ON BLENDING-FUNCTION INTERPOLATION
by
Robert E. Barnhill and Gregory M. Nielson.

1. Introduction.

The purpose of this note is to discuss the relationship between blending-function methods $[2,3,4$,$] and cross-product methods$ [6]. A general theorem on projections is quoted. This theorem includes blending-function methods as a special case and leads to simpler proofs of some of Gordon's theorems.

2. Orthogonal Projections.

The following is a theorem in Bachman and Narici [1, p. 414]:

Theorem 1. Let X be a Hilbert space with E_{1} and E_{2} as orthogonal projections that commute and are onto the closed suhspaces M_{1}, and M_{2}, respectively. If $E \equiv E_{1}+E_{2}-E_{1} E_{2}$, then E is an orthogonal projection onto $\overline{\mathrm{M}_{1} \mathrm{U} \mathrm{M}_{2}}$. (Moreover, if I is the identity operator, then $\left.I-E=\left(I-E_{1}\right)\left(I-E_{2}\right).\right)$

The application of this theorem to blending-functions is
as follows: Let $\varphi_{1}(x), \ldots, \varphi_{k}(x)$ be an orthonormal set of
functions in $L_{2}(\mathrm{a}, \mathrm{b})$ and $\mathrm{M}_{1} \equiv\left\{\sum_{\mathrm{i}} \quad \mathrm{a}_{\mathrm{i}}(\mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x}) \quad: \mathrm{a}_{\mathrm{i}}\right.$ (y) piecewise
continuous] and let $\psi_{1}(\mathrm{y}), \ldots \psi_{\mathrm{k}}$, (y) be an orthonormal set of functions in $L^{2}(c, d)$ and $M_{2} \equiv\left\{\sum_{j} b_{j}(x) \psi_{j}(y): b_{j}(x)\right.$ piecewise continuous] . For a function of two variables,, $F(x, y)$,
projections of the from $E_{1}(F)=P_{x}(F) \equiv \sum_{i=1}^{k} a_{i}(y) \varphi_{i}(x) \quad$ and $E_{2}(F)=P_{y}(F) \equiv \sum_{i=1}^{k^{\prime}} b_{j}(x) \psi_{j}(y)$ are considered. For the case of least squares approximation, $\mathrm{a}_{\mathrm{i}}(\mathrm{y}) \equiv \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{F}(\mathrm{x}, \mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x}) \quad$ and $\mathrm{b}_{\mathrm{j}}(\mathrm{x})$ dually [2].

We now use the above to simplify the proof of the following theorem due to Gordon [2].

Theorem 2. ("Bivariate orthogonal expansions")

Let $\mathrm{F}(\mathrm{x}, \mathrm{y})$ be piecewise continuous on $[\mathrm{a}, \mathrm{b}] \mathrm{x}[\mathrm{c}, \mathrm{d}]$. Of all functions of the from $\tilde{f}(x, y)=\sum_{i=1}^{k} g_{i}(y) \varphi_{i}(x)+\sum_{i=1}^{k^{\prime}} h_{j}(x) \psi_{j}(y)$, the g_{i} and h_{j} piecewise continuous, such that

$$
\left(\mathrm{F}, \varphi_{\mathrm{i}}\right)_{(\mathrm{x})} \equiv \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~F}(\mathrm{x}, \mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} \tilde{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x}) \mathrm{dx}
$$

and

$$
\left(\mathrm{F}, \psi_{\mathrm{j}}\right)_{(\mathrm{y})} \equiv \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~F}(\mathrm{x}, \mathrm{y}) \psi_{\mathrm{j}}(\mathrm{y}) \mathrm{dy}=\int_{\mathrm{a}}^{\mathrm{d}} \tilde{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \psi_{\mathrm{j}}(\mathrm{y}) \mathrm{dy},
$$

the function $f=P_{x}(F)+P_{y}(F)-P_{x} P_{y}(F)$ uniquely minimizes $\|\mathrm{F}-\tilde{\mathrm{f}}\|$.

Proof: The fact that f is admissible, i.e.,
$\left(\mathrm{F}, \varphi_{\mathrm{i}}\right)_{(\mathrm{x})}=\left(\mathrm{f}, \varphi_{\mathrm{i}}\right)_{(\mathrm{x})}$ and $\left(\mathrm{F}, \psi_{\mathrm{j}}\right)_{(\mathrm{y})}=\left(\mathrm{f}, \psi_{\mathrm{j}}\right)_{(\mathrm{y})}$, follows from its definition: Let $\tilde{\mathrm{f}_{\mathrm{x}}} \equiv \sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}(\mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x}) \quad$ and $\quad \tilde{\mathrm{f}_{\mathrm{y}}} \equiv \sum_{\mathrm{j}} \mathrm{b}_{\mathrm{j}}(\mathrm{x}) \psi_{\mathrm{j}}(\mathrm{y})$.

By the properties of orthogonal projections, $\left(F-P_{x}(F), \tilde{f}_{x}\right)_{(x)}=0$ i.e., $\quad \mathrm{F}-\mathrm{P}_{\mathrm{x}}(\mathrm{F})$ is orthogonal to M_{1}. Similarly, $\left(F-P_{y}(F), f_{y}\right)_{(y)}=0$. Since the inner product on the space is

$$
\begin{aligned}
& (F, G)=\int_{a}^{b} \int_{a}^{b} F(x, y) G(x, y) d x d y \quad \text { it is obvious that } \\
& \left(F-P_{x}(F), \tilde{f}_{y}\right)=0=\left(F-P_{y}\right) \quad \text { Expand } \\
& \left.\left\|F-\tilde{f_{x}}-\tilde{f_{y}}\right\|=\|F\|^{2}-2\left[F, \tilde{f_{x}}\right)+\left(F, \tilde{f}_{y}\right)\right]+\left\|\tilde{f_{y}}+\tilde{f_{y}}\right\|^{2} \\
& =\|F\|^{2}-2\left[\left(P_{x}(F), \tilde{f}_{x}\right)+\left(P_{y}(F), \tilde{f_{y}}\right)+\left(P_{y}(F), \tilde{f_{x}}\right)\right. \\
& \\
& \left.+\left(P_{x}(F), \tilde{f}_{y}\right)-\left(P_{y}(F), \tilde{f}_{x}\right)-\left(P_{x}(F), \tilde{f}_{y}\right)\right] \\
& \\
& +\left\|\tilde{f}_{x}+\tilde{f}_{y}\right\|^{2} .
\end{aligned}
$$

Since $\quad P_{x} P_{y}(F)-P_{y}(F)$ is orthogonal M_{1}, i.e., $\left(\operatorname{PxPy}(\mathrm{F})-\mathrm{P}_{\mathrm{y}}(\mathrm{F}), \tilde{\mathrm{f}}_{\mathrm{x}}\right)_{(\mathrm{x})}=0=\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{y}}(\mathrm{F})-\mathrm{P}_{\mathrm{y}}(\mathrm{F}), \tilde{\mathrm{f}}_{\mathrm{x}}\right)$, we have that

$$
\begin{aligned}
&\left\|F-\tilde{f_{x}}-\tilde{f_{y}}\right\|^{2}=\|F\|^{2}-2\left[\left(P_{x}(F)+P_{y}(F)-P_{x} P_{y}(F), \tilde{f_{x}}+\tilde{f_{y}}\right)\right]+\left\|\tilde{f_{x}}+\tilde{f_{y}}\right\|^{2} \\
&=\|F\|^{2}-\left\|P_{x}(F)+P_{y}(P)-P_{x} P_{y}(F)\right\|^{2} \\
&+\left\|P_{x}(F)+P_{y}(F)-P_{x} P_{y}(F)-\tilde{f_{x}}-\tilde{f_{y}}\right\|^{2},
\end{aligned}
$$

from which the conclusion follows.
Q.E.D.

The set M_{1} is $\left.\left\{\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}(\mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x})\right]\right\} ; \mathrm{M}_{2}$ is $\left\{\sum_{\mathrm{j}} \mathrm{b}_{\mathrm{j}}(\mathrm{x}) \psi_{\mathrm{j}}(\mathrm{y})\right\}$,
with $\mathrm{M}_{1} \cup \mathrm{M}_{2}$ then being $\left\{\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}(\mathrm{y}) \varphi_{\mathrm{i}}(\mathrm{x})+\sum_{\mathrm{j}} \mathrm{b}_{\mathrm{j}}(\mathrm{x}) \psi_{\mathrm{j}}(\mathrm{y})\right\}$.

Now $\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\sum_{\mathrm{i}, \mathrm{j}} \mathrm{B}_{\mathrm{ij}} \varphi_{\mathrm{i}}(\mathrm{x}) \psi_{\mathrm{j}}(\mathrm{y})\right\}$ and the tensor (cross -) product approximation to F is $E_{1} \mathrm{E}_{2}(\mathrm{~F})$. It is the best approximation
to F from $M_{1} \cap M_{2}$ [2] and hence is the orthogonal projection of F onto $M_{1} \cap M_{2}$. Now $M_{1} \cap M_{2} \subset M_{1} U_{2}$ implies that $\left\|F-E_{1}(F)-E_{2}(F)+E_{1} E_{2}(F)\right\|^{2} \leq\left\|F-E_{1} E_{2}(F)\right\|^{2}$. The next theorem gives a precise statement of the improvement obtained.

Theorem 3. Under the above conditions.

$$
\begin{aligned}
\| F- & E_{1} E_{2}(F)\left\|^{2}-\right\| F-E_{1}(F)-E_{2}(F)+E_{1} E_{2}(F) \|^{2} \\
& =\left\|E_{1}(F)-E_{2} E_{1}(F)\right\|^{2}+\left\|E_{2}(F)-E_{2} E_{1}(F)\right\|^{2} \\
& =\left\|E_{1}(F)-E_{2}(F)\right\|^{2} \gamma\left\{\left\|E_{1}(F)\right\|-\left\|E_{2}(F)\right\|\right\}^{2} \geq 0
\end{aligned}
$$

Proof; By Theorem 1,
$\left\|F-E_{1}(F)-E_{2}(F)+E_{1} E_{2}(F)\right\|^{2}=\|F\|^{2}-\left\|E_{1}(F)+E_{2}(F)-E_{1} E_{2}(F)\right\|^{2}$
Using successively the facts that $\left(\mathrm{F}-\mathrm{E}_{2}(\mathrm{~F}), \mathrm{E}_{2}(\mathrm{~F})\right)=0$, $\left(\mathrm{E}_{1}\left[\mathrm{~F}-\mathrm{E}_{2}(\mathrm{~F}), \mathrm{E}_{2}(\mathrm{~F})\right)=0\right.$, and that E_{1} and E_{2} commute,
we find that
$\left\|F-E_{1}(F)-E_{2}(F)+E_{1} E_{2}(F)\right\|^{2}=\|F\|^{2}-\left\|E_{2}(F)\right\|^{2}-\left\|E_{1}(F)\right\|^{2}+\left\|E_{1} E_{2}(F)\right\|^{2}$.
By the above remarks concerning ${ }^{\prime} \mathrm{E}_{1} \mathrm{E}_{2}(\mathrm{~F}),\left\|\mathrm{F}-\mathrm{E}_{1} \mathrm{E}_{2}(\mathrm{~F})\right\|^{2}=$ $\|F\|^{2}-\left\|E_{1} E_{2}(F)\right\|^{2} \quad$ from which the conclusion follows. Q.E.D.

3. Connection with Stancu's results.

For interpolation along sections, different definitions of the projections P_{x} and P_{y} are required than for the above least squares interpolation. If $L_{i}(F)=g_{i}(y), \quad i=\overline{1, K}, \quad$ and
$M_{j}(F)=h_{j}(x), \quad j=\overline{1, K^{1}}$, are required, then the corresponding $\varphi_{i}(x)$ and $\psi_{j}(y)$ are required to be biorthonormal with respect to the linear functionals L_{i} and M_{j}, respectively.

Let $\mathrm{P}_{\mathrm{x}}(\mathrm{F}) \equiv \sum_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}(\mathrm{F}) \varphi_{\mathrm{i}}(\mathrm{x}) \quad$ and $\quad \mathrm{P}_{\mathrm{y}}(\mathrm{F}) \equiv \sum_{\mathrm{j}} \mathrm{M}_{\mathrm{j}}(\mathrm{F}) \psi_{\mathrm{j}}(\mathrm{y}) \quad$. If we let

$$
\begin{equation*}
R_{B}(F) \equiv F(x, y)-P_{x}(F)-P_{y}(F)+P_{x} P_{y}(F) \tag{1}
\end{equation*}
$$

then $R_{B}(F)$ can be related to the cross-product remainder. In Stancu's [6] notation, the cross-product remainder can be represented as $R(F)=T(F)-\sum_{i, j} B_{j}\left(A_{i}(F)\right)$, where $\mathrm{T}=\mathrm{T}_{2} \mathrm{~T}_{1}, \quad \mathrm{~T}_{1}(\mathrm{~F})=\sum_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}(\mathrm{F})+\mathrm{R}_{1}(\mathrm{~F}), \quad \mathrm{T}_{2}(\mathrm{~F})=\sum_{\mathrm{j}} \mathrm{B}_{\mathrm{j}}(\mathrm{F})+\mathrm{R}_{2}(\mathrm{~F})$, and T_{1} operates on the function $F(x, y)$ as a function of its first variable and T_{2} dually. For this situation, Stancu shows that

$$
\begin{equation*}
\mathrm{R}(\mathrm{~F})=\mathrm{R}_{1}\left(\mathrm{~T}_{2}(\mathrm{~F})\right)+\mathrm{R}_{2}\left(\mathrm{~T}_{1}(\mathrm{~F})\right)-\mathrm{R}_{2}\left(\mathrm{R}_{1}(\mathrm{~F})\right) \tag{2}
\end{equation*}
$$

For interpolation along sections, T, T_{1}, and T_{2} are all point evaluations at $(x, y), A_{i}(F) \equiv L_{i}(F) \varphi_{i}(x)$, and $B_{j}(F) \equiv M_{j}(F) \psi_{j}(y)$.

Theorem 3. Under the above conditions,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{B}}(\mathrm{~F})=\mathrm{R}_{2} \mathrm{R}_{1}(\mathrm{~F}) \tag{3}
\end{equation*}
$$

Proof: $\quad R(F)=T(F)-\sum_{i, j} B_{j}\left(A_{i}(F)\right)$. Subtract
$\mathrm{R}_{1}\left(\mathrm{~T}_{2}(\mathrm{~F})\right)+\mathrm{R}_{2}\left(\mathrm{~T}_{1}(\mathrm{~F})\right)-2 \mathrm{R}_{2}\left(\mathrm{R}_{1}(\mathrm{~F})\right)$ from both sides of this equation.

Thus

$$
\begin{align*}
& \mathrm{R}_{2}\left(\mathrm{R}_{1}(\mathrm{~F})\right)=\mathrm{R}(\mathrm{~F})-\sum_{\mathrm{i}, \mathrm{j}} \mathrm{~B}_{\mathrm{j}}\left(\mathrm{~A}_{\mathrm{i}}(\mathrm{~F})\right)-\mathrm{R}_{1}\left(\mathrm{~T}_{2}(\mathrm{~F})\right) \tag{4}\\
& \quad-\mathrm{R}_{2}\left(\mathrm{~T}_{1}(\mathrm{~F})\right)+2 \mathrm{R}_{2}\left(\mathrm{R}_{1}(\mathrm{~F})\right)
\end{align*}
$$

Now

$$
\begin{aligned}
& R_{1}\left(T_{2}(F)\right)+R_{2}\left(T_{1}(F)\right)-2 R_{2}\left(R_{1}(F)\right) \\
& =R_{1}\left(T_{2}(F)-R_{2}(F)\right)+R_{2}\left(T_{1}(F)-R_{1}(F)\right) \\
& =R_{1}\left(\sum_{j} B_{j}(F)\right)+R_{2}\left(\sum_{i} A_{i}(F)\right) \\
& =T_{1}\left(\sum_{j} B_{j}(F)\right)-\sum_{i} A_{i}\left(\sum_{i} A_{i}\left(\sum_{i} B_{j}(F)\right)\right. \\
& \quad+T_{2}\left(\sum_{i} A_{i}(F)\right)-\sum_{i} B_{j}\left(\sum_{j} B_{j}\left(\sum_{i} A_{i}(F)\right)\right. \\
& =\sum_{j} B_{j}(F)-2 \sum_{i, j} A_{i}\left(B_{j}(F)\right)+\sum_{i} A_{i}(F) .
\end{aligned}
$$

Substitution of this in equation (4) yields
$R_{2}\left(R_{1}(F)\right)=F(x, y)-\sum_{i} A_{i}(F)-\sum_{i} A_{i}(F)-\sum_{j} B_{j}(F)+\sum_{i, j} A_{i}\left(B{ }_{j}(F) \equiv R_{B}(F)\right.$.
Q.E.D,

Gordon has derived remainder terms for specific examples that are of the form $R_{B}(F)=R_{2} R_{1}(F)$. The following corollary shows that this is a general result.

Corollary. Let $T=T_{2} T_{1}$ be a bounded linear functional. that commutes with R_{1} and R_{2}.

Then

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{B}}(\mathrm{~T}(\mathrm{~F}))=\mathrm{T}(\mathrm{~F})-\sum_{\mathrm{i}} \mathrm{~L}_{\mathrm{i}}\left(\mathrm{~T}_{2}(\mathrm{~F})\right) \quad \mathrm{T}_{1}\left(\varphi_{\mathrm{i}}(\mathrm{x})\right) \\
& \quad-\sum_{j} \mathrm{M}_{\mathrm{j}}\left(\mathrm{~T}_{1}(\mathrm{~F})\right) \quad \mathrm{T}_{2}\left(\psi_{\mathrm{j}}(\mathrm{y})\right) \\
& \quad+\sum_{\mathrm{i}, \mathrm{j}} \mathrm{~L}_{\mathrm{i}} \quad \mathrm{M}_{\mathrm{j}}(\mathrm{~F}) \quad \mathrm{T}_{1}\left(\varphi_{\mathrm{i}}(\mathrm{x})\right) \quad \mathrm{T}_{2}\left(\psi_{\mathrm{j}}(\mathrm{y})\right)
\end{aligned}
$$

Proof: Apply $T=T_{2} T_{1}$ to equation (1).
The importance of this corollary is that, when the problem functional T , which operates on functions of two variables, can be written as a composition of linear functionals T_{1}, and T_{2} which operate on functions of one variable, then $\mathrm{R}_{\mathrm{B}}(\mathrm{T}(\mathrm{F}))=\mathrm{R}_{2} \mathrm{R}_{1}(\mathrm{~T}(\mathrm{~F}))$ and the appropriate blending-function approximation is obtained by operating with T on the interpolatory blending-function. (The latter is the procedure used in practice.) The point is that R_{1} and R_{2} are the one-dimensional interpolation remainders throughout, instead of being e.g., quadrature remainders if $T(F)=\int_{c}^{b} \int_{a}^{b} F(x, y) d x d y$. If the varibles in T cannot be separated into the product of a T_{1} and T_{2}, then the above does not hold. However, blending-function methods are inherently of a (generalized) cross-product type in that $R_{B}\left(\varphi_{1}(x) g(y)\right)=0=R_{B}\left(f(x) \psi_{j}(y)\right)$, i.e., the precision is of a rectangular type and spaces analogous to Sard's [5] $\quad \mathrm{B}_{\mathrm{p}, \mathrm{q}}$ are appropriate.

We remark in conclusion that the use of projections can simplify other proofs, e.g., the minimum norm property for interpolating blending-functions [3]. In addition, it leads
to $\left(\mathrm{P}_{\mathrm{x}}+\mathrm{P}_{\mathrm{y}}-\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{y}}\right)(\mathrm{F})$ as the approximation to use, since
$F-P_{x}(F)$ and $P_{y}(F)-P_{x} P_{y}(F)$ are both orthogonal to
M_{1}, $\mathrm{F}-\mathrm{P}_{\mathrm{y}}(\mathrm{F})$ and $\mathrm{P}_{\mathrm{x}}(\mathrm{F})-\mathrm{P}_{\mathrm{y}} \mathrm{P}_{\mathrm{x}}(\mathrm{F})$ are both orthogonal to
M_{2}, and hence $\left(\mathrm{P}_{\mathrm{x}}+\mathrm{P}_{\mathrm{y}}-\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{y}}\right)(\mathrm{F})$ is orthogonal to $\mathrm{M}_{1} \cup \mathrm{M}_{2}$.
(Equivalently, the factorization $I-E=\left(I-E_{1}\right)\left(I-E_{2}\right)$ of Theorem 1 could be considered,)

Acknowledgments. The research of R. E. Barnhill was supported by the National Science Foundation with Grant GP 20293 to the University of Utah, by the Science Research Council with Grant B/SR/9652 at Brunei University, and by a N.A.T.O. Senior Fellowship in Science. The research of G. M. Nielson was supported by a National Science Foundation Trainee ship at the University of Utah, The kind assistance of Dr. William J. Gordon in discussing and furnishing copies of his work is also acknowledged.

REFERENCES

1. Bachman, George and Lawrence Narici, Functional Analysis, Academic Press, New York (1966).
2. Gordon, William J., "Blending-Function methods of bivariate and multivariate interpolation and approximation," General Motors Research Publication GMR-834, October, 1968.
3. Gordon, William J., "Spline-blended surface interpolation through curve networks," Journal of Mathematics and Mechanics, 18, 931-952, 1969.
4. Gordon, William J., Distributive lattices and the approximation of multivariate functions. I.J.Schoenberg (ed.), Approximations with Special Emphasis on Spline Functions, 223-278, 1969.
5. Sard, Arthur, Linear Approximation. Math. Surveys, No.9, Amer.Math.Soc, Providence, R.I. 1963.
6. Stancu, D. D., "The remainder of certain linear approximation formulas in two variables," J. SIAM Num.Anal., Ser. B, Vol.1, p.137-162.
