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Abstract. Image segmentation is a computer vision task aiming to establish a probabilistic 
mapping between individual pixels (2D) or voxels (3D) in an input image and a set of 
predefined semantic categories with reference to domain-specific knowledge. When applied to 
medical images, e.g. Magnetic Resonance Imaging (MRI), it allows delineation between 
healthy and abnormal tissue. Despite challenges due to lesion morphological heterogeneity, 
segmentation of brain tumours has the potential to streamline otherwise time-consuming 
manual annotation. Whereas brain tumour segmentation has continually advanced 
incorporating innovative deep learning methods, heuristics normally employed by radiologists 
have often been neglected. The focus of nearly all tumour segmentation articles thus far on 3D 
isotropic research-grade scans has also led to results of unknown generalisability to hospital-
quality data. In order to address these gaps, this study has coalesced modern deep learning 
methods and clinical-driven priors into an optimised segmentation pipeline evaluated on 
clinical data at a large neurology and neurosurgery tertiary centre. 

1. Introduction 
Image segmentation is a computer vision task that consists in assigning each pixel (2D) or voxel (3D) 
in an input image probabilistic meaning with reference to domain-specific knowledge. A significant 
body of knowledge has been developed regarding segmentation of medical images, e.g. Magnetic 
Resonance Imaging (MRI), that has the potential to enable automatic delineation between healthy and 
abnormal tissue [1-6]. Despite challenges due to lesion morphological heterogeneity, segmentation of 
brain tumours, typically relying on classical machine learning or deep learning approaches, has the 
potential to streamline otherwise time-consuming manual annotation workflows.  
 
2. Materials and Methods 
Multimodal deep neural network models were developed using data from the 2018 ‘Multimodal Brain 
Tumor Segmentation Challenge’ (BraTS), consisting of FLAIR, T1, Gadolinium contrast-enhanced T1 
(T1CE), and T2-weighted MRI sequences of 484 patients. The data includes manually-annotated 
labels for tumour (non-enhancing and enhancing) and peritumoural oedema. A set of models based on 
the U-Net architecture were developed predicting voxels associated with each label. The architecture 
employed, detailed in Figure 1, relies on 3D convolutional layers and is designed to combine 
information from different scales [7]. Depth 4 U-Net models were used, corresponding to 
approximately 2 million trainable parameters. 
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Figure 1. Network architecture [7] employed for the models used in this investigation. 

 

 
Figure 2. High-level overview of the clinically-driven approach proposed in this article.  

 
Separate models were developed for peritumoural oedema, enhancing tumour, and non-healthy tissue 
(oedema, enhancing and non-enhancing tumour combined). This decision, driven by the objective of 
optimising each model for prediction accuracy, was also inspired by recent trends relying on a 
multiplicity of approaches for enhanced tumour segmentation performance [8]. 

The models were deployed on 493 MRI scans of patients with glioblastoma multiforme from 
multiple MRI scanners with different acquisition parameters, made available by the University 
College London Hospitals NHS Foundation Trust (UCLH). Irrevocably anonymised images acquired 
during routine clinical care were used with research ethics approval. The scans were super-resolved 
and de-noised into 1 mm3 isotropic space using a generative model developed in-house [9]. Images 
were registered into common space (Montreal Neurological Institute, MNI), skull-stripped, manually 
reviewed, and intensity clamped using kernel density estimation.  

The models were trained on BraTS data within a clinical knowledge-informed framework in a 
way that mimics the workflows typically employed by radiologists. A high-level overview of the 
approach followed for building the suite of models used for this study is given in Figure 2. For each 
patient, the oedema model was trained first, and tumours were subsequently segmented with the 
inclusion of an attention mechanism relying on a probabilistic oedema prior. The prior was embedded 
in the enhancing tumour model via voxel-wise multiplication between the model activation and the 
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oedema prediction map, in line with the approach developed in [10]. This focussed the models on 
enhancing tumour in the vicinity of oedema, in line with common spatial patterns. Blood vessels were 
vetoed in the enhancing tumour models using a statistical atlas of cerebral arteries [11], in order to 
reduce the impact of blood vessels which have a potentially-confounding signature on T1CE. All 
models were deployed on clinical data and the best-performing ones were selected by a trained 
radiologist based on prediction quality.  
 
3. Results 
 

 
Figure 3. Sagittal, coronal, and axial sections from an artefact-degraded clinical MRI scan: peritumoural oedema 
and enhancing tumour predictions are shown in red and blue, respectively. 
 
Model performance is illustrated in Figure 3, where sagittal, coronal, and axial sections from a clinical 
scan (FLAIR) are shown with oedema (red) and enhancing tumour (blue) predictions overlaid. 
Morphology is adequately predicted, including the presence of oedema protrusions into healthy tissue. 
Accuracy figures on the clinical dataset analysed are given in Table 1. 
 

Table 1. Dice coefficients (average and standard deviation) on the clinical 
dataset analysed. 

     

 Oedema Enhancing 
tumour 

Non-healthy 
tissue 

Average 0.71 0.55 0.75 
Std 0.19 0.26 0.17 

 
4. Discussion 
The novelty of the present approach to brain tumour segmentation is two-fold. Whereas several recent 
advancements that have been proposed in relation to brain tumour segmentation rely on novel deep 
learning methods [12-15], the possibility of taking advantage of those heuristics that are normally 
employed by radiologists when reviewing clinical scans has received comparatively little attention. 
Secondly, the majority of tumour segmentation studies have so far focussed on 3D isotropic research-
grade scans as opposed to hospital-quality data. This has in turn resulted in an unknown degree of 
generalisability of the results to data collected within standard clinical workflows. This article 
documents a preliminary investigation towards addressing both gaps.  
 
5. Conclusions and Outlook 
Results suggest the feasibility of combining modern deep learning methods and clinical-driven priors 
into optimised segmentation pipelines trained on research-grade data and yet capable of performing on 
a par with state-of-the-art techniques on hospital-quality scans. Ongoing work focusses on non-
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enhancing tumour segmentation, which is a harder task when compared to peritumoural oedema and 
enhancing tumour due to heavier reliance on morphological features for classification. This study is a 
stepping stone towards streamlining the processing of large volumes of hospital-grade patient imaging 
data, as part of a broader effort towards numerical modelling of brain tumour tissue and anomaly 
detection in the brain. 
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