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1. Introduction. 

The   purpose   of   this   note   is   to   discuss   the   relationship 

between   blending-function   methods    [2,3,4,] and  cross-product  methods 

[6].     A   general   theorem  on   projections  is  quoted.     This  theorem 

includes   blending-function   methods   as   a  special  case  and   leads 

to  simpler  proofs  of  some  of  Gordon's  theorems. 

2. Orthogonal  Projections. 

The   following   is  a  theorem in Bachman and Narici [1,  p.  414]: 

Theorem  1.     Let   X   be  a  Hilbert  space   with    E1  and  E2  as 

orthogonal  projections  that  commute  and  are   onto   the   closed 

suhspaces    M1,   and   M2 ,   respectively.    If    E  ≡  E1   +   E2   -   E1 E2 , 

then    E    is   an   orthogonal   projection     onto   .2MU1M    (Moreover, 

if    I    is   the  identity   operator,   then      I   -  E  =    (I - E1)  (I- E2)  .) 

The   application   of   this   theorem   to   blending-functions  is 

as   follows:     Let    φ1 (x) , . . . , φk (x)  be  an  orthonormal  set  of 
     ∑≡
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  We   now  use the above to simplify the proof  of  the  following 

theorem due to Gordon  [2]. 

    Theorem  2.    ("Bivariate orthogonal expansions") 

Let    F(x,y)     be  piecewise  continuous  on  [a,b]  x [c,d] .  Of  all 
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         Proof:      The  fact  that    f    is  admissible,   i.e., 

(F,φi) (x)   =   ( f, φi) (x)   and   (F, ψj) (y)  =   (f, ψj) (y),  follows   from 
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from which  the  conclusion  follows.           Q.E.D. 
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to    F    from    M1 ∩ M2 [2]    and hence   is   the  orthogonal  projection 

of   F   onto   M1 ∩ M2 .    Now   M1 ∩ M2     M⊂ 1 U M2    implies that 

||F - E1(F) - E2(F)  +  E1E2(F)|| 2  ≤  ||F - E1E2(F)|| 2.    The    next 

theorem  gives  a  precise  statement  of  the   improvement  obtained. 

Theorem  3.      Under   the   above   conditions. 

     ||F-  E1E2(F)|| 2 - || F- E1(F) - E2(F) + E1E2(F)||2

 =  ||E1(F) - E2E1(F)|| 2  +||E2(F) - E2E1(F)||2

       = || E1(F) -  E2(F)|| 2 γ {||E1(F)|| - || E2(F)||} 2 ≥ 0   . 

Proof;    By Theorem 1, 

||F - E1(F) - E2(F) + E1E2(F)|| 2 = ||F|| 2 - || E1(F) + E2(F) - E1E2(F)||2     . 

Using  successively  the  facts  that    (F  -  E2(F),E2(F))  =  0, 

(E1[F-  E2(F), E2(F))   =  0  ,  and  that    E1    and   E2    commute, 

we find that 
||F - E1(F) - E2(F) +E1E2(F)|| 2 =||F|| 2 - ||E2(F)|| 2 - ||E1(F)|| 2  +|| E1E2(F)|| 2 . 
 
By the above remarks concerning  'E1E2(F), || F- E1E2(F)|| 2 = 

||F|| 2 - ||E1E2(F)|| 2  ,     from which the conclusion follows.  Q.E.D. 

3.     Connection  with  Stancu's  results. 

For   interpolation   along   sections,   different    definitions   of 

the   projections    Px  and Py   are   required  than  for  the  above 

and,K1,i(y),g(F)LIfion.interpolatsquaresleast ii ==  
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,K1,j(x),h(F)M 1
jj == are   required,   then   the  corresponding 

φi (x)    and    ψj (y)   are    required    to   be   biorthonormal   with   respect 

to   the   linear   functionals    Li   and    Mj ,    respectively. 

∑∑ ≡≡
j
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(1)     RB(F)   ≡ F(x,y)  -  Px(F)   -  Py(F)   +  PxPy(F)  , 

then   RB(F)  can  be  related  to  the  cross-product  remainder.    In 

Stancu's  [6]  notation, the  cross-product  remainder  can  be 

∑

∑ ∑ +=+==
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i j
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ij

,(F)R(F)B(F)T(F),R(F)A(F)T,TTT

where,)(F)(ABT(F)R(F)asdrepresente
 

and   T1   operates   on   the   function    F(x,y)   as  a  function  of  its 

first    variable    and     T2    dually.    For   this   situation,   Stancu 

shows   that 

(2)  R(F) = R1(T2(F))  +R2(T1(F))  -  R2(R1(F)) . 

For  interpolation  along  sections,    T,  T1 , and  T2 are  all  point 

evaluations  at    (x,y),  Ai (F) ≡  Li (F)φi (x),  and Bj (F)  ≡ Mj (F) ψj (y). 

Theorem  3.      Under  the  above  conditions, 

(3)   RB(F)  =R2R1 (F). 

∑−=
ji,

Subtract.)(F)i(AjBT(F)R(F):Proof  

R1(T2(F))  +  R2(T1(F))  -  2R2(R1(F))    from  both  sides  of  this  equation. 
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Thus 
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Substitution  of  this  in  equation  (4)  yields 

  
∑ ∑ ∑ ∑ ≡− − +−= .(F)BR(F)(BA(F)B(F)A(F)Ay)F(x,)(F)(RR
i i j ji, jijii12

  
 

Q.E.D, 

        Gordon   has   derived   remainder   terms   for   specific   examples             

that     are    of    the   form     RB(F) = R2R1(F) .   The  following   corollary 

shows    that    this    is    a    general    result. 

Corollary.       Let    T  =   T2T1   be   a   bounded    linear    functional . 

that   commutes   with  R1  and   R2 . 
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Proof:      Apply     T =  T2 T1   to   equation    (1). 

The importance  of  this corollary  is  that,  when  the  problem 

functional    T  ,  which  operates  on  functions  of  two  variables,  can 

be  written  as  a  composition  of  linear  functionals    T1,  and  T2 

which  operate  on  functions  of  one  variable,  then 

RB(T(F))  =  R2R1(T(F)) and  the  appropriate  blending-function 

approximation  is  obtained  by  operating with   T   on  the interpolatory 

blending-function.     (The  latter  is  the  procedure  used  in  practice.) 

The   point   is   that    R1  and R2   are  the  one-dimensional  interpolation 

remainders  throughout,  instead  of  being  e.g.,  quadrature  remainders 

∫ ∫=
b

c

b

a
becannotTinvariblestheIf.y)dxdyF(x,T(F)if  

separated  into  the   product  of   a    T1 and T2 , then  the  above  does 

not  hold.  However, blending-function  methods  are  inherently  of 

a   (generalized)  cross-product  type  in  that 

RB (φ1(x)g(y))  =  0  =  RB (f(x)ψj (y)) ,  i.e.,   the   precision   is   of 

a  rectangular  type  and  spaces  analogous  to  Sard’s  [5]    Bp,q  

are   appropriate.  

We  remark  in  conclusion  that  the  use  of  projections  can 

simplify  other  proofs,   e.g.,   the  minimum  norm  property  for 

interpolating   blending-functions    [3].     In   addition,    it   leads 
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to   (Px  + Py - Px Py )(F)    as   the    approximation   to   use,    since 

F- Px (F)   and    Py (F)  -  Px Py (F)   are    both   orthogonal    to 

M1 ,   F-  Py(F)    and    Px(F) -  PyPx(F)    are    both  orthogonal  to 

M2 ,  and  hence (Px + Py -  Px Py )(F)   is   orthogonal   to   M1  MU 2. 

(Equivalently,    the   factorization    I  -  E  =  (I  -  E1)(I  -  E2)     of 

Theorem  1 could  be considered,) 
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