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Abstract The particle filtering algorithm was introduced in
the 1990s as a numerical solution to the Bayesian estimation
problem for nonlinear and non-Gaussian systems and has
been successfully applied in various fields including physics,
economics, engineering, etc. As is widely recognized, the
particle filter has broad application prospects in networked
systems, but network-induced phenomena and limited com-
puting resources have led to new challenges to the design
and implementation of particle filtering algorithms. In this
survey paper, we aim to review the particle filtering method
and its applications in networked systems. We first provide
an overview of the particle filtering methods as well as net-
worked systems, and then investigate the recent progress in
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the design of particle filter for networked systems. Our main
focus is on the state estimation problems in this survey, but
other aspects of particle filtering approaches are also high-
lighted.
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Introduction

In recent years, many fruitful results have been published
regarding Bayesian inference. Analytically tractable solu-
tions to the Bayesian inference, however, exist only for a
limited class of models. Enormous research efforts have,
therefore, been put to develop approximate solutions for the
Bayesian inference, among which the particle filtering meth-
ods, using the sampling-based approximation techniques,
have gained increasing popularity due to their ability to
provide an arbitrarily close approximation to the true prob-
ability density function (PDF). Particle filtering approaches
have been found to be especially attractive for nonlinear/non-
Gaussian filtering problems where the assumptions enabling
the Kalman-type filters are violated.

On another research frontier, with the rapid development
of wireless communication technology, networked systems
have found applications in a wide range of areas such as
process monitoring, formation control, tele-operations, etc.
Despite their advantages such as structural flexibility and low
cost, networked systems have given rise to new challenges to
traditional state estimation approaches. The challenges come
mainly from two aspects: (i) there may be certain degree of
information loss due to the limited network resources and, (ii)
the trade-off between accuracy and communication costmust
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be addressed, especially for large-scale networks. Further-
more, the constraints on communication cost are highlighted
when particle filteringmethods are applied to networked sys-
tems.

The purpose of this paper is to provide a thorough and
timely review of existing results on particle filtering meth-
ods and their applications to networked systems. The rest of
this paper is organized as follows. In Sect. 2, the basic idea
of the particle filter is introduced, and some improvements
on the existing particle filtering algorithms are discussed.
State estimation for networked systems are studied in Sect.
3, where existing filtering algorithms addressing network-
induced phenomena are discussed and distributed filtering
methods are briefly reviewed. In Sect. 4, the applications
of particle filtering methods to the state estimation of net-
worked systems are investigated. Particle filtering under
network-induced phenomena and particle filtering for net-
worked systems are reviewed, respectively. Conclusions and
future research topics are presented in Sect. 5.

Particle filter

Basic ideas

It is known that the Kalman-type filters are not suitable
for state estimation for systems with non-Gaussian noises
and/or strong nonlinearities since the Gaussian assumption
on the state posterior is no longer valid. Particle filtering (PF),
with the capability of approximating PDFs of any form, has
received considerable attention among researchers and engi-
neers since it was proposed in the 1990s. For some excellent
research reviews on particle filtering method, the readers can
refer to [1–3], to name just a few.

Next we will briefly introduce the basic principles of par-
ticle filtering. Consider the state space model given by{
xk+1 = fk (xk, vk)
zk = hk (xk, nk)

(1)

where {xk, k ∈ N } is the state sequence which is of inter-
est to us; {zk, k ∈ N } is the observed signal sequence; fk :
Rnx × Rnv → Rnx and hk : Rnx × Rnn → Rnz are both
nonlinear functions; vk and nk are the process noise andmea-
surement noise, respectively, both of which are assumed to
be an independent identical distributed (i.i.d.) process.

Our aim here is to estimate, in a recursive manner, the cur-
rent state xk given themeasurements up to time k, denoted by
z1:k := {zi , i = 1, 2, ..., k}. The Bayesian method for state
estimation seeks to construct the posterior PDF p(xk |z1:k)
in which the complete statistical information of xk is con-
tained. Suppose that p(xk−1|z1:k−1) is available at time k,
then p(xk |z1:k) can be obtained through the following two-
stage calculation:

p(xk |z1:k−1) =
∫

p(xk |xk−1)p(xk−1|z1:k−1)dxk−1 (2)

p(xk |z1:k) = p(zk |xk)p(xk |z1:k−1)∫
p(zk |xk)p(xk |z1:k−1)dxk

(3)

Therefore, as long as we know the initial PDF p(x0|z0), we
can, in theory, obtain p(xk |z1:k) using formulas (2) and (3)
recursively at each filtering period.

For linear systems with Gaussian additive noise, (2) and
(3) can be solved analytically to obtain p(xk |z1:k) and the
state estimate x̂k which maximizes p(xk |z1:k) is exactly the
solution of Kalman filter. For systems with a more gen-
eral form, however, the analytical expression of p(xk |z1:k)
is usually unavailable due to the computationally intractable
integrals in (2) and (3). When this is the case, one can apply
particle filtering algorithm to obtain an approximation of
p(xk |z1:k). Particle filter is a sequentialMonte Carlomethod,
the basic idea of which is to represent the state posterior
p(xk |z1:k) by a set of particles

{
xik, i = 1, 2, . . . , Ns

}
with

associated weights
{
wi
k, i = 1, 2, . . . , Ns

}
:

p(xk |z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xik) (4)

where Ns is the number of particles, δ(·) is the Dirac delta
function, and the weights are normalized such that

∑
i w

i
k =

1. In this way, the integrals in (2) and (3) are transformed
into summations which are easier to calculate.

Now it is natural for one to ask that how could we sample
from p(xk |z1:k) which is unknown to us. Particle filter does
this by means of importance sampling. Suppose that there
is a probability density q(xk |z1:k) which is known to us and
fromwhichwe can draw samples easily. Typically we choose
q(xk |z1:k) such that the recursion

q(xk |z1:k) = q(xk |xik−1, zk)q(xk−1|z1:k−1) (5)

is satisfied. Then, the particle representation of p(xk |z1:k) is
given by

p(xk |z1:k) ≈
Ns∑
i=1

w̃i
kδ(xk − x̃ ik) (6)

where x̃ ik ∼ q(xk |z1:k) (i = 1, 2, . . . , Ns) is the set of par-

ticles; w̃i
k ∝ p(xik |z1:k)

q(xik |z1:k)
is the normalized weight of the i th

particle. The density q(xk |z1:k) is called importance density
and its distribution is called proposal distribution.

In practical applications, one is normally more inter-
ested in sequential implementation of the Monte Carlo
approximation in (6), that is, to represent p(xk |z1:k) using
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p(xk−1|z1:k−1). Suppose that at time k, we have the follow-
ing discrete approximation of p(xk−1|z1:k−1):

p(xk−1|z1:k−1) ≈
Ns∑
i=1

w̃i
k−1δ(xk−1 − x̃ ik−1) (7)

Note that

p(xk |z1:k−1) =
∫

p(xk, xk−1|z1:k−1)dxk−1

=
∫

p(xk |xk−1)p(xk−1|z1:k−1)dxk−1

≈
∫

p(xk |xk−1)

Ns∑
i=1

w̃i
k−1δ(xk−1 − x̃ ik−1)dxk−1

=
Ns∑
i=1

{∫
w̃i
k−1 p(xk |xk−1)δ(xk−1 − x̃ ik−1)dxk−1

}

=
Ns∑
i=1

w̃i
k−1 p(xk |x̃ ik−1)

Therefore, if we draw samples x̃ ik ∼ p(xk |x̃ ik−1) for i =
1, 2, . . . , Ns , the prediction density p(xk |z1:k−1) can be
approximated by

{
x̃ ik, w̃

i
k−1

}
, i = 1, 2, . . . , Ns . Further-

more, since

p(xk |z1:k) = p(zk, xk |z1:k−1)

p(zk |z1:k−1)
= p(zk |xk)p(xk |z1:k−1)

p(zk |z1:k−1)

∝ p(zk |xk)p(xk |z1:k−1)

the importance weights of x̃ ik should be updated as follows:

w̃i
k ∝ w̃i

k−1 p(zk |x̃ ik) (8)

for i = 1, 2, . . . , Ns .
The weight update formula in (8) can be extended directly

to the more general case where the importance density is
selected as q(xk |z1:k) satisfying (5):

w̃i
k ∝ w̃i

k−1

p(zk |x̃ ik)p(x̃ ik |x̃ ik−1)

q(x̃ ik |x̃ ik−1, zk)
(9)

The standard particle filtering algorithm introduced above is
also termed as sequential importance sampling (SIS) algo-
rithm. For clarity, we present its pseudo code in Algorithm 1.

Algorithm 1 Sequential Importance Sampling Algorithm

Initialize {x̃ i0, w̃i
0}.

for k = 1, ..., N − 1 do
Sample x̃ ik ∼ q(x̃k |x̃ ik−1, zk).

Update weights according to w̃i
k ∝ w̃i

k−1
p(zk |x̃ ik )p(x̃ ik |x̃ ik−1)

q(x̃ ik |x̃ ik−1,zk )
.

end for

Although [4] is widely recognized to be the work which
lays the foundation for modern particle filtering, the history
of the Monte Carlo method can trace back to the 1940s [5].
In [5], the Monte Carlo method is introduced by Metropo-
lis as a branch of statistical mechanics where one’s major
concern is the collective behaviour of a group of particles. A
statistical study based on samples (particles) drawn from all
possible events is suggested to avoid dealing with multiple
integrals or multiplications of the probability matrices. Soon
after that, the Markov Chain Monte Carlo (MCMC) method
was proposed by Metropolis inspired by the search of ther-
modynamic equilibrium through simulation [6]. The major
finding is that one does not have to know the exact dynam-
ics of the system in the simulation; instead, he only needs
to simulate a Markov chain which has the same equilibrium
as the original system. This scheme for simulation is then
referred to asMetropolis algorithm. The generalized version
of Metropolis Algorithm, also known asMetropolis-Hasting
MCMC (MH-MCMC) algorithm, has been proposed in 1970
[7]. A thorough introduction of the MCMCmethod could be
found in [8] and [9]. In the following, we will briefly intro-
duceMH-MCMC algorithm to show how the idea ofMCMC
algorithm is implemented.

To draw samples from π(x), we construct a Markov chain
with π(x) as its invariant distribution, i.e.,

p(xk) → π(x)ask → ∞, for any p(x0)

where p(xk) is the marginal probability of the Markov chain
and p(x0) is its initial value. It is known that a Markov chain
is characterized by the initial probability p(x0) and the tran-
sition probability T (xk+1|xk). In the MH-MCMC algorithm,
p(x0) can be chosen arbitrarily and the state transition is real-
ized by sampling from a proposal distribution q(x ′|xk) and
accepting the new sample x ′ with the following probability:

A(x ′, xk) = min

(
1,

p(x ′)q(xk |x ′)
p(xk)q(x ′|xk)

)
.

If the proposal is accepted, the Markov chain state will be
updated by x ′, i.e., xk+1 = x ′; otherwise it remains at xk ,
i.e., xk+1 = xk .

The pseudo code of MH-MCMC algorithm is given in
Algorithm 2.

The introduction of MCMC method here is out of three
considerations. First, it shares the similar idea with particle
filtering. Specifically, both of them represent the unknown
target distribution by a set of randomly drawn samples to
avoid the intractable integrals. Second, it has been combined
with the standard particle filter, as shown later, to reduce
the problem of sample depletion in particle filter. Third, the
missing data problems, which are one major concern of this
survey due to their universality in networked systems, have
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Algorithm 2 Metropolis-Hasting MCMC Algorithm
Initialize x0.
for k = 0, 1, ..., N − 1 do
Sample x ′ ∼ q(x ′|xk).
Sample u ∼ Uni f orm (0, 1).

if u < A(x ′, xk) = min
(
1, p(x ′)q(xk |x ′)

p(xk )q(x ′ |xk )
)
then

xk+1 = x ′.
else
xk+1 = xk .

end if
end for

been tackled by researchers using certain forms of MCMC
method, such as the Gibbs sampler [10] and other data aug-
mentation methods.

Comparing the importance sampling with the MCMC
method, we see that both can obtain samples from a PDF that
is known to us up to a normalizing constant. Nevertheless,
some key differences between them should be noted. In the
importance sampling, no iterations are involved, but the sam-
ples obtained are associated with different weights, which
implies a lower computational efficiency since particles with
different weights take up the same amount of computational
resources. By contrast, all the samples obtained are equally
weighted in the MCMC method. However, the MCMC
method requires iterative sampling from the proposal dis-
tribution to ensure that the invariant distribution is finally
reached, which can be time prohibitive in some real-time
applications.

Before moving on to discuss some related problems of
particle filtering, we will at first give a brief review on the
convergence results. In practice, one cannot apply the particle
filtering method with confidence until satisfactory answers
are given to the following questions:

• Could the particle approximation of p(xk |z1:k) converge
asymptotically to the true p(xk |z1:k) and in what sense?

• Is there error accumulation over time?

In [11], the lawof large numbers for particle filtering has been
established. It is proved that the particle representation con-
verges almost surely to the quantity of interest as the number
of particles tends towards infinity. The law of large numbers,
however, does not provide a measure of the approximation
error which is usually of more interest to practitioners. Here
it is natural for one to think of the central limit theoremwhich
can offer the probability distribution of approximation error.
Unfortunately, the classical central limit theorem, assuming
that samples are drawn independently from the same distrib-
ution, does not apply to the analysis of particle filteringwhere
there is interaction between particles.

A comprehensive survey of convergence results on par-
ticle filters could be found in [12] where almost sure con-

vergence and mean square convergence of particle filtering
are studied, respectively. Note that the mean square conver-
gence results stated in [12] relies on some strict assumptions.
For example, the convergence of mean square error has only
been established for bounded functions, which has excluded
f (x) = x , meaning that this convergence result does not
apply to the classical mean square estimation. Furthermore,
it has been shown in [12] that the error accumulation seems
to be inevitable, unless certain mixing conditions on the
dynamic model (thus the true optimal filter) are satisfied.
This also explains why particle filtering is not suitable for
(fixed) parameter estimation. To avoid error accumulation,
one has to increase the number of particles with time, which
may lead to a formidable computation load.

The central limit theorem for particlefilters has been estab-
lished in [13] which, due to its minimal assumptions on the
distribution of interest, applies to various forms of particle
filtering algorithms. The asymptotic variance allows us to
compare the relative efficiency of different algorithms and
assess the stability of a given particle filter. More recently,
the convergence result for a rather general class of unbounded
functions has been obtained (see [14]). Shortly the result was
extended to L p-convergence in [15]. Notably, both the results
in [14,15] require that the unnormalized importance weights
are point-wise bounded. This constraint has been relaxed in
[16] where only boundedness of the second (for mean square
convergence) or fourth (for L4-convergence) order moment
of importance weights is required.

Related problems and improvements

Degeneracy problem

Theoretically, there are an infinite number of possible choices
for the importance density q(xk |z1:k). In practice, some
choices are superior over the others since they are closer
to the optimal importance density p(xk |xik−1, zk) (see [17]).
Here the optimality is defined in the sense that the variance
of the important weights is minimized. In fact, it has been
shown (see [18]) that the unconditional variance of impor-
tance weights can only increase over time, which leads to
a common problem with particle filtering methods, i.e., the
degeneracy phenomenon. Intuitively,we hope that all the par-
ticles are evenly weighted to guarantee the efficiency of the
algorithm. The actual situation, however, is that after a few
filtering iterations, only one particle will have a significant
weight, while all the others play a negligible role in the rep-
resentation of state posterior. Kong et al. introduced in [18]
the effective sample size (ESS) as a measure of degeneracy,
defined as

ESS = Ns

1 + var(w̃i
k)

(10)
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where var(w̃i
k) is the variance of importance weights. It is

clear from (10) that a large variance of importance weights
implies a small effective sample size, hence a severe degen-
eracy.

One way to reduce particle degeneracy is to use opti-
mal importance density p(xk |xik−1, zk) so that var(w̃i

k) in
(10) is minimized. With very few exceptions, however, it
is impossible in practice to evaluate p(xk |xik−1, zk) analyti-
cally. Therefore, many suboptimal schemes for importance
density selection have been proposed. One idea they have in
common is that current measurements should be taken into
account when constructing the importance density. The pro-
posal distribution is said to be an adapted one if the current
measurements are incorporated. The bootstrap particle filter
proposed by Gordon et al. [4] uses the state transition prob-
ability p(xk |xk−1) as the importance density. Even though
the algorithm is simple to realize, it has ignored the current
measurements, which might cause a large deviation between
the predicted particles and the actual support of the posterior
PDF. Compared with the true optimal importance density,
the Gaussian approximation of it is much easier to evaluate.
A variety of tools for the calculation of Gaussian approxi-
mation of p(xk |xik−1, zk) are available, including extended
Kalman filter (EKF), unscented Kalman filter (UKF), etc.
The procedure is rather simple: when new measurements are
received, a Kalman-type propagation is performed to obtain
the Gaussian approximation of p(xk |xik−1, zk). This approx-
imation is then used as the importance density from which
the new set of particles is drawn. The filtering method is
termed as extended particle filter (EPF)/unscented particle
filter (UPF) when EKF/UKF is employed to calculate the
importance density function (see [19,20], respectively).

It has been observed that the mixture structure of particle
filters will cause a great increase in running time when adap-
tation is performed [21]. To adapt the proposal distribution
without a great loss in efficiency, the auxiliary particle fil-
ter (APF) has been introduced, whose basic idea is to carry
out the particle filtering algorithm in a higher dimension.
The motivation is that it is wasteful to draw particles which
will at last be abandoned with a large probability. In the APF
algorithm, an auxiliary variable j i , serving as the index of the
particle x̃ ik−1, is weighted at the beginning of the kth iteration
according to the compatibility of x̃ ik−1 given z1:k . The new set
of particles,

{
x̃ ik, i = 1, 2, . . . , Ns

}
, is then sampled from the

modified state transition probability in which the weighted
index is incorporated. It is revealed in [22] that essentially the
APF method is equivalent to adding a well-designed resam-
pling step (see details below) before each iteration of the
standard SIS procedure.

Generally, the suboptimal proposal distribution should be
constructed on a case by case basis. In [23], a problem-
specific proposal distribution has been designed for radar

tracking based on particle filter. The particle swarm opti-
mization (PSO) has been used in [24] to optimize the
proposal distribution for the simultaneous localization and
mapping (SLAM) problem. In [25], the ensemble Kalman
filter (EnKF) has been employed to define the proposal den-
sity of particle filter for soil moisture estimation.

Another way to reduce degeneracy is to perform resam-
pling at each filtering iteration. Resampling is a procedure
in which particles

{
x̃ ik, i = 1, 2, . . . , Ns

}
are reselected in

accordancewith theirweights
{
w̃i
k, i = 1, 2, . . . , Ns

}
. In this

way, the particles with larger weights will have a greater
number of offspring while those with negligible weights are
simply discarded. The motivation is to conserve our com-
puting resources for the particles which will play greater
roles. After resampling, one gets a new set of particles which
are equally weighted and distributed according to the state
posterior p(xk |z1:k). If resampling is performed after each
iteration of the SIS procedure, such algorithm is referred to as
sampling importance resampling (SIR) algorithm. There are
various resampling schemes, such as stratified sampling [26],
residual sampling [27], systematic sampling [28], exquisite
resampling [29], etc. A recent review of existing resampling
algorithms could be found in [30].

Oneproblemcausedby the resampling step is the so-called
sample impoverishment. It is found that when resampling is
performed, all the particles will locate at the same point in the
state space after a few iterations, implying that the diversity
of particles is lost, which may lead to a severe deterioration
in the capability of particles for representing the state pos-
terior. Theoretically, the problem of sample impoverishment
can be avoided if we are able to resample from a continuous
distribution rather than a discrete one. Based on the above
consideration, the regularized particle filter (RPF) has been
proposed in [31] where the Kernel density is introduced to
approximate the true posterior densitywith a continuous den-
sity function. In [32], the regularized auxiliary particle filter
(RAPF)which combines the RPF andAPFmethods has been
presented to diversify the particles.

The effect of particle impoverishment is especially signif-
icant in smoothing problems where the estimation is derived
based on particle paths. In smoothing estimation, each par-
ticle denotes a complete realization of state evolution rather
than the current state only, which implies that the elements of
a particle, in particular those corresponding to earlier states,
have to be resampledmany timeswith the running of smooth-
ing algorithm.As a result,most particleswill share a common
path, thus incapable of representing the smoothing distribu-
tion. To address this problem, we hope to obtain a different
set of particles which are still distributed according to the
smoothing distribution. As discussed in the previous section,
this can be done by the MCMCmethod. A key step to imple-
ment theMCMCmethod is to construct aMarkov chain with
p(xk |z1:k) as its invariant distribution. In [33], a Gibbs sam-
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pler has been used to update the state of Markov chain. The
Metropolis-Hasting (MH) sampler has been adopted in [34]
to generate new particles. It is also shown in [34] that the sup-
port of the smoothing distribution could be improved through
the MCMC procedure.

Another problem brought up by the resampling step is
the increased computational complexity. This is due to the
fact that resampling is the only step in the particle filter-
ing algorithm that hinders a parallel implementation. Based
on this observation, it is suggested in [35] that the resam-
pling step should be abandoned when its disadvantages
outweigh advantages. In [35], the Gaussian particle filtering
(GPF) method has been proposed where the state posterior
is approximated by a Gaussian distribution whose mean and
covariance are propagated using sequential importance sam-
pling. Since an average is calculated in each iteration over the
entire set of particles, we do not need toworry about the prob-
lem of particle degeneracy any more. Hence there is no need
to resample the particles, i.e., a fully parallel implementation
becomes possible.

Variance reduction

For a given estimation Ik|k (g(xk)) of g(xk) based on z1:k , we
hope its variance is as small as possible. Numerous results
have been reported on variance reduction for particle filter-
ing (see [33] and references therein). In [36], the methods
of SIS, SIR and APF are compared from the perspective of
variance reduction. It is discovered that the resampling step
in the SIR procedure has led to an increase in variance from
two aspects: First, the fact that resampling is performed on a
discrete distribution has introduced dependence among sam-
ples, which further leads to a larger variance compared with
the fully adapted APF algorithm; Second, the randomness
of the resampling step itself has produced an extra variance
term. To avoid the extra variance caused by resampling while
coping with particle degeneracy, a hybrid algorithm is pro-
posed which automatically switches between SIS and APF
according to whether a serious decrease in the effective sam-
ple size is detected.

For state estimation of the jump Markov linear systems
(JMLS), it is suggested that the salientmodel structure should
be made good use of [33]. It is shown that given the current
state ofMarkov chain, the state estimation problem for JMLS
reduces to Kalman filtering, which allows for a closed-form
solution. Taking advantage of this property, one can draw
samples from a lower dimensional distribution, where the
continuous states are marginalized out. A lower dimensional
distribution means a reduced number of particles and thus a
lower computational complexity. Further, it is revealed that
sampling from a lower dimensional distribution will result
in a smaller variance. This approach has borrowed the idea
of Rao-Blackwellization [37] which is especially useful for

nonlinear model with a linear substructure. The well-known
variance decomposition formula

var[τ(U, V )] = var[E{τ(U, V )|V }] + E [var{τ(U, V )|V }]
(11)

forms the theoretical basis of the Rao-Blackwellization
method. From(11), it is not difficult to see that E{τ(U, V )|V },
inwhich the randomvariableV is integrated out, has the same
mean with τ(U, V ), yet a reduced variance. It is therefore
advantageous to integrate out any redundant random vari-
able present in the estimation. Specifically, when state can
be decomposed as x = [xT1 , xT2 ]T , where x1 is conditionally
linear given x2 and measurements z, i.e., p(x1|x2, z) can be
calculated analytically by using the standard Kalman filter,
we can decompose the posterior density in the following way

p(x1, x2|z) = p(x1|x2, z)p(x2|z)

Next we only need to approximate p(x2|z) with a set of
particles {x̃ i2, i = 1, 2, . . . , Ns}. For each particle x̃ i2, a
Kalman filter is designed to calculate p(x1|x̃ i2, z). Particle fil-
ters applying Rao-Blackwellization method are also referred
to asmarginalized particle filter in some literatures [38–40].

Robust particle filter

Up to now, we have assumed, in our particle filter design,
that the system dynamics and noise statistics are precisely
known to us, which might not hold in practical applications.
Various methods have been put forward to robustify the par-
ticle filtering algorithm for systems with unknown statistics.
The box particle filtering, which combines sequential Monte
Carlo method with interval analysis, has been introduced in
[41–43]. Unlike the standard particle filtering method where
particles are points in the state space and likelihood functions
are defined by a statistical model, the box particle filter uses
multidimensional intervals in the state space as particles and
a bounded error model to evaluate the likelihood functions.
The key advantage of box particle filter is the reduced number
of particles required for a specified accuracy in the presence
of model uncertainty.

In [44], a cost-reference particle filtering (CRPF) method
has been proposed, which can be seen as a generalization of
the standardparticle filter. TheCRPFmethod takes advantage
of a basic fact that the methodology of particle represen-
tation and propagation can be applied to any function of
the state as long as it admits a recursive decomposition. In
CRPF, a user-defined cost function, instead of the state pos-
terior as is the case with standard particle filter, is defined
and minimized following a procedure similar to that of stan-
dard particle filter. CRPF has been combined with APF in
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[45] for target tracking in binary sensor networks without
probabilistic assumptions on the model. It is shown that the
CRPF and APF have a similar form when the cost functions
in CRPF are considered as the generalized weights. In [46],
state estimation method which combines the CRPF with H∞
method has been proposed for conditionally linear systems
with unknown noise statistics.

When only hard bounds of the noises are available for filter
design, set-membership theory is a powerful tool for guar-
anteed estimation, i.e., to find the smallest region in the state
space that is guaranteed to enclose the possible states. The
set-membership theory and particle filtering method have
been blended together in [47] where the significance of each
particle is evaluated according to the feasible set given by
set-membership theory. For a class of noises with unknown
time-varying parameters, the marginalized adaptive particle
filtering approach has been studied in [48]. The predictive
density of the noise parameters is approximated under the
principle of maximum entropy so that the uncertainty is not
underestimated. Since the conditional density of noise para-
meters admits an analytical expression given current states,
the marginalization technique is employed in the joint esti-
mation of state and noise parameters.

Efficient implementation of particle filtering algorithms

At the end of this section, we would like to discuss briefly on
the implementation issues of particle filtering. It is expected
that the execution time of PFs could beminimized by exploit-
ing the parallel structure inherent in the algorithms and
allocating the computational tasks of central unit (CU) to
some processing elements (PEs) which run in parallel. As
mentioned previously, resampling is the main obstacle to the
distributed implementation of PF algorithms since all the par-
ticles have to be involved in the resampling step, i.e., it bears
no natural concurrency among iterations. Two algorithms for
distributing the resampling procedure, namely resampling
with proportional allocation (RPA) and resamplingwith non-
proportional allocation (RNA), have been proposed in [49]
where the sample space is divided into several groups and
each PE is in charge of processing one such group. Since
the numbers of particles are distributed unevenly among the
PEs, a particle routing scheme is required to define the archi-
tecture for exchanging particles among PEs. It is a main
focus of [49] to offer a particle routing scheme in which
inter-PE communication is deterministic and independent of
the CU. Another scheme for distributed implementation of
PF algorithms has been proposed in [50], which is based
on decomposition of the state space rather than the sam-
ple space. In the proposed approach, the original state space
is decomposed into two mutually orthogonal subspaces. At
eachfiltering period, samples are drawn sequentially from the
two subspaces. Through state decomposition, the original fil-

tering problem is transformed into two nested subproblems
each of which corresponds to one of the derived subspaces.
The main advantage of such decomposition lies in that part
of the resampling procedure can be implemented in paral-
lel, which facilitates more efficient calculation. Note that
even though the method in [50] resembles that of marginal-
ized particle filtering, it is applicable to any system with no
requirement for a tractable linear substructure.

Networked systems

Introduction of networked systems and
network-induced phenomena

The development of modern science and technology has
given birth to a class of large-scale systems where different
components are distributed spatially but work in a collab-
orative fashion to accomplish certain tasks such as target
tracking, environment perception, processmonitoring,multi-
agent formation control, etc. A key feature of such systems is
that all the nodes are connected by a network through which
local information is shared. In view of this, such systems
are referred to as networked systems to distinguish from the
traditional ones. Networked systems have many attractive
characteristics such as lower cost, reduced energy consump-
tion, configuration flexibility, enhanced reliability, etc. In
target tracking scenarios, a major advantage of distributed
sensor nodes is that there are always a portion of nodes close
to the target, thus being able to provide measurements with a
high signal-to-noise ratio evenwhen low cost sensing devices
are employed [51]. In this section, we will mainly focus on
state estimation problems for networked systems, i.e., wewill
study how some specific problems arising in networked sys-
tems are treated and how different sensor nodes operate coor-
dinately to provide an accurate estimation of the target state.

We can identify different strategies and architectures to
implement state estimation algorithms for networked sys-
tems. The simplest idea is to send all the raw measurements
obtained at different sensor nodes to a fusion center where
these measurements are processed together. This strategy is
called a centralized filtering scheme. When Kalman filter-
ing algorithm is adopted in the fusion center to derive the
final estimation, we call this scheme centralized Kalman fil-
ter (CKF). Theoretically, CKF can recover the performance
of standard Kalman Filter, i.e., achieve optimal filtering per-
formance in the mean-square sense for linear systems with
Gaussian additive noise. This theoretical optimality, how-
ever, is based on the ideal assumptions that the fusion center
has sufficiently large computation capability and there exists
a perfect communication channel between the fusion cen-
ter and each sensor node, i.e., there are no limitations in
data capacity, signal fidelity, transmission rate, sampling rate,
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etc. Such conditions are rarely satisfied in most real-world
applications. Even if they are satisfied, the filter system is
still poor in robustness, i.e., it will crash in the event of
fusion center failure. Since the 1970s, distributed estimation
schemes, including distributed Kalman filter (DKF), have
been developed to overcome the drawbacks of centralized
filtering schemes. The fundamental idea of distributed esti-
mation is to share the task of data processing among the
whole network. In distributed estimation schemes, each node
first processes its local measurements and then shares the
processed data over the network to derive the global esti-
mate. Distributed estimation has gained increasing concern
since it is more robust to node failure, requires moderate
communication and allows for parallel processing. Compre-
hensive reviewof the distributed estimation approaches could
be found in [52,53].

Unlike general state estimation methods, a distinguishing
feature of state estimation for networked systems is that the
limited capability of communication and local computation
has to be taken into consideration in the algorithm design. In
most cases, sensor nodes employed in the network are low
cost devices (with limited power supply) connected by possi-
bly unreliable channels; so it is unrealistic to expect a perfect
communication performance from them. The communica-
tion problems, also termed as network-induced phenomena,
will cause ambiguity and reduce the informativeness of the
measurements. As a result, the estimation performance will
be degraded to a certain degree. In the following, we will
give a brief introduction about several network-induced phe-
nomena that frequently occur in the networked systems.

Network-induced delay

Time delay is quite common in networked systems where
there is limited access to the transmission medium. Time
delay in networked systems may result from the following
factors:

• Nodal processing: refers to the time required to process
local data and reach a routing decision; including data
collecting and processing, bit error checking and output
link determination;

• Queuing: refers to the time waiting at the output link for
transmission; usually depending on the congestion level
of router;

• Transmission delay: refers to the time required to push all
the bits in packet on the communication medium in use;
also known as store and forward delay; primarily due to
the limited transmission rate of links;

• Propagation delay: refers to the time required for the bit to
reach the target node once it is pushed on to the commu-
nication medium; mainly due to the limited travel speed
of light in a certain medium.

There are various delay models, including constant delay,
randomdelaywhich is independent of previous transmission,
and random delay with the probability distribution governed
by aMarkov chain. It iswidely understood that timedelay can
cause performance degradation or even instability to the sys-
tem. Existing research results have addressed the time delay
in networked systems from two aspects: one is to determine
an admissible upper bound of the time delay for which a pre-
scribed performance can be guaranteed; the other is to design
filtering algorithm for a given time delay to meet certain per-
formance requirements.

Packet dropout

As another network-induced phenomenon, packet dropout
occurs frequently in inter-node communication. Typically the
network has its own mechanism to keep the packet dropout
at a low level so that the system performance will not be
affected. Once the loss rate approach five per cent or higher
(the threshold depends on the applications, for real-timeones,
it should be lower), the user will begin to notice the presence
of communication problems. There are various reasons for
packet dropout, including:

• Congestion: in the Internet Standards, congestion and
packet loss are treated as synonyms. The packet has to
wait in a queue for its turn to be sent when it arrives at
an intermediate node on its route. Once the length of the
queue exceeds the maximum buffer capacity of the node,
some data have to be discarded, which leads to packet
loss.

• Bit errors: during the process of data transmission, it is
inevitable that some bits will be modified, leading to a
mismatch between the value stored in the check bit and
the actual checksum. Once the mismatch is detected by
the receiving router, this packet will be considered as an
erroneous one and hence discarded.

• Limited processing capability: packet dropout will occur
when certain local processors (router/switch) are unable
to keep up with the speed of data traffic. This is a case
of mismatch between communication bandwidth and
processing capability.

• Deliberate discard: some routers have packet discard
policies that allow them to discard certain type of packets
to make room for the ones with higher privilege.

Typically, a Bernoulli distribution is used to describe the
randomness of packet loss, where the probability of loss is
assumed to be fixed. This assumption can effectively simplify
the filter design, and the results obtained have been extended
to the cases where packet loss follows a more general dis-
tribution. Similarly to time delay, packet dropout can also
have adverse effects on state estimation, the severity ofwhich

123



Complex Intell. Syst. (2016) 2:293–315 301

depend on the loss ratio. Existing studies on packet dropout in
networked systems have been focused on the determination
of maximum admissible packet loss rate and filter design in
the presence of packet dropout. Note that with the maximum
admissible loss rate, we can discard some redundant data
artificially to save the network bandwidth without violating
the performance requirement.

Quantization

Analog signals have infinitely variable amplitude and there-
fore have to be quantized before they are transmitted through
the network.Quantization is involved in almost all digital sig-
nal processing. Examples of quantization processes include
rounding and truncation. As a many-to-one mapping, quan-
tization is inherently a lossy process. Considerable research
efforts have been devoted to the selection of information that
can be discarded without significant loss in performance.
The module that realizes the quantization procedure is called
quantizer. Existing types of quantizer include logarithmic
quantizer and uniform quantizer.

Signal fading

Another common phenomenon in network communication
is that the strength of received signals may vary over time,
an effect also referred to as signal fading. It is closely related
to multipath, a propagation phenomenon that results in sig-
nals reaching the receiving antenna by two or more paths.
Multipath propagation can cause fading and phase shifting
of the received signals. Movements of transmitter or receiver
may also give rise to signal fading. Fading can occur in many
forms. When all the frequency components transmitted are
attenuated to the same degree, this type of fading is called
flat fading. Otherwise we say there is a frequency-selective
fading. Existing mathematical descriptions for the channel
fading phenomena include analog erasure channel model,
Rice fading channelmodel andRayleigh channelmodel [54].

Existing results on state estimation for networked
systems

In this section, we will first review some existing results on
state estimation methods designed to address the network-
induced phenomena mentioned above, and then proceed to
investigate some distributed estimation approaches for net-
worked systems.

Treatments of network-induced phenomena

Time delay Early results on filter design for time delay sys-
tems can be found in [55–57]. In [55], the standard Kalman–
Bucy filter has been extended to include delayed mea-

surements. The ordinary differential equations in Kalman
filtering are replaced bypartial differential equations together
with boundary conditions which may not have an explicit
solution. Note that this result is more closely related to the
smoothing problem where the past state is estimated using
current measurements. In [56], orthogonal projection has
been employed to derive the optimal filter for discrete sys-
temswithmultiple time delays. In [57], the same result as that
in [56] has been obtained viamaximum likelihood estimation
for an augmented state. Despite the straightforwardness, this
method is valid only when the random processes considered
follow Gaussian distribution.

The H∞ filter for linear continuous systems with delayed
measurements has been provided in [58]. Like H∞ filter
design without delay, the filtering problem is transformed
to seeking a bounded solution of a Riccati differential equa-
tion. In [59], a less conservative bounded real lemma (BRL)
has been employed in the filter design for systems with
known state delay to achieve a smaller overdesign. A robust
H∞ filtering approach has been proposed in [60] for a type
of uncertain discrete time-delay systems whose parameter
matrices are assumed to belong to a convex bounded poly-
tope. Similarly, the filtering method proposed in [61] also
addresses parameter uncertainty and time delay, but in this
case continuous-time systems are considered and the delay
is assumed to be unknown (only the upper bound is avail-
able). A similar result has been obtained in [62] where an
exponentially stable filter is designed for time-delay sys-
tems with norm-bounded parameter uncertainties. Quadratic
matrix inequalities are adopted in the analysis and design
of the filter. Note that robust filtering approaches in [60–62]
have a common presumption that the original system is sta-
ble, which may to some extent limit the application scope of
the results obtained. As an extension to [59], a robust H∞ fil-
ter has been proposed in [63] to deal with time-varying delay
and polytopic type uncertainties using a more efficient BRL.
The fact that the BRL is applied to the resulting error system
can remove the requirement on a stable system matrix.

Robust filtering for nonlinear time-delay systems have
been investigated in [64–66]. In [64], the nonlinearities are
assumed to satisfy global Lipschitz conditions. A delay-
dependent robust L2/L∞ filter has been designed based on
linear matrix inequalities (LMIs). In [65], full-order filter has
been derived for a general class of nonlinear time-delay sys-
tems with guaranteed mean square boundedness of the error
dynamics. A general class of nonlinear systems with ran-
domly varying sensor delays have been considered in [66]
where conditions for guaranteed H∞ performance are pro-
vided in terms of Hamilton–Jacobi–Isaacs (HJI) inequality.

Recently, extensive studies have been devoted to address
the conservatism of H∞ filtering design due mainly to
inequality scaling in the derivation. The conservatism of
certain filtering method can be measured by the maximum
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admissible delay or the H∞ performance. In [67], the free-
weighing matrix method has been adopted in the H∞ filter
design for systems with time-varying interval delays to
reduce conservatism of the existing results. In [68], a novel
integral inequality has been used to establish the LMI con-
ditions for the existence of H∞ filter without resorting to
model transformation or bounding technique for cross terms
both of which are sources of conservatism.

Recent results on Kalman filtering for time-delay systems
can be found in [69–72]. The novel idea in [69] and [70]
is to reorganize the measurements from different channels
as a delay free system. This reorganized innovation is com-
bined with the orthogonal projection formula to derive the
optimal filter. It is shown that for systems with m delays, the
obtained solution consists of m standard Kalman filters with
the same dimension as the original systems. To reduce the
computational complexity of reorganization innovation, the
equivalent delay free system has been obtained in [71] by
directly solving stochastic equations. The optimal filter and
error propagation formula are then derived through Itô dif-
ferentials of the state expectation conditioned on observation
processes. In [72], a new sub-optimal filter has been pro-
posed in the minimum variance framework. In this method,
only instantaneous terms are used, thereby avoiding the com-
putation of distributed terms. Also, the filter derived in [72]
can be applied to any bounded delay function including non-
continuous delays.

Packet dropout Filtering problems for networked systems
with packet dropout have also received considerable research
attention. Many elegant results have been obtained regarding
this direction. Due to space limitation, wewill only introduce
a small portion of them. A more comprehensive review can
be found in the excellent survey paper [73]. Intuitively, the
missing probability will not affect the boundedness of the
error covariance until it reaches a certain critical value. This
value is identified in [74] based on novel matrix decompo-
sition techniques. The optimal H2 filtering for networked
system with multiple packet dropouts has been considered
in [75] where stochastic packed loss is assumed to follow
a Bernoulli distribution. The stochastic H2 norm is defined,
which generalizes the norm of systems with both determin-
istic and stochastic inputs. The filter which minimizes such
a norm is derived based on the solution of a set of LMIs. The
phenomenon ofmultiple packet dropoutswith amore general
form of missing probability has been treated in [76] where
random measurement loss is allowed to follow any discrete
distribution taking values over the interval [0,1] with known
occurrence probability. The extendedKalmanfilter is derived
through minimizing the upper bound for the filtering error
covariance. For multi-rate sensor fusion with missing mea-
surements, an unknown input observer has been proposed in
[99] to minimize the mean square error.

It is known that packet loss can cause instability to the
filtering system. Stability analysis of Kalman filter for net-
worked systemswith randompacket losses has beenprovided
in, to name just a few, [77–81]. It is shown in [77] that
there exists a critical value of observation arrival probabil-
ity under which the expected error covariance is likely to
grow unbounded. In [78], necessary and sufficient condi-
tions have been obtained for stability analysis of networked
systems with random packet losses characterized by a binary
Markov chain. TheMarkovian packet loss has also been stud-
ied in [79] where the notion of stability in stopping times
is introduced and its equivalence with the stability in sam-
pling times is established, which simplifies the subsequent
stability analysis. The necessary and sufficient conditions
for mean square stability have been derived, respectively,
for second order systems with different structures and high
order systems with a certain structure. In [80], convergence
of the error covariance has been analyzed for a rather general
class of packet dropping models and alternative performance
measures are introducedwhen the expectationof error covari-
ance cannot be well defined. The asymptotic behavior of the
random Riccati equations (RRE) which describe the evolu-
tion of estimation error covariance in Kalman filter has been
studied in [81] where sufficient conditions for the existence
and uniqueness of the invariant distribution for the RRE are
derived.

Quantization State estimation for systems with quantized
measurements has been studied in [82] where the quantizer
and the estimator are designed jointly. A logarithmic quan-
tizer is employed whose resulting quantization error can be
regarded as a multiplicative noise. Choices of quantization
density or number of quantization levels are discussed. Fur-
thermore, a dynamic scaling parameter for the quantizer is
introduced to ensure the convergence of estimation error in
unstable systems. In [83], a quantized filtering scheme using
decentralized Kalman filter has been proposed for linear dis-
crete systems with multiple sensors. The innovation process
of each local sensor, instead of local estimation, is quan-
tized to avoid saturation of the quantizer. It is proved that
stability of the filter can be achieved under sufficiently high
bit rate even for unstable systems. The trade-off between
quantization rate and state estimation error is analyzed. The
problem of rate allocation among different sensors is also
considered to enhance the asymptotic behavior of estimation
error. The quantized gossip-based interactive Kalman filter-
ing approach has been studied in [84] where it is proved that
the error covariance sequence at a randomly selected sensor
can converge weakly to a unique invariant measure even with
information loss caused by quantization. In [85], a recursive
filter is designed for power systems with quantized nonlinear
measurements by minimizing the upper bound of the error
covariance.
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Signal fading Kalman filter for networked systems where
local measurements are sent to the fusion center via fad-
ing wireless channels has been investigated in [86]. The
expected error covariance of Kalman filter is proved to be
bounded and converge to a steady state value. Exact recur-
sive formulas are provided to calculate the upper bounds of
error covariance which may serve as an alternative index
to be optimized when the expression of error covariance is
unavailable. Kalman filter with measurements transmitted
over fading channels has been considered in [87] where it
is assumed that the transmission power can be adjusted to
alleviate the effects of fading channels. Sufficient conditions
are obtained to ensure the boundedness of error covariance.
These conditions are then used for power allocation to min-
imize the total power consumed by the network. In [88], the
envelop-constrained H∞ filter has been presented for a class
of time-varying discrete systems. The finite horizon case is
considered and a novel envelope-constrained performance
criterion is proposed to define transition performance of error
dynamics. Borrowing idea from the set-membership filtering
method, an ellipsoid description of estimation error has been
utilized in [88] to transform the envelop constraints into a
set of matrix inequalities solvable using standard software
package.

Apparently, the network-induced phenomena mentioned
above will coexist in a system. A large number of papers
have been published onfilter design for systemswithmultiple
network-induced phenomena. For example, the simultaneous
presence of time delay and packet loss has been addressed
in [89–91]; both quantization and packet dropout have been
taken into consideration in [92]; a filtering scheme has been
recently proposed in [93] which is robust against both chan-
nel fadings and gain variations. For more related results, the
readers are referred to [94–101].

Distributed estimation for networked systems

Another research direction of state estimation theory for
networked systems is distributed estimation methods which
aim to maintain an accurate estimation of certain network
states at each sensor node using measurements from all
sensor nodes in the network. Besides estimation accuracy,
communication overhead and computational complexity also
pose constraints on the filtering scheme to be designed
due to the limited bandwidth and power supply of the net-
work. Early treatments to the distributed estimation problem
can be found in [102–104]. In [102], both measurements
and local estimates are shared among neighboring nodes.
It is shown that asymptotic agreement on the estimates
can be achieved through infinitely frequent data exchange
among sensors which form a communication ring. In [103],
sufficient statistics are extracted from local measurements
and transmitted to a fusion center where the centralized

conditional distribution is exactly reconstructed. Sufficient
conditions have been presented in [104] under which global
sufficient statistics can be expressed as a function of the local
ones.

For distributed estimation, consensus is an important con-
cept and a lot of research efforts have been devoted to it.
Generally, consensus refers to agreement among all themem-
bers of a group. In the specific case of state estimation for
networked systems, we say the network reaches consen-
sus if all the nodes hold an identical estimate of a certain
quantity of interest. As a fully distributed framework, con-
sensus based distributed estimation allows for cooperation
over the network without the participation of a fusion cen-
ter, thereby avoiding over reliance on a certain node. Various
forms of consensus algorithms have been developed to estab-
lish the rule following which inter-node communications are
implemented to reach an agreement among nodes. Average
consensus and gossip consensus are the two major con-
sensus strategies that have been investigated extensively in
recent years. Readers are referred to [105] to obtain a full
understanding of consensus algorithm for networked sys-
tems.

A fully distributed Kalman filter has been proposed in
[106] for sparsely connected, large-scale systems. The global
dynamicmodel is decomposed into low-dimensional subsys-
tems for which local filters are designed. These subsystems
overlap and the common states shared by several nodes
are estimated using fusion algorithm. The centralized error
covariance is derived through a distributed computation
algorithm for matrix inversion, called distributed iterate-
collapse inversion algorithm, which assimilates local error
covariances with computation complexity independent of the
system dimension. In the proposedmethod, each sensor node
only needs to deal with a portion of the system state, which
has significantly reduced the communication and computa-
tion requirements.

In [107], the authors consider a two-stage distributed
Kalman filter which consists of a measurement update step
and a fusion step using consensus algorithm. The interaction
between the filter gain, the consensus matrix and the number
of communications is analyzed in depth. It is proved that the
common practice of minimizing the spectral radius of con-
sensus matrix for fastest convergence is not necessarily the
optimal strategy when only a small number of communica-
tions are available between twoconsecutive samples. It is also
shown that the joint optimization of filter gain and consensus
matrix is non convex and can be analytically characterized
only in some special cases.

A similar two-stage distributed filter has been investigated
in [108]. Sufficient conditions have been obtained to judge
the distributed detectability of the networked system, i.e., the
existence of filter gainswhich ensure an asymptotically stable
error dynamic given a specific choice of consensus weights.
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A sub-optimal filtering scheme is then developed through
minimizing an upper bound on a quadratic cost, and con-
vergence analysis has been carried out for the time-invariant
case.

One significant feature of the two-stage filtering schemes
discussed above is that the consensus communication occurs
at amuch shorter time scale than the operation of local filters,
i.e., it is assumed that there is sufficient time for the network
to achieve consensus through intensive inter-node commu-
nications before the arrival of the next observation. This
assumption, however, does not apply to the cases where there
is a fast target dynamic and/or a high sampling rate. Besides,
the high rate of consensus communication has blurred the
line between distributed estimation and centralized estima-
tion, as argued in [110]. To address this problem, Kar et
al. proposes the gossip interactive Kalman filtering (GIKF)
where consensus communication and observations take place
at the same time scale. As a communication protocol inspired
by social network phenomena, the gossip protocol has found
broad applications, especially in networks with large scale
or inconvenient structures. Readers can refer to [109] for a
detailed overview of recent studies on gossip algorithms. In
[110], the convergence of the GIKF scheme has been ana-
lyzed and the error covariance is shown to evolve according
to a switched system of random Riccati operators where the
switching is governed by a Markov chain determined by
the network topology. Stochastic boundedness of estimation
error and weak consensus of the error covariance have been
established under weak assumptions about detectability and
connectivity of the networked system. The method in [110]
requires transmission of the error covariance, which may be
burdensome for high-dimensional systems. An alternative
approach has been given in [111] based on dynamic consen-
sus on pseudo-observations (DCPO). The network tracking
capacity (NTC) is used to characterize the influence of net-
work topology and observation models on the stabilizability
of DCPO error process. An explicit expression of the NTC is
derived and asymptotic stability of DCPO error dynamics is
established. The averaged pseudo-observations obtained are
then used to construct local filters whose gains are designed
tominimize themean square error (MSE). It is shown that the
method in [111] can achieve lower MSE while maintaining
the major advantage of GIKF, i.e., the inter-node communi-
cation occurs no more frequently than sensor sampling.

Consensus-based distributed least square (LS) estimation
problems have been studied in [112,113]. The authors of
[112] consider the total least square (TLS) estimation for
overdetermined systems where both the input data matrix
and the data vector are assumed to be noisy. A semi-definite
relaxation technique is used to transform the nonconvex
TLSproblem into an equivalent convex semidefinite program
(SDP). At this point, the dual based subgradient algorithm
(DBSA) can be used to solve the distributed TLS problem

without reliance on the computationally expensive SDP opti-
mization procedure. In [113], underdetermined least square
estimation problem has been considered. The requirement
for consensus is expressed as constraints where an auxiliary
variable is introduced to facilitate parallel processing, and the
resulting constrained optimization problem is solved under
the Augmented Lagrangian framework.

Distributed estimation schemes based on consensus algo-
rithms aim to reach an agreement among all the nodes in
the network. However, the ultimate purpose of state esti-
mation problems is to achieve at each node an estimate
that minimizes a predefined cost function, which does not
necessarily require that all nodes provide the same result.
Moreover, it is shown in [115] that the consensus network
can become unstable even if all the local filters are sta-
ble, i.e., cooperation by means of consensus algorithms may
lead to disastrous consequences. Motivated by such observa-
tions, the estimation schemes based on diffusion strategies
have been proposed. As another class of fully distributed
estimation methods, diffusion algorithms make several key
improvements upon the consensus ones, among which the
fundamental one is that agreement is no longer the goal. In
the diffusion Kalman filtering proposed in [114], each node
first adapt its local estimate using measurements from neigh-
boring sensors, obtaining an intermediate estimate, which
is refer to the incremental update step. Then a diffusion
update step is performed by combining (through calculat-
ing a weighted average) the intermediate estimates received
from neighboring nodes. Diffusion filter belongs to the sin-
gle time-scale estimation scheme, i.e., the communication
requirement of distributed filter is comparable to that of the
gossip filter, but diffusion networks can achieve faster con-
vergence rate and lower MSE than consensus networks. In
addition, it is proved in [115] that the stability of local filters
is sufficient to guarantee global stability of network under the
diffusion framework, regardless of the choice of combination
weights.

Particle filter in networked systems

In the previous sections, we have investigated the particle fil-
tering methods and state estimation for networked systems,
respectively. In the cases where nonlinear systems or non-
Gaussian PDFs are addressed, particle filtering becomes a
more suitable choice. The applications of PF to networked
systems, however, have given rise to some new challenges.
This is mainly because in particle filtering methods, a large
amount of particles are required to represent the posterior
PDF, which implies a huge communication burden if local
information is exchanged among nodes. One major con-
cern of particle filtering for networked systems is, therefore,
how to achieve an affordable communication cost while
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maintaining an acceptable accuracy. On the other hand, the
network-induced phenomena should also be addressed when
PF is applied to networked systems. In this section, we
will discuss the applications of PF algorithms to the filter-
ing problems of networked systems, highlighting how the
network-induced phenomena are treated by particle filters
and how, in networked systems, local particle filters work
coordinately to accomplish the state estimation task with an
affordable communication cost.

Particle filter with network-induced phenomena

Particle filtering for systems with missing data

Generally speaking, there are two categories of methods
for missing data problems: guaranteed cost ones and data
imputation based ones. The methods introduced in Sect. 2
obviously belong to the former category. Next we will intro-
duce some data imputation based approaches which aremore
commonly used in Monte Carlo methods. The basic idea
of data imputation is to generate some data which obey the
same distribution as the missing ones. These artificially gen-
erated data will then be regarded as real measurements in the
subsequent processing. It is typically difficult to calculate
the distribution of missing data conditioned on the observed
ones. This being the case, one has to resort to sampling-based
approaches such as the MCMC method introduced in Sect.
2 of this paper.

As a special form of theMCMC approach, Gibbs Sampler
has attracted extensive attention among researchers since its
introduction in [116]. Essentially, Gibbs sampler is an itera-
tive algorithm to draw samples from an unknown distribution
without direct calculation of the density. The pseudo code of
Gibbs Sampler is given in Algorithm 3 where the case of
three random variables, x , y and z, is considered and the
marginal distribution p(x) is of interest to us. The readers
can also refer to [117] for an explanation of the underlying
principle of Gibbs sampler.

Algorithm 3 Gibbs Sampler
for n = 1, ..., N do
Initialize {x (n)

0 , y(n)
0 }.

for k = 0, ..., M − 1 do
Sample z(n)

k ∼ p(z|x (n)
k , y(n)

k ).

Sample x (n)
k+1 ∼ p(x |y(n)

k , z(n)
k ).

Sample y(n)
k+1 ∼ p(y|z(n)

k , x (n)
k+1).

end for
end for
Then {x (i)

M , i = 1, ..., N } can be viewed as N samples drawn from
p(x).

Kong et al. extended theGibbs sampler to sequential impu-
tation which does not require iterations, thus reducing the

computational burden [18]. The sequential imputation uses
samples and associated weights to approximate the unknown
distribution in the presence of missing data, and thus can
be seen as a combination of Gibbs sampler and sequential
importance sampling. As new data arrive, a new sample
is drawn and the augmented data set is updated to include
this sample. The corresponding weight is then determined
according to the quality of the augmented data set. Some
related problems, such as effective sample size, the order of
imputation, the behavior of weights, and sensitivity to the
choice of prior distribution, are also analyzed in detail. An
interesting finding, which is also illustrated by simulation
results, is that the order of imputation can have a huge impact
on the approximation accuracy. To be brief, a “good” data
set cannot play its due role if it is processed after the “bad”
ones because the trail distribution has already been corrupted
by early imputations.

Expectation Maximization (EM) algorithm is another
powerful tool to address missing data problems. An excellent
introduction of it can be found in [118]. The EM algorithm
consists of an expectation (E) step and a maximization (M)
step. These two steps are executed alternately: in the E step,
expected values of themissing data are computed, whichwill
then be used in theM step; while in theM step, the maximum
likelihood estimate of unknown parameters are calculated, to
be used in the next E step. It is guaranteed that the likelihood
function will not decrease after every such iteration. This
implies that only local maximum can be reached, which may
be seen as a deficiency of the EM algorithm. The basic EM
procedure for estimating unknown parameter θ in the pres-
ence of missing data zk is illustrated in Fig. 1 below.

In [119], three EM algorithms have been adopted to treat
the maximum a posteriori (MAP) state estimation for JMLS.
Both the Markov chain and continuous states are unknown
and to be determined. The first algorithm addresses MAP
estimation of the Markov chain. The unknown continuous
states are regarded as missing data and estimated with a
fixed-interval Kalman smoother in the E step. Assuming
the continuous states to be known, the MAP estimation of
Markov chain is then obtained through dynamic program-
ming in theMstep. The second algorithmaims to estimate the
continuous states with the unknownMarkov chain viewed as
missing data. A forward and backward recursion is applied
in the E step to calculate the probability of Markov chain
and a Kalman smoother is used in the M step to compute
MAP estimation of the continuous states. The last algorithm
deals with joint estimation of Markov chain and continuous
states, which is realized through an alternate execution of
fixed-interval Kalman smoother and dynamic programming.
To overcome local convergence of the EM method, stochas-
tic sampling based algorithms have been proposed in [120]
for state estimation of JMLS. Three data augmentation (DA)
algorithms (DA, stochastic annealing DA, and Metropolis-
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Fig. 1 Basic EM procedure for parameter estimation

Hasting DA) are employed and an acceptable computational
cost is achieved. As a special form of MCMC method, the
DAalgorithm can ensure convergence to the globally optimal
solution. In [121], the EM algorithm is applied to estimate
missing data in the Moderate Resolution Imaging Spectrora-
diometer (MODIS) time series for forest growth prediction.

Multiple imputation particle filter (MIPF) has been intro-
duced in [122] where particle approximation is utilized to
performmultiple imputation.Thismethod resembles both the
Gibbs sampler andEMalgorithm. First, multiple imputations
are drawn from a proposal distribution where the true states
are replaced with particle representation which is calculated
regardless of themissingobservations.Next, for each imputa-
tion, a particle filter is performed to obtain an approximation
of the state posterior. We then combine the approximations
derived from different particle filters to give the final particle
representation of the target density. Almost sure convergence
of the MIPF method is established in a later work [123].

Particle filtering for time-delay systems

Asmentioned inSect. 2, transmissiondelayoccurs frequently
in a networked environment, which gives rise to the so-called
out-of-sequence measurements (OOSMs). A great deal of
research has been done to address this phenomenon, but
mostly within the framework of Kalman filtering. The par-
ticle filtering algorithm in the presence of OOSMs has been
studied in [124], where the basic idea is to rerun the parti-
cle filter to incorporate the delayed measurements. A major

drawback of this method is that we have to store the par-
ticles and corresponding weights at each sampling period,
which poses severe challenges to the storage capability of
the processor, especially when the required number of par-
ticles is large. The proposed method in [124] also suffers
from the problem particle degeneracy, but this can be mit-
igated via an MCMC step [125]. In [126,127], a backward
information filter has been adopted to retrodict particles cor-
responding to the delayed measurements. These particles
are then used to recalculate the current weights. The imple-
mentation of backward information filter, however, involves
intensive computation, which may be formidable in some
practical applications.

The above-mentioned methods suffer from either exces-
sive memory requirement or huge computational burden. A
storage efficient particle filter has been proposed in [128]
where only mean and covariance of the particle set need to
be stored. The memory requirement of this method is dra-
matically decreased compared with that of [124], but the
problem of particle degeneracy remains, especially when
the OOSMs contain such a great amount of information
that the original support is not enough to describe the fil-
tering distribution. A selective procedure has been proposed
in [129] to distinguish the OOSMs according to their util-
ity. At every sampling period, a threshold for measurement
selection is firstly calculated through a constrained opti-
mization problem. The measurements whose utility exceeds
the threshold are identified as informative and processed in
the subsequent filtering step, while those with utility below
the threshold are simply discarded. To reduce computa-
tional cost associated with solving the optimization problem,
Gaussian approximation and linearization are employed for
a rapid prediction of the mean square error (MSE) reduction
brought by each delayed measurement. In addition, another
threshold test is conducted to detect particle degeneracy.
Once the effective sample size is found to drop dramat-
ically, which implies that current support can no longer
give an accurate description of the filtering distribution,
the OOSMs are reprocessed through another filtering pro-
cedure which allows for simultaneous adjustment of the
weights and locations of particles, thus avoiding particle
degeneracy.

The exact Bayesian solution to the filtering problem for
OOSMs has been derived in [130]. Different from the stor-
age efficient particle filter [128]whose performance degrades
when the target states do not follow a unimodal distribution,
the exact Bayesian algorithm uses all the past particles and
weights to achieve optimal performance. The cost of opti-
mality, however, is a huge computational overhead, which
limits the application scope of the exact Bayesian algo-
rithm to low-dimensional problems or offline processing.
For nonlinear model containing a linear substructure, two
Rao-Blackwellized particle filtering algorithms have been
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presented in [131] to yield efficient execution and high accu-
racy, respectively.

Particle filtering problem for target tracking in the pres-
ence of signal propagation delay has been considered in
[132]. Due to the interaction between target dynamics and
propagation delay model, neither kinematic state of the
target nor the propagation delay can be determined inde-
pendently, which substantially complicates the problem. To
tackle this difficulty, an augmented state vector is defined
which includes both the time delay and the target state with a
stochastic time stamp. The key of this method is to solve the
unknown delay from an implicit equation. It is shown that
iterative techniques can be used to obtain an approximate
solution to the implicit equation as long as a fairly weak con-
vergence condition is satisfied. The bootstrap particle filter
is employed where iterations are incorporated in the time-
update step to predict the timedelayof currentmeasurements.
The resultant particles have different time stamps with each
other, therefore a time synchronization is performed before
the final estimate is derived.

Particle filtering algorithm with one-step delayed mea-
surements has been studied in [133]. The standard particle
filtering algorithm is modified to take the probable delay into
account. When the latency probability is unknown to the
designer, a maximum likelihood algorithm is proposed to
identify it. The result has been extended to handle multiple-
step randomly delayed measurements in [134], but only the
case of known latency probability is considered.

Particle filtering for systems with signal quantization

For estimation problems with quantized measurements, the
Cramer-Rao lower bound (CRLB) has been derived in [39],
giving an indication on the information loss caused by sig-
nal quantization. Both Kalman filtering and particle filtering
algorithms are developed to handle measurement quantiza-
tion, and the superiority of particle filtering over Kalman
filtering is demonstrated through numerical experiments.
Measurement quantization will induce big error to the fil-
ter system when the values of observed data are large. The
filtering problemwith innovation quantization has been stud-
ied in [135]. A counterexample is constructed to show that
the Kalman filtering may perform below expectation or even
diverge in the presence of quantized innovation. The particle
filter, instead, seems capable of approximating the optimal
filter in the same situation.

It is revealed in [136] that the state conditional on quan-
tized observations can be decomposed into the sum of
two independent random variables, one of whom follows
Gaussian distribution while the other is a truncated Gaussian
random vector. The authors of [136] point out that we only
need to propagate the truncatedGaussian variable, rather than
the sum, since the truncatedGaussian variable has a probabil-

Fig. 2 Taxonomy of PF for networked systems

ity density whose covariance is much smaller than that of the
conditional state density. Taking advantage of the Gaussian
properties, the authors design a Kalman-like particle filter
(KLPF) where a group of Kalman filters are processing in
parallel to obtain minimummean square estimate of the state
conditioned on perfect observations. One major advantage
of KLPF is that the required number of particles is dramati-
cally reduced compared with directly using particle filter as
in [135].

Particle filter for cooperative estimation in networked
systems

As state estimation problem for networked systems has
gained increased research attention, a great variety of particle
filtering schemes for networked systems have been published
in the literature [137]. We can, similarly to that of Sect. 2,
define centralized particle filtering (CPF) and distributed par-
ticle filtering (DPF) according to whether local processing is
performed at each agent. It should be noted that the CPF
method is nothing different from the general form of particle
filtering introduced in Sect. 1, and has the similar shortcom-
ings as the CKF discussed in the previous section. Therefore,
we will present a brief review of the existing CPF methods
in the next paragraph and reserve most of our attention for
the discussion of DPF methods. For clarity, we first present
a taxonomy of different particle filtering approaches for net-
worked systems in Fig. 2.

Centralized particle filtering

Theoretically, the CPF can give the optimal state estimate
if we ignore the error caused by particle representation of
the continuous posterior distribution. The optimality, how-
ever, comes with a high cost, both in communication burden
and computation complexity. The requirement on communi-
cation could be formidable in sensor networks where each
node has limited power supply and thus limited commu-
nication capability. In [138,139], a CPF method based on
state partition and parallel EKF has been proposed for tar-
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get tracking using collaborative acoustic sensors. The major
computation task is efficiently done in the fusion center, thus
freeing sensor nodes from local data processing. To obtain
a proposal distribution which is closer to the state posterior,
a bank of EKFs are used to process data from all activated
sensors concurrently, and a weight sum of these EKF esti-
mations is calculated and taken as the proposal distribution.
An efficient way to store particles has been introduced in
[140] where a compression step is taken before storing par-
ticle states. Simulation results suggest that this scheme can
significantly reduce memory requirement with minimal per-
formance loss.

In a sensor network where the communication capabil-
ity is limited, data are always quantized at each sensor node
before transmission. This, plus the imperfect nature of the
communication channels, should be taken into account by
the fusion center to gain better performance. A channel-
aware particle filtering scheme is put forward in [141] to
address the quantized measurements and fading channels
simultaneously. The likelihood function, in which both data
quantization and channel imperfection are considered, is cal-
culated in three different scenarios. The posterior CRLBs
for the proposed method are also derived. When there is a
constraint on the total number of bits that can be transmit-
ted, bit allocation becomes necessary. In [142], a dynamic
bit allocation algorithm based on approximate dynamic pro-
gramming has been presented. It is shown that the proposed
algorithm can save much of the computational cost while
achieving comparable accuracy with other existing meth-
ods. The amount of transmitted data can be significantly
reduced if sensor nodes are able to distinguish informative
measurements from uninformative ones. The data censoring
performed at each sensor node does exactly this. The particle
filtering with censored data has been studied in [143] where
it is pointed out that even though uninformative measure-
ments are not to be transmitted to the fusion center, the fact
that they are uninformative also delivers some useful infor-
mation for data processing. This information is exploited in
the proposed filtering method through a full likelihood func-
tion, which contributes to an enhanced performance. Strictly
speaking, the method in [143] does not belong to CPF since
KF update is run at each node to obtain the variance of local
innovation based on which the censoring threshold is identi-
fied. However, we introduce it here because, like other CPF
methods, it requires transmission of raw measurements to
eliminate the dependence between local data.

Distributed particle filtering

In the remainder of this section, we will focus on DPF for
state estimation in agent networks. Hlinka et al. presented
a detailed classification of the existing DPF methods (see
[144]). A fundamental distinction between different DPF

methods is whether a fusion center (FC) is present. In the
FC-based DPF scheme, each agent processes its own mea-
surements with a local PF and reports the obtained posterior
to the FC according to a predefined communication proto-
col [145,146]. This scheme is suitable for those applications
where global knowledge is required only in the FC [147].
However, it suffers from two major drawbacks: (1) the filter-
ing performance relies highly on theFC,which implies a poor
robustness against the FC faults; (2) the communication path
is highly dependent on the network topology, once the topol-
ogy changes, which is very common in mobile networks, the
total route table has to be re-established; (3) excessive com-
munication burden is imposed on the nodes which are closer
to the FC. To reduce long-distance communication, a two-
tiered network structure has been proposed in [148] where
some selected nodes, referred to as cluster heads (CHs), are
responsible for processing raw measurements of the nearby
sensors and sending the obtained local estimate to the FC for
a further fusion. In this way, only the CHs are required to be
capable of directly communicating with the FC.

DPF schemes without an FC is also referred to as
decentralized particle filtering. We can further classify var-
ious decentralized particle filtering methods according to
whether all the agents run the particle filter simultaneously
or only a portion of them are in charge of data process-
ing. We refer to the schemes where a portion of activated
agents take the charge of global estimation as leader agent
(LA)-based DPF (see, for example, [149–151]), and term
those with all agents performing particle filtering algorithm
consensus-based DPF (see, for example, [156,158,164]). In
the LA-based schemes, a sequence of adjacent nodes form
a LA path along which the local estimation is accumulated.
Typically, this LA path is constructed dynamically and adap-
tively, i.e., current LA is in charge of selecting the next LA
among its neighbors based on the assessment of their infor-
mativeness. The selection scheme can affect the estimation
accuracy and energy usage to a large degree [152]. Compared
with the LA-based schemes, consensus-based DPFs can
achieve enhanced scalability and robustness against changes
in network topology or node failures. The price for these
advantages is a heavier demand on communication and the
likely delay due to consensus iterations. In view of the fact
that a detailed introduction of both LA-based and consensus-
based schemes has already been provided in [144], we will,
in the following, investigate from a different perspective, i.e.,
wewill focus on how different decentralized particle filtering
methods make a reasonable trade-off between multiple per-
formance index including accuracy, communication burden
and computation complexity.

Ideally, we hope the performance of decentralized parti-
cle filtering methods can reach that of the centralized ones
which is theoretically optimal. Decentralized particle filter-
ing for blind equalization has been studied in [153] where
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each node evaluates the likelihood function of its local obser-
vations and then broadcasts it to the entire network. The
local PF performed at each node thereby has access to the
global likelihood function, and is guaranteed to converge to
the optimal filter asymptotically. Synchronization is required
to ensure that an identical set of particles are generated
at different nodes. It is also shown that the filtering per-
formance could be enhanced via the optimal importance
function, which, however, asks for an extra amount of broad-
cast. A modified method has been proposed in [154] to
reduce inter-node communication by employing paramet-
ric approximations of the remote likelihood function. This
method achieves significant communication reduction with
only moderate performance degradation. The communica-
tion requirement could be further cut down through a protocol
where inter-node connection for message exchange is estab-
lished randomly and each node transmits its local data to only
one remote sensor at each time step [155].

The methods mentioned in the previous paragraph rely on
broadcasting and are thus suitable only for fully connected
networks. Two consensus-basedmethods have been provided
in [155] where inter-node communications are limitedwithin
adjacent nodes. Both methods involve evaluating the global
likelihood function. The first one uses average consensus
to calculate the global likelihood at each node and a quan-
tization step to eliminate the discrepancy between particle
sets at different nodes. To avoid performance degradation
caused by quantization, the second method adopts a modi-
fied minimum consensus algorithm, which borrows the idea
of flooding scheme, to obtain an ordered list of local likeli-
hood functions shared by all the sensor nodes. The merit of
this method lies in that it, unlike the first one, does not require
an infinite number of consensus iterations for a guaranteed
performance.

The consensus-based schemes reduce inter-node commu-
nication at the cost of heavier local computation. This is
desirable in most applications since communication between
nodes typically consumes more energy than local computa-
tion. Similar ideas have been discussed in [156] where a
likelihood consensus (LC)-based DPF method is developed.
The basic idea of LC-based DPF is that the underlying suf-
ficient statistics, rather than raw measurements, should be
exploited in the DPF to avoid redundant communication. A
key step in the proposed algorithm is to obtain a parametric
representation of the local likelihood functions. Specifically,
local likelihood functions are approximated by the sum of
a series of basis functions multiplied by respective coeffi-
cients. In this way, the useful information contained in local
measurements is compressed into certain coefficients. Since
the basis functions are known to all the nodes, the knowl-
edge of corresponding coefficients is sufficient to reconstruct
the likelihood functions. With this approximation, a con-
sensus procedure is carried out to calculate the sum of the

exponential term of global likelihood function which can be
expressed as the product of all the local likelihood functions.
The pseudo code of LC-based DPF is presented in Algo-
rithm 4. An attractive feature of the LC-based DPFmethod is
that its communication cost does not depend onmeasurement
dimensions, which makes it particularly suitable in applica-
tions which involve high-dimensional measurements. Also
note that synchronization is no longer a requirement in the
LC-based method since the likelihood functions exchanged
between nodes are in a parametric form rather than repre-
sented by discrete values.

Algorithm 4 LC-based DPF
At time k(k = 1, 2, ...), sensor node j performs the following steps:

• Resample: for i = 1, ..., Ns , sample x̃ ik−1, j ∼
Ns∑
i=1

wi
k−1, j δ(xk−1, j − xik−1, j ) and associate each x̃ in−1,k

with weight 1/Ns .
• Prediction: for i = 1, ..., Ns , sample xik, j ∼ p(xk, j |x̃ ik−1, j ).• Approximation: for i = 1, ..., Ns , use basis expansion to obtain
a parametric representation of the local likelihood function
p(zk, j |xk, j ), see [156] for more details.

• Consensus: for i = 1, ..., Ns , perform average consensus
to obtain the approximation of the global likelihood function
p(zk |xk, j ).

• Update: for i = 1, ..., Ns , associate xik, j with normalized weight

wi
k, j ∝ p(zk |xik, j ).• Estimation: approximate the global minimumMSE estimation of

xk by x̂k =
Ns∑
i=1

wi
k, j δ(xk − xik, j ).

One shortcoming of the method proposed in [156] is that
current measurements have not been incorporated in the pro-
posal density. This problem has been treated in [157] via
proposal adaptation which is implemented in a distributed
manner. Gaussian distribution is used to approximate both
local and global posteriors, and EKF/UKF is employed to
incorporate local measurements in the local posterior. Fus-
ing local information to obtain a global proposal density
now amounts to running consensus algorithms to calculate
two sums, for global mean and global covariance, respec-
tively, over all sensor nodes. The benefit gained from the
adapted proposal density is twofold: on the one hand, par-
ticles are used with higher efficiency since they are located
in a region of higher likelihood; on the other hand, the least
square approximation in the likelihood consensus will also
have an improved accuracy since the local likelihood func-
tions are approximated in a smaller region.

Another efficient way to implement proposal adaptation
has been proposed in [158] where a set-membership con-
strained particle filtering scheme is developed. It is argued
that the importance sampling step can be implemented in a
distributed fashion if particles are drawn from the prior dis-
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tribution. The prior distribution, however, is a non-adapted
one which has not taken current measurements into account.
This implies that we have to use a large number of particles to
ensure that the posterior density iswell characterized by these
particles because it is possible that the likelihood function is
a very peaked one compared with the prior PDF. A large
number of particles will in turn reduce the efficiency of DPF
algorithmbecause the computational complexity is positively
correlated with the number of particles in a consensus-based
scheme. To overcome this dilemma, we seek to develop
a proposal adaptation scheme with affordable distributed
implementation. The set-membership based adaptation pro-
posed in [158] does exactly this. In this method, each sensor
first determines a local set which approximates the local
posterior density. Local sets at different nodes are then com-
bined using consensus algorithms to construct the global
set which will serve as the global proposal density in the
subsequent importance sampling. The consensus algorithms
are guaranteed to converge in finite iterations, which further
reduces the overall communication cost. The pseudo code of
set-membership constrained DPF approach is presented in
Algorithm 5.

Algorithm 5 Set-membership Constrained DPF
At time k(k = 1, 2, ...), sensor node j performs the following steps:

• Local set calculation: run local particle filter to obtain a parti-
cle representation of the local posterior p̂k, j (xk |z1:k−1, zk, j ) =
1
Ns

Ns∑
i=1

δ(xk − x̃ ik, j ), and construct local set as εk, j = {x :
min
i

x̃ ik, j 	 x 	 max
i

x̃ ik, j } where the inequalities (	) are

component-wise.
• Global set determination: perform max-consensus to construct
the global set εk as the intersection of local sets.

• Prediction: for i = 1, ..., Ns , sample xik, j ∼ pεk (xk, j |xik−1, j ) =
α j 1{xk, j ∈εk }+β j 1{xk, j ∈εk }

c j
p(xk, j |xik−1, j ) where α j 
 β j and c j is a

normalization constant.Also, note that an identical set of particles
are generated at different nodes, i.e., xik, j = xik,m for j �= m.

• Consensus: for i = 1, ..., Ns , perform average consensus to share
the global likelihood function p(zk |xik, j ) across the whole net-
work.

• Update: for i = 1, ..., Ns , associate xik, j with normalized weight

wi
k, j ∝ p(zk |xik, j ).• Estimation: approximate the global minimumMSE estimation of

xk by x̂k =
Ns∑
i=1

wi
k, j δ(xk − xik, j ).

In [159], a Gaussian mixture model (GMM) has been
employed to represent the posterior PDF to circumvent the
transmission of a huge number of particles. In this method,
each node obtains the global statistics through an average
consensus which diffuses local statistics over the network.
Based on the global statistics, an EM algorithm is performed
to estimate the global GMM (see also [160]). The transmis-

sion of GMM representations, however, can be inefficient
for high-dimensional systems since the amount of transmit-
ted data grows with the volume of covariance matrix which
is proportional to the square of state dimension. To achieve
better scalability, a Markov chain distributed particle filter
(MCDPF) has been proposed in [161,162] based on ran-
dom walks on the graph. In the MCDPF method, particles
traverse the network along a randompath andupdate the asso-
ciated weights according to the local measurements at each
node they pass by. The communication overhead of MCDPF
approach depends linearly on the state dimension, which
is particularly suitable for high-dimensional systems. Note
that although data exchange is limited within neighboring
nodes, the MCDPF does not belong to the consensus-based
approaches since no consensus iterations are required. How-
ever, convergence to the optimal filter can only be established
when the number of particles and the length of the random
path both goes to infinity. It is also pointed out in [162]
that, for low dimensional systems, the MCDPF algorithm is
inefficient and GMM representation may be a better choice.
Therefore, one needs to select the most suitable scheme on a
case-by-case basis.

Gaussian mixture model has also been employed in [163]
to develop a soft-data-constrained DPF. In this method, the
global GMM is calculated from local ones using the consen-
sus propagation algorithm. Instead of representing the global
posterior from which the new sets of particles are drawn, the
global GMM is used to pose soft-data-constraints according
to which the local particles are reweighed. The resultant local
particles at each node represent a local posterior closer to the
global one, which implies an enhanced robust against noise
and failures.

Up to now, the consensus-based DPF methods mentioned
have a basic requirement that consensus be achieved before
the arrival of next measurement. In a network with intermit-
tent communication connectivity, however, convergence of
the consensus algorithmbetween every two consecutivemea-
surements cannot be guaranteed, which may lead to severe
performance degradation. A consensus/fusion based DPF
method has been presented in [164] to address this problem.
In this method, an extra filter, referred to as the fusion filter, is
employed at each node in addition to the local particle filter to
diffuse local estimate and reach consensus across the entire
network.Note that the fusionfilter is allowed to run at a differ-
ent rate from the local one, thereby removing the requirement
on convergence between successive measurements. Another
function of the fusion filter is to compensate for the common
information contained in different local estimates which is
a general problem for DPF schemes where local estimates
rather than raw measurements are diffused [165].

Aconstrained sufficient statistic-(CSS)basedDPFmethod
has been provided in [166]. Similarly to the LC-based
approach [156], thismethod also seeks to fuse local sufficient
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statistics (LSS) to the global one. However, no approxima-
tion of the global sufficient statistics (GSS) is involved,which
implies an enhanced accuracy. Communication overhead per
iteration is no longer dependent on the state dimensions (as is
the case with [159,167]) or the number of particles (as is the
case with [158]). It is, instead, proportional to the number of
GSS parameters which is much lower compared with either
scenario mentioned above. To adapt the proposed method
to error prone networks with intermittent connectivity, the
authors of [166] further combine the CSS based DPF with
distributed unscented particle filtering (DUPF) to achieve a
guaranteed performance with fewer number of iterations per
consensus run.

Conclusion and outlook

In this survey, we have reviewed existing results on par-
ticle filter and its applications in networked systems. As
a simulation-based method, particle filter has particular
advantages in complex systems where nonlinearities and
non-Gaussian noises are ubiquitous. It can be seen that the
application of particle filter is still limited by the hardware
resources, therefore, existing results on particle filter design
have mainly focused on the trade-off between estimation
accuracy and computational complexity. It is believed, how-
ever, that with the development of hardware technology and
improvement of computational power, particle filter will find
more extensive applications in various fields.

At last, we point out the following research directions in
the area of particle filter which are worthy of further studies:

• How to incorporate prior knowledge into the design
of particle filter: the efficiency of particle filter is highly
dependent on the number of particles employed to rep-
resent the posterior PDF that is of interest. Without any
prior knowledge, one can only use a large number of par-
ticles for an exhaustive exploration of the state space,
which will result in an excessive computational burden
especially in real-time applications. In the standard SIR
algorithm, prior knowledge can be incorporated in either
the sampling step or the importance step. In the sampling
step, knowledge about the model information or the high
likelihood region can be reflected in the construction of
proposal distribution. Some schemes for proposal dis-
tribution adaptation, such as APF, EPF and UPF, have
already been proposed in the existing literatures. This
idea can be further extended to tackling other types of
prior knowledge such as state constraints and time delay.
In the importance step, one can address, say, signal fading
or quantization, by evaluating a full likelihood function
in which the corresponding occurrence probability has
been incorporated.

• How to deal with model uncertainty and norm-
bounded noise:most particle filteringmethods proposed
in the literature have relied on perfect knowledge about
the model information and noise statistics. This is largely
due to the fact that one is unable to simulate a random
signal without its statistic information. In practical appli-
cations, however, one has to deal with model uncertainty
and randomnoisewithout accurate statistics. This is espe-
cially true for networked systems where the accurate
occurrence probability of network-induced phenomena is
generally unavailable and only an upper bound is known.
In the existing literatures, the CRPF method has been
proposed as an attempt to incorporate the prescribed cost
function into particle filter design. This approach can be
further developed so that the existing results and compu-
tational tools in the field of guaranteed cost filtering can
be applied in particle filter design.

• How to achieve further variance reduction: for parti-
cle filtering, variance reduction can be achieved in several
ways. First, the linear substructure of the dynamic model
should be fully exploited. Linear filteringmethods can be
combined with particle filter to derive an analytical solu-
tion to the estimation of conditionally linear states. This
is justified by the Rao-Blackwell theorem which reveals
that any redundant random variable present in the esti-
mator will cause extra variance. Second, the resampling
step should be performed with more flexibility. On one
hand, in view of the extra variance that resampling has
inevitably introduced, further studies should be focused
on how to circumvent resampling while maintaining an
acceptable ESS; On the other hand, novel resampling
schemes should be developed to address the trade-off
between particle diversity and variance reduction.

• How to apply particle filtering approach in controller
design: the controller design for nonlinear non-Gaussian
systems is a quite challenging problem. Recently, it has
been suggested that the controller design for nonlinear
non-Gaussian systems should be based on the poste-
rior PDF of system states, i.e., the aim of control is to
shape the PDF which is represented by the particles and
the corresponding weights. Therefore, it is of interest
to investigate the interaction between control input and
importance weights, and how the error of particle repre-
sentation affects the performance of control system.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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