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Abstract
Objectives: To evaluate the energy and exergy performances of a designed
ORC system and to quantify loses within the system and measure its output.
The study also assesses the economic performance of the ORC system to
determine the feasibility of the business. Methods: Thermodynamic analysis
assessing the energy performance and cost estimation using manufacturers’
prices to generate generic equations for estimating costs of the components
of the designed ORC system. Findings: The results of the exergy evaluation
of the ORC show a system thermal efficiency of 6.39%, net power output of
3.10kW e, exergy destruction of 9.07kW, and exergy efficiency of 54.6%. The
economic estimation has a capital investment cost of £8,381.98, a specific
investment cost of £2,754.36/kW e, annual savings of £1,233.34, and a payback
period of 6.8years. Novelty: The use of exergetic method of analysis and the
assessment of the potential economic benefits of installing the module in
commercial trucks which form part of the acceptance-criteria, using prevailing
market prices of the ORC system is an obvious novelty in this study. In addition,
the generation and use of curve-fitting plots to obtain the generic equations for
computing the approximate costs of the individual components of the system
is an integral part of the novelty of this work.
Keywords: Organic Rankine cycle; exergy and economic assessment; specific
investment cost; capital investment cost; payback period; exhaust heat
recovery

1 Introduction
Efficiency improvements and reduction in CO2 emissions are the focus of research
trends in internal combustion engines aimed at mitigating climate
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threats from exhaust gases andmeeting tight emerging emissions regulations. Several solutions to these threats, such as exhaust
gas recirculation (EGR) and selective catalytic reduction (SCR), are already developed and in the market, while some are still
developing.However, one attractive optionwith great potential is theOrganic RankineCycle technology forwaste heat recovery.
This concept is seen as crucial, with 60 to 65% of fuel energy lost as heat to the environment via exhaust gas, engine cooling
systems, and charge air cooler (CAC); with exhaust gas accounting for a significant proportion of the exergy, (1). Recovering the
heat in the exhaust gas waste stream would bring about considerable efficiency improvement and fuel saving. Organic Rankine
Cycle system is a promising candidate option for recovering energy from exhaust gases. In the process, the embedded energy
in the exhaust is transferred to the working fluid, which further expands to produce mechanical power at the shaft. ORC is
considered a deployable technology in recovering energy from low -to-medium grade heat sources (230-to- 650oC), (2).

In this study, the ORC model is programmed to recover exhaust heat from a Yuchai diesel engine fitted with EGR and SCR
exhaust after-treatment systems (3). The ORC system has a shell and tube heat exchanger employed as the evaporator, while
the condenser is a plate heat exchanger, and the expander a radial inflow turbine coupled to a generator. The module also
has a recuperator which preheats the working fluid with heat extracted from the superheated vapor exiting the turbine outlet.
The system arrangement also has a bypass valve, which shuts it down when the exhaust conditions are below the minimum
requirement and helps in the turbine warm up. The working fluid adopted in this study is R245fa due to its proven effectiveness
in ICE ORC systems application, (4), (5). The recovered exhaust energy is converted to mechanical power, where it can be
transformed into electricity in a generator or reinjected back into the driveline via belt drive or mechanical coupling and a
damping device. The principle works by transferring heat from the engine exhaust to the working fluid via the evaporator. The
vaporized high-pressure working fluid then expands in the turbine coupled with a generator to produce the desired electrical
power. After expansion, the low-pressure vapor is condensed and returns to the reservoir as saturated liquid, and the cycle is
repeated. The coolant expels some of the system’s heat through the cooling system to the outside environment (6), (7).

Although waste heat recovery economic feasibility and potentials have been reported in several articles and reliable results
obtained, the concept must prove a good return on investment and safety when eventually adopted commercially. This present
study focuses on evaluating the performances of the module by the method of exergy analysis and assessing the economic
benefits of such a conceptualmodel design for heat recovery from the engine of highway trucks.Thework is delineated into three
sections; the first section describes the designed module, relevant parameters, and boundary conditions used in the subsequent
section. The second part evaluates the system’s effectiveness in terms of thermodynamics and exergy analyses, and the final
segment deals with the economic assessment of the ORC system for heat recovery applications in truck engines. In this case,
the potential capital investment costs, specific investment costs, and payback period of deploying the ORC module for heat
recovery in highway trucks are evaluated.

2 Materials and Methods

2.1 Module description

An ORC system coupled to a diesel engine for exhaust heat recovery application was designed and simulated on a GT-
Suite platform using R245fa as a working fluid for an operating speed of 66-132km/h. The ORC model was developed
to generate additional thermal energy with no additional fuel consumption by the truck engine. The exergy analysis and
economic assessment concern with evaluating the heat energy and the potential economic performance quantifiable from the
truck engine’s exhaust gas expelled to the environment. The model for this study corresponds to a Yuchai diesel engine with
characteristics shown in Table 1 commonly used in trucks and other heavy-duty vehicles. These assessments were investigated
at themaximum operating speed of 132km/h, as depicted in Figure 1.The study is not intended to detail the developed system’s
recovery process but focuses on the exergy and economic aspects. Figures 2 and 3 depict the schematic layout and the t-s diagram
of the module, and at the same time, Table 1 presents the necessary experimental parameters used in the exergy evaluation and
costs assessment of the ORC module, as described in the subsequent sections.

2.2 Performance evaluation of the ORC system

A brief outline of the thermodynamic equations governing the ORC system, and used in evaluating the system performance
are as follows:

The electrical output equation of the unit is given as:

Ẇelec = ηmechηgenẆtur −
Ẇp

ηM
(2.1)
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Fig 1. Commercial trucks maximum driving speed [km/hr], (8).

Fig 2. Schematic layout of the designed model
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Fig 3. T-s diagram for R245fa refrigerant used

Table 1. Yuchai 7.26l characteristics , (3)

ITEM SPECIFICATION
Model YC6A280-30
Displacement (l) 7.26
Stroke (mm) 132
Bore (mm) 108
Compression ratio 17.5
Number of Cylinder 6
Number of Valves 4
Maximum Torque 1100 Nm @ 1400-1600rpm
Maximum Power 206 kW @ 2300 rpm
Emission EURO III (bsfc ≤ 205g/kWh)

Table 2. Experimentally generated parameters for exergy analysis
Parameter Condition
Truck Speed (km/h) 119
Brake Power (kW) 90.42
Ambient Temperature (◦C) 26.85
Mass flow rate of working fluid (kg/s) 0.234
Mass flow rate of exhaust gas (kg/s) 0.125
Exhaust gas Specific Heat (kJ/kgK) 1.0829
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Table 3.Module performance results
Indicator Value Unit
Electric Output (Ẇelec) 3.1 kW e

Turbine Power (Ẇturb) 3.37 kW
Pump Power (Ẇpump) 0.36 kW
Evaporator Heating Load (Q̇evap) 47.12 kW
Condenser Cooling Load (Q̇cond) 43.74 kW
Evaporator Effectiveness (ε) 0.86 -
ORC Thermal Efficiency (ηth) 6.36 %

Where Ẇelec, Ẇtur and Ẇp are electricity output, turbine power out and pump consumption, ηmech, ηgen and ηM are mechanical
efficiency, generator efficiency and mechanical efficiency of the pump.

The heat expelled from the system via the condenser is given by the equation:

Q̇out = ṁw f (h4 − h1) = ṁwCpw△Tw (2.2)

Where ṁw f and ṁw are working fluid and coolingwatermass flowrates, h4 and h1 are enthalpies at the various points in Figure 3,
Cpw is the specific heat capacity of the cooling water and △Tw is the change in temperature of the cooling water

The heat input to the working fluid via the evaporator is given as:

Ẇin = ṁexh
(
hexhin −hexhout

)
= ṁw f (h3 −h2) (2.3)

Where ṁexh = mass flowrate of exhaust gas, ṁw f = mass flowrate of working fluid, hexhin , hexhout , h2, and h3 are enthalpies of
exhaust and working fluid as defined in Figure 3.

The evaporator effectiveness is calculated from equation 2.4,

ε =
Q̇Evap,in

ṁexhCp, exh
(
Texh, in −Tw f , in

) (2.4)

Where Q̇Evap,in is the heat absorbed by the working fluid, ṁexh and Cp, exh are mass flow and specific heat of the exhaust gas,
Texh, in is exhaust gas temperature inlet and Tw f , in is the evaporator working fluid inlet temperature.

Thermal efficiency of the ORC unit is given as

ηth =
Ẇtur − Ẇp

Q̇in
(2.5)

2.3 Exergy analysis

The second law analysis in thermodynamic cycles evaluates the primary sources of energy loss in the system and provides
performance assessment and efficiency improvement. Energy conversion systems follow conversion laws; however, energy
destruction always occurs in practical systems. This destruction process is referred to as irreversibility in systems and measures
the inefficiency of the process. In each system component, irreversibility is a mirror image of exergy losses resulting from
irreversibility factors, (9–14) . InORC systems, exergy efficiency highlights the importance of net output and the degree of efficient
energy use. These include:

Exergy balance in the ORC unit

Ein − Eout = Ẇelec + Eheat + I (2.6)

Where Ein, Eout and Eheat represent inlet, outlet, and total heat exergies of the system respectively, and I is the total irreversibility
of the unit.

Overall exergy efficiency of the ORC system is given as:

ηex, ORC = 1−
Ievap + Icond + Iturb + Ipump

ṁexh
[(

hexh, in −hexh, out
)
−Tamb

(
Sexh, in −Sexh, out

)] (2.7)
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Irreversibility in the components are given as expressed, (15).
Ievap = Tamb

[
ṁw f (S3 −S2)− ṁexh

(
Sexh,in−Sexh,out

)]
Icond = ṁw f [(h4 −h1)−Tamb (S4 −S1)]

Iturb = ṁw f [(h3 −h4)−Tamb (S3 −S4)]−Ẇturb
Ipump = Ẇpump− ṁw f [(h2 −h1)−Tamb (S2 −S1)]

(2.8)

2.4 ORC system cost assessment

The ORC system’s cost assessment in this study assumes that the power generation from the system has the same cost price
with the general cost of electric energy in the market. However, the electricity from the system by default is used in powering
electrical appliances on the truck or stored in batteries for further use. The costing process was carried using current year
2020 market prices of the ORC components obtained directly from manufacturers’ sales websites. These were used to plot the
generic equations for calculating the costs of the various system components. The price details of Bowman shell and tube heat
exchanger, (16) were plotted on a curve-fitting tool to generate the equation for estimating the cost of the evaporator. While the
brazed plate heat exchanger catalogue, (17) was used for the condenser and the Green turbine data (18) was used for estimating
the cost of the turbine coupled with a generator and this was compared with prices for expansion turbines from (19), which
showed a good level of comparability, and finally, (20) was used for evaluating the cost of the pump for the working fluid. The
curve-fitting plots used for evaluating the ORC system units costs are presented in Figures 4, 5, 6 and 7.

Thus, the individual costs plus costs of piping and working fluid are summed up to get the ORC module capital investment
cost for the heat recovery application.

The preciseness of the estimates depends on the system’s technical intricacy, the costing method, and suitable contingencies.
Increasing the detailing of the designed system show little variation of the evaluated cost from the actual.

Fig 4. Fitting plot for evaporator cost estimation
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Fig 5. Fitting plot for condenser cost estimation

Fig 6. Fitting plot for turbine assembly cost estimation

https://www.indjst.org/ 3877

https://www.indjst.org/


Thaddaeus et al. / Indian Journal of Science and Technology 2020;13(37):3871–3883

Fig 7. Fitting plot for pump cost

The cost estimations for the ORC primary components were expressed as follows.
CHX ,eva = 0.01352Q̇3

in −1.132Q̇2
in +42.04Q̇in +22.23

Ctu r =−3.535Ẇ 2
tu r +824.2Ẇtu r +3758

Cp =−16.4Ẇ 2
p +99.79Ẇp +316.1

CHX ,co n = 6.862Q̇ou t −6.692

(2.9)

Where CHX ,eva , CHX ,con, Ctur, & Cp= cost of ORC components (GBP), Q̇inand Q̇out= heating and cooling load, and Ẇ = power
(kW), respectively.

The ORC cost estimation for sub-systems are realized from the following expressions: -

CSys = CHX , eva + CHX , con + Ctur + Cp (2.10)

Cost of working fluid, (21)

Cw f = 10Crate (2.11)

Cost of piping (22)

Cpipe = 0.051CSys (2.12)

Annual operation and maintenance cost, (23)

CO&M = 0.02CSys (2.13)

Total cost of the ORC system elements

CT = CSys +Cpipe + Cw f (2.14)

The overall ORC module cost as considered in this work is presented thus:

CORC = CT + CO&M (2.15)
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3 Results discussion
The results of the exergy analysis for each primary component of the ORC module are as discussed below.

3.1 Exergy performance

Exergy is the available maximum work of a thermodynamic system as it approaches the equilibrium state with its environment
and enables the process inefficiency to be evaluated. Thus, exergy analysis is an essential tool used to determine the source, the
location, and finally the level of inefficiencies in a thermodynamic process.

The results of the exergy performance analysis for this work are presented in- Table 4

Table 4. Irreversibility and exergy efficiencies in the ORC module
Element Irreversibility (kW) Exergy Efficiency (%)
Evaporator 6.11 70.2
Condenser 1.58 96.4
Turbine 1.25 62.9
Pump 0.13 64.5
ORC 9.07 54.6

3.2 Economic performance
The module costing results showed that a significant part of the costs is due to the turbine coupled with a generator, which takes
up to 75% of the entire cost of the ORC module as shown in- Figure 8. This outcome highlights the evaporator as a crucial unit
for potential cost optimization and then followed by the rest. The cost of the component units used for the estimations are all
based on current market prices or as purchased from manufacturers. These results present a proxy version, which may slightly
vary from the system’s actual detailed cost. The concept used in this study to estimate the investment cost of the ORC system
has already been outlined in the methodology.

Fig 8.ORC module costing

Truck drivers are limited to a maximum of 10hrs driving time a day in the UK, (24). The 10hr per day operation with the
assumption of 26 days in a month was used to evaluate annual power recovery by the ORC system.

Monthly energy recovery is given as

26 day × 10hr
day

×3.1kWe = 806kWehr (3.1)
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Annual electricity generation is

806kWehr
month

× 12month
year

= 9,672kWehr (3.2)

The average electricity rate in the UK across the states is 14.37 pence/kW ehr, (25). Therefore, the annual cost of electric energy
(Can, elec) recovered by the designed ORC module will be

Can, elec =
9,672kWehr

year
× 14.37 pence

kWehr
= 1,389.87 (3.3)

1 Specific investment cost (SIC)
This section presents another option for determining theORC system’s performance besides the net power and system efficiency.
The specific investment cost of the heat recovery unit in this study is evaluated from equation 3.4

SIC =
CT + CO&M

Ẇnet
=

8,381.98+156.53
3.1

=
2,754.36

kWe
(3.4)

2 Payback period
The investment costs of small-scale ORC systems are substantially high compared to larger plants, and the costs of the small-
scale modules range from £6,000 to £9,000, (12). This assertion shows that the total investment cost of £8,456.61 obtained for the
proposed model in this work falls within the range. The payback period (PBP) is commonly used for evaluating the financial
performance of different systems in economics. The PBP for this work is calculated as

PBP =
Initial Investment

Net Cash Flow
=

8,381.98
1,233.34

= 6.8years (3.5)

3 Annual savings
Annual fuel savings is an indicator for return on investment for truck owners ifORC system is installed for exhaust heat recovery.

Annual net saving (AS) for this module:

AS = Can, elec −CO&M = 1,233.34 (3.6)

4 Electricity production cost (EPC)
The cost of electricity production from ORC system according to (26) is given as

EPC =

CO&M +
i(1+ i)N

(1+ i)N −1
×CT

Ẇnet ×hrop

(3.7)

Where i = interest rate set at 5%, N = ORC system lifetime set 20yrs and hrop= operating hours in a year
The economic performance of the ORC system has been assessed in terms of Specific Investment Cost (SIC), Payback Period

(PBP), Annual Savings (AS), and Electricity ProductionCost (EPC).TheORC systemmodel was designed based on speedmode
in which the model solver evaluates the engine model’s performance and hence the ORC model using imposed truck speeds
(66 to 119km/hr). These economic performance indicators were evaluated at the designed point (119km/hr) and design points
to observe the system’s performance at both design and off-deign points. Figure 9 shows that the electricity production cost
(EPC) decreases from £0.831 to £0.086 with increasing truck speed while the electricity net output increases from 0.32kWe to
3.10kWe as the truck speed increases from 66km/hr to 119km/hr.

Figure 10 shows how the specific investment cost (SIC) and payback period (PBP) both decrease with increasing truck
operating speed. This display is because as the shaft output power increases, the truck operating speed increases, thereby
increasing the amount of electricity generation, which in turn reduces the specific investment cost and the number of years
required for the payback. It can be inferred from this assessment study that,- if ORC system is considered for WHR in trucks,
the module will potentially provide an annual savings of about £1,233.34 as shown in- Table 5.
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Fig 9. Influence of truck speed on EPC and net output

Fig 10. Influence of speed on payback period and specific investment cost

4 Conclusion
In this study, the thermodynamic and economic analyses of an ORC system designed for exhaust heat recovery from truck
engines were evaluated.The recovered thermal energy whichwould have been exhausted into the environment is converted into
electricity to supply power to electrical appliances on the truck or stored in batteries for future use. The quantified electricity
cost and the savings show the potential economic viability of the installation of ORC system in highway trucks for waste heat
recovery, thus justifying the primary objective function of the study. The results showed that the performance assessment at the
designedpoint achieved 3.1kWasnet output, 6.39% thermal efficiency, and 54.6%overall systemexergy efficiency. Furthermore,
the economic assessment within the boundary of the assumptions is £8,381.98, £2,754.36/kW e, £0.086, and £1,233.34 as capital
investment cost, specific investment cost, electricity production cost, and annual saving, respectively, with a payback period of
6.8years. Though the cost estimation was done using correlations, the resulting costs do not deviate substantially from the ORC
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Table 5. Results of ORC module cost estimation
Component Cost (£)
Evaporator 904.24
Turbine & Gen. 9,279.05
Condenser 293.45
Pump 349.90
Piping 399.16
Working fluid 156.18
Operation &Maintenance 156.53
Total 8,381.98
Specific Investment Cost (£/kW e) 2,754.36
Payback Period (year) 6.8 years

module’s actual purchased costs, considering theORC system’s primary components’ market prices.The results of the economic
assessment of ORC systems with respect to heat exchangers found in literature, compare favourably with those obtained in this
study as referenced in the text. It should however be mentioned that vehicle weight and space requirements due to added
ORC system are crucial challenges in WHR application in on-board vehicles resulting in the need for more traction efforts to
accelerate the vehicle and increase tire rolling resistance. The additional weight also results in high fuel consumption, especially
in light-duty vehicles, nonetheless, these additional loads and space restrictions are of minimal consequences in heavy-duty
trucks and off-road vehicles due to their inherent structural design.

Furthermore, a change inmass flowrate and temperature of the exhaust gas logicallywill impact the power output (off-design)
and may affect the result of the thermo-economic assessment. This notwithstanding, the present study based on a designed and
simulated ORC system on a GT-suite platform with operating speed range of 66-119km/h using R245fa as working fluid can
be considered as a benchmark and appropriate for feasibility study estimation using the performance indicators.

References
1) Thaddaeus J, Pesiridis A, Karvountzis-Kontakiotis A. Design of variable geometry waste heat recovery turbine for high efficiency internal combustion

engine. Int J Sci Eng Res. 2016;7:1001–1017. Available from: https://bura.brunel.ac.uk/bitstream/2438/13960/1/Fulltext.pdf.
2) Alshammari F, Pesyridis A, Karvountzis-Kontakiotis A, Franchetti B, Pesmazoglou Y. Experimental study of a small scale organic Rankine cycle waste

heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance. Applied Energy. 2018;215:543–555.
Available from: https://dx.doi.org/10.1016/j.apenergy.2018.01.049.

3) Yuchai YC6A280-30 Engine Specifications. . Available from: http://en.yuchaidiesel.com/product/1680.html.
4) Little BA, Garimella S. Comparative assessment of alternative cycles for waste heat recovery and upgrade. In: Energy;vol. 36. Energy. Elsevier BV. 2011;p.

4492–4504. Available from: https://dx.doi.org/10.1016/j.energy.2011.03.069.
5) Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery

applications. Energy Conversion and Management. 2014;87:107–118. Available from: https://dx.doi.org/10.1016/j.enconman.2014.06.091.
6) Alshammari F, Karvountzis-Kontakiotis A, Pesiridis A, Minton T. Radial expander design for an engine organic rankine cycle waste heat recovery system.

Energy Procedia. 2017;129:285–292. Available from: https://dx.doi.org/10.1016/j.egypro.2017.09.155.
7) Thaddaeus J, Unachukwu G, Mgbemene C, Mohammed A, Pesyridis A. Overview of recent developments and the future of organic Rankine cycle

applications for exhaust energy recovery in highway truck engines. International Journal of Green Energy. Available from: https://doi.org/10.1080/
15435075.2020.1818247.

8) National Renewable Energy Laboratory. Fleet DNA Project Data. 1920. Available from: www.nrel.gov/fleetdna.
9) Casas Y, Arteaga LE, Morales M, Rosa E, Peralta LM, Dewulf J. Energy and exergy analysis of an ethanol fueled solid oxide fuel cell power plant. Chemical

Engineering Journal. 2010;162(3):1057–1066. Available from: https://dx.doi.org/10.1016/j.cej.2010.06.021.
10) Meramo-Hurtado S, Ojeda-Delgado K, Tuirán ES. Exergy analysis of bioethanol production from rice residues. Contemporary Engineering Sciences.

2018;11. Available from: https://doi.org/10.12988/ces.2018.8234.
11) ShahZA. Energy and exergy analysis of Regenerative organic Rankine cycle with different organicworking fluids. In: 2020 3rd International Conference on

Computing, Mathematics and Engineering Technologies (iCoMET). 2020;p. 1–6. Available from: https://doi.org/10.1109/iCoMET48670.2020.9073894.
12) Zhao C, Zheng S, Zhang J, Zhang Y. Exergy and economic analysis of organic Rankine cycle hybrid system utilizing biogas and solar energy in rural area

of China. Int J Green Energy. 2017;14:1221–1229. Available from: https://doi.org/10.1080/15435075.2017.1382362.
13) Sun W, Yue X, Wang Y. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste

heat. Energy Conversion and Management. 2017;135:63–73. Available from: https://dx.doi.org/10.1016/j.enconman.2016.12.042.
14) Imran M, Usman M, Lee D, Park B. Thermoeconomic Analysis of rganic Rankine Cycle using Zeotropic Mixtures * Corresponding Author : Byung-Sik

Park. Proc 3rd Int Semin ORC Power Syst. 2015;p. 1–11.
15) Cipollone R, Battista DD, Bettoja F. Performances of an ORC power unit for Waste Heat Recovery on Heavy Duty Engine. Energy Procedia. 2017;129:770–

777. Available from: https://dx.doi.org/10.1016/j.egypro.2017.09.132.

https://www.indjst.org/ 3882

https://bura.brunel.ac.uk/bitstream/2438/13960/1/Fulltext.pdf
https://dx.doi.org/10.1016/j.apenergy.2018.01.049
http://en.yuchaidiesel.com/product/1680.html
https://dx.doi.org/10.1016/j.energy.2011.03.069
https://dx.doi.org/10.1016/j.enconman.2014.06.091
https://dx.doi.org/10.1016/j.egypro.2017.09.155
https://doi.org/10.1080/15435075.2020.1818247
https://doi.org/10.1080/15435075.2020.1818247
www.nrel.gov/fleetdna
https://dx.doi.org/10.1016/j.cej.2010.06.021
https://doi.org/10.12988/ces.2018.8234
https://doi.org/10.1109/iCoMET48670.2020.9073894
https://doi.org/10.1080/15435075.2017.1382362
https://dx.doi.org/10.1016/j.enconman.2016.12.042
https://dx.doi.org/10.1016/j.egypro.2017.09.132
https://www.indjst.org/


Thaddaeus et al. / Indian Journal of Science and Technology 2020;13(37):3871–3883

16) Bowman EJ. Heat Exchanger. . Available from: https://www.amazon.co.uk/s?k=bowman+heat+exchanger&crid=2NWMC015BU33N&sprefix=
Bowman+H%2Caps%2C149&ref=nb_sb_ss_i_3_8.

17) Brazed Plate Heat Exchnager. . Available from: https://www.theheatexchangercompany.co.uk/product/details/HE931650/.
18) Green Energy Turbine. . Available from: https://www.deprag.com/en/green-energy/green-energy-turbine/.
19) Expansion turbine Prices. . Available from: https://www.alibaba.com/product-detail/PLPK-Expansion-turbine-turboexpander_60708148860.
20) Gear Pumps catalogue. . Available from: http://allpumps.co.uk/pumps/gear-pumps.
21) Refrigerant R245fa. . Available from: https://hzxlhg.en.made-in-china.com/product/MXvxDpPuatcg/China-Refrigerant-R245fa.html.
22) Daccord R. Cost to benefit ratio of an exhaust heat recovery system on a long haul truck. Energy Procedia. 2017;129:740–745. Available from:

https://dx.doi.org/10.1016/j.egypro.2017.09.108.
23) Ghoreishi SMS, Vakilabadi MA, Bidi M, Poorfar AK, Sadeghzadeh M, Ahmadi MH, et al. Analysis, economical and technical enhancement of an

organic Rankine cycle recovering waste heat from an exhaust gas stream. Energy Science & Engineering. 2019;7(1):230–254. Available from: https:
//dx.doi.org/10.1002/ese3.274.

24) GOV.UK, Freight and Trucking Hours of Service Limit Regulations. . Available from: https://www.gov.uk/drivers-hours/driving-under-both-eu-and-
gb-domestic-rules.

25) Electricity Rates in the UK. . Available from: https://www.ukpower.co.uk/home_energy.
26) Li X, Song J, YuG, Liang Y, TianH, ShuG, et al. Organic rankine cycle systems for engine waste-heat recovery: Heat exchanger design in space-constrained

applications. Energy Conversion and Management. 2019;199:111968–111968. Available from: https://dx.doi.org/10.1016/j.enconman.2019.111968.

https://www.indjst.org/ 3883

https://www.amazon.co.uk/s?k=bowman+heat+exchanger&crid=2NWMC015BU33N&sprefix=Bowman+H%2Caps%2C149&ref=nb_sb_ss_i_3_8
https://www.amazon.co.uk/s?k=bowman+heat+exchanger&crid=2NWMC015BU33N&sprefix=Bowman+H%2Caps%2C149&ref=nb_sb_ss_i_3_8
https://www.theheatexchangercompany.co.uk/product/details/HE931650/
https://www.deprag.com/en/green-energy/green-energy-turbine/
https://www.alibaba.com/product-detail/PLPK-Expansion-turbine-turboexpander_60708148860
http://allpumps.co.uk/pumps/gear-pumps
https://hzxlhg.en.made-in-china.com/product/MXvxDpPuatcg/China-Refrigerant-R245fa.html
https://dx.doi.org/10.1016/j.egypro.2017.09.108
https://dx.doi.org/10.1002/ese3.274
https://dx.doi.org/10.1002/ese3.274
https://www.gov.uk/drivers-hours/driving-under-both-eu-and-gb-domestic-rules
https://www.gov.uk/drivers-hours/driving-under-both-eu-and-gb-domestic-rules
https://www.ukpower.co.uk/home_energy
https://dx.doi.org/10.1016/j.enconman.2019.111968
https://www.indjst.org/

	Introduction
	Materials and Methods
	2.1 Module description
	2.2 Performance evaluation of the ORC system
	2.3 Exergy analysis
	2.4 ORC system cost assessment

	Results discussion
	3.1 Exergy performance
	3.2 Economic performance
	1 Specific investment cost (SIC)
	2 Payback period
	3 Annual savings
	4 Electricity production cost (EPC)


	Conclusion

