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A Dynamic-Neighborhood-Based Switching Particle
Swarm Optimization Algorithm
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Abstract—In this paper, a dynamic-neighborhood-based  Inspired by the mimicry of social behavior (e.g., birds
switching PSO (DNSPSO) algorithm is proposed where a new flocking and fish schooling), the PSO algorithm explores
velocity updating mechanism is designed to adjust the perse o nroplem space by updating the particles’ velocities and
al best position and the global best position according to a o f .
distance-based dynamic neighborhood to make full use of the posm_ons based on the swarm |nt_eII|genc_e._In _fact, the '_DSO
population evolution information among the entire swarm. In a@lgorithm has become an attractive optimization technique
addition, a novel switching learning strategy is introduce to owing to its rather powerful ability to effectively searoli
adaptively select the acceleration coefficients and updatéhe the global optimal solution. In this regard, the PSO aldyonit
velocity model according to the searching state at each itation, has been widely studied and successfully applied to various
thereby contributing to a thorough search of the problem spae. . .
Furthermore, the differential evolution algorithm is successful- research fields [4], [13], [27], [48]’_ [49]. Nevertheless, '_
ly hybridized with the PSO algorithm to alleviate premature has been found that the PSO algorithm suffers from certain
convergence. A series of commonly used benchmark functions shortcomings of premature convergence and poor conveggenc
(including unimodal, multimodal and rotated multimodal cases) performance when there exist a large number of local optima,
are utilized to comprehensively evaluate the performance fo especially in high-dimensional optimization problems ][18

the DNSPSO algorithm. Experimental results demonstrate tht .
the developed DNSPSO algorithm outperforms a number of [26], [29]. As such, great efforts have been made in recent

existing PSO algorithms in terms of the solution accuracy ad Years to develop variant PSO algorithms which can be catego-
convergence performance, especially for complicated mithodal  rized into four types: 1) modifying parameters [6], [30]3]3

optimization problems. [34], [38]; 2) hybridizing with other EC algorithms [14], 23,
Index Terms—Particle swarm optimization, switching strategy, [42], [45]; 3) using topology for velocity updating [2], [}6
dynamic neighborhood, topology, differential evolution. [18], [26], [29]; 4) introducing control theories for desigg
new learning strategies [10], [20], [28], [35], [47].
. INTRODUCTION Recently, developing PSO algorithms with different topolo

The past few decades have witnessed the rapid developnfi§ and learning strategies has become a research hotspot
of optimization techniques owing to their clear applicatiol3]- Generally, these types of PSO variants aim to enharee th
potential in various research fields including healthcare, Population diversity of the PSO algorithm and alleviate the
gineering, and telecommunications [19], [22], [24], [3@]p]. Premature convergence problem. In particular, five wetivikn
As a powerful family of optimization techniques, evolutioy  topological structures (including all, ring, clusters,raid,
computation (EC) approaches have shown outstanding perf@d von Neumann) have been discussed in [16]. A fully
mance in solving optimization problems. Some popular gigformed PSO algorithm has been introduced in [26] where the
approaches include genetic algorithms, Tabu search, atelil Velocity of each particle is updated depending on its neagsib
annealing, particle swarm optimization (PSO), etc [19],][2 information. In [18], a comprehen5|_ve Iea_rnmg PSQ aldponit _
[24], [25], [44]. Compared with other EC algorithms, thdas been developed where each dimension of a single particle
PSO algorithm proposed in [15] demonstrates competitive §rupdated by learning from the local best position of défer
even superior performance due to its easy implementatimrt'des- In addition, a locally informed PSO algorithmsha

accuracy [11], [23], [39], [42]. the problem space by several personal best positions chosen

in the neighborhood.
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dynamic neighborhood is proposed in this paper to update thiethe optimization problem [15]. In a PSO algorithm [15],
personal best positiophbest and the global best positigybest  each particle searches through the problem space by lgarnin
so as to strengthen the capability of escaping from the lodedm its experience and cooperating with other particles.
optima. The conventional PSO algorithm updates the vslocit In a D-dimensional problem space, the position
and position of each particle only based on the information of the ith particle at kth iteration is denoted as
the pbest and thegbest discovered by the entire swarm. That;(k) = (zj1(k), zi2(k), -+ ,2ip(k)). The velocity
is, the searching strategy of the conventional PSO algurittof particle 7 at kth iteration is represented by
restricts the social learning part only to theest which may v;(k) = (vii(k),via(k), -+ ,v;p(k)). Rules for updating
cause the premature convergence problem. In additiong theelocity and position of particlé are described as follows
is no guarantee that thegbest is always close to the global [15]:

optimum, especially for the complex optimization problems

with a large number of local optimal solutions. To make full vi(k + 1) =wv;(k) + c1r1(pi(k) — z(k))
use of the neighborhood information of other particles, & ne + cara(py(k) — zi(k)) 1)
updating mechanism qgfbest and gbest is proposed in this zi(k+1) =i (k) + vi(k + 1)

paper based on the developed dynamic neighborhood. Notice
that the evolutionary process of the swarm can be dividetherep; andp, represent the best solution found by particle
into four searching states, including convergence, exgpilon, < and the entire swarm, known asest and gbest; w is the
exploitation, and jumping out [46]. To further enhance thimertia weight which is a scale factor that controls the iaflce
search ability of the PSO algorithm, a novel switching léagn of the previous velocity on the current ong;andr, are two
strategy is introduced to adaptively select the accetmmatiuniformly distributed random numbers sampled frgml|; ¢,
coefficients and adjust the velocity updating model acemydi andc, are the cognitive acceleration coefficient and the social
to the searching state determined by an evolutionary factceleration coefficient which push the particle towarbtsst
at each iteration. In addition, the differential evolutiE) and gbest, respectively.
algorithm [45] is utilized to further enhance the divekestiof
best and gbest. .
3 Motivategd by above discussions, our aim is to put forwarg PO Variants
a dynamic-neighborhood-based switching PSO (DNSPSO) aldn recent years, a great number of variant PSO algorithms
gorithm with the aim of improving the search performanckeave been developed to improve the search ability of the tra-
of the PSO algorithm. The key contributions of this studglitional PSO algorithm. Various parameter updating styiate
can be summarized as follows: 1) a DNSPSO algorithm lgve been introduced to improve the performance of PSO
proposed where a distance-based dynamic neighborhootl isgdgorithms by adjusting the parameters (e.g., inertia hteig
forward to make full use of the neighborhood information bgognitive acceleration coefficient and social acceleratioef-
updating thepbest and gbest according to their correspondingficient) [33]. In general, a larger inertia weight will coitute
neighborhood, which contributes to a high possibility of edo the global search, and a smaller inertia weight will benefi
caping from the local optima; 2) a switching learning stggte the local refinement. A linearly decreasing inertia weight
is designed where the acceleration coefficients are addptivPSO (PSO-LDIW) algorithm has been proposed in [34] to
adjusted at each iteration, and the velocity updating madelimprove the search ability of the PSO algorithm. A PSO
adjusted according to the searching state determined by #igorithm with time-varying acceleration coefficients lesn
evolutionary factor; and 3) the performance of the DNSPS@ut forward in [30] with the aim to effectively control the
algorithm is comprehensively evaluated on 14 well-knowlocal and global explorations. The constriction factor hasn
benchmark functions (including the unimodal, multimodada introduced into the PSO algorithm (PSO-CK) in [6] to enhance
rotated multimodal cases), and experimental results demame convergence rate and search ability. In particular, ekMa
strate that the proposed DNSPSO algorithm outperforms sonf®in has been utilized in the switching PSO (SPSO) algarith
existing PSO algorithms in terms of convergence perforrmangroposed in [38] to adaptively control the inertia weightlan
and solution quality, especially for complicated multirabd acceleration coefficients.
optimization problems. Some variant PSO algorithms focus on designing new topol-
The remainder of this paper is organized as follows. logy structures aiming to guarantee the population diweasitl
Section I, the traditional PSO algorithm and PSO variantgevent premature convergence. Several popular topaogie
are presented. The distance-based dynamic neighborhaod @ncluding all, ring, clusters, pyramid, and von Neumann)
the proposed DNSPSO algorithm are presented in Section Have been introduced into PSO algorithms [16]. By making
In Section 1V, the parameter setting, benchmark functionigll use of neighborhood information, a fully informed PSO
and experiment results are discussed. Finally, conclesiod algorithm has been developed in [26]. In the comprehensive
future work are presented in Section V. learning PSO algorithm, a new learning strategy has been put
forward which updates each particle by utilizing all other
IIl. PSO ALGORITHMS particles’ individual best information [18]. Additiong/l a
A. Traditional PSO Algorithm locally informed PSO algorithm has been introduced in [29]
The PSO algorithm is a population-based EC approably using several local best positions through the neighdomth
where each particle’s position serves as a potential swolutito guide the search of the particles.



FINAL VERSION 3

Another research direction in designing new PSO algorithmsin particular, the current searching state of each particle
is to hybridize with other EC algorithms. It has been revéalés determined by the probability transition mat and an
that the combination of the PSO algorithm and other E@volutionary factotEy [46]. £y is an index for describing the
methods shows promise in improving the performance of thiéstribution property of swarm:
PSO algorithm [45]. Additionally, there is a growing resear d
interest on introducing the sociological/biological irspl E¢(i) = 7 - (3)
methods into the PSO algorithm, such as the niching PSO
algorithm [5], the aging theory inspired PSO algorithm [7Where dmax and duwin denote the maximum and minimum
and the cultural-based PSO algorithm [8], etc. distances amongl;, respectively.d; is the mean distance

Recently, the complex system and control theory have be@tween particle and other particles, which is calculated as
employed into the PSO algorithms, such as chaos, fuzi?!'OWS3
neural networks, time-delay, and the orthogonal learnirty,[ N D
[20], [28], [35], [47]. As a notable example, the delayed d; = 1 Z (zk — zk)2 4)
information of the particles has been utilized in the switch N-1 = \io =~
ing delayed PSO (SDPSO) algorithm to make full use of - .
the historical information of the evolution process, tHre where N and D respectively represent the swarm size and the

I . dimension of the problem space.
facilitating a better exploration of the problem space ttan ) , . .
traditional PSO algorithm [38]. It should be mentioned thdi; defined in Eq. 3 is different

from it in [46]. To be specific, in this paped,; is defined in

Eq. 4, which is different from that in [46]. The classificatio

l1l. A D YNAMIC -NEIGHBORHOOD-BASED SWITCHING rule of the searching states and the probability transitiatrix
PSO ALGORITHM P are given as follows:

- dmin

max dmin

In this section, the proposed DNSPSO algorithm is dis- . _
cussed mainly from thrr;e paspects: 1) the dis?ance-based dy- Come?ageﬁce - =1, 0= By <0.25
namic neighborhood is introduced to adjust thigst and Eaxploitation : {(k) =2, 0.25 < By <05
gbest based on their corresponding neighborhood, which Exploration : §(k) =3, 0.5 < Ey <0.75
benefits the thorough exploration of the problem space so Jumping out :  &(k) =4, 0.75<E;<1
as to alleviate the premature convergence problem; 2) the
developed switching strategy is utilized to adaptively ase T 1—7 0 0
the acceleration coefficients and update the velocity abegr l-m - I—m 0
to the searching state; and 3) the DE method is employed P = (2) l-m 3T l-m ()
to enhance the diversity of the PSO algorithm. Therefore, 0 20 1 -1 fT

the proposed DNSPSO algorithm could thoroughly search the ) - -
problem space in order to effectively discover the optim¥fherer is the transition probability.
solution.

B. Distance-Based Dynamic Neighborhood
A. Framework of the DNSPSO Algorithm

In the proposed DNSPSO algorithm, the velocity and posi- f fligffal optimum
tion of particle: at iterationk are updated by the following XD @ phest of particle i
mechanism: (1) 7 @ pbest of another particle
X s
vij(k + 1) =w(k)v; ; (k) ' © A
+ c1(§(k))r1 (pbest’ (§(k)) — i ;(k)) ] R eRGa))
+ ea(E(k))ra(gbest! (E(k)) — i (K)),  (2) e e
Tij(k+1) =zi; (k) +vij(k +1) W/
wherer; andry are two random numbers distributed in [0,1]; & WV(t)j
j denotes the dimension of the problem spagé¢(k)) and x(t)
c2(&(k)) are the cognitive acceleration coefficient and the
social acceleration coefficient, respectively. Fig. 1. The schematic diagram of a particle’s trajectory in the

Notice that c;(&(k)), c2(£(k)), pbest?(&(k)) and DNSPSO.
gbest?(£(k)) are determined according to a mode-dependent
Markov chainé(k) (k > 0). The Markov chain, which is  As mentioned previously, the conventional PSO algorithm
determined by a probability transition matriX = (p;;)sx., updates each particle only based on its individefalst and
takes a value in a finite state spade= {1,2,---,J} where the gbest discovered by the entire swarm. Fig. 1 shows the
pi; > 0 (i,j € F) and ijlpij = 1. In this paper&(k) shortcoming of the updating strategy of the convention@® PS
represents four different searching statés=(4) [38]. algorithm, where yellow star stands fgbest, black triangle
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denotes a local optimum, red circle ji$est of the particle TABLE | .
represented by the white circle, and blue Cil‘Cleplﬁist of STRATEGIES FOR SELECTINGbest’, gbest? AND ACCELERATION
another particle. It should be pointed out that vector aoialit COEFFICIENTS

in Fig. 1 satisfies the parallelogram law. The lengths of some State Mode c1 | ca | pbesti | gbest)
components are slightly changed due to the influence of the [ Convergence| £(k) =1 | 2 | 2 [ pij(k) [ pg;(k)
acceleration coefficients , c» and the random numbers, 5. E);EIS::::SE ggg zg 3; 1‘2 ’;”?’?(%) 59’?2?)
According to Eqg. 1, the red circle and the yellow star are [ Jumping-out| ¢(k) =4 T8 22 p;jj(k) p:j(k)
utilized to determine the next position of the white pagicl 1., andpn represent the particles shown in Fig. 2.
In this condition, the movement trajectory is the red dashed
line which is close to the local optima. Notice that if the red
circle is replaced with the blue one, result will be signifita
different. Therefore, we can draw a conclusion that makitig f
use of the information of the swarm could contribute to the
alleviation of the premature convergence problem, esfigcia
for the test functions with a great many of local optima
solutions.

To handle this drawback, in this paper a dynamic neighbor-
hood is introduced to enhance communication in the swarm,
and the neighborhood of particte is defined as the nearédst
particles by calculating the Euclidean distance betweseauit-
rentpbest and other particles. Through the evolution process, X ,
the neighborhood of each particle adjusts automaticakyaah Learn from themth particle and theith particle
iteration. To make full use of the neighborhood information Endfor
of other particles, a new updating mechanismpbéést and Endfor
gbest is designed in this paper based on the developed dy-
namic neighborhood. In the proposed distance-based dgnami = ,
neighborhood, particle); randomly selects another particle™: Sitching Learning Strategy
among the swarm, and learns from the neighbor of the selected he switching learning strategy of the proposed DNSPSO
particle’spbest. In addition, a randomly selected particle fronalgorithm is displayed in Table I. It should be pointed out
the neighborhood of current global optimal solutighest is thatc; andc, are set on the basis of our previous work [43].
employed to update the velocity of the partigieinstead of Meanwhile, more details can be founded in [46] where the
currentgbest. By learning from the neighborhood gfest, authors have presented a strategy for seleatingnd c;.
the possibility of falling into the local optima could be gtly ~ According to Eq. 2, a large value of benefits the individ-
decreased. ual search and a small value of mitigates the influence of

The schematic diagram of the proposed learning strategwigst. The main purpose of the exploitation and exploration
shown in Fig. 2, and its detailed procedure is given as fatowstates is to thoroughly discover the search space and avoid

the particles being trapped in local optima. In this caséh bo
exploitation and exploration states have a small value,of
and a large value af;. In the jumping-out state, a large value
POVIEN of ¢o and a small value of; are adopted, which aims to push
L the particles away from current best positions.
® phest(a) Except for value settings for acceleration coefficieats
o o andcs, more comprehensive descriptions of the four searching
- states are provided as follows:
« In the convergence state, the velocity updating strategy
in the DNSPSO algorithm is the same as that of the
traditional PSO algorithm. That is, each particle learns

particles topbest(i)) based on the calculated Euclidean
distance

Identify gbest’s neighborhood (the nearektparticles to
gbest) based on the calculated Euclidean distance

| For j =1,2,....dim

Choose one particle from the swarm randomly (except
the ith particle), termed asth particle

Choose one particle from the neighborhood of the
pbest(a) randomly, termed asith particle

Choose one particle from thgéest’'s neighborhood
randomly, termed asth particle

7 o
N\
! . \

Sl .gbest\ }
g o/ from its own pbest and the currengbest.
P 2w o In the exploitation state, particles are encouraged to

search the problem space as much as possible, especially
the regions aroungbest of each individual particle. For
Fig. 2. The schematic diagram of the distance-based dynamic neigh- the particlep;, we first randomly select another particle

borhood,k = 4. among the swarm, and then randomly select a particle
termed a®,,, from the neighbor of the selected particle’s
pbest. Finally, we replace the originabest of particlep;

Distance-Based Dynamic Neighborhood: by p.... In this way, the particles share information among

Fori=1,2,..,N the swarm, which benefits the particles to exploit through

Identify each particle’s neighborhood (i.e., the neakest the whole problem space.
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« In the exploration state, all the particles tend to search ( Start )
around the region of discovered optimal solution for pre- \T"/
venting from falling into the local optimal. Therefore, we Initialize particles of the swarm and
randomly select a particle termed as in the distance- the parameters of the DNSPSO
based dynamic neighborhood gbest to replace the v
current gbest. In this way, the swarm in the DNSPSO Evaluate the fitness value of each particle «————
algorithm could have wider searching regions instead of v
crowding around the currenfbest with high possibility Calculate the mean distance and evolutionary
of being a local optimum. factor for each particle according to (3), (4)
« In the jumping-out state, all the particles are driven to
escape from the current local optimum and discover a Generate better pbest and gbest by differential
better optimal solution. In this case, we simultaneously evolution algorithm
adjust thepbest and gbest like steps in the exploitation
and exploration phases in order to find a better global Compute the distance-based dynamic
optimum as soon as possible. neighborhood of each particle and gbest

In addition, the evolutionary factaE's represents the pop- ] ¢ .
ulation diversity. The larger thé;, the worse the diversity. Update the state in the next generation based on the
The inertia weightw is determined byE;, which is shown in current state and the probability transition matrix (5)

v

Calculate the inertia weight according to (6)

w=05xE;+04 (6)

and more detailed information can be refereed in [38].

Select the acceleration coefficients, pbest
and gbest according to the Table I

D. Differential Evolution

The DE algorithm, as a stochastic population-based evolu- | Update the velocity and the position according to (2)
tionary algorithm, has been extensively investigated fof i

proving the performance of the PSO algorithm [42], [45]. The
hybridization of the DE algorithm could not only guarantee

the diversity of thepbest and gbest but also enhance the No
capability of escaping from the local optima. In this paper, ——Lmma —

the DE algorithm exploits thgbest of all particles with the 4LYes

aim of generating new improved positions according to the - ~

following steps. \_End )

tiol;|:rst, a mutant vector is generated by the mutation Operﬁé. 3. The flowchart of DNSPSO algorithm

v;,j = pbest; j + I * (pbest,, ; — pbest., ;) (7)
IV. SIMULATION EXPERIMENTS
wherer; andr, are random numbers which are in the range

of [1,2,..., N]; and F' represents the mutation facter|0, 1]. A. Experiments Setup
Then, a trial vector is replaced with the mutant vector if To verify the validity of the proposed DNSPSO algorithm,
the randomly generated numberis less than the crossoverexperiments are conducted on 14 benchmark functions in
constantC R, otherwise, it takes value of the curregsitest:  terms of unimodal functions, multimodal functions and teta
. multimodal functions [31], [37], [41]. It should be pointedit
Ui i = { Vij if r< CR 8) that the developed DNSPSO algorithm aims to improve the
7 pbesti j, otherwise performance of PSO on complicated multimodal optimization
problems.f(x) and f2(x) are unimodal functions which are

Finally, the pbest; and gbieSt are updated by the WINNET -1 ssen as the first group of benchmark functions. The second
between the generated trial vector and the correspondin

- . . IBup is composed of seven complex multimodal functions
original values, in terms of the values of fitness fUI’ICtIOﬁ P P P

. L ) f3(x) — fo(z)) which contain a large number of local optima.
(taking the minimization problem as an example): The third group includes four rotated multimodal functipns

pbest; = u;, if f(us) < f(pbest;) where the rotated \_/ariablyz is generated by left multiplying
{ gbest = ug, if f(u;) < f(gbest) (9)  an orthogonal matrix/, described ag = M * . Note that
the orthogonal matrix is generated by using the Salomon’s
Hence, the DE algorithm is integrated perfectly into the-pranethod [31]. The detailed information of all the benchmark
posed DNSPSO approach, and the flowchart of the propodadctions is shown in Table Il, where “Acceptance” représen
DNSPSO algorithm is illustrated in Fig. 3. the threshold for determining whether solutions found bpPS
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TABLE IlI gets the global resultg,,;, on fs and fs. In addition, the
SELECTEDPSOALGORITHMS proposed DNSPSO algorithm achieves the best performance
Algorithm Parameters Reference] 0N fs and fs in terms of the mean value and best value.
PSO-LDIW w:0.9—04,c1 =co =2 [34] For fy, the DNSPSO algorithm, the PSO-TVAC algorithm,
PlfgC-)TXAKC w: 0-9—0-‘3%5 2.5 —0-5&% ;18-5 —25 [[3;3(]’1 the LEPSO algorithm as well as the SLEPSO algorithm all
- w : 0. ,c1 =c2 = 1. . . . . . .

SPSO Automatically chosen 3] find a sausfactory solt_mon. It is worth mentioning that et
LEPSO w09 —04d,c1 =ca =2 [ PSO algorithms obtain the same mean value and best value
SLEPSO Automatically chosen [42] on the fy function, which reflects the fact that the Penalized
DNSPSO Automatically chosen Proposed | - hroblem is easily trapped in the local optimum.

For multimodal problems with rotation, the developed
DNSPSO algorithm outperforms the other 6 PSO algorithms.
In particular, the DNSPSO algorithm has remarkable perfor-
éraances when solving the functions ff;, f1o and f4. That
iS, only the DNSPSO algorithm can achieve the accuracies of
10-17 on f11, 0.8 on fi2, and38 on f14. For f1, the LEPSO,

. . LEPSO, and DNSPSO algorithms find a close solution,
PSO-CK algorithm [6], the SPSO algorithm [38], the I‘EPS(\?vhere the results of the SLEPSO and DNSPSO algorithms

algorithm [1] and the SLEPSO algquthm [42]. - are slightly better than the result obtained by the LEPSO
In the proposed DNSPSO algorithm, the transition proba:~ ~ . .
. . L . algorithm. Meanwhile, the proposed DNSPSO algorithm ranks
bility = is set to be 0.9, and the initial state is set as 1 (the o . : .
. . “ second onfi3, which is quite close to the first obtained by the
convergence state). The size of two neighborhopliss( and LEPSO algorithm. It should be pointed out that the results of
gbest) is 5. In the DE algorithm, the mutation factérlinearly 9 ‘ b

increases from 0.5 to 1, ar@R linearly decreases from 0.9 tooptlmlzatmn pro_ble_ms_ with rotation are generally worsgrth
. .. those of the optimization problems without rotation, whish

0.4. Note that the parameters of the other six PSO algorithm . .
. . related to the increase of the problem complexity.

are set according to the corresponding references as smown’i

Table 1I. , , i i C. Comparisons of Convergence Performance
In our simulation, the swarm contains 30 patrticles, and theI is Kk h ; is of kev i
dimension of all benchmark functions is 30. The number of 't IS Known that convergence performance s of key impor-

fitness evaluations (FEs) is set to be< 10%. Each experi- tance to evolutionary algorithms. The mean FEs, successful

ment is repeated 30 times independently for each benchm$HE (SR(%)) _anc_zl success performam_:e (S.P) are sele_cte_zd as
function. performance indices [47] for comparison in a quantitative

manner, which is shown in Table V. The mean FEs stands for
_ _ the average evaluation number required to reach an acéeptab
B. Comparisons on the Solution Accuracy solution, notably, it only takes the “successful” trailsadf 30
In order to comprehensively evaluate the solution quality @uns into account. SR(%) represents the successful pagent
the PSO algorithms, the mean value, best value and standafr@®0 trails for each test function. As some PSO algorithms
deviation (Std. Dev.) value of each benchmark function atannot search the optimal solution in every trail on somefun
summarized in Table IV, where the best results are highéighttions, the mean FEs cannot comprehensively demonstrate the
in boldface. For simplicity, the convergence processesedm convergence performance of PSO algorithms. Therefore, SP
fitness values for 7 PSO algorithms applied to 6 typicidd exploited to further evaluate the evolutionary perfonce
benchmark functions are graphically shown in Fig. 4. whereSp = MeanFEs |n addition, the ranks of SP and SR
We can see that the DNSPSO algorithm achieves the bftstthe selected PSO algorithms are also presented in Table V
performance on most of 14 test functions among the 7 P3Oshould be mentioned that the corresponding SP ranking is
algorithms. In particular, the DNSPSO algorithm ranks firgt if there is no successful trail for a function.
on 12 functions f1, fs3-f12, and f14) according to the mean It can be clearly seen from Table V that the DNSPSO
value, and also ranks second gnand fis. algorithm finds a solution within the acceptable threshold f
To be specific, in Table IV, we can see that the SPS&lN test functions, which is verified by the SR index with
algorithm, the LEPSO algorithm, the SLEPSO algorithm, and0% on all the benchmark functions. Notice that some PSO
the DNSPSO algorithm obtain the global minimum 6n In  algorithms fail all trails on some optimization problemer f
addition, the DNSPSO algorithm gets the second best glolealample, PSO-CK fails oryfs, f7, fi0, SPSO fails onf,
mean value which is very close to the best result, with thg,, and PSO-TVAC fails onfis. The proposed DNSPSO
smallest Std. Dev. value fgf. Hence, the DNSPSO algorithmalgorithm yields the highest reliability with 100% on aver-
demonstrates competitive performance on unimodal prablerage SR, followed by LEPSO (98.57%), SLEPSO (92.14%),
For multimodal problems without rotation, it can be clearllPSO-TVAC (85.71%), PSO-LDIW (84.29%), SPSO (60%),
seen that the developed DNSPSO algorithm performs betterd PSO-CK (55%). Therefore, the DNSPSO algorithm is a
than other 6 PSO methods. It can be observed from Table i&liable optimization algorithm with a high success rate on
and Fig. 4 that the solution accuracies are greatly improvedth unimodal and multimodal problems.
by the DNSPSO algorithm when applied to the functions In terms of SP, the DNSPSO algorithm on 14 functions
of fs, f4, fe¢ and fr. Notice that the DNSPSO algorithmranks second overall among the selected PSO algorithms. The

algorithms are acceptable or not. If the obtained solutadis f
within the threshold, it is regarded as a successful result.

The performance of the DNSPSO algorithm is compar
with that of 6 existing PSO algorithms including the PS
LDIW algorithm [34], the PSO-TVAC algorithm [30], the
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TABLE Il
FOURTEEN BENCHMARK FUNCTIONS USED FOR THE COMPARISON

Test Function D Search Space Global Global f,,;,  Acceptance Name
fi 30 [-100,100]"P {0}P 0 0.01 Sphere
fo 30 [-10, 10]P {0}P 0 100 Rosenbrock
fs 30 [-5.12,5.12]P {0}P 0 50 Rastrigin
fa 30 [-5.12,5.12]P {0}P 0 50 Noncontinuous Rastrigin
fs 30 [-32,32]P {0}P 0 0.01 Ackley
fe 30 [-600,600]° {0}P 0 0.01 Griewank
fr 30 [-500,500]°  {420.96}P" 0 2000 Schwefel
fs 30 [-0.5,0.5P {0}P 0 0.01 Weierstrass
fo 30 [—50, 50]° {0}P 0 0.01 Generalized Penalized
fio 30 [-32,32]P {0}P 0 0.01 Rotated Ackley
fi1 30  [-600,600]P {0}P 0 100 Rotated Griewank
fi2 30 [-0.5,0.5]P {0}P 0 10 Rotated Weierstrass
fi3 30 [-5.12,5.12)P {0}P 0 100 Rotated Rastrigin
f1a 30 [-5.12,5.12]P {0}P 0 100 Rotated Noncontinuous Rastrigin

D represents the dimension of test function.

TABLE IV
THE COMPARISONS OF SEARCHING RESULTS AMONG SEVERSOALGORITHMS ON FOURTEEN BENCHMARK FUNCTIONS

PSO-TVAC PSO-LDIW  PSO-CK SPSO LEPSO SLEPSCDNSPSO

f1 Mean 7.76e-128 1.45e-307 2.50e-323 0 0 0 0
Best value 6.70e-168 3.00e-323 0 0 0 0 0
Std. Dev. 2.45e-127 0 0 0 0 0 0
f2 Mean 20.97 65.84 2.34 26.76 4.88e-30 5.02e-30 4.95e-30
Best value 1.33 12.02 3.52e-21 3.99 0 0 0
Std. Dev. 20.67 99.83 2.66 26.45 1.06e-29  7.75e-3(.70e-30
f3 Mean 17.01 10.94 62.50 54.13 5.07 30.05 1.19
Best value 11.94 4.97 40.79 33.83 0.99 14.92 0
Std. Dev. 3.88 4.01 16.24 15.82 2.46 9.86 1.31
fa Mean 13.70 3.30 36.30 14.70 0.30 1 0
Best value 8 0 17 2 0 0 0
Std. Dev. 3.86 7.72 16.56 10.59 0.48 1.41 0
s Mean 8.70e-15 7.99e-15 1.84 0.79 7.64e-15 6.93e-16.57e-15
Best value 7.99e-15 7.99e-15 0.93 4.44e-15 4.44e-15 484e- 4.44e-15
Std. Dev. 2.25e-15 0 0.55 0.87 1.12e-15 1.72e-15 1.83e-15
fe Mean 0.0275 0.0135 0.0231 0.0152 7.40e-04 0.0079 O
Best value 3.44e-15 0 0 0 0 0 0
Std. Dev. 0.0284 0.0129 0.0226 0.0148 0.00234 0.0105 O
fr Mean 2.03e+03 2.41e+03 5.69e+03 5.84e+03 7.92e+02 2.83e+D.45e+02

Best value 1.30e+03 1.88e+03 4.80e+03  4.94e+03 1.18e+034e403 3.82e-04
Std. Dev. 4.70e+02 5.04e+02 6.11e+02 5.65e+02 4.71e+02 7e40B 4.07e+02

fs Mean 2.42e-14 5.65e-06 2.48 1.69 1.71e-14 1.49e-14.21e-14
Best value 2.13e-14 1.42e-14 1.42e-14 0.00713 1.42e-14 0 7.11e-15
Std. Dev. 3.67e-15 1.79e-05 1.75 2.04 3.67e-15 7.07e-15 4.80e-15
fo Mean 1.57e-32 1.58e-32 0.249 1.57e-32 1.57e-32 1.57e-3R.57e-32
Best value 1.57e-32 1.57e-32 1.57e-32 2.73e-32 1.57e-3257eB2  1.57e-32
Std. Dev. 2.88e-48 4.08e-34 0.3067 0.265 2.88e-48  2.88e-4888e-48
f1o Mean 1.80 1.33 2.97 2.51 7.28e-15  6.93e-156.93e-15
Best value 1.34 7.99e-15 1.78 0.93 4.44e-15 4.44e-18.44e-15
Std. Dev. 0.40 0.98 1.04 0.87 1.50e-15 1.72e-151.72e-15
fi1 Mean 0.0111 0.0182 0.0186 0.0235 1.66e-04 0.005911.11e-17
Best value 0 0 0 0 0 0 0
Std. Dev. 0.0122 0.0233 0.0279 0.0301 5.26e-04 0.00658.51e-17
f12 Mean 459 4.36 10.25 9.99 1.43 3.12 0.819
Best value 2.69 1.58 6.54 6.91 0.199 0.639 9.04e-04
Std. Dev. 1.27 1.31 2.69 2.07 1.07 1.98 0.60
fis3 Mean 41.73 57.21 1.06e+02 66.07 30.35 49.95 38.70
Best value 22.91 40.79 95.68 42.56 21.89 37.81 20.89
Std. Dev. 15.91 15.98 12.00 15.02 6.05 8.15 14.06
f1a Mean 42.00 51.50 74.13 60.81 43.53 59.58 38.10
Best value 20.00 37.00 36.13 38.20 28 27 29
Std. Dev. 25.10 11.77 22.71 15.68 9.77 26.16 7.56

DNSPSO algorithm performs the best ¢n, fi3, and f14, on fg and fs, ranks fourth onf; and f,, and ranks seventh on
ranks second on 5 functiongs( f7, fo, fi0, f12), ranks third f3; andf,. For two unimodal problems, the DNSPSO algorithm
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Fig. 4. Convergence performance on benchmark functions. (a) Rosei (b) Rastrigin. (¢) Noncontinuous Rastrigin. (d) évank. (e)
Rotated Griewank. (f) Rotated Weierstrass.

falls behind three algorithms (PSO-CK, SPSO, and SLEPS®g solution accuracies ¢§ and f, obtained by the DNSPSO
but with extremely close performance. This phenomenon aggorithm greatly surpass the other PSO algorithms, with a
consistent with the fact that particles in the DNSPSO athori rapid decline in the range frodw 10* to 5x 10* FEs, as shown
utilize the information of neighborhoods @best and gbest in Fig. 4. In summary, the developed DNSPSO algorithm
to escape from local optima, which leads to a bigger meaemonstrates satisfactory convergence rate on both uaimod
FEs than the PSO-CK algorithm, the SPSO algorithm, am@thd multimodal problems, and significantly outperformseoth
the SLEPSO algorithm. PSO variants on multimodal problems.

In addition, the DNSPSO algorithm needs smaller mean FEs
when applied to optimizing most multimodal functions wittho . . .
rotation. In particular, the DNSPSO algorithm significantID' Analysis on the Neighborhood Size &

outperforms the other contenders in a landslide by obtginin The selection of neighborhood sizeis of vital importance
three first and two second on five multimodal functions witto the performance of the DNSPSO algorithm. A series of
rotation. Meanwhile, the DNSPSO algorithm gets the largesimulation experiments are conducted to find out how the
mean FEs on thefs and f;, which may be caused byneighborhood size influences the algorithm performance. In
the characteristics of Rastrigin and Noncontinuous Raistri this work, two unimodal functions, three multimodal furoets
functions containing a large number of local optima. Not thwithout rotation and two multimodal functions with rotatio
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TABLE V
THE COMPARISONS OF CONVERGENCE RATE AND SUCCESSFUL RATE AMGNSEVENP SOALGORITHMS ON FOURTEEN BENCHMARK FUNCTIONS

PSO-TVAC PSO-LDIW PSO-CK SPSO LEPSO SLEPSCDNSPSO

f1 Mean FEs 8540 20815 336 312 885 302 514
SR(%) 100 100 100 100 100 100 100
SP 8540 20815 336 312 885 302 514
SP Rank 6 7 3 2 5 1 4
fo Mean FEs 7940 19288 218 199 394 157 238
SR(%) 100 90 100 100 100 100 100
SP 7940 21400 218 199 394 157 238
SP Rank 6 7 3 2 5 1 4
f3 Mean FEs 8140 18600 142 174 17400 10900 31000
SR(%) 100 100 20 40 100 100 100
SP 8140 18600 710 435 17400 10900 31000
SP Rank 3 6 2 1 5 4 7
fa Mean FEs 9130 21600 650 503 17300 522 26500
SR(%) 100 100 90 100 100 100 100
SP 9130 21600 722 503 17300 522 26500
SP Rank 4 6 3 1 5 2 7
s Mean FEs 8960 21400 - 403 4620 363 603
SR(%) 100 100 0 50 100 100 100
SP 8960 21400 - 805 4620 363 603
SP Rank 5 6 7 3 4 1 2
fe Mean FEs 11200 21600 384 312 1400 621 913
SR(%) 40 50 40 50 100 80 100
SP 27900 43200 959 625 1400 77 913
Rank 5 7 4 1 5 2 3
fr Mean FEs 6920 18400 - - 29300 44600 27600
SR(%) 60 20 0 0 100 20 100
SP 11500 92200 - - 29300 223000 27600
SP Rank 1 4 7 4 3 5 2
fs Mean FEs 471 4390 871 1879 18.20 20 29.60
SR(%) 100 100 20 10 100 100 100
SP 471 4390 4360 18790 18.20 20 29.60
SP Rank 4 6 5 7 1 2 3
fo Mean FEs 8420 18700 638 414 2300 275 483
SR(%) 100 100 40 40 100 100 100
SP 8420 18700 1590 1035 2300 275 483
SP Rank 6 7 3 4 5 1 2
fio  Mean FEs - 23895 - - 2070 386 639
SR(%) 0 20 0 0 100 100 100
SP - 119475 - - 2070 386 639
SP Rank 7 4 7 7 3 1 2
fi11 Mean FEs 12.10 9.30 7.70 5.70 8.60 550 4.90
SR(%) 100 100 100 100 100 100 100
SP 12.10 9.30 7.70 5.70 8.60 5.50 4.90
SP Rank 7 6 4 3 5 2 1
fi2  Mean FEs 6920 16700 196 1330 341 119 213
SR(%) 100 100 60 60 100 100 100
SP 6920 16700 327 2210 341 119 213
SP Rank 6 7 3 5 4 1 2
fis Mean FEs 10900 16500 123 113 15500 183 101
SR(%) 100 100 100 100 100 90 100
SP 10900 16500 123 113 15500 203 101
SP Rank 5 7 3 2 6 4 1
f1a Mean FEs 8360 15200 126 112 6830 763 108
SR(%) 100 100 100 90 80 100 100
SP 8360 15200 126 125 8538 763 108
SP Rank 5 7 3 2 6 4 1
Ave. SP rank 5.07 6.21 4.07 3.36 4.43 2.21 2.93
Final SP rank 6 7 4 3 5 1 2
Ave. SR 85.71% 84.29% 55% 60% 98.57%  92.14% 100%
SR rank 4 5 7 6 2 3 1

are chosen for analyzing the neighborhood size. The resultd-or the Sphere optimization problem, the DNSPSO algorith-
of mean value, Std. Dev, mean FEs and SR(%) are shownperforms well with different neighborhood sizes, and the
in Table VI. It should be pointed out that 1) the DNSPS@NSPSO algorithm with a smallgt needs a smaller mean

algorithm obtains the SR of 100% for all selected sevefEs. For a complex unimodal problem and the Rosenbrock
functions with different:; and 2) the results of SP are the samproblem, the performances of the DNSPSO algorithm with
as the mean FEs and are therefore not shown in Table Vl.different & are inconsistent. The results of the DNSPSO
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TABLE VI
INFLUENCES OF DIFFERENT NEIGHBORHOOD SIZES ON SEVEN TYPICAUNCTIONS

Test Function Indicators k=3 k=14 k=5 k=6 k=T
Mean 0 0 0 0 0
Sphere Std. Dev. 0 0 0 0 0
Mean FEs 499.2 504 508.5 514.3 516.3
SR(%) 100 100 100 100 100
Mean 0.3987 6.6967e-30 5.2669e-30  0.3987 0.3987
Rosenbrock Std. Dev. 1.2607 1.4810e-29 1.2581e-29 1.2607 1.2607
Mean FEs 275 247 279.8 341.1 262.1
SR(%) 100 100 100 100 100
Mean 0.7960 0.2985 0.3980 0.7960 1.2934
Rastrigin Std. Dev. 0.9143 0.4806 0.5138 0.9143 1.3308
Mean FEs 30365.1 29351.7  22297.7 29391.6 28442.7
SR(%) 100 100 100 100 100
Mean 7.3960e-4 9.8573e-4 0 0 9.8573e-4
. Std. Dev. 0.0023 0.0031 0 0 0.0031
Griewank Mean FEs 7117 836.7 652 652 689.9
SR(%) 100 100 100 100 100
Mean 645.4901 495.4677 436.2485 923.8213 992.9087
Schwefel Std. Dev. 462.8494  352.4337 628.8176 703.7634 495.0306
Mean FEs 23031 25723.1 29288.6 23205.7 14687.8
SR(%) 100 100 100 100 100

Mean 6.9278e-15 6.9278e-15 6.9278e-15 6.9278e-15 6.9278e-15

Rotated Ackley Std. Dev. 1.7161e-15 1.835e-15 1.835e-15  1.7161e-154980e-15

Mean FEs  622.8 643.6 638.8 642.3 655.5
SR(%) 100 100 100 100 100
Mean 00017 33307617 33307617 0 3.2627e-05
. Std. Dev. 00037  7.4934e-17 7.4934e-17 0 1.0317e-04
Rotated Griewank  \1o-n FEs 55 45 4.9 55 42
SR(%) 100 100 100 100 100

algorithm whenk = 4 andk = 5 are much better than thoseare automatically adjusted via the switching learningtsgya
of other neighbor sizes. For multimodal functions withoulepending on the searching state. Particles in the DNSPSO
rotation, the DNSPSO algorithm witk = 4 and &k = 5 algorithm share information through the developed distanc
demonstrates competitive performance on the Rastrigin dpalsed dynamic neighborhood where the personal best particl
Schwefel functions, and it can provide outstanding perfoand the global best particle are replaced by the randomly
mances on the Griewank whéenis 5 and 6. Furthermore, theselected particles in their corresponding neighborhobds-.
DNSPSO algorithm with different neighborhood sizes olstainhermore, the DE algorithm has been utilized to further expa
the same result on the rotated Ackley function. In particulahe search space of the particles. Experimental resulte hav
the DNSPSO algorithm achieves the global optimum on tiskown that the DNSPSO algorithm outperforms six PSO vari-
rotated Griewank problem when the neighborhood dizis ants on 14 widely used benchmark functions in terms of the
set to 6. solution quality and convergence performance, especiafly
Based on above discussions, therefore, we can summandaenplicated multimodal optimization problems. The infloen
the effects of neighborhood siZzeon the performance of the of neighborhood size on the performance of the DNSPSO
DNSPSO algorithm, which are: 1) the influence of neighalgorithm has also been comprehensively investigated and
borhood sizek on the performance of DNSPSO algorithndemonstrates that the selection of neighborhood size @lozul
depends on the characteristic of optimization problemstti® determined based on the property of the optimization proble
unimodal optimization problems, the neighborhood sizelian and the swarm size. In the future, we aim to further improve
chosen as a small value. A large neighborhood size is saitatiie convergence rate of the developed DNSPSO algorithm. We
for multimodal problems, especially the rotated multimlodavill also apply the DNSPSO algorithm to other research fields
ones; and 2) the neighborhood size is related to the swasnch as event-triggered state estimation [9], moving lbariz
size. In this paper, the neighborhood size is set /dsof the estimation [50], [51], [52] and the self-organizing RBF nalu
swarm size. network [12].
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