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Abstract

The security issue in the state estimation problem is investigated for a networked control system (NCS). The communication
channels between the sensors and the remote estimator in the NCS are vulnerable to attacks from malicious adversaries. The
false data injection attacks are considered. The aim of this paper to find the so-called insecurity conditions under which the
estimation system is insecure in the sense that there exist malicious attacks that can bypass the anomaly detector but still
lead to unbounded estimation errors. In particular, a new necessary and sufficient condition for the insecurity is derived in
the case that all communication channels are compromised by the adversary. Moreover, a specific algorithm is proposed for
generating attacks with which the estimation system is insecure. Furthermore, for the insecure system, a system protection
scheme through which only a few (rather than all) communication channels require protection against false data injection
attacks is proposed. A simulation example is utilized to demonstrate the effectiveness of the proposed conditions/algorithms
in the secure estimation problem for a flight vehicle.
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1 Introduction
The use of communication networks in networked con-
trol systems (NCSs) makes the system vulnerable to
cyber-attacks, and the possible malicious attacks on NC-
Ss may cause negative impact on the economy, the envi-
ronment and the national security. The first-ever cyber-
attack in real-world control systems was reported in
2010 [5]. Since then, the cyber security of NCSs has been
a hot topic of research that stirs considerable interest. In
general, two kinds of attacks have been studied in NC-
Ss [23]. One is the denial-of-service (DoS) attack that
violates data availability through blocking information
flows between different components of NCSs, and the
other is the deception attack that violates data integri-
ty through modifying data packets. Compared with DoS
attacks, deception attacks are more difficult to detect
because the adversary could keep the deception attacks
stealthy to the anomaly detector in NCSs through de-
liberately designing the attack sequences.

The deception attacks have been first considered in [13]
for the state estimation problems of power systems mod-
elled by static system models. The minimum number of
comprised sensors that needed to launch deception at-
tacks has been investigated in [22]. As for dynamic sys-
tems, when the system model is unknown to the adver-
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sary, a specific type of deception attack called replay at-
tack has been investigated in [18,24]. In the case that the
dynamic model is known to the adversary, another type
of deception attack, namely, false data injection attack,
has recently been put forward. For deterministic system-
s without stochastic noises, fundamental issues such as
detectability and identifiability for false data injection
attacks have been analysed in [6,7,20] and efficient con-
trol/estimation algorithms have been developed against
false data injection attacks [21]. In [19], a data encryp-
tion scheme (together with time-stamp techniques) has
been adopted to detect the deception attacks and com-
pensate the side-effects.

As is well known, stochastic models have come to play
a more and more important role in characterizing noisy
phenomena from real-world systems. Accordingly, it is
of practical significance to investigate the cyber secu-
rity of stochastic dynamic systems. As pointed in [10],
the detection task of malicious behaviours for stochas-
tic systems (with external noises) is more difficult than
that for deterministic (without stochastic noises) due to
the fact that the injected attack by the adversary could
be mistaken as a type of noises by the protection de-
vices. Based on the setting that the smart sensors send
innovation information (rather than measurements) to
the remote estimator, explicit forms of optimal attacks
on remote state estimation have been presented in [8],
while several attack detection methods for multi-sensor
remote estimation have been proposed in [12]. A secure
state estimation algorithm has been proposed in [14] for
stochastic dynamic systems where a key assumption of
sparse observability has been made. While the results re-
ported in [14] are indeed interesting, it is quite possible
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that the adversary attacks at a large number of (or even
all) sensors, in which case the system cannot be guaran-
teed to be “sparsely observable”. Motivated by the above
observation, we aim to investigate the case where the
attacker could inject false data into measurements from
any sensor and, accordingly, the results obtained would
constitute one of the main contributions of our paper.

In this paper, we focus on the remote state estimation
problem for a class of stochastic systems under possible
false data injection attacks where a χ2 detector is em-
ployed to monitor the state estimates. Note that false
data injection attacks have been considered in [11,15–17]
for state estimation problems of stochastic systems e-
quipped with χ2 detectors. In particular, an approxima-
tion method has been proposed in [16,17] to analyse the
cybersecurity of the system by calculating the estima-
tion error bound caused by the malicious attacks, and
some insecurity conditions have been derived in [11, 15]
to determine whether or not there exist malicious attack-
s which can cause unbounded estimation error for the
state estimation system. Nevertheless, a thorough inves-
tigation reveals that 1) there is still room to improve the
existing insecurity conditions; and 2) there is also an en-
gineering need to develop a system protection scheme by
using only necessary number of communication channels
requiring protection against cyber-attacks.

In this paper, we aim to propose new insecurity condi-
tions for the state estimation problem under false da-
ta injection attacks. Specifically, in the case when all
communication channels are compromised by the adver-
sary, we propose a new necessary and sufficient condi-
tion under which the system is insecure in the sense that
the estimation error caused by attacks is unbounded.
Such a new condition is shown to be concise that sim-
plifies the existing results. In the case when only part-
s of the communication channels are compromised by
the adversary, a sufficient condition is proposed as well.
Furthermore, we propose a criterion which determines
a sufficient number of communication channels that re-
quire protection. According to the criterion, only neces-
sary number of (rather than all) communication chan-
nels need to be protected in order to make the overall
system secure against the attacks.

The contributions of the paper are summarized as fol-
lows: 1) new security criteria are proposed for state es-
timation systems under false data injection attacks and,
in the case that all communication channels are compro-
mised by the adversary, our criteria are shown to be nec-
essary and sufficient that simplify the existing ones; 2)
an effective protection scheme is proposed for the system
which is insecure under false data injection attacks; and
3) the developed criteria are applied to security analysis
and system protection in the state estimation system of
a flight vehicle.

Notation: N, R and C denote, respectively, the set of
non-negative integers, the set of all real numbers, and the
set of all complex numbers. {x(k)} denotes an infinite se-
quence x(1), x(2), · · · , x(k), · · · . Rn×m (Cn×m) denotes
the set of all n × m real (complex) matrices, and Rn

denotes the n dimensional Euclidean space. For α ∈ C,
Re(α) and |α| denote its real part and its modulus, re-
spectively. For a ∈ Rn, ‖a‖ denotes its l2 norm. For a ma-
trix P ∈ Rn×m, PT , P−1, Tr{P} and Rk{P} represent
its transpose, inverse, trace, and rank, respectively. For

Fig. 1. Diagram of state estimation under cyber-attacks

square matrixA, det(A) stands for the determinant ofA,
and ρ(A) stands for the spectral radius of A. diag{· · · }
and I denote a block-diagonal matrix and identity ma-
trix of compatible dimension, respectively, and Im (0m)
denotes the m×m-dimensional identity (zeros) matrix.
Ism denotes the s-th column of m×m-dimensional iden-

tity matrix Im, e.g, Ism =
[ s−1︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
m

]T
.

2 Problem formulation

In this section, we describe the model of false data injec-
tion attack and analyze how the injected attacks affect
the estimation system. The structure of the state esti-
mation system under cyber-attacks is shown in Fig. 1.
For presentation convenience, we first introduce the esti-
mation system without cyber-attacks (i.e., ya(k) = y(k)
in Fig. 1).

2.1 State estimation without cyber-attacks

Let the physical plant be given by:

P :

{
x(k + 1) = Ax(k) + ω(k)

y(k) = Cx(k) + ν(k)
(1)

where x(k) ∈ Rn, y(k) = [y1(k), . . . , ym(k)]T ∈ Rm are
the system state and measurement output, respectively,
and yi(k) is the output of the ith sensor (labelled as Si in
Fig. 1) at time instant k. The initial state x(0) has mean
x̄(0) and covariance Σ(0), the process noise ω(k) ∈ Rn

and the measurement noise ν(k) ∈ Rm are assumed to be
mutually uncorrelated zero-mean random signals with
known covariance matrices W and R, respectively. The
process noise ω(k) represents the external disturbance
on dynamic systems and the measurement noise ν(k)
characterises the error of sensor and/or measurement
process, respectively.

The following time-invariant state estimator is proposed:

E :

{
x̂(k + 1) = Ax̂(k) +Kz(k + 1)

z(k + 1) = y(k + 1)− CAx̂(k)
(2)

where x̂(k+1) and z(k+1) are the state estimate and the
estimation residual at time instant k + 1, respectively.

The following two assumptions are made on the physical
system and the estimator:

Assumption 1 : For the system (1), the matrix pair (A,C)
is observable.

Assumption 2 : The estimator is stable by choosing prop-
er estimator gain. In addition, the estimator has already
converged to its steady state before time instant 0.
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Defining the estimation error x̃(k+1) , x(k+1)− x̂(k+
1), the dynamics of the estimation error follows from (1)
and (2) as follows:

x̃(k + 1) = (I −KC)(Ax̃(k) + ω(k))−Kν(k + 1). (3)

It is well known that the estimator is stable if and only
if the matrix (I − KC)A is stable [9]. In this paper,
it is assumed that the estimator is stable by choosing
appropriate estimator gain K.

Failure detectors are often used to detect abnormal op-
erations. In this paper, we assume that a χ2 failure de-
tector is deployed. At each time instant k, the χ2 failure
detector first computes the value g(k) = zT (k)(CΣCT +
R)−1z(k) where Σ is the steady estimation error covari-
ance, and then compares g(k) with a prescribed thresh-
old α. If g(k) > α, then an alarm will be triggered. When
the system operates normally (i.e. without attacks), g(k)
satisfies a χ2 distribution implying low probability of a
large g(k) [1].

2.2 False data injection attack

Before introducing the model of false data injection at-
tack, let us first present two assumptions on the cyber
attacks over the communication channels.

Assumption 3 : The adversary has perfect knowledge
about the system model, that is, the values of all the
matrices A, C, K, W and R described in the previous
subsection are known by the attacker;

Assumption 4 : The attacker has the ability to inject
false data over the communication channels between the
sensors and the estimator.

Under false data injection attacks, the measurement out-
put received by the estimator is given as follows:

ya(k) = Cx(k)+a(k)+ν(k) = Cx(k)+Baa
0(k)+ν(k) (4)

where a(k) ∈ Rm represents the false data injected by
the attacker at time instant k. The attack vector is de-
scribed by a(k) = Baa

0(k) where the injection matrix
Ba = diag{γ1, . . . , γm}. Here, γi = 1 if the attacker
is able to inject false data into the ith communication
channel, otherwise γi = 0. The matrix Ba reflects which
communication channels can be compromised by the at-
tacker. Specifically,Ba = 0 means that no attacks can be
injected into any communication channel, and Ba = Im
implies that the attacker has the ability to inject attacks
into all communication channels.

With the compromised measurement ya(k), based on the
estimator E in (2), the dynamics of state estimation can
be derived as follows:

x̂a(k + 1) =Ax̂a(k) +Kza(k + 1)

za(k + 1) =ya(k + 1)− CAx̂a(k)
(5)

where x̂a(k + 1) and za(k + 1) are the state estimation
and the estimation residual of system (1) at time k + 1
using the compromised measurement (4), respectively.
Without loss of generality, we assume that the attack
begins at time instant 1 and x̂a(0) = x̂(0).

To take into account the effect of false data injection at-
tacks on the state estimation of system (1), we define

the difference between the state estimates and estima-
tion residual of system (1) (without attacks) and system
(4) (with attacks) as

∆x̂(k+1) , x̂a(k+1)−x̂(k+1),∆z(k+1) , za(k+1)−z(k+1).

For convenience, we call ∆x̂(k+1) and ∆z(k+1) as the
state estimation difference and the estimation residual
difference, respectively. The dynamics of ∆z(k+ 1) and
∆x̂(k + 1) can be derived from (2) and (5) as follows:

∆z(k + 1) = −CA∆x̂(k) + a(k + 1), (6)

∆x̂(k + 1) = A∆x̂(k) +K∆z(k + 1)

= (I −KC)A∆x̂(k) +Ka(k + 1) (7)

where ∆x̂(0) = x̂a(0)− x̂(0) = 0.

In the considered attack model, the purpose of the at-
tacker is to launch a “special” data injection sequence
under which the state estimation difference ∆x̂(k) will
diverge to∞ without any alarm triggered by the χ2 de-
tector. In other words, the attacker aims to inject false
data which would largely degrade the estimation perfor-
mance without being detected by the detector.

It is known from the triangular inequality ‖za(k)‖ ≤
‖z(k)‖+ ‖∆z(k)‖ that, if ‖∆z(k)‖ is small, then the χ2

detector cannot distinguish between za(k) and z(k) with
high probability. As such, to make the attack sequence
stealthy, the attacker launching the false data injection
attack should avoid causing a large change in estimation
residual difference ∆z(k) [15], which means that the in-
equality ‖∆z(k)‖ ≤ M should hold all the time, where
M represents the tolerant level of the χ2 detector. Ob-
viously, a smaller value of M would result in a higher
probability for the corresponding attack to be undetect-
ed. We assume thatM is predetermined by the attacker.
On the other hand, the attacker should design the attack
sequence deliberately such that the sequence {∆x̂(k)}
becomes unbounded, i.e, limk→∞∆x̂(k) =∞.

Throughout the paper, the definition on system security
is given as follows.

Definition 1 The system P in (1) with estimator E in
(2) is called insecure if there exists at least one attack
sequence {a(k)} such that the following two conditions
are satisfied simultaneously:

1) for the state estimation difference ∆x̂(k),

lim
k→∞

‖∆x̂(k)‖ → ∞; (8)

2) for the estimation residual difference ∆z(k),

‖∆z(k)‖ ≤M, (9)

where M is a prescribed small positive constant scalar.

In the case that (8)-(9) do not hold simultaneously un-
der false data injection attacks (4), the system P in (1)
with estimator E in (2) is called secure under false data
injection attacks (4).

The aim of the addressed system security problem is
to analyze under what conditions there exists an attack
sequence that is undetectable by the fault detector but
drives the bias in state estimation to infinity.
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3 Security analysis

In this section, we investigate the security of system P
in (1) with estimator E in (2) in the following two cas-
es: 1) the attacker is able to inject attacks into all com-
munication channels, i.e., Ba = Im; and 2) the attacker
can inject attacks into only part of the communication
channels, i.e., Ba 6= Im.

Assume that the system matrix A in (1) has p indepen-
dent eigenvectors and its Jordan form J is given by

J = P−1AP (10)

where

J =



J1 0 0 . . . 0

0 J2 0 . . . 0

0 0 J3 . . . 0
...

...
...

. . .
...

0 0 0 0 Jp


, Ji =



λi 1

λi 1

. . .
. . .

. . . 1

λi


,

the Jordan block Ji ∈ Cni×ni (i = 1, . . . , p) with

|λ1| ≥ |λ2| ≥ · · · ≥ |λp| and
∑i=p

i=1 ni = n. Denote

P =
[
P1, . . . , Pp

]
and Q = P−1 =

[
QT

1 , . . . , Q
T
p

]T
,

where Pi ∈ Cn×ni and Qi ∈ Cni×n.

If ρ(A) ≥ 1, there exists a positive integer l satisfying
1 ≤ l ≤ p such that the inequality |λ1| ≥ · · · ≥ |λl| ≥
1 > |λl+1| ≥ · · · ≥ |λp| is true. Furthermore, defining

l̄ =
∑l

i=1 ni, we have

A = PJQ =
[
Po Pc

] [Λ1 0
0 Λ2

] [
Qo

Qc

]
, (11)

where block matrices Λ1 = diag{J1, . . . , Jl} ∈ Cl̄×l̄,

Λ2 = diag{Jl+1, . . . , Jp} ∈ C(n−l̄)×(n−l̄), Po =[
P1, . . . , Pl

]
, Pc =

[
Pl+1, . . . , Pp

]
,Qo =

[
QT

1 , . . . , Q
T
l

]T
and Qc =

[
QT

l+1, . . . , Q
T
p

]T
are of appropriate dimen-

sions.

3.1 Case 1: Ba = Im

To introduce our main results, we need the following
lemmas.

Lemma 2 [3] For two matrices M,N ∈ Cn×n, matri-
ces MN and NM have the same non-zero eigenvalues
(counting multiplicity).

Lemma 3 For the system (1) with estimator (2), if
ρ(A) ≥ 1, the following matrix equation

PcX = K (12)

has no solution, where matrix K is the estimator gain of
state estimator (2) and matrix Pc is given in (11).

Proof. It is known from Lemma 2 that the matrices (I−
KC)A and A(I−KC) have the same eigenvalues. Then,
it follows from ρ((I − KC)A) < 1 that the inequality
ρ(A(I −KC)) < 1 holds.

Let us prove the lemma by contradiction. Suppose that
there exists a matrix solution X̃ to equation (12). Then
we have

A(I −KC) =
[
Po Pc

] [Λ1 0
0 Λ2

][
Qo

Qc

]
(I − PcX̃C),

and it follows from QoPc = 0 and QcPc = I that

A(I −KC) =
[
Po Pc

] [Λ1 0
0 Λ2

] [ Qo

Qc − X̃C

]
.

Accordingly, the characteristic polynomial of matrix
A(I −KC), denoted by det (λI −A(I −KC)), can be
given as follows:

det (λI −A(I −KC))

=det

(
PλI

[
Qo

Qc

]
− P

[
Λ1 0
0 Λ2

] [ Qo

Qc − X̃C

])

=det

[ Po Pc

]  (λI − Λ1)Qo

(λI − Λ2)Qc + Λ2X̃C


=det(P )det

 (λI − Λ1)Qo

(λI − Λ2)Qc + Λ2X̃C

 .

Setting λ = λi (i ∈ {1, . . . , l}), one can see that the
last row of matrix λI − Ji is a zero row, which im-
plies that there is at least a zero row in the sub-matrix
(λI − Λ1)Qo and hence det (λI −A(I −KC)) = 0. In
other words, we can conclude that λi (i = 1, . . . , l) is the
eigenvalue of matrix A(I − KC). Noting that |λi| ≥ 1
(i = 1, . . . , l), this conclusion contradicts the inequality
ρ(A(I −KC)) < 1. As a result, there is no solution to
the matrix equation (12) and the proof is complete.
Define matrix E = P−1K and let Es,t represent the
element of matrixE in the sth row and tth column. From
Lemma 3, the following lemma can be easily obtained.

Lemma 4 For the system (1) with estimator (2), let
ρ(A) ≥ 1, then, there exists at least one non-zero com-
ponent in matrix E, that is, there exist integers s ∈
{1, . . . , l̄} and t ∈ {1, . . . ,m} with l̄ ,

∑l
i=1 ni such that

Es,t 6= 0.
Proof. Let us prove the lemma by contradiction. As-
sume that Es,t = 0, ∀s ∈ {1, . . . , l̄}, ∀t ∈ {1, . . . ,m}.

That is, E =

[
0

Ē

]
where Ē ∈ C(n−l̄)×m is the sub-

matrix forming by the last n − l̄ rows of E. Then, the
equation K = PE can be rewritten as follows:

K = PE =
[
Po Pc

] [ 0

Ē

]
= PcĒ.

The equation implies that Ē is the solution of equation
(12), which contradicts the statement in Lemma 3 that
equation (12) has no solution. The proof is complete.
Before we present the necessary and sufficient condition
under which the system (1) with estimator (2) is inse-
cure, a procedure for generating a certain sequence of
attacks is outlined in Algorithm 1.
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Algorithm 1 The algorithm for generating attacks

1: Initialize:
Decompose matrix A in (1) as the Jordan
normal form (10), choose arbitrarily a scalar
σ ∈ (0, 1) and the positive scalar M ;

2: Determine the integers t, r and q via Lemma 4, (17) and
(18), respectively;

3: Set t̄r(0) = 0;
4: while k ≥ 0 do
5: if Re{λq t̄r(k)} ≥ 0 then
6: Set σ(k + 1) = σ;
7: Set attack a(k+ 1) = CA∆x̂(k) +σ(k+ 1)MItm ;
8: else
9: Set σ(k + 1) = −σ;

10: Set attack a(k+ 1) = CA∆x̂(k) +σ(k+ 1)MItm ;
11: end if
12: Calculate ∆x̂(k + 1) according to (7);
13: Calculate t̄r(k + 1) according to (20);
14: k = k + 1;
15: end while

Theorem 5 Suppose that the attacker is able to attack
all communication channels, that is, Ba = Im. The sys-
tem (1) with state estimator (2) is insecure if and only if
ρ(A) ≥ 1.
Proof. (Sufficiency) We start by proving that, if
ρ(A) ≥ 1 in the system (1), then the state estimator (2)
is insecure. According to Definition 1, we need to prove
that there exists at least one attack sequence satisfying
both (8) and (9) if ρ(A) ≥ 1. In the following, we prove
that (8) and (9) are true under the attacks generated
by Algorithm 1.

According to Algorithm 1, it is known that

a(k + 1) = CA∆x̂(k) + σ(k + 1)MItm (13)

where σ(k + 1) takes value on either σ or −σ with σ ∈
(0, 1). It follows from (6) and (13) that

∆z(k + 1) = σ(k + 1)MItm, (14)

from which we can easily see that ‖∆z(k+ 1)‖ = σM <
M , and this implies that condition (9) is satisfied.

To show that the condition (8) is satisfied, we define
vector t(k) = Q∆x̂(k) where t(k) = [tT1 (k), . . . , tTp (k)]T

with ti(k) ∈ Cni (i ∈ {1, 2, . . . , p}). Based on (7), (11)
and Lemma 4, the dynamics of t(k) is derived as follows:

t(k+1) = Jt(k)+QK∆z(k+1) = Jt(k)+E∆z(k+1). (15)

Substituting (14) into (15) yields

t(k + 1) = Jt(k) + σ(k + 1)MEItm.

Define

t̄(k) =
[
tT1 (k), . . . , tTl (k)

]T
and t(k) =

[
tTl+1(k), . . . , tTp (k)

]T
.

Noting that J =

[
Λ1 0
0 Λ2

]
, one has

t̄(k + 1) = Λ1t̄(k) + σ(k + 1)Md, (16)

where d =
[
Il̄, 0l̄×(n−l̄)

]
EItm, i.e., vector d is formed by

the first l̄ elements of the tth column of matrix E. From
Lemma 4, it is known that d 6= 0.

Define d =
[
d1, . . . , dl̄

]T
and

r = argmax
1≤j≤l̄

(dj 6= 0), (17)

that is, dr is the non-zero element of vector d with the
maximal index. Since 1 ≤ r ≤ l̄ and

∑p
i=1 ni = l̄, there

exists an integer q (1 ≤ q ≤ p) such that

q∑
i=1

ni − nq < r ≤
q∑

i=1

ni. (18)

It follows from (16) that


t̄r(·)
t̄r+1(·)

...

t̄nq (·)

 =


λq 1

λq

. . .

. . . 1

λq




t̄r(k)

t̄r+1(k)
...

t̄nq (k)

 + σ(·)M


1

0
...

0

 ,
(19)

where · is short for time instant k + 1, t̄j(k) is the jth
element of vector t̄(k), j ∈ {r, r + 1, . . . , nq}.

Noting the initial condition t̄j+1(0) = 0, it can be easily
derived from (19) that t̄j+1(k) = 0, j ∈ {r, r+1, . . . , nq−
1} and

t̄r(k + 1) = λq t̄r(k) + σ(k + 1)M, (20)

and therefore

|t̄r(k + 1)|2 =|λq|2|t̄r(k)|2 + σ2(k + 1)M2

+ 2σ(k + 1)MRe{λq t̄r(k)}
(21)

According to Algorithm 1, it is known that σ(k +
1)Re{λq t̄i(k)} ≥ 0 and σ2(k + 1) = σ2. Furthermore,
noticing that |λq| ≥ 1, we have

|t̄r(k+1)|2 ≥ |λq|2|t̄r(k)|2 +σ2M2 ≥ |t̄r(k)|2 +σ2M2. (22)

Based on the inequality |t̄r(k + 1)|2 ≥ |t̄r(k)|2 + σ2M2

and the initial condition t̄r(0) = 0, it can be inferred
that |t̄r(k + 1)|2 ≥ (k + 1)σ2M2, which implies that
limk→∞ |t̄r(k+1)| =∞ and therefore limk→∞ t(k+1) =
∞. Since t(k+1) = Q∆x̂(k+1), it can be deduced that at
least one component of vector ∆x̂(k + 1) is unbounded,
and limk→∞ ‖∆x̂(k+1)‖ =∞. To this end, the condition
(8) is satisfied and we finally reach the conclusion that
the system is insecure under the attacks generated by
Algorithm 1 if ρ(A) ≥ 1.

(Necessity). To prove the necessity, we just need to
show that the system P in (1) with estimator E in (2) is
secure if matrix ρ(A) < 1. Again, let us prove by con-
tradiction. Assume that the system (1) with estimator
(2) is insecure, that is, there exist attacks sequences sat-
isfying (8) and (9). It follows from (9) that ∆z(k+ 1) is
norm-bounded. Since ρ(A) < 1, based on the equation
∆x̂(k + 1) = A∆x̂(k) +K∆z(k + 1), it can be inferred
that ∆x̂(k+ 1) is norm-bounded as well. That is, condi-
tion (8) is violated and the proof is now complete.
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3.2 Case 2: Ba 6= Im

In this case, we assume that the attacker is able to inject
false data to only a part of (rather than all) communi-
cation channels, i.e., Rk{Ba} < m. It can be easily seen
from Theorem 5 that, if ρ(A) < 1, the system (1) with
estimator (2) is secure no matter how many communica-
tion channels the attacker could hijack. As such, in this
subsection, we only consider the case when ρ(A) ≥ 1.

The following lemmas are useful in subsequent analysis.

Lemma 6 [3] Let A ∈ Cn×m, B ∈ Cm×l and C ∈
Ck×n. Assume that B has full row rank and C has full
column rank. Then, Rk{AB} = Rk{A} = Rk{CA}.
Lemma 7 If the system P in (1) with estimator E in (2)
is insecure, then 1) the attack sequence {ak} leading to
the insecurity is unbounded, and 2) the state estimation
difference ∆x̂(k) can be represented in the following form:

∆x̂(k) = Pot̄(k) + Pct(k) (23)

for some t̄(k) ∈ Cl̄ satisfying limk→∞ t̄(k) = ∞ and

some bounded vector sequence t(k) ∈ Cn−l̄, where Po and
Pc are defined in (11).

Proof. Assume that the attack sequence {ak} lead-
ing to the insecurity is bounded. Noting that ρ((I −
KC)A) < 1, it follows from the dynamics of ∆x̂(k) in
(7) that ∆x̂(k + 1) is bounded. According to Definition
1, the boundedness of ∆x̂(k + 1) contradicts the inse-
curity assumption of this lemma. As such, the attack
sequence {ak} is unbounded.

Next, we proceed to prove that ∆x̂(k) can be represented
as (23) and we use the same notations for P , Q, Po,
Pc, Qo and Qc as defined in (10)-(11). Similar to the

pf of Theorem 5, we define vector t(k) , Q∆x̂(k) and

write t(k) =
[
tT1 (k), . . . , tTp (k)

]T
with ti(k) ∈ Cni (i ∈

{1, 2, . . . , p}). According to (11), the dynamics of t(k)
can be given by

t(k+1) =

[
Λ1 0
0 Λ2

] t̄(k)

t(k)

+

[
QoK

QcK

]
∆z(k+1) (24)

As ρ(Λ2) < 1 and ∆z(k) is norm-bounded, it is
inferred that t(k) is norm-bounded. On the oth-
er hand, it is easy to see that ∆x̂(k) = Pt(k) =[
Po Pc

]  t̄(k)

t(k)

 = Pot̄(k) + Pct(k). Since Pct(k)

is bounded and limk→∞∆x̂(k) = ∞, it follows that
limk→∞ t̄(k) = ∞ and therefore expression (23) holds,
which completes the proof.

Theorem 8 For the system P in (1), assume that
ρ(A) ≥ 1, Rk{CPo} = s and the attacker is able to
inject attacks to a part of (but not all) communication
channels, i.e., Rk{Ba} < m, where Po is defined in (11).
The system P in (1) with estimator E in (2) is secure if
the following condition holds:

Rk
{

(I −Ba)CPo

}
= s. (25)

Proof. Again, we prove the theorem by contradiction.
Suppose that the system is insecure when condition (25)
holds. It follows from Lemma 7 that (23) is true. Fur-
thermore, noting that ∆z(k + 1) is bounded, it follows
from (6) and (23) that

a(k + 1) = CPoΛ1ζ1(k) +O(k), (26)

whereO(k) , CPcΛ2ζ2(k)+∆z(k+1) which is bounded.

Define matrix Φ =
[
φ1, . . . , φl̄

]
= CPo where the vector

φi is equal to the ith column of the matrix CPo (1 ≤
i ≤ l̄). Since Rk{CPo} = s, there exists a matrix Ψ =[
φi1 , φi2 , . . . , φis

]
satisfying Rk{Ψ} = s where 1 ≤ i1 <

i2 ≤ . . . < is ≤ l̄. Moreover, the matrix CPo can be
represented as CPo = ΨX where X ∈ Cs×l̄. It can be
easily found that Rk{X} = s, i.e., matrixX has full row
rank. As a result, (26) can be represented as follows

a(k + 1) = Ψξ(k) +O(k), (27)

where ξ(k) = XΛ1ζ1(k).

According to Lemma 7, the attack sequence {a(k)} is
unbounded, the sequence {O(k)} is bounded, and there-
fore the vector sequence {ξ(k)} is unbounded.

Left-multiplying both sides of (27) by I −Ba leads to

(I −Ba)a(k + 1) = (I −Ba)Ψξ(k) + (I −Ba)O(k),

and then it follows from a(k + 1) = Baa
0(k + 1) and

(I −Ba)Ba = 0 that

(I −Ba)Ψξ(k) + (I −Ba)O(k) = 0. (28)

Since (I −Ba)CPo = (I −Ba)ΨX and matrix X is ful-
l row rank, it is known from Lemma 6 that Rk

{
(I −

Ba)Ψ
}

= Rk
{

(I −Ba)ΨX
}

= Rk
{

(I −Ba)CPo

}
. Not-

ing the condition Rk
{

(I − Ba)CPo

}
= s in (25), it

is easily found that matrix (I − Ba)Ψ has full colum-
n rank. Accordingly, as limk→∞ ξ(k) → ∞, we have
limk→∞(I −Ba)Ψξ(k)→∞. Such a result implies that
(I − Ba)Ψξ(k) + (I − Ba)O(k) 6= 0, which contradicts
(28). The proof is now complete.

It is known from Theorem 5 that the system P in (1)
with estimator E in (2) is insecure when ρ(A) ≥ 1. In this
case, it is important to ensure the security by protecting
some communication channels. The following corollary
provides an efficient method on which communication
channels need to protected.

Corollary 9 For the system (1), assume that ρ(A) ≥ 1
and Rk{CPo} = s. The system P in (1) with estimator
E in (2) is secure if 1) s communication channels are

protected; 2) Rk
{[

ϕT
i1
, · · · , ϕT

is

]T }
= s, where i1, . . . , is

are the indexes of the protected communication channels
and ϕj is the jth row of matrix CPo (i1 ≤ j ≤ is).

Proof. Since the communication channels i1, . . . , is are
protected (i.e., free from cyber-attacks), according to
the definition of matrix Ba, it is known that γj = 0
if j ∈ {i1, . . . , is} and otherwise γj = 1. Note that
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(I − Ba)CPo =
[
(1− γ1)ϕT

1 , · · · , (1− γm)ϕT
m

]T
, then

Rk
{

(I − Ba)CPo

}
= Rk

{[
ϕT
i1
, · · · , ϕT

is

]T }
= s. It fol-

lows from Theorem 8 that the system (1) with state es-
timator (2) is secure, which completes the proof.

Remark 10 It is clear that Rk{CPo} = s ≤ l̄ and it
can be found from (11) that l̄ is the number of unstable
eigenvalues of matrix A (counted up to multiplicity). As
such, Corollary 9 implies that the number of communi-
cation channels that should be protected is not more than
the number of unstable eigenvalues of matrix A.

4 Simulation results

In this section, we consider the state estimation system
of a flight vehicle [4]. The system consists of a moving
vehicle installed with 3 sensors and 1 remote estimator.

4.1 System setting

The linearised discrete-time model of a simplified longi-
tudinal flight control system is described as follows:{

x(k + 1) = Ax(k) +Bu(k) + ω(k)

y(k) = Cx(k) + ν(k)

where the state variables x ∈ R3, x1, x2 and x3 are the
pitch angle, pitch rate and the normal velocity, respec-
tively. The control input u is elevator control signal and
the system parameter matrices are:

A =

0.9944 −0.1203 −0.4302

0.0017 0.9902 −0.0747

0 0.8187 0

 , B =

 0.4252

−0.0082

0.1813,

 , C = I3,

and both the system and measurement noises are as-
sumed to be uncorrelated zero-mean white noises with
covariance W = diag{0.12, 0.12, 0.012} and R = 0.1I3,
respectively. Each sensor measures one of the three s-
tate variables and send the measurement through its
own communication channel to the remote estimator. A
stationary Kalman filter is employed in the remote esti-
mator and a χ2 fault detector is employed as well.

4.2 Security analysis

It can be computed that the eigenvalues of system ma-
trix are 1, 0.9177, and 0.0669. According to Theorem
5, the estimation system of the flight vehicle is inse-
cure. To confirm this conclusion via simulation, assume
that the attacker have access to all three communication
channels, and a specific deceptive attack is injected into
the communication channels, which is generated accord-
ing to Algorithm 1 where the parameters are chosen as
σ = 0.1,M = 2. The attack sequence a(k) is plotted in
Fig. 2 (a). It should be noted that though the values of
a2(k) and a3(k) all quite small all the time, they do not
equal to zero, which shows that false data are injected
to all three communication channels.

Fig. 2 (b) depicts the state estimation difference ∆x̂(k)
and the residual difference ∆ẑ(k) under the attack se-
quences {a(k)}. From Fig. 2 (b), it is seen that the
sequence {∆x̂(k)} diverges to ∞ while the sequence
{‖∆ẑ(k)‖} is always less the prescribed scalar M . Here,
the estimated trajectory of the vehicle under the de-
signed attacks deviates significantly from its nominal one
but this cannot be detected by the χ2 fault detector.
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Fig. 2. State estimation under false data injection attack

4.3 System protection

Now let us consider how to protect the system from
cyber-attacks. It can be computed that the eigenvec-
tor corresponding to the unstable system eigenvalue 1

is Po =
[
50.9530 1.2214 1.0000

]T
. Since Rk(CPo) = 1,

according to Corollary 9, it is known that the state es-
timate system of the flight vehicle is secure if the com-
munication channel between sensor 1 and the estimator
is protected. Using our proposed method, any malicious
attacks can be detected effectively by protecting only 1
rather than all 3 communication channels.

5 Conclusion

In this paper, we have considered the security issues in
state estimation of networked control systems. For the
case that the adversary can compromise all communica-
tion channels, a necessary and sufficient condition has
been derived under which the estimation error caused
by the attacks is unbounded all the time. For the case
that the adversary can only compromise a part of the
communication channels, a sufficient condition ensuring
the security is derived as well. Moreover, a criterion on
protecting a sufficient number of channels such that the
estimation error is kept bounded under false data injec-
tion attacks has been proposed.

One of the future topics for our research would be a thor-
ough investigation of the cybersecurity issue in remote
estimation when the adversary has limited rather than
perfect knowledge of the system, with the aid of new s-
tatistical techniques developed in [8, 12].
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