

+;{h4i Hf(“) H A+ [5-3)/4)+ 4[5 -3| 0} | £® H + 3h3 Hf<2) H )}
384c;
(2.8)
Where
(I+1r)/4 if —-1<1<3
Ci =
| if r>3. (2.9
and || . || denotes the uniform norm on [xi, Xj+].

Proof On [x1, xi+1] let x(0) = x; + Oh; and F; (0) = f(x(0)).



Then
f(x) - s(x) = Fi(0) - Pi(0) / Qi(9)

where 0 < 0 <1 . Consider

[Fi(0)-P (0)/0: (0)| <[|Fi(0) O (0) —F* (0)| +|P*

where (cf. (2.4))

PF )=t 03+t , —h;f D) 0.a-0)+rif +hi )0 1-0)> +£,0-0) . (2.11)

i+l

Then Pi* (0) is the cubic Hermits interpolant to F; (0) Q;(0) on 0 <0< 1 with

the error bound

max

o d4
F.(6) Q,(0)-P* (0)] < 3&‘0<e<1‘5§ﬂ1w)Qﬂﬁ ,

1 max

=2 0<0<1 BV QO)+4 FY () QP (0)+6E” 0) Q7 (0)

since Q; (0) is quadratic. Now

1Qi®)] < 1+ [5-3| /4,‘Qi(1)(6)‘ <

Q®®)| =2 |5-3)

and EW @) <hJ |t .

Hence
F 0) Qi 0~ ©)f <357yt 15D (115 -31/4)+ 40 1) 53

+120% || £ ||| 53] (2.12)
Also

[p; (0)=pi(8)]=]6(1=0)h:[0(dim — L))+ (1+0)F" ~d]],

ih max{f(1)+d LD —diyg |} (2.13)



Finally
1 if ;, 2 3

Q0= i (0)> § | (2.14)
- (3-1)/4 if —1<1;<3.

Combining (2.12), (2.13) and (2.14) in inequality (2.10) completes
the proof of the theorem.
A direct consequence of Theorem 2.1 which is of relevance in

the remaining sections is the following corollary.

Corollary 2.1 Let x € [xi,Xi+1]-

(i) If di- £ = 0(n}) = disy-£)

i+1

and rj—3= 0 (h;)
then | f(x) — s(x) | = 0 (h?) .

(ii) If di- £ = 0(h?) = diri-fDand ri-3= 0 (h?)

i+1
then | f(x) — s(x) | = 0 (h}) .
The above theorem and corollary show that rj should ideally be

such that r; - 3 = 0(h?) .We now consider how rj can be chosen to

preserve the monotonic or convex shape of the data, whilst maintaining

this optimal 0(h?) requirement.

3. Shape Preserving Interpolation

3.1 Monotonic Data

For simplicity of presentation, we assume a monotonic increasing
set of data so that
fi < f, <...< 1y, (3.1)
or equivalently
Ai>.0,1=1,...,n-1. (3.2)
(The case of a monotonic decreasing set of data can be treated in

a similar manner.) For a monotonic interpolant s(x), it is then



necessary that the derivative parameters should be such that
di>0,1i=1,...,n. (3.3)
Now s(x) is monotonic increasing if and only if
sV (x)=>0 (3.4)

for all x € [x1,Xx,]. For x € [Xi,Xj+1] it can be shown, after some

simplification, that

s (x) = di; 10 +0;0° (1-0)+B;0° (1-0)> +7;6(1-0)° +d; (1+0)" ’

5 (3.5)
[1+1;,-3)0(1-0)]

where

a, =2(rA, —-d;)

2

Bi = (" +3)A; —5(d; +dipy) >

Vi =2(5A; —djy ). (3.6)
Thus sufficient conditions for monotonicity on [X;i,Xj+] are

(XiZO,BiZO, ’YiZO (37)

where the necessary conditions d; > 0 and d;+;> 0 are assumed.
If Ai > 0 (strict inequality) then a sufficient condition for
(3.7) is
;> (di+dic)/ Ai. . (3.8)

In particular, if
=1 +(di+di+1)/ A (3.9)

then the rational cubic defined by (2.3) -(2.5) reduces to the rational



quadratic form

£10% + AT (£41d; +£id;41)0(1—0) +£;(1-6)*

s(x)= 0%+ A7 (dj +d; )01 -0)+(1-0)°

: (3.10)

for which di > 0 and d;+; >0 are necessary and sufficient conditions
for a monotonic increasing interpolant. It should be noted that if

Ai= 0, then d; = d;+1 = 0 and
S(X) =fi = fi (3.11)

is a constant on [Xji,Xi+1] -

The rational quadratic form (3.10) has been investigated in
detail elsewhere by the authors, see references [1] and [5]. It
is worth remarking that (3.9) gives r; - 3 = (d; +dij+1 -2A5)/ Al

and it can then be shown that

1 1
ri-3=di - £ diey - £ + 0(h?) .

Thus, Theorem 2.1 and its corollary show that (3.9) is a good choice
for r;, since the optimal 0(h*) bound on the interpolation error can

be achieved if d; and d;+; are chosen with O(h3) accuracy.

3.2 Convex Data

We assume a strictly convex set of data so that

Al <Ar<..<A,.. (312)

(The case of concave data, where the inequalities are reversed can
be treated in a similar way.) To have a convex interpolant s(x), and to
avoid the possibility of s(x) having straight line segments, it is

necessary that the derivative parameters should satisfy



di< A, <dy < ... <Aj.1 <di< A} < ... <d,. (313)

Now s(x) is convex if and only if
sP(x) >0 (3.14)

for all x € [x; ,X,]. After some simplification, it can be shown

that for x € [Xi,Xi+1]

@ (x) = (2/h;)[a;0° +B; 0% (1-0) +7;0° (1-0)%5;6% (1-0) +£,6(1-0)* +;(1-6)°]
[1+(1; -3)0(1-0)]°

(3.15)
where

o = 1j(djt; —Aj) —djy +dj

Bi = 2[r;(di41 — A —A; +di] djy -4

vi = (1 +3)(djp —A)) +2(dj1 —dj)

0j = (1 +3)(Aj —dj) +2(dj4 —dj),

gj = 2[1 (Aj —dj) —djy; +Aj]+ A —d;

Ci =1 (Aj —dj) —djy +dj) - (3.16)
Hence, from (3.15), necessary conditions for convexity are

@, 20 and ¢, >0 (3.17)

These conditions, together with inequalities (3.13), are also

sufficient since we have

B, >a;, g >C, v, >0, 6, >0

in (3.15). Thus, from (3.17), we have the condition that the inter-

polant is convex if and only if



> max {dm —d; dis1 _di}
dis1 =4 Aj —d;

=1+ M/m, (3.18)
where

Mi=max {di+1-Ai ) Ai—di},

m; = max {di+1-Ai , Ai — di}, (319)

and the necessary conditions (3.13) are assumed.
We have found two choices of ri which satisfy (3.18) and

produce pleasing graphical results. These are

ri =2+ M;/m; , (3.20)

ri =3+ (Mj/m;-1)*/( M;/m;)

=1+ Mi/m; + m;/Mj,

=1 + (di+1 —Ai)/( A; —di) + (Ai —di)/(di+1 —Ai) , (321)

the latter being the smaller value. Their use is justified by
Theorem 2.1and its corollary as follows. Suppose d; -f" = 0(h?)
and di+;-f) =0(h’) . Then it can be shown that M;/m; = 1 +0(h;).
Thus ri. -3 = 0(h;) for (3.20) and r; -3 = 0(h’) for (3.21). In
practice, therefore, we prefer the use of (3,21), since the optimal

0(h*) bound on the interpolation error can be achieved if 0(h*)

derivative values are given.

Remark In the above we have assumed strictly convex data. Otherwise
if Aj. = Ajsithen on [Xi,Xi+1] we must have d; = dj+; = Aj. As would

be expected, the rational cubic then reduces to the stright line segment
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s(x) = (1-0) fi + Ofi+

with an equivalent result on [Xi+1,Xit2].

3.3 Convex and Monotonic Data

We now consider the possibility that the data satisfy both the
monotonic increasing condition (3.1) and the strictly convex condition

(3.12). The derivative parameters must then satisfy the inequalities
0 <di < A1 <dy < ... < Aj41 <dj < A1 <....<d,. (3.22)

Any convex interpolant must then also be monotonic. This result

follows since

sV(x) = [ sPdx+sV(x,)

= Ix sP(x)dx + d; .

Hence d;> 0 and the convexity condition s*) (x) > 0 imply that
s (x) >0 for x € [X,Xn]. Thus the convex interpolaton method of
the previous subsection is also suitable for the interpolation of convex

and monotonic data. This result is confirmed by the fact that
1 + Mj/mj > (di+di+1)/ Aj

for data satisfying (3.22). Thus the convexity condition (3.18) is
sufficient to ensure that the monotonicity condition (3.8) is satisfied.

It should be noted that if the data is convex but not strictly convex,
then the interpolant can produce straight line (and hence monotonic)

segments, as observed in the previous subsection.
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3.4 Approximations for the Derivative Parameters

In most applications, the derivative parameters d. will not be
given and hence must be determined from the data (xj,f;), i =1,...,n.

An obvious choice is the 0(h?) three point difference approximation

d; - (hiAj-1 + hi-1 Ay) / (hj.1+hy) , 1= 2,...,n-1 (3.23)
with end conditions

di = (1+hi/hy) Ay - (hyy hy) Az, Az = (£5-f1) / (x3-x1)
dn = (1+hn-1/hn-2) An-l - (hn-l/hn-Z) An,n-2 ,An,n-2 = (fn'fn-2) / (Xn'Xn-2)
(3.24)

These arithmetic mean approximations are suitable for the convex inter-
polation problem, since they satisfy inequalities (3.13). However, for
the interpolation of monotonic increasing data, (3.24) may give negative
results, thus violating the necessary conditon (3.3). Also (3.23) does
not define a continuous functional on the space of monotonic C' functions,
since we can have lim d;£0 as either IimA;.2=00or limA; = 0.
Alternative 0(h?) approximations which avoid the above problems

are the geometric means
d = A, Moy +hpp hishicrrh) gy (3.25)
with end conditions

1+hi/h —hy/h
dl:AI( 1 2)A3,1 /by

d,= An_1(1+hn—l/hn—2)An n_z—hn—l/hn—z . (3.26)

These approximations, which are discussed in detail in Delbourgo and
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Gregory [2], are suitable for the interpolation of monotonic data.
Furthermore, if the data is monotonic and convex, then the geometric

mean approximations are also appropriate, since they satisfy inequalities
(3.22). Reference [2] also considers the use of harmonic mean approx-

imations. However, we do not discuss these here.

The above 0(h?) derivative approximations give 0(h*) bounds on the
interpolation error, see Corollary 2.1. The use of 0(h’) derivative approx-
imations for monotonic interpolation is discussed in detail in reference
[2]. Unfortunately these approximations do not necessarily satisfy the
convexity constraints and the existence of 0(h’) approximations which a
priori satisfy such constraints is an open question. Finally it should be
noted that the rational quadratic (3.10) can be used to construct a C*
rational spline which interpolates strictly monotonic data. This is
discussed in detail in Delbourgo and Gregory [1] where it is shown that

the spline produces 0(h’) derivative approximations.

4. Numerical Results

We consider the application of the rational schemes to two sets of
data. The first is the monotonic and convex set defined by f(x) = 1/x*
on [-2,-0.2], with the interpolation points at x =-2, -1, -0.3 and -0.2.
This is the example used by McAllister et al [6], Since few data points
are given, this is a fairly severe test of any scheme, particularly one
where the derivatives are estimated from the data. Also, we cannot expect
the rational interpolants to reproduce 1/x* , because of the non-linear

nature of the interpolation method.

Figure 1 shows the application of the rational cubic scheme of sub-
section 3.2 to the above data, where r. is defined by (3.21). The graphs
(1) and (i1) are respectively the interpolants with the arithmetic and
geometric 0(h?) derivative approximations of subsection 3.4, and graph (iii)

is that with the known exact derivatives. As expected from the theory, all
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graphs are convex but the graph with the arithmetic derivative approximations
is not monotonic. It can be seen that the graph with the exact derivative

settings gives the best result.

Since the data is monotonic, the rational quadratic scheme of subsection
3.1 is also applicable. Figure 2 shows the application of this scheme with
various choices of the derivative parameters. These are (i) the 0(h?)
geometric approximations of subsection 3.4, (ii) the C? spline approximations
of Delbourgo and Gregory [1], and (iii) the known exact derivatives. All
curves are monotonic but (i) exhibits an inflexion. Curves (i1) and (iii)
give good results. It should be noted that exact end conditions have been
used for the C* spline scheme. The alternative use of geometric approx-
imations to the end derivatives give comparable results for this set of
data. The curves illustrate that although the monotonic rational quadratic
schemes are not a priori convex, in practice they might be so. An a posteriori

test for convexity is the necessary and sufficient condition (3.18).

Our second set of data consists of points uniformly spaced at 15°
intervals over a half or quarter circle. The half circle of points is a
convex but not monotonic set and the set of points on the quarter circle

1s convex and monotonic.

The results of applying the convex rational cubic schemes and the
monotonic rational quadratic schemes to the circle data are given in Figures
3 and 4. Figure 3 shows that convexity is assured for all choices of the
derivative parameters, the arithmetic settings being suitable for the
convex half circle data and the geometric settings being appropriate for
the convex and monotonic quarter circle data. The choice of exact deriv-
atives has once more produced a good result, although here the end derivative
values +50, which replace the infinite gradients of the circle data, have

been set by trial and error.

It can be seen from Figure 4 that the monotonic rational quadratic
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scheme with geometric derivative approximations has a slight inflexion
in the curve. The choice of exact derivatives or the C* spline approx-
imations have again produced good curves, where at the end, where the
quarter circle has infinite gradient, we have set the derivative d, by
trial and error. Too large a value of d, creates an inflexion in the
last interval and it is of interest to compare the behaviour of the
rational quadratic and rational cubic schemes as the end condition d, is
made large. Figure 5 illustrates this for the case d, = 1000 with exact
derivative settings elsewhere. Since the rational quadratic has only to
maintain monotonicity, the graph begins to behave in a step function
manner. However, the additional convex constraint on the rational cubic
eliminates this behaviour and instead produces a straight line almost

vertical section at the end.

5. Conclusion

A shape preserving piecewise rational cubic scheme has beendescribed
which can be used to interpolate convex and/or monotonic data. The method
seems to produce visually pleasing C' curves and good error bounds can be
expected, particularly when exact derivative information is given at the

interpolation points.
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(1) arithmetic derivative values (ii) geometric derivative values (iii) exact derivative values

Fig. 1. Convex rational cubics for f(x)=1/x on [-2,-0.2].



(1) geometric derivative values (ii) ¢~ spline derivative values (iii) exact derivative values

Fig. 2. Monotonic rational quadratics for f(x) = 1/x> on [-2,-0.2].
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(1) arithmetic derivative values (ii) geometric derivative values (iii) exact derivative values

(exceptd;=0) (exceptd=-50,d,=50)

Fig. 3. Convex rational cubics for circle data.
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2(1) geometric derivative values (ii) C spline derivative values (iii) exact derivative values

(except d; = 0) (withd;=0,d, = 20) (except d, = 25)

Fig. 4. Monotonic rational quadratics for circle data.
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(1) monotonic rational quadratic (i1) convex rational cubic

Fig. 5. The effect of large end conditions for circle data.
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