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ABSTRACT: In the smart microgrid system, the optimal sizing of battery energy storage system (BESS) 11 

considering virtual energy storage system (VESS) can minimize system cost and keep system stable operation. 12 

This paper proposes a two-layer BESS optimal sizing strategy considering dispatch of VESS in a smart microgrid 13 

with high photovoltaic (PV) penetration. In the first layer, VESS modelling and aggregation are established, and 14 

the initial size of BESS is determined by considering VESS participation in demand response program. In the 15 

second layer, the optimal sizing of BESS is studied and the optimal energy resources dispatching strategy is 16 

formulated via considering various constraints in the system. The mean-variance Markowitz theory is applied to 17 

assess the risk of system cost variability due to the presence of PV and load uncertainties. With the ratio of load 18 

varies from 70% to 130%, and PV generation ratio from 40% to 100%, sensitivity analysis reveals the optimal 19 

size of BESS is less impacted by PV generation change. Also with VaR(95%) the risk of system cost variability 20 

can be further reduced through VESS participation. 21 

 22 
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 25 

Nomenclature 26 

Abbreviations   
BESS Battery energy storage system 
CES Community energy storage 
DE Differential evolution algorithm 
EMS Energy management system 
HES Home energy storage 
MILP Mixed-integer linear programming 
MINLP Mixed-integer nonlinear programming 
PV Photovoltaic 
VSOC VESS State of charge 
BSOC BESS State of charge 
VaR Value at risk 
VESS Virtual energy storage system 
  
Indices  
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i Index for the household 
s Index for the scenario 
t Index for the time slot 
T Index for the year 
  
Parameters  

 The BESS per unit capacity cost in $/kWh 

 The BESS per unit power cost in $/kW 

 The maintenance cost of BESS unit capacity in $/kWh 

 The maintenance cost of BESS unit power in $/kW 

 The size of PV in m2 

 The air conditioning performance parameters 

 The heat capacity value of indoor air in  

 The heat capacity value of walls in  

 The price of electricity purchasing from the distribution network to microgrid at time t in $/kWh 

 The price of electricity selling from microgrid to the distribution network at time t in $/kWh 

 The rated capacity of VESS of the ith building in kWh 

 The rated capacity of VESS for the VESS aggregator in kWh 

 The average solar irradiation on the PV array at the nominal operating cell temperature in kWh/m2 

 The present value factor 

 The mass value of indoor air in kg 

 The mass value of walls in kg 

 The number of the time slot 

 The number of air conditioning households in the aggregator 

 The standardization factor 

 The value of air conditioning rated power in kW 

 The maximum value of power exchange in kW 

 The upper limit of PV generation power in kW 

 The lower limit value of charging power for BESS in kW 

 The upper limit value of charging power for BESS in kW 

 The lower limit value of discharging power for BESS in kW 
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 The upper limit value of discharging power for BESS in kW 

 The microgrid total load at time t in kW 

 The constant load of the microgrid (considered to be all loads except the aggregated air conditioning 
load) at time t in kW 

 The geometric ratio of the irradiance incident on the tilted plane and the horizontal plane 

 The wall equivalent thermal resistance in   

 The external wall and ambient air thermal resistance in  

 The internal wall and indoor air thermal resistance in  

 The discount factor 
 The equivalent discount factor 

 The number of represent scenarios 

 The lower limit value of BSOC for BESS 

 The upper limit value of BSOC for BESS 

 The reference cell temperature for PV array, set as 25  

 The cell temperature for PV array at the nominal operation cell temperature in  

 The ambient temperature for PV at the nominal operation cell temperature in  

 The BESS’s life in years 

 Lower limit value of indoor thermal comfort temperature in  

 Upper limit value of indoor thermal comfort temperature in  

 Lower limit value of required building wall temperature in  

 Upper limit value of required building wall temperature in  

 The temperature value for ambient at time t in  

 The alpha distribution parameter 

 The beta distribution parameter 

 
The temperature coefficient 

 The self-discharging rate for BESS 

 The charging efficiency of BESS 

 
The discharging efficiency of BESS 

 
The actual efficiency of the PV generation 

 
The PV generator efficiency at reference cell temperature 

 The indoor heat gain in W/m2 
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 Scale factor 

 The conversion factor of J to kWh  

 The time slot in hour 

 The mean of the load forecast error 

 The variance of the load forecast error 

 The load forecast error 
 The prediction error of photovoltaic output 

  
Variables  

 The investment cost of BESS in $ 

 The operation cost of BESS in $ 

 The minimum operation cost of microgrid in $ 

 The intra-day operation cost of microgrid system in $ 

 The annual maintenance cost of BESS in $ 

 The net profit of BESS in $ 

 The arbitrage of electricity price fluctuation at time t in $ 

 The BESS initial rated capacity in kWh 

 The BESS rated capacity in kWh 

 
The capacity for BESS at time t in kWh 

 
The capacity of VESS of the ith building at time t in kWh 

 
The capacity for the VESS aggregator at time t in kWh 

 
The global irradiation on the array at time t in kW/m2 

 
The diffuse irradiation on the array at time t in kW/m2 

 
The solar irradiation incident on the array at time t in kW/m2 

 The minimum system cost in $ 

 The BESS initial rated power in kW 

 The BESS rated power in kW 

 The maximum possible rated power of BESS in kW 

 
The photovoltaic output power at time t in kW 

 
The charge power of BESS at time t+1 in kW 

 
The discharging power of BESS at time t+1 in kW 

 
The power of VESS of the ith building at time t in kW 
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The power for the VESS aggregator at time t in kW 

 The amount of power purchased from the distribution network at time t in kW 

 The amount of power selling to the distribution network at time t in kW 

 The heat exchange between indoor air and ambient air at time t 

 The heat exchange between inner wall and indoor air at time t 

 The cooling capacity of air conditioning at time t 

 The indoor heat gain 

 The heat exchange between outer wall and ambient air at time t 

 
The switch state of the air conditioning at time t 

 State of charge for BESS at time t 

 The state of charge for the VESS aggregator at time t 

 The temperature value for indoor air at time t in  

 The temperature value for building wall at time t in  

 The ambient temperature for PV at time t in  

 The selling electricity status for microgrid at time t, 1 shows the microgrid system buys electricity 
from the distribution network, 0 does not 

 The purchasing electricity status for microgrid at time t, 1 shows the microgrid system sells electricity 
power to the distribution network, 0 does not 

 The increment of rated capacity for BESS in kWh 

 The increment of rated power for BESS in kW 

 The charging status of BESS at time t, 1 means BESS is charging, 0 means not charging 

 The discharging status of BESS at time t, 1 means BESS is discharging, 0 means not discharging 

 1 

1. Introduction 2 

With the global fossil fuel shortage and the increasing concerns for the environment, the photovoltaic (PV) 3 

power penetration has been rapidly developing in recent decades. According to the report of the International 4 

Renewable Energy Agency, photovoltaic power generation is currently the fastest growing distributed energy 5 

source and will account for 22% of the overall global power generation by 2050 [1]. However, due to the 6 

uncertainty of photovoltaic power generation, high photovoltaic penetration makes the power grid face many 7 

challenges [2], such as reverse power flow, voltage fluctuations, frequency fluctuations and harmonics. Therefore, 8 

the penetration of photovoltaic power generation has been curtailed to some extent to keep the stability of the grid. 9 

On the other hand, battery energy storage system (BESS) can well alleviate the uncertainty of renewable resources 10 

and increase large-scale PV penetration level [3-4]. BESS is playing a vital role to improve energy efficiency and 11 

keep the system stable operation in the future power grid [5]. Currently, although the cost of energy storage has 12 
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gradually decreased and lithium-ion battery technology has developed more maturely [4], the high cost of the 1 

battery is still limiting the rapid construction of BESS [6]. To reduce BESS investment cost and lower the burden 2 

of the system operator, the size of BESS needs to be optimized while meeting various system constraints. 3 

A large number of researches has presented various optimal sizing strategy of BESS. Based on the subsidies 4 

of PV, electricity price mechanisms, and uncertainties of PV and load, Zhou et al. proposed an optimal sizing 5 

strategy of PV and BESS in a smart household [7]. Liu et al. provided the optimal sizing strategy, where a two-6 

layer hybrid energy storage system is established to meet different power load with the various response time [8]. 7 

Considering a series of different cost, technology and environment, an optimal strategy was given in [9] to 8 

optimize the placement, sizing and dispatching of BESS. Hemmati et al. presented the optimal sizing strategy of 9 

BESS considering PV and load uncertainties, and the stochastic mix integer nonlinear programming was solved 10 

by Monte Carlo simulation and advanced adaptive particle swarm optimization [10]. The reverse power flow due 11 

to the high PV penetration was coped by BESS in [11], and an optimal sizing method of BESS was proposed 12 

aiming to minimize the system cost. In order to minimize the levelized cost of energy and imbalance between 13 

power supply and demand in the system, Lai et al. carried out an optimal sizing of PV and energy storage system 14 

[12]. To reduce the wind power forecast error, a sizing method of ESS was presented by probabilistic method in 15 

[13]. Ban et al. proposed an optimal sizing method of PV and BESS in nanogrid to serve the battery swapping 16 

station of electric vehicles considering the investment cost of BESS, the characteristics of the swapping station 17 

and uncertainties [14]. In addition, the economic feasibility was analyzed in the size optimization of centralized 18 

BESS and distributed BESS in [15-17]. The results in [15] showed that the centralized community with BESS 19 

can help end-users reduce BESS investment cost. Distributed users can get the maximum net present value benefit 20 

if they own BESS independently. Considering different ratios of battery storage and thermal storage, Terlouw et 21 

al. comparatively studied home energy storage (HES) and community energy storage (CES) considering the 22 

operation costs and environment [16]. The results showed CES is superior to HES in economic and environmental 23 

aspects. In [17], Stelt et al. provided energy storage system’s investment costs in per kilowatt-hour, which are 24 

crucial for the economic feasibility of HES and CES. Zhong et al. introduced shared BESS to reduce system cost, 25 

which utilized integrated BESS by the operator instead of individual BESS [18]. 26 

It can be observed from the literature review that the system cost is taken as the main index considering 27 

various factors in the research of BESS optimal sizing. However, few researches have optimized the size of BESS 28 

to minimize system cost under high photovoltaic penetration whilst the risk of system cost variability is assessed. 29 

Consequently, it has a negative impact on ensuring the reliability of the system with the increasing penetration of 30 

solar photovoltaic energy, when the risk of system cost variability is neglected. 31 

On the other hand, demand response technology provides new directions for system cost minimization with 32 

the development of smart grid technology. Households and office buildings have high power consumption [2], 33 

where controllable load (such as air conditioner and heat pumps) accounts for a large part. Through demand 34 

response strategies, thermal controllable load can be well utilized to reduce energy cost. Given that air 35 

conditioners have relatively fast response time with least end-user disruptions [19] and consume large amount of 36 

energy, air-conditioned buildings can be pre-cooled or pre-heated to provide energy buffer and form the virtual 37 

energy storage system (VESS). VESSs have a great potential in lowering system peak demand through demand 38 

response strategies, reducing system operator investment cost and benefiting end-users. It should also be noted 39 

that the building sector provides great potential in cost effective emission mitigation and economic gains with 40 

existing technologies and policies. Ma et al. revealed the building carbon emissions have a significant impact on 41 

emission peak, and the low carbon roadmap was further developed about residential buildings [20]. Furthermore, 42 
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in the field of the decoupling of per capita carbon dioxide emission from the human development index, Chen et 1 

al. [21] pointed out the fundamental reason for strengthening decoupling effect is the reduction of carbon dioxide 2 

emissions. Therefore, to further promote the emission reduction for building sector, it is necessary to insist on 3 

implementing energy saving and emission-reduction strategy [22]. 4 

Currently, there have been some researches on VESSs. The round-trip efficiency of VESS was analyzed in 5 

[23]. Considering the building’s heat storage characteristics [24], VESS was used for energy dispatching to reduce 6 

operation costs [25], and the results in [26] demonstrated that the energy dispatching of VESS relied on building 7 

parameters and the occupancy time etc. Further, Zhu et al. improved the stability of regional integrated energy 8 

system and reduced system cost by joint VESS (i.e. combining electric vehicle energy storage and air conditioning 9 

thermal energy storage) [27]. In addition, the VESS formed by refrigerators [28] and heating ventilation and air 10 

conditioning [29] was applied to frequency service for power system. However, to the best of the authors’ 11 

knowledge, no previous research has taken into account the accurate modelling of VESS in BESS optimal sizing 12 

strategy, which means that the system overall cost may be further reduced with VESS participation.  13 

To close the research gap as mentioned above, this paper proposes a two-layer optimal sizing strategy for 14 

the battery energy storage system considering the dispatch of virtual energy storage systems and high PV 15 

penetration. The distinguished features of this paper are summarized as follows:  16 

(1) An accurate VESS model is formulated, and further aggregated to participate system dispatch and control. 17 

(2) A two-layer BESS optimal sizing strategy is proposed considering various system constraints. System 18 

operation cost is minimized via optimally dispatching the photovoltaic system, battery energy storage system and 19 

virtual energy storage system. 20 

(3) A risk component is introduced in the control objective based on the mean-variance Markowitz theory. 21 

The risk-based decision-making fully considers the impacts from system uncertainties which greatly influences 22 

system dispatch results. 23 

The remaining parts of the paper are as follows. The problem description is introduced in Section 2. Section 24 

3 presents the system components modelling. In Section 4, the mathematical model for the proposed strategy is 25 

provided. The implementation of BESS optimal sizing strategy is described in Section 5. In Section 6, case studies 26 

are carried out and simulation results are analyzed to demonstrate the effectiveness of the proposed strategy. 27 

Conclusions are given in Section 7. 28 

2. Problem Description 29 

The scope of this paper is to investigate the optimal sizing of BESS considering VESS and high PV 30 

penetration in the system and the corresponding optimal energy dispatch of smart microgrid system resources 31 

from the operator perspective.  32 

As shown in Fig. 1, smart microgrid system is a new type of grid composed by photovoltaic power generation 33 

system, battery energy storage system, microgrid power load, energy management system (EMS) and various 34 

distribution infrastructures. In this paper, the microgrid system operator owns the battery energy system and the 35 

photovoltaic system, which can reduce the investment cost for end-users [15]. The photovoltaic power generation 36 

system provides users with renewable electricity. BESS consumes the surplus photovoltaic power whilst ensuring 37 

the power quality of the microgrid system. The smart microgrid system is connected to the power distribution 38 

network, which can work in both islanded modes and grid-connected modes. In the system, air-conditioned 39 

households are aggregated and controlled by an aggregator to form the virtual energy storage system [30], and 40 



 8 

the end-users are regulated by the aggregator without compromising their thermal comfort. EMS can optimally 1 

dispatch power resources and manage the energy balance of the microgrid [31].  2 

Under the time-of-use electricity price mechanism, the microgrid system operator has two objectives: 1) 3 

making full use of the battery energy storage system and the virtual energy storage system to increase photovoltaic 4 

penetration rate; and 2) minimizing the microgrid system cost including investment cost and system operation 5 

cost through BESS optimal sizing strategy. It should be noted that the investment cost mainly refers to the 6 

construction cost of the system equipped with the battery energy storage system, and the system operation cost is 7 

the cost of purchasing electricity from the distribution network and the maintenance cost of the system.  8 

In the proposed two-layer optimal sizing framework, a more accurate two-parameter thermal model is 9 

established to aggregate and quantify the virtual energy storage system. In the first layer, the initial size of BESS 10 

is determined by mixed integer linear programming considering dispatch of VESS to reduce the energy cost. In 11 

the second layer, the differential evolution algorithm and the iterative search method are applied to find the 12 

optimal size of BESS, further determining the optimal energy resources dispatch including PV system, VESS and 13 

BESS. In addition, the mean-variance Markowitz theory is adopted to assess the risk of system cost variability 14 

considering uncertainties of PV generation and load. 15 

 16 
Fig. 1. Smart microgrid system. 17 

3. System Components Modelling 18 

In this section, the modelling of various components in this paper is introduced, which includes modelling 19 

of VESS, BESS and PV generation. In the last subsection, the uncertainties of PV generation and load are given.  20 

3.1. VESS modelling 21 

Previous researchers have developed different complexities of thermal models to represent the thermal 22 

process of air-conditioned households [32]. However, the thermal model of air-conditioned household is built 23 

through the first order differential equations [33], which cannot reflect the precise thermal dynamic process of 24 

air-conditioned households owing to the inherent large thermal mass temperature dynamics. Therefore, a more 25 

accurate two-parameter thermal model has been established in [34] to simulate the indoor thermal change process 26 

of air-conditioned households, but these studies did not take into account the heat output (heat gain) such as 27 

household machinery and people [35]. Based on previous work, this paper innovatively proposes to add the heat 28 
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gain parameters [36] into the two-parameter thermal model to more accurately capture the thermal process. 1 

Thermal process of a single air-conditioned household is shown in Fig. 2. The thermodynamic process of a single 2 

air-conditioned household can be described as follows [34]:  3 

 4 
Fig. 2. Indoor thermal process. 5 
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  (2) 7 

  (3) 8 

  (4) 9 

  (5) 10 

  (6) 11 

  (7) 12 

 Equations (1) - (2) represent the rate of change of indoor air temperature and wall temperature respectively; 13 

Equations (3) - (7) represent the heat exchange between indoor air and ambient air, the heat exchange between 14 

inner wall and indoor air, the cooling capacity of air conditioning, indoor heat gain, and the heat exchange between 15 

outer wall and ambient air respectively. Noted that relevant parameters for the household can be calculated by the 16 

physical data [37]. 17 

 To conveniently calculate indoor air temperature and build a flexible dispatch scheme, the proposed dynamic 18 

thermal model can be linearized as [34]:  19 

acQ

_ _ex Ow aQ

_ _ex Iw rQ

gainQ
_ _ex a rQ

_ _ _ _( ) ( ) ( )( ) 1 ex a r ex Iw r gain acr

a a

dQ t dQ t dQ dQ tdT t
dt M C dt dt dt dt

é ù
= + + -ê ú× ë û

_ _ _ _( ) ( )( ) 1 ex Ow a ex Iw rw

w w

dQ t dQ tdT t
dt M C dt dt

é ù
= +ê ú× ë û

_ _ ( )ex a r amb r

eq

dQ t T T
dt R

-
=

_ _ ( )ex Iw r w r

wr

dQ t T T
dt R

-
=

( )ac
ac

dQ t cop P
dt

= ×

gaindQ
dt

l=

_ _ ( )ex Ow a amb w

wa

dQ t T T
dt R

-
=



 10 

  (8) 1 

  (9) 2 

Where, the whole day (24 hours) is equally divided into N segments, and the interval of each segment is . It 3 

should be noted that the switch state of the air conditioner in this paper is considered as a binary variable, 1 is ON 4 

and 0 is OFF; and the switch state of the air conditioner is determined by the comfort temperature range set by 5 

the user:  6 

  (10) 7 

  (11) 8 

  (12) 9 

 The unique thermal inertia of air-conditioned households can be used to aggregate the air-conditioned 10 

households to form a virtual energy storage system similar to the traditional energy storage system. Taking 11 

summer as an example, in order to meet the users’ thermal comfort, the air conditioner is turned on for cooling, 12 

and the household indoor temperature drops slowly. In this situation, the virtual energy storage system is 13 

considered in the charging state. When the air conditioner is turned off, the indoor temperature of the household 14 

rises slowly, and the VESS is considered in the discharging state. Therefore, the capacity of a single household's 15 

virtual energy storage system is expressed as follows: 16 
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 Equation (8) is substituted into Equation (14) to obtain: 19 
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 To meet the capacity requirements of participating demand response programs, VESSs are further aggregated 22 

and the aggregated capacity/power are denoted as: 23 
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3.2.  BESS modelling 1 

 The BESS model takes into account the charging and discharging power, self-discharging rate [15], and 2 

charging and discharging efficiency of the battery energy storage system [38], as descripted below: 3 

  (22) 4 

  (23) 5 

  (24) 6 

  (25) 7 

  (26) 8 

  (27) 9 

 Equations (25) - (27) represent the charging/discharging power constraint and the state of charge constraint 10 

of BESS. 11 

3.3. PV modelling 12 

 Photovoltaic output power is mainly influenced by the size of PV farm, available solar irradiance and ambient 13 

temperatures. According to [39], the model of PV power generation can be formulated as: 14 
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  (30) 17 

 It can be observed that the photovoltaic output power mainly depends on the solar irradiation incident and 18 

the ambient temperature at time t, which varies with time and causes PV generation uncertainty. 19 

3.4. Uncertainties of PV power generation and load demand 20 

In this paper, PV power generation and load demand are regarded as system uncertainties. The historical 21 

data in day-ahead market are used as correlated scenarios, hence allowing the correlated probability distributions 22 

to be estimated based on the statistical correlations among these uncertainties. Time-series-based methods, such 23 

as autoregressive integrated moving average model, are adopted in this work to generate correlated scenarios [40]. 24 

The forecast errors are handled by the different probability distribution functions. According to [41], Beta 25 

distribution and Gaussian distribution can be adopted to model PV prediction error and load forecast error 26 

respectively. The PV prediction error is discussed as: 27 
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 The load forecast error is discussed as: 29 

  (32) 30 

4. Mathematical Model for the Proposed Strategy 31 
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In the first layer, with minimizing the operation cost of microgrid and maximizing the on-site consumption 1 

of PV generation as the objective, the initial size of BESS is determined by considering VESS participation in 2 

demand response program, which can reduce the computational burden of the iterative algorithm. In the second 3 

layer, the optimal sizing of BESS is developed and the optimal energy resources dispatching strategy is formulated 4 

via considering various constraints in the system. In addition, the mean-variance Markowitz theory is applied to 5 

assess the risk of system cost variability which is caused by uncertainties of PV generation and load. The objective 6 

in this layer is to minimize system investment cost and operation cost in a risk-hedging manner. The detailed 7 

mathematical model will be given in the following subsections.  8 

4.1. First layer-BESS initial sizing model 9 

4.1.1 Objective 10 

In this layer, considering VESS participation in demand response program, a mixed-integer linear 11 

programming (MILP) model is proposed to minimize the operation cost of microgrid, and the initial size of BESS 12 

is developed subsequently to achieve the on-site consumption of photovoltaics in the microgrid. The model is 13 

formulated as follows: 14 

  (33)  15 

The relevant variables in Equation (33) are further given as: 16 

  (34) 17 

  (35) 18 

The initial size of BESS is formulated as follows:  19 

  (36) 20 

  (37) 21 

  (38) 22 

4.1.2 Constraints 23 

To ensure stable operation of the system, the following constraints should be met:  24 

1) Constraints of power balance  25 

The electrical network must meet the supply and demand balance to keep system stable operation, as shown 26 

in Equation (39). Simultaneously, the power exchange between the microgrid system and the distribution network 27 

should be within the allowable range as given by Equation (40).  28 

  (39) 29 

  (40) 30 
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The constraints of VESS are explained in Section 3.1, which are shown in Equations (10) - (12). It should 1 

be noted that different air-conditioned households have different internal parameters due to the differences in 2 

building structure and occupants’ activities etc. [42]. Therefore, Monte Carlo simulation is adopted to generate 3 

air-conditioned households with different parameters [43], which are further aggregated through an aggregator to 4 

form VESS. 5 

3) Constraints of PV 6 

In Section 3.3, the model of PV generation has been described in Equations (28)-(30). In addition, the limits 7 

of PV generation power should be satisfied as below: 8 

  (41) 9 

4.2. Second layer - BESS optimal sizing model 10 

4.2.1 Objective 11 

In this layer, to minimize system investment cost and operation cost, the model is formulated as a mixed-12 

integer nonlinear programming (MINLP) problem to achieve the optimal sizing of BESS and the optimal energy 13 

resources dispatching. Simultaneously, the risk measure is given considering the uncertainties of PV generation 14 

and load. The model is formulated as follows: 15 

  (42) 16 

The relevant cost variables in Equation (42) are further formulated as follows: 17 

  (43) 18 

  (44) 19 

 Further, the relevant variables in Equation (44) are explained as follows:  20 

  (45) 21 

  (46) 22 

  (47) 23 

  (48) 24 

In addition, the net profit of BESS is formulated below: 25 

  (49) 26 

  (50) 27 

 (51) 28 

Considering the uncertainties of photovoltaic power generation and electrical load, Equation (42) is 29 

formulated into a probabilistic version [40] which can reflect the trade-off between system costs and risks. 30 

Through the mean-variance Markowitz theory [44], a probabilistic version is formed as Equation (52). Backward 31 
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method [45] is used here to approximate the original scenarios to a smaller set to increase the computational 1 

efficiency.  2 

  (52) 3 

  (53) 4 

  (54) 5 

Where  is the expected value of the system cost;  is the standard deviation,  is 6 

the weighting factor for the inclusion of risk, and the higher the value of , the more risk averse [40].  and 7 

 are the probability and the system cost respectively under scenario . 8 

4.2.2 Constraints 9 

1) Constraints of power balance  10 

  (55) 11 

  (56) 12 

  (57) 13 

  (58) 14 

2) Constraints of VESS  15 

In Sections 3.1 and 4.1, the constraints of VESS have been explained, which are Equations (11)-(12). 16 

3) Constraints of BESS 17 

In Section 3.2, the constraints of BESS have been explained, which are Equations (24)-(27). 18 

4) Constraints of PV 19 

The model and limit of PV generation have been described in Equations (28)-(30) and Equation (41), 20 

respectively.  21 

5. Implementation of BESS Optimal Sizing Strategy 22 

Based on the components modelling of smart microgrid system in Section 3 and mathematical model for the 23 

proposed strategy in Section 4, the detailed solution process of the proposed model is introduced in this section. 24 

The flow chart is shown in Fig. 3, which is composed of the first layer and the second layer. 25 

The initial size of BESS is determined in the first layer, as followed by the specific steps: 26 

•Step 1: Firstly, Block A is the data collection and input, including necessary meteorological data, the cost 27 

parameters of BESS, parameters of VESS, technical parameters of smart microgrid system, electricity 28 

price information and user demand, etc. In addition, PV generation can be calculated by Equations (28) – 29 

(30), and uncertainties of PV and load are considered by Equations (31) – (32);  30 
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•Step 2: In Block B, Monte Carlo simulation is applied to generate various air-conditioning household 1 

scenarios with different parameters, which are aggregated through an aggregator to form VESS as 2 

described in Section 3.1; 3 

•Step 3: In Blocks C and D, the BESS initial sizing model given in Section 4.1 is presented. Taking 15 4 

minutes as the time interval, MILP can be solved by MOSEK solver to obtain the intra-day load distribution 5 

and photovoltaic output in the smart microgrid; 6 

• Step 4: In Block E, the initial size of BESS can be calculated by Equations (36) – (37). 7 

Considering PV and load uncertainties, the optimal size of BESS and energy resources dispatching strategy 8 

are provided in the second layer. The detailed procedures are further given below: 9 

• Step 5: Input/update rated power  and rated capacity  of BESS in Block F. 10 

• Step 6: In Blocks G and H, considering the PV and load uncertainties, Monte Carlo simulation and the 11 

backward method are used to generate representative scenarios S. 12 

• Step 7: In Block I, the BESS optimal sizing is determined for each scenarios s by differential evolution 13 

algorithm (DE) [46], and the value of objective function (Equation (42)) is recorded. 14 

• Step 8: In Blocks K and L, the objective function value with risk measure is calculated by Equation (52) under 15 

the corresponding size of BESS. In the meanwhile, the system cost and optimal energy resources dispatching 16 

are decided. 17 

• Step 9: As shown in Equation (59), the rated capacity of BESS is updated by iterative search method in Block 18 

M, which is returned to Block F. Until , the iteration cycle of rated capacity at this rated 19 

power is completed and the next iteration cycle of rated power is entered. 20 

  (59) 21 

• Step 10: As shown in Equations (60)-(62), the rated power of BESS is updated by the iterative search method 22 

in Blocks O, P and Q, which is returened to Block F. Until , the iteration of BESS size is 23 

completed and the next screening step is entered. 24 

  (60) 25 

  (61) 26 

  (62) 27 

• Step 11: In Block R and S, all size of BESS and system costs are exported, then the optimal size of BESS is 28 

screened out through comparing system costs. 29 
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 1 
Fig. 3. Flow chart of optimal sizing of BESS 2 
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6. Case Studies 1 

In order to verify the effectiveness of the proposed strategy for optimal sizing of BESS, this paper takes the 2 

microgrid system of a certain region as an example for case study. The tested microgrid system is shown in Fig. 3 

4. 4 

 5 
Fig. 4. The tested microgrid system 6 

6.1. Setup 7 

Based on the typical solar radiation and ambient temperature collected in Guangzhou, China [47], the PV 8 

output can be calculated by Equations (28) – (30). The load profile and photovoltaic profile in the tested microgrid 9 

system are given as Fig. 5. It should be noted that the typical summer temperature in this region is used in this 10 

paper. The time-of-use electricity price is considered, as shown in Fig. 6. It can be seen that the electricity purchase 11 

price from distribution grid at 9:15-12:00 and 19:15-22:00 is at the peak rates, 0:00-8:00 is at the off-peak rates, 12 

and the rest of the time is at the shoulder rates. The electricity selling price to the distribution grid is steady and 13 

lower than the electricity purchase price all day.  14 

 15 
Fig. 5. Typical load and photovoltaic profile 16 
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 1 
Fig. 6. Time-of-use electricity price 2 

It is assumed that the aggregator in the microgrid system regulates 150 air-conditioned households, and the 3 

aggregator is further managed by the EMS. Monte Carlo simulation is employed here to generate various air-4 

conditioned building scenarios with different parameters, which are further aggregated to form the virtual energy 5 

storage system. As described in Section 3.1, the equivalent thermal resistance of the VESS includes glass windows 6 

and walls, and the thermal capacitance of walls and the heat gain of the building. The parameters range of air-7 

conditioned buildings is shown in Table 1.  8 

The economic and technical analysis of the BESS in the grid is mainly affected by the profits, investment 9 

costs, operating costs, degradation and replacement costs [6]. Lithium ion battery has the advantages of high 10 

energy density, long calendar and cycle life, high charge/discharge efficiency, high reliability, low self-discharge 11 

rate, and satisfactory charging speed [4], which is suitable for the application scenario of microgrid system 12 

mentioned in this paper. The relevant parameters of BESS applied in the case study are shown in Table 2 [15].  13 
Table 1 Relevant parameters of air-conditioned buildings for Monte Carlo simulation 14 

Length of Building (m) Width of Building (m) Height of Building (m) Width of Wall (m) 

9-21 7-14 3-8 0.2-0.4 

Number of Windows Required Temperature ( ) Rated Power for Air Conditioners (kW) 

3-9 23-27 1-7 

 15 
Table 2 Parameters of BESS [15]  16 

 ($/kW)  ($/kWh)  ($/(kWh year)) 

300 250 7.5 

 (($/(kWh year))  (year)  (%) 

6 8 20/80 

 (%/day)  (%)  (%/year) 

0.1 6 3.5 
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6.2. Sensitivity analysis 1 

Considering the uncertainties of PV generation and load, a sensitivity analysis is performed to investigate 2 

the impact of uncertainties on BESS sizing. The corresponding results are shown in Fig. 7 and Fig. 8, where Fig. 3 

7 denotes the sensitivity analysis of BESS rated power, and Fig. 8 denotes the sensitivity analysis of BESS rated 4 

capacity. As shown in the figures, the ratio of load is varying from 70% to 130%, while the PV generation ratio 5 

is varying from 40% to 100%. 6 

It can be observed that from Fig. 7 and Fig. 8 that for the rated power of BESS, the PV generation change 7 

has little impact on it, while the load change has more influences on it. As the load amount gradually grows, the 8 

rated power of BESS gradually increases as well. In terms of the rated capacity of BESS, the change of PV 9 

generation has less impact than the change of load as well. It is worth noting that the rated capacity of BESS 10 

increases as the load grows. In other words, the investment cost of BESS can be reduced when the system load is 11 

decreased via utilizing demand response technologies. 12 

 13 
Fig. 7. Sensitivity of BESS rated power 14 

 15 
Fig. 8. Sensitivity of BESS rated capacity 16 
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6.3.  Simulation results and discussion 1 

In order to mitigate risks caused by system uncertainties,  is chosen as 1.66 by sensitivity analysis [48] 2 

in this paper. Fig. 9 demonstrates the distribution of system cost during the entire lifecycle of BESS (8 years), 3 

which is overall shown as a normal distribution. The mean system cost and the standard deviation are $ 2.64*107 4 

and $ 7.53*106, respectively. It can be found that the change in system cost is evident due to various uncertainties. 5 

Therefore, the risk of system cost variability is assessed during the optimal sizing of BESS. In this work, VaR(95%) 6 

is $ 3.98*107, which means that the maximum overall cost (loss) of the microgrid system is at the 95% confidence 7 

level during the 8 years. 8 

 9 
Fig. 9. Distribution of microgrid system cost during the entire lifecycle of BESS 10 

The diagram of the relationship between the BESS size and the system cost is presented in Fig. 10, and the 11 

relationship between the size of BESS and the net profit of BESS is described in Fig. 11. As shown in Fig. 10, the 12 

system cost decreases with the increase of BESS size until it reaches saturation. In addition, BESS net profit 13 

increases to the saturation point as the size of BESS grows in the system as demonstrated by Fig.11. On the other 14 

hand, although the investment cost of BESS decreases with the reduction of size, the system is not able to profit 15 

from the installation of BESS when its size is too small. Therefore, the optimal size of BESS can be found while 16 

the system cost is minimal. It can be observed from Fig. 10, when the system cost is at minimal point, the optimal 17 

size of BESS is determined as rated power 1624.2 kW and rated capacity 8070.7 kWh. 18 

w
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 1 
Fig. 10. Relationship between the size of BESS and the total cost of the microgrid 2 

 3 
Fig. 11. Relationship between the size of BESS and the net profit of BESS 4 

In order to verify the effectiveness of the proposed strategy when involving VESS, the corresponding results 5 

are described in Figs. 12 and 13. Fig. 12 shows the comparison of the operation status of an air conditioner with 6 

control and without control, which is selected stochastically in the aggregated VESS. The red line is the local 7 

typical ambient temperature, the blue line is the indoor air temperature, and the green line is the air conditioning 8 

dispatching status. Fig. 13 shows the operation status of VESS with and without control including VESS’s power 9 

(positive value means charging power and negative value is discharging power) and VSOC. According to the 10 

ambient temperature in Fig. 12, it can be seen that VSOC decreases with the increase of the outdoor temperature 11 

from 7:00 to 9:00, and VSOC with control drops much faster than VSOC without control mode. In order to meet 12 

the users thermal comfort requirements, VSOC with control changes with time and stays at a relatively low 13 

position (around 35%) from 10:00 to 18:00, but VSOC without control has less temporal change and is at a 14 

relatively high position (around 68%). From 19:00 to 21:00, VSOC with control increases with the drop of 15 

ambient temperature, while VSOC without control mode is the opposite. The different energy dispatching results 16 

between VESS with control and VESS without control is due to VESS with control is influenced by the 17 

combination of electricity energy expenditure and required thermal comfort of users, but VESS without control 18 

is only affected by the users’ required thermal settings. In addition, regardless of whether VESS is in control mode 19 

or not, it can maintain a relatively stable state due to the low and stable ambient temperature from 21:00 to 7:00. 20 
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Furthermore, it should also be noted that the change of VSOC with control mode is quite intense when the 1 

electricity price is during peak periods from 9:15 to 12:00. 2 

It can be observed that VESS changes are largely affected by the ambient temperature. Compared with BESS, 3 

VESS has fast energy dissipation characteristics and allows deep discharge. Similar to battery storage systems, 4 

VESS can make use of its own thermal buffer characteristics to achieve energy saving and emission reduction. 5 

With the accurate modelling of VESS, end users’ thermal comfort is guaranteed. Furthermore, VESS in control 6 

mode can improve energy efficiency and has more energy-saving and emission-reduction than VESS without 7 

control under the same user comfort requirement. In other words, the system load can be reduced due to the 8 

thermal buffer involvement from VESS. Therefore, based on the sensitivity study at Section 6.2, it can be 9 

concluded that the BESS investment cost is further reduced through the involvement of VESS. 10 

 11 
Fig. 12. Optimal and random operation of the air-conditioned building 12 

 13 
Fig. 13. Operation status of VESS with and without control mode 14 

The charging/discharging power and BSOC of BESS are denoted in Fig. 14. It can be observed that BESS 15 

is charged from the distribution grid or PV system when the electricity purchase price from distribution grid is at 16 

the lowest rates level or there is surplus output from photovoltaic power generation. On the contrary, BESS is 17 
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discharged to supply the load during the peak electricity purchase price periods, and the remaining capacity of 1 

BESS is discharged within system constraints during the shoulder electricity price periods. Hence, electricity price 2 

arbitrage can be achieved by BESS through selected charging/discharging periods. In addition, as the energy 3 

buffer unit, BESS configured in the framework is sufficient to achieve the on-site consumption of PV generation 4 

and alleviate the uncertainty of high PV penetration to keep the system stable operation. 5 

 6 
 7 

Fig. 14. Charging/discharging power and BSOC of BESS 8 
The electricity consumption of smart microgrid system from external distribution network is depicted in Fig. 9 

15. As depicted, the microgrid system only consumes power from the distribution network system during the off-10 

peak or shoulder electricity price periods. It should also be noted that the amount of electricity sold from the 11 

microgrid system to the distribution network system is 0 throughout the day, due to the surplus PV generation is 12 

consumed directly by the charging of BESS and the electricity selling price to distribution grid always is lower 13 

than the electricity purchase price. Besides, when there is surplus output from photovoltaic power generation or 14 

the electricity purchase price from distribution grid is at the lowest level, the microgrid system work in islanded 15 

modes until the internal energy supply including PV and BESS are insufficient. In summary, through analyzing 16 

the simulation results, it can be found that energy resources (i.e. PV, BESS and VESS) can be dispatched optimally 17 

through the proposed strategy to minimize system operation cost and improve energy efficiency while meeting 18 

various system constraints. 19 

 20 
Fig. 15. Electricity purchasing status of smart microgrid system 21 
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7. Conclusion 1 

This paper proposes an innovative BESS optimal sizing strategy considering dispatch of VESS in the smart 2 

microgrid with high photovoltaic penetration. The proposed model is composed of two layers. In the first layer, 3 

VESS modelling and aggregation are established, and the initial size of BESS is determined by considering VESS 4 

participation in demand response program. In the second layer, the optimal sizing of BESS and the optimal energy 5 

resources dispatching strategy are studied. In the meanwhile, the risk of system cost variability is assessed by the 6 

mean-variance Markowitz theory. The simulation results demonstrate that the proposed strategy can achieve 7 

optimal sizing of BESS, minimize system cost, and mitigate the impact of uncertainties. Compared with previous 8 

research, this work is advantageous in, 1) employing a more accurate two-parameter thermal model with internal 9 

heating taken into account to establish the VESS model; 2) determining the optimal sizing of BESS with the 10 

involvement of VESS and high PV penetration; 3) analyzing the system cost risks in detail by incorporating mean-11 

variance Markowitz theory based risk factors.  12 
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