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Abstract—Finger microgestures have been widely used in
human computer interaction (HCI), particularly for interactive
applications, such as virtual reality (VR) and augmented reality
(AR) technologies, to provide immersive experience. However,
traditional 2D image-based microgesture recognition suffers from
low accuracy due to the limitations of 2D imaging sensors,
which have no depth information. In this paper, we proposed
an innovative 3D microgesture recognition system based on a
holoscopic 3D imaging sensor. Due to the lack of holoscopic 3D
datasets, a comprehensive holoscopic 3D microgesture (HoMG)
database is created and used to develop a robust 3D microgesture
recognition method. Then, a fast algorithm is proposed to extract
multi-viewpoint images from one holoscopic image. Furthermore,
we applied a CNN model with an attention-based residual block
to each viewpoint image to improve the algorithm performance.
Finally, bagging classification tree decision-level fusion is applied
to combine the predictions. The experimental results demonstrate
that the proposed method outperforms state-of-the-art methods
and delivers a better accuracy than existing methods.

Index Terms—Microgesture Recognition, Holoscopic 3D Imag-
ing, Deep Learning, Decision Fusion

I. INTRODUCTION

W ITH the rapid development of immersive and wear-
able technologies, and increasing importance to user

experience, human computer interaction (HCI) has become
a hot research topic due to the need to empower immersive
applications with touch-less interaction [1]. In recent decades,
as a low-cost and nonintrusive interaction method, gestures
have become an attractive sensing modality for many appli-
cations [2]. Meanwhile, virtual reality (VR) and augmented
reality (AR) technologies demand touch-less and continuous
3D gesture control in many situations.

As a vital nonverbal human conversational interaction, ges-
tures belong to human natural body language [3]. In contrast
to sign language, which includes full complex languages
and consists of complex grammar systems, gestures have the
function of communicating a specific, single command. In
the past several decades, great efforts have been made in
using gestures for control. Gestures were first used to control
keyboards and mice as input methods. 2D gestures are now
a common input method on HCI platforms such as touch
screen devices. Gesture applications have become attractive for
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gaming, home appliances and other Internet of Things (IoT)
applications in industry.

There have been intensive developments based on 2D vision,
time-of-flight (ToF) and radar sensing technologies, although
2D vision and ToF sensors suffer poor performance and a
lack of accuracy. Radar technology is still rather expensive
and unaffordable for this application. As a result, there is a
need for reliable and robust 3D microgestures to satisfy the
needs of immersive applications. For instance, the Microsoft
Kinect (ToF camera) is a popular choice for entertainment
and research areas that have lower accuracy requirements in
capturing gestures [4]. There has been some development
of ToF cameras allowing them to provide reliable distance
measurements based on the speed of light; they have been used
in many research areas such as computer graphics, computer
vision and HCI. A radar-based sensor was developed by
the Google Soli project [5], which proposed a low-power,
high-resolution sensor for gesture capture [6]. This type of
sensor performed dynamic gesture capture and enriched data
diversification in the gesture interaction area. Nevertheless, the
drawback of these sensors is the lack of an integrated system
linking hardware, software and algorithms. The high cost of
the sensors limits their use and application.

The growth of sensing technology has a highly beneficial
impact on HCI in the design of innovative and seamless expe-
riences. However, maintaining low cost while also obtaining
full-range and high-resolution 3D scenes of static data is a
difficult task. For dynamic scenes, most sensors are incapable
of detecting objects in 3D scenes. Even though stereoscopic
3D cameras, laser scanning techniques, and radar sensors have
been used to enhance the sensing ability for capturing high-
quality data, their drawbacks are their complex data fusion
and costs. As a result, there is a need for effective 3D sensing
technology to empower touch-less interaction for fingers.

A holoscopic 3D (H3D) imaging system is one potential
technique to address the challenges facing gesture control.
H3D is a true 3D imaging principle and mimics the principle
of the flys eye [7] technique to capture a true 3D scene as a
module of light on a 2D surface. A 3D scene is reconstructed at
different depth levels and with angle information from an H3D
image [8]. The H3D system provides rich multidimensional
information both visually and motionally, therein satisfying the
higher demands of interactive user experiences and supporting
highly accurate finger movement capture.

Recently, we designed and prepared the first holoscopic 3D
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Fig. 1. Holoscopic 3D microgesture image capture. (a) recording setting, (b)
obtained H3D image, (c) three types of microgestures.

microgesture (HoMG) database [9] and made it publicly avail-
able. Fig. 1 (a) shows a HoMG database recording scenario.
Four positions were set up to capture a gesture from different
distances and with different sides of the hand. The obtained
image is shown in Fig. 1 (b), where 3D information was em-
bedded inside of the H3D image. Fig. 1 (c) presents the three
gesture types, i.e., button, dial and slider, used in the capture
process. We also organized the first holoscopic microgesture
recognition challenge (HoMGR 2018, http://3dvie.co.uk/) and
attracted researchers from all over the world to complete in this
challenge [10] [11] [12] [13]. Although significant progress
has been made on the performance of microgesture recognition
based on H3D imaging, there are two key problems that have
not yet been solved. The first is that the pre-processing of
the H3D image is insufficient because the attempts to extract
detailed 3D information from H3D images were unsuccessful.
The second is that the microgesture recognition rate is still
unsatisfactory for real-world applications due to the limitations
of the existing methods. In this paper, we focus on solving
these two problems by proposing a new H3D image pre-
processing method that takes advantage of 3D information and
then uses advanced deep neural models for pattern recognition.
In addition, we investigate several decision fusion approaches
to combine predictions from multiple viewpoint recognitions.

The main contributions of this work are as follows:

• We introduced the first public HoMG dataset for holo-
scopic microgesture recognition research.

• We proposed a fast and robust approach for fully auto-
mated viewpoint image extraction from H3D images.

• We modified deep neural network models and applied
them to each viewpoint image with attention based on
residual blocks for feature extraction and classification.

• We proposed several decision-level fusion methods to
combine predictions from multiple viewpoints that out-
perform all existing methods.

The remainder of the paper is organized as follows: Section
II reviews some related works about microgesture recognition.
Section III provides detailed information about our proposed
framework, including fast pre-processing, viewpoint (VP) im-
age extraction, deep neural network based image classification
and decision-level fusion. Section IV presents the experimental
results and discussion. Finally, section V gives the conclusion.

II. RELATED WORK

In the past decade, 3D hand gestures have been extensively
studied with several datasets created for analysis. Cheng et
al. [14] summarized four types of 3D hand gesture datasets.
First, static gesture datasets usually capture the finger and palm
postures in the RGB-D domain, which can represent basic
symbols such as Arabic numerals. Second, trajectory gesture
datasets were created to capture and detect hand or body
movement using skeleton trajectory. Third, hybrid gesture
datasets were produced, which contained mixed vision-based
gesture data and trajectory hand postures. The last dataset
is the 3D American Sign Language (ASL) dataset, which
captured hand movements in a video. For trajectory gesture
data, a Kinect is normally used as the sensor, and the data are
the skeletal tracking of hand or human body joints. These
data are good for 3D modeling and applications in depth-
based hand detection and tracking. However, skeletal tracking
is not sufficiently accurate for microgesture analysis [15]. The
Leap Motion and Google Soli projects focus on tracking user
fingers but do not seem to be usable in practical applications.
Overall, although they have certain advantages, the drawbacks
are obvious. Most datasets based on these sensors focus on
macro body motion and sign language. There is no public
microgesture dataset available for microgesture control in VR
and AR applications.

For 3D hand gesture recognition, recent work has focused
on RGB-D video data [16] [17] [19] or hand skeleton se-
quence data [18]. In 2015, Ming [16] proposed a 3D Mesh
MoSIFT feature descriptor for hand activity recognition using
an improved graph cuts method on hand segmentation and
tracking, combined with 3D geometric characteristics and hu-
man behavior prior information. In 2018, Narayana et al. [17]
proposed a FOANet deep network architecture that consists of
a separate channel for every focus region (global, left hand,
and right hand) and modality (RGB, depth, RGB ow and depth
ow). The video level predictions from 12 channels are stacked
together and fused to the gesture type. In 2019, Nguyen et
al. [18] proposed a spatial-temporal and temporal-spatial hand
gesture recognition network (ST-TS-HGR-NET) that consisted
of three deep networks. These networks captured both spatial
and temporal information of the skeleton sequences and were
combined to generate better predictions. Abavisani et al. [19]
used the 3D-CNN model for each modality (EGB, depth, and
optical flow) of the RGB-D video data and combined them
for hand gesture recognition. Although these methods cannot
be directly used here because our data are images rather than
videos or sequences, the ideas behind them are encouraging.
For example, focus regions can highlight the key area of the
gesture. The fusion scheme can combine multiple predictions
to achieve improved performance.

Research on holoscopic 3D microgesture recognition has
been accelerated after the first holoscopic 3D microgesture
database (HoMG) was created [9]. Additionally, the HoMG
database was made publicly available, and the first HoMGR
challenge competition was held [9]. Created by using the H3D
imaging system, the 3D microgesture database supported high-
resolution static image data as well as high-quality dynamic
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Fig. 2. Block diagram of the proposed microgesture recognition system. There are four stages: (a) pre-processing; (b) viewpoint image extraction; (c) deep
learning for prediction on viewpoint images; (d) decision level fusion.

video data. It is found that the obtained 3D microgesture
database has high-quality microgestures and true 3D advan-
tages over traditional 3D capture devices. Although there are
image and video subsets in the HoMG dataset, we only focus
on the image subset, as the data processing methods will
be quite different for video subsets. Dynamic information
extraction is the key to video-based microgesture recognition
systems.

For image-based microgesture recognition, efforts have been
made recently [9] [10] [13] [12] [11]. Traditional 2D image
feature extraction and classification methods were used in
the baseline paper [9]. Zhang et al. [10] proposed a method
for 2D microgesture images using CNN models with fine
tuning. The method achieved the best accuracy by averaging
the probabilities predicted from different models and different
epochs. Lei et al. [12] proposed a bidirectional morphological
filter and a fast-fuzzy C-means clustering (FCM) method [20]
to reconstruct 2D images from an H3D image. This method is
effective for solving the problem of blur and distortion grids
in H3D images. The method ranked in second place in the
challenge competition in the image subset. The main limitation
of this method is that the reconstructed image has a lower
resolution and loses some detail information. Sharama et al.
[13] considered each microlens capturing the image at its re-
spective angle, in contrast to the other lenses. They extracted a
viewpoint image by selecting a pixel from each microlens and
used a feature fusion technique on both handcrafted and deep
features extracted from the neural network. The experiments
showed that their proposed method outperforms the baseline
by an absolute margin of 26.67%. Peng et al. [11] proposed
a deep residual network with an attention mechanism. The
experiments showed that the attention design can highlight
the microgesture part and reduce the noise introduced from
the wrist and background. An accuracy of 82.1% on the image
subset was achieved.

From the methods of all the participants in the challenge on
this dataset, it can be seen that there are three potential issues
that may help to improve the performance of the microgesture
recognition. First, because the original H3D images con-
tain considerable noise, the appropriate image pre-processing
method is crucial for extracting correct 3D information from

H3D images. Although Lei et al. [12] and Garima et al. [13]
have attempted to address this issue, noise, such as dark
borders and geometric distortions, has not been fully removed.
More importantly, none of the participants took advantage of
3D information for microgesture recognition. Second, most
participants accomplished the task of microgesture recognition
by using deep learning methods and obtained significantly im-
proved results compared with the baseline method. However,
most of the deep learning models were applied to the H3D
images directly or to 2D images with limited view angles.
The power of the deep learning models was not fully utilized.
Third, Lei et al. [12] and Zhang et al. [10] used decision
fusion methods to improve the recognition accuracy. This is
an effective technique and should be explored further.

In what follows, we will address all these issues one by
one and attempt to develop a better system for microgesture
recognition.

III. METHODOLOGY

This section introduces the detailed information about our
solutions for each issue identified in existing methods and then
proposes our solution. We present our method below in detail.

A. Overview

Fig. 2 shows the proposed framework, which includes four
main stages. First, in the pre-processing stage, the original
H3D images are cropped along the four boundaries to localize
the element images (EIs). An EI is a local area in the H3D
image that was captured by one of the microlens arrays. The
captured H3D images might have various offsets depending on
the positions of the microlens array inside of the camera. This
is a preparation step for ViewPoint (VP) image extraction,
where the VP image is a 2D image of the scene from a
particular viewing angle. Second, multiple shifted VP images
are extracted from one H3D image, where each VP image has
different shifts from horizontal and vertical positions at the an-
gle of view. Three simple and efficient patch-based rendering
approaches were proposed by Georgiev and Lumsdaine [21],
and were used by Yang et al. [22] in a holoscopic image coding
scheme. However, our proposed method here is simpler, and
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the EIs can be cropped out automatically. Third, the CNN
model with an attention block is used to extract features from
each VP image and generates predictions (e.g., the probability
that it belongs to each type of microgesture from its fully
connected layer). Finally, the decision fusion methods are used
to combine the predicted decision values from each VP image
and produce the final prediction of the type of microgesture.

B. Pre-processing

In the recording process of the original H3D image, an
object is captured through an array of microlenses, where
each microlens captures a perspective 2D element image of the
object from a specific angle. The final captured image contains
the intensity and directional information of the corresponding
3D scene in 2D form. This 2D element image is called the EI,
which is a small grid area in the H3D image. The standard
pre-processing process can be found in [23], which includes
lens correction, distortion correction, EI extraction, viewpoint
extraction, etc. Most processing needs to be done manually.
The first pre-processing step is to create an automated method
to detect the edges of EIs and crop out the EIs from the original
H3D image. Fig. 3 shows an example of a holoscopic 3D

Fig. 3. H3D micro-gesture images consist of multiple 2D element images
(EIs). Here, 9 EIs are enlarged from the original H3D image.

microgesture image that consists of many 2D EIs. Roughly,
each EI is an approximately square area with small values
(dark areas) at the edge. However, some boundaries are not
straight lines due to the distortion of the microlens, especially
those near the H3D image boundary associated with the
microlens far from the centre. Barrel distortion is caused by
spatial imaging in a narrow space, and results in obvious
distortion in the corner and edges. Although this distortion
is not easy to notice by the human eye, it greatly affects the
extraction process [7].

In this work, all the EIs are cropped out based on straight
lines, and the distortion will be addressed later by the algo-
rithm for VP image extraction. On the boundaries of the H3D
image, some EIs are not fully captured, so only completed EIs
will be cropped out and used later for VP image extraction.

The cropping algorithm is based on the detection of the
minimum values of the rows and columns of an H3D image.
For an H3D grayscale image H(i, j), i = 1, 2, · · · , Io, j =
1, 2, · · · , Jo with a resolution of Io × Jo, all the values are
summarized to Hc and Hr according to column and row as
shown in equations 1 and 2, respectively. Then, the local

Fig. 4. The minimal values of the summarized rows of a H3D image. The
38 points marked with small red triangles are the selected boundaries of the
EIs.

minima of the functions Hc and Hr are are selected as the
boundaries of the EIs. For example, if the H3D image has
a resolution of 1920×1080, we can obtain two vectors, as
shown in Fig. 4 and Fig. 5. In Fig. 4, there are 40 local
minima detected where the left and right minimum points were
removed as they are the edge of an incomplete EI. Therefore,
38 EI edges were finally chosen. In the same manner, in Fig. 5,
there are 70 local minima detected where the left and right
minimum points were removed, Thus, EI edges were finally
chosen. In the end, 68 × 38 EIs were cropped out from one
H3D image. This method is a fast algorithm that can quickly
produce all the EI images.

Hc(i) =

Jo∑
j=1

H(i, j), i = 1, 2, · · · , Io (1)

Hr(j) =

Io∑
i=1

H(i, j), j = 1, 2, · · · , Jo (2)

In practice, camera calibration is not executed perfectly
because the microlens cannot be placed perfectly on the
horizontal and vertical lines of the H3D image. There can
be a small angle δ between the boundary of the EIs and the
horizontal and vertical lines of the H3D image, as shown in
Fig. 6. A small shift image Hδ of the original H3D image
can be used in the above methods, and then, the best δ̂ can be
obtained by minimizing the local minima of the summary of
row and column pixels, as shown in Eq. 3:

δ̂ = arg min
δ

(

Io∑
i=1

Hδ
c (i) +

Jo∑
j=1

Hδ
r (j)) (3)

In this way, the best cropping of the H3D image Ic is
obtained with δ̂.

C. Holoscopic 3D Viewpoint Extraction and Shift

From all the obtained EIs, VP images can be extracted. The
VP image is a clear image (e.g., without the grid boundaries
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Fig. 5. The minimal values of the summarized columns of a H3D image.
The 68 points marked with small red triangles are the selected boundaries of
the EIs.

Fig. 6. The horizontal and vertical lines of H3D images are adjusted for the
EI extraction.

of the EIs), and it can be extracted from the pixels of all the
EIs. The basic principle of the recording process is to map
the object to an image through a microlens array, where each
microlens has intensity and directional information from the
specific capture angle. Fig. 7 shows the relationship between
5 EIs and 3 focus layers. The captured H3D image includes
a microlens array of 5 lenses, with 3 pixels per lens. In this
particular example, there are 3 planes per slice, with an image
size of 5 pixels, which is the VP image. In the recording stage,
each microlens of local pixel position is involved direction
as shown in Fig 7(a). For each VP image, the reconstruction
integrates all the pixels from the same location under different
microlenses. All the VP images, such as VP1, VP2 and VP3,
are orthographic images as shown in Fig. 7 (b), and they are
reconstructed by all pixels from the same location in the 5
EIs. It should be mentioned that the focus plane of each VP
image might be different, as shown in Fig. 7 (b). Holoscopic
3D imaging changes the focus plane on which all the light
rays converge to the ideal virtual depth plane. However, the
viewpoint rendering pixels are used to refocus at different
depth planes.

In holoscopic 3D imaging, each EI, which is captured by a
microlens, contains a pixel from each layer of the 3D scene. In

the same way, all EIs contribute to creating a single-aperture
holoscopic 3D scene in the space.

Fig. 7. The relationship between the EIs and focus layers of the holoscopic
3D capturing system. (a) microlens array recording system, (b) orthographic
viewpoint images from different perspectives.

The H3D viewpoint extraction process selects appropriate
pixels at the same location from every EI of the H3D image
to reconstruct an orthographic viewpoint image. The principle
of the proposed viewpoint extraction method is illustrated in
Fig. 8, where there are 3×3 pixels in each EI, and the 9 EIs
constitute an omni-directional H3D image.

In general, for a well-cropped H3D image Ic with n ×m
EIs, each EI can be represented as EI (p, q) where p = 1 to P
and q = 1 to Q. The VP image V P (p, q) will have dimensions
of n ×m, as there is one pixel extracted from each EI. The
values of P and Q are decided by the resolution of the cropped
H3D image Ic because Ic resolution will be (m× P, n×Q).

The equation for the VP extraction can be written as follows:

V Pp,q(i, j) = Ic((i− 1)P + p, (j − 1)Q+ q) (4)

where i = 1, · · · ,m and j = 1, · · · , n are the coordinates
of the VP image and p and q are the index of the horizontal
and vertical positions of the VP images, respectively. The VP
image V Pp,q(i, j) has a resolution of n×m pixels.

In principle, P ×Q VP images can be extracted from one
H3D image, where every pixel in all the EIs can be picked up.
However, this does not work in practice due to several issues.
First, there is a very small difference between two adjacent
pixels in one EI, and substantial additional information will
not be provided by picking up all the VP images. Second,
the intensity value of one pixel might vary due to lighting
conditions and random noise. This will reduce the quality of
the VP images. Third, there are barrel distortion effects at the
boundaries of each EI when the distances between the object
and the microlens are large.

In our proposed method, we address all these issues to
obtain high-quality VP images. First, we only extract a small
number of VP images that have large differences between
each other. Second, our VP images are extracted from patches
instead of individual pixels from each EI. Third, only the
central area in one EI is selected and used for VP image
extraction to avoid distortions. The patches are shifted in the
horizontal and vertical directions, and only a small number of
viewpoint images are extracted.
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Fig. 8. Illustration of the principle of H3D image viewpoint image extraction.
(a) 3×3 pixels under each microlens, (b) one VP image extracted from the
same position under different microlenses, (c) nine VP images extracted from
3×3 EIs.

.

Fig. 9. This is one EI image with a resolution of 27×27. The boundary
pixels are avoided, and only the central pixels are selected. Each patch has
3×3 pixels. In the end, only 16 patch areas are selected from this EI.

Fig. 9 shows one EI where the boundary pixels are not
used and only the central pixels are selected for VP image
extraction. The central pixels are composed of 16 patches,
each of which has 3×3 pixels. All the 3×3 pixels contribute to
one pixel in the VP image. From each patch, one VP image is
reconstructed, and a total of 16 viewpoint images are extracted.

D. Convolutional neural network

A convolutional neural network (CNN) is a biologically
inspired model and is very successful in image-related recog-
nition tasks [24]. An important component of the CNN is the
shared weight and subsampling. Generally, a deep convolu-

tional neural network is formed by stacking multiple convolu-
tion layers (conv) and subsampling layers [25]. Fig. 10 shows
the whole structure of a specific CNN model (ResNet-50)
with attention-based residual blocks embedded. The network
receives images with the same size. After processed by a
convolution kernel, each small neighborhood in the input layer
will form a value in a feature map (each plane in the layer).
The ith feature map Ci can be expressed as:

Ci = f(x∗W i + bi) (5)

where f is the activation function, x is the input VP image,
and W and b are the weight of the convolution kernel and
bias, respectively. Each feature map shares the same W and
b. In a convolution layer, there is normally more than one
convolution kernel; thus, multiple feature maps are calculated.
The ith feature map P i in the pooling layer can be calculated
by using

P i = f(β ∗ S(Ci)) + α) (6)

β and α are the coefficient and bias, respectively. S(·)
denotes the subsampling operation for a convolutional feature
map. It can be written as:

S(Ci) = maxCis,l ‖s‖ ≤
Ns
2
, |l| ≤ Ns

2
, s, l ∈ Z+ (7)

where Ns is the subsampling size.
The fully connected layer (Fc) is a multilayer perception

feed-forward neural network, and the output layer can be
written as:

p(j|F ; θ) =
eθ

T
j F∑J

i=1 e
θTi F

1 ≤ j ≤ J (8)

where p(j|F ; θ) denotes the probability that the input feature
F belongs to class j, θ is the weight vector between the output
layer and the previous layer, and J is the number of classes.

Many CNN structures, such as GoogLeNet [26] and
ResNet [27], have been trained on ImageNet [24] and have
achieved superior performance. Here, a pretrained ResNet
model is used, and fine tuning is carried out on the model
with our dataset. In addition, we modified the existing CNN
model by adding an attention-based residual block.

Fig. 11 shows the attention-based residual block, where the
dotted-line area is the attention branch, which can focus on
the finger microgesture and reduce the noise introduced by
the wrist and background. For input x, the overall output is
O(x).

O(x) = F (x) + F (x) ·A(x) + x (9)

A(x) represents the spatial attention mask. This attention
branch here has been used in our previous work [11]. It is
a bottom-up, top-down structure used to learn the interesting
area of a gesture image, as shown in Fig. 12. From Fig. 12,
it can be seen that the attention design places more attention
to the gesture area in higher level layers. We believe that this
is special for microgesture recognition.

The CNN model adopted in this attention design is applied
for all VP images for microgesture recognition. The output
probabilities of the CNN were produced. From each sample,
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Fig. 10. The whole structure of ResNet-50 CNN model with attention-based residual blocks embedded. (a) overall architecture with main blocks; (b) Conv2
layers; (c) Conv3 layers; (d) Conv4 layers; (e) Conv5 layers.

Fig. 11. Detailed architecture of attention-based residual block that was
integrated into the CNN architecture.

the probabilities of three gestures are computed and used for
decision-level fusion.

E. Decision Fusion

Decision fusion, also referred to as a mixture of experts [28],
is a method that can be used to improve the recognition
rate by combining all the decisions together. In this work,
some ensemble functions based on voting [29] and trainable
methods [30] have been explored for combining predictions
from multiple VP images efficiently. Specifically, some simple
fusion methods such as the bagging learning strategy with
REPTree, are used in the multiple-viewpoint predictions.

Assume that there are J classes for all the H3D images and
that each H3D image has K VP images, The CNN models
will be applied to all VP images separately to produce all the

Fig. 12. The first row and second row represent the feature maps learned
by ResNet-50 with and without attention-based residual block respectively at
the Res2b layer (low-level), Res4b layer (middle-level) and Res5c layer (high
level).

prediction probabilities {pj,k}, where {j = 1, 2, · · · , J} is the
index of the class and {k = 1, 2, · · · ,K} is the index of the
VP images.

Majority Voting. For instance, voting strategies assume that
each classifier gives a prediction with the probabilities belong
to each class. Therefore, the predicted label Vk from a single
classifier can be represented as follows:

Vk = arg max
j

(pj,k), k = 1, 2, · · · ,K (10)

The predicted label VM of the majority voting can be written
as:

VM = arg max
j

(
K∑
k=1

I{Vk=j}) (11)
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where the index function I∆ is 1 if the set ∆ is non-empty
and 0 otherwise.

Averaging. The average fusion method can be applied to
the multiple classifiers under the condition that each output
of the classifiers is expressed as probabilities. The decision
output VA for the averaging fusion can be written as

VA = arg max
j

(
1

K

K∑
k=1

pj,k) (12)

Product. The product probability fusion method calculates
the product of experts by multiplying individual probabilities.
Similar to the averaging probability fusion method, the product
probability fusion output VP can be written as

VP = arg max
j

(
K∏
k=1

pj,k) (13)

Bagging Classification Tree. Trainable mixtures of experts
have the ability to learn from individual classifier outputs
to form a higher level of expertise. In this work, bagging
learning with REPTree has been explored to enhance the
multi-viewpoint results. The bagging learning strategy was
introduced by Breiman [31] to reduce the variance of a
predictor. It is a successful method for improving classification
performance. The reduce error pruning tree (REPTree) [32]
method is a fast decision tree learning method that is based on
the information gain. The main steps of the trainable mixture
of experts approach are as follows.

Assume that we have N instances. For each instance, the
numbers of VP images and classes are K and J , respectively.
Therefore, the feature dimension of each instance is K × J .
First, a training set is sampled (with replacement) from all
instances to generate a classifier. Specifically, REPTree al-
gorithms are used as the learning system. Then, as in the
first step, the number of trials T is replicated to form the T
classifiers. Finally, for an instance, the classification result is
voted on by every classifier for the class with the most votes.

IV. EXPERIMENTS AND EVALUATION

A. HoMG database
The holoscopic microgesture (HoMG) database was

recorded for this research and is publicly available at our
website (http://3dvie.co.uk/). For the data collection, 40 partic-
ipants were selected, and the recordings were conducted under
2 different backgrounds, with 2 hands (e.g., left and right),
2 distances (e.g., far and close) and 3 microgestures (e.g.,
Button, Dial and Slide). Therefore, 24 videos were recorded
for each participant. The length of a video is between 2 and
20 seconds, with a frame rate of 25 fps, and resolution of
1920×1080. In total, 960 videos are included in the database.

The HoMG database has been made publicly available [9]
for microgesture recognition competition (http://3dvie.co.uk/),
and was divided into two subsets: image-based and video-
based microgesture subsets. Additionally, it was divided into
training, development and testing subsets. Detailed informa-
tion about the HoMG database is shown in Table I. In this
paper, the work is only done for the image-based subset, where
each microgesture is represented by an H3D image.

TABLE I
NUMBER OF SAMPLES IN EACH PARTITION OF THE HOMG DATABASE. ”B”

STANDS FOR BUTTON, D STANDS FOR DIAL AND S STANDS FOR SLIDE.

Subset Training Development Testing
B D S B D S B D S

Image 5507 5534 5722 2266 2188 2106 2665 2267 2359
Video 160 160 160 80 80 80 80 80 80

B. VP Extraction Parameters

For an original H3D image, its resolution is 1920×1080.
The resolution of the element image from each microlens
is approximately 27×27. However, at the edge of the H3D
image, there are some EIs that cannot have full resolution due
to the completion of the microlens. Therefore, these pixels of
the H3D image were cropped out. Specifically, 68×38 full EIs
were cropped out from one H3D image after rotation of the
image and after making straight cropping lines.

After edge cropping, the H3D image should be estimated in
depth and refocused to extract the VP images. A small patch
area of 3×3 was chosen from the central area of each EI
and then shifted in the horizontal and vertical directions. The
shift value also leads to the depth transformation. We obtained
16 points by extracting the viewpoint from the different
refocusing layers, as shown in Fig. 9. In the human eye, slight
movement from the viewing of continuous VP images can be
observed. In the end, for each H3D microgesture image, 16
2D VP images were extracted from different depths, as shown
in Fig. 13.

Fig. 13. The 16 viewpoint images extract from an H3D image (e.g. the image
in Fig. 3).

C. Implementation Details of the CNN Model and Fusion

Considering that the microgesture is a small-local represen-
tation in an image. We adopted the attention mechanism to
highlight the finger microgesture area.

Before training, we used the transfer learning strategy to
initialize the network with the ImageNet database and obtain a
pretrained model [27]. In the stage of training for microgesture
recognition, fine tuning was performed for the pre-trained
model on the HoMG database. The average values of all
pixels of the training set have been subtracted from the input
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TABLE II
CLASSIFICATION ACCURACY(%) OF CNN MODELS ON EACH VP IMAGES

ON THE TESTING SET OF THE HOMG DATABASE.

No.VP Acc No.VP Acc No.VP Acc No.VP Acc
VP1 86.50 VP5 86.69 VP9 86.81 VP13 86.79
VP2 86.47 VP6 86.76 VP10 86.61 VP14 86.62
VP3 85.68 VP7 86.33 VP11 86.28 VP15 86.27
VP4 85.74 VP8 86.01 VP12 86.1 VP16 86.42

grayscale image, and the input image was further divided by
the variance of all pixels of the training set. This is a nor-
malization process. To increase the robustness of the network,
each VP image was resized to 256×256 and then cropped
out of the four corners to a size of 224×224. Moreover, data
augmentation, such as color shift (maximum value of 20) and
image rotation (maximum degree of 10), is applied to the
training set with a probability of 0.5. The dropout ratio of
the last weight layer was set to 0.5. The batch size was set
to 9 with a momentum of 0.9 and weight decay of 0.0005.
The initial learning rate was set to 0.001, decreasing 10 times
every 10 epochs. Our training process was implemented on
the Caffe framework [33] with an Nvidia Titan X GPU.

After the training, each VP image in the dataset was
input to the trained model to obtain a decision output of
the classification layer. Specifically, each value in the output
vector represents the probability belonging to the three types of
microgestures. Because each instance in the dataset has 16 VP
images, we obtained 16×3 output values as the probabilities
of the instance belonging to each type of microgesture based
on each VP image.

In our mixture of experts procedure, we set the number of
bagging trails as 10000, and in each trail, 50% of the instances
in the training set were sampled to generate a classifier.
For REPTree training [32], the minimum total weight of the
instances in a leaf is set to 2, and the amount of data used for
pruning is set to 3.

D. Experimental Results and Comparison

Table II shows the experimental results using CNN models
on separate VP images. In total, 16 VP images were extracted
from one H3D image. Each of them has been applied in the
proposed CNN models and the associated classification prob-
abilities have been produced. This accuracy is the percentage
of correctly classified microgestures in the testing set after the
models were trained on the training and development subsets.
From this table, it can be seen that similar performance has
been achieved for each individual VP image. The best result
of 86.81% was achieved for viewpoint 9, which is a very high
accuracy.

Table III shows the results achieved by our proposed method
in comparison with other state-of-the-art methods. First, we
combined all 16 VP images and applied the CNN model and
achieved an accuracy of 86.71%. The last four methods of
the table denote the methods combining the CNN outputs
based on a mixture of experts approach. We can see from
Table III that our proposed pre-processing methods used for
H3D images combining the CNN with a mixture of experts

TABLE III
CLASSIFICATION ACCURACY (%) COMPARISON BETWEEN THE PROPOSED
METHOD AND ALL THE EXISTING METHODS ON THE TESTING SUBSET OF
THE HOMG DATABASE. ”A” MEANS ATTENTION BLOCK. ”M.V.” MEANS

”MAJORITY VOTING”.

Author Methods Accuracy
Liu et al. [9] LBP+k-NN 50.90
Liu et al. [9] LPQ+SVM 52.6

Sharma et al. [13] CNN+LPQ(Max Vote) 77.57
Peng et al. [11] A-Resnet 82.10
Lei et al. [12] FCM+GoogLeNet 84.28

Zhang et al. [10] ResNet152+DenseNet161+SeResNet50+M.V. 86.70
This work 16VPs+A-ResNet 86.71
This work 16VPs+A-Resnet+M.V. 87.04
This work 16VPs+A-Resnet+(Mean Probability Fusion) 87.04
This work 16VPs+A-Resnet+(Product Probability Fusion) 87.03
This work 16VPs+A-Resnet+(Bagging Classification Tree) 87.15

approach obtained a significant performance improvement on
microgesture recognition. Specifically, the proposed methods,
which combine the CNN with the bagging classification tree
approach, achieved an improvement of approximately 40% in
recognition accuracy compared to the baseline method. The
method also outperforms the method of Zhang et al. [10]
(87.15% vs 86.70%). In addition, compared to the method
of Peng et al. [11], the CNN model achieved an accuracy
improvement of approximately 5%. It was even slightly better
than the method by Zhang et al. [10], although the voting
method was used in their work (86.71% vs 86.70%). Conse-
quently, the proposed pre-processing methods used for H3D
images are validated to be effective. Moreover, the last four
methods in the table show that the mixture of experts approach
makes a great contribution to the improved recognition rate.
Notably, the proposed trainable mixture of experts based on
the bagging classification tree is superior to the voting and the
probability fusion method.

V. CONCLUSION

Image-based finger microgesture recognition is a difficult
challenge in unconstrained environments. In this paper, we
proposed innovative 3D microgesture recognition methods
based on a holoscopic 3D imaging system that outperformed
all state-of-the-art methods. A comprehensive holoscopic 3D
database is produced, particularly for 3D microgestures, and
made publicly available. The proposed method includes a fast
and robust pre-processing method, designed and developed for
H3D images for data preparation by automatically extracting
the element images as well as VP images in a simpler manner.
This innovative pre-processing approach can clean and prepare
visual data to achieve effective learning and detection.

A pretrained CNN model with attention mechanics is ap-
plied to each VP image to obtain the predicted probabilities of
each gesture. Finally, some mixture of expert methods based
on voting strategies and trainable models have been explored
to achieve better classification results. The achieved recogni-
tion accuracy outperformed all state-of-the-art methods. The
accuracy of 87% might be good for some applications already.
The main reason is that the attention-based network can learn
to focus on the area of interest for each viewpoint image, and
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the decision fusion method efficiently ensembles the classifi-
cation results of each viewpoint. This also demonstrated that
the holoscopic 3D imaging system provides a new dimension
for 3D microgesture recognition, as it captures colour, texture
and motion of the real-world scene at full resolution.
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