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Humans subtly synchronize body movement during face-
to-face conversation. In this context, bodily synchrony has
been linked to affiliation and social bonding, task success and
comprehension, and potential conflict. Almost all studies of
conversational synchrony involve dyads, and relatively less is
known about the structure of synchrony in groups larger
than two. We conducted an optic flow analysis of body
movement in triads engaged in face-to-face conversation, and
explored a common measure of synchrony: time-aligned bodily
covariation. We correlated this measure of synchrony with a
diverse set of covariates related to the outcome of interactions.
Triads showed higher maximum cross-correlation relative to a
surrogate baseline, and ‘meta-synchrony’, in that composite
dyads in a triad tended to show correlated structure. A
windowed analysis also revealed that synchrony varies widely
across an interaction. As in prior studies, average synchrony
was low but statistically reliable in just a few minutes of
interaction. In an exploratory analysis, we investigated the
potential function of body synchrony by predicting it from
various covariates, such as linguistic style matching, liking,
laughter and cooperative play in a behavioural economic game.
Exploratory results do not reveal a clear function for synchrony,
though colaughter within triads was associated with greater
body synchrony, and is consistent with an earlier analysis
showing a positive connection between colaughter and
cooperation. We end by discussing the importance of
expanding and codifying analyses of synchrony and assessing
its function.
1. Introduction
Overt behavioural coordination among members of a species
is a common phenomenon, supporting conflict, mating and mutual
survival. Among non-humans, examples abound, from single-
celled organisms to our closest relatives. Dictyostelium discoideum
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(slime mould) transitions from relatively independent single cells into an organized multicellular

collective when resources become scarce [1]. Mosquitoes may synchronize their wing flaps during
mating [2], fish schools emerge from local interactive dynamics [3], and common chimpanzees appear
to coordinate hunting in groups [4]. Humans show pervasive behavioural coordination. Indeed,
people exhibit a large number of collective behaviours, spanning group sizes and across different
forms of behaviour [5].

In human face-to-face conversation, various types of behaviour have been investigated. Many distinct
behaviours may reveal correlated structure among members of an interaction [6–8]. One major
theme in research on human coordination is behavioural synchronization. As a general technical term,
synchronization describes the tendency for behavioural patterns to become more similar while two or
more people interact. In this paper, we focus on a behaviour that has been widely studied: bodily
movement during face-to-face conversation. Though overt body movements can serve as a volitional
signaling device, such as assertiveness or aggression, they may also provide more subtle, implicit signals
of interest or engagement. Numerous studies have offered evidence for synchrony between interaction
partners in the subtle fluctuations of their body movement. Relative phase analysis has shown that in
casual interaction, body rhythms tend to be similar [9]. Cross-correlation has also been used to show a
low but reliable covariation in overall body movement during conversation [10,11]. The general finding
that body movement shows patterns of synchrony between dyads has been shown in several studies
(e.g. [12–21]). The same tendency towards interactive synchrony has also been shown in other types
of human behaviour such as eye movements [22], expressive emotion [23], speech-related convergence
[24–28], and more. All of these behaviours may contribute to a multidimensional dynamic coordination
between two people who are interacting using language [7].

Despite the many demonstrations of synchrony, its functional significance remains unclear. In some
cases, synchrony may indicate a desire to bridge a social gap when there is a perceived breakdown or
potential breakdown in interaction [29–31]. This would suggest that body synchrony appears during
disrupted or unstable affiliation. Other studies have found the opposite. When affiliation is high,
cross-correlation structure between members of a dyad appears to be higher [10], and when two
people’s eye movements are in coordination, it suggests increased understanding [22,32,33]. In clinical
contexts, patient–therapist alliance may be indexed by synchronized non-verbal behaviours [17].

In general, it is clear that temporal relationships among behaviours during interaction can highlight
an array of task goals and contexts. However, synchrony cannot account for all aspects of human
interpersonal dynamics. ‘Pure synchrony’ would quickly lead to dysfunction in human interaction, and
some studies have shown subtler relationships across different levels of analysis (e.g. linguistic: [34]).
If humans purely synchronized, complex tasks could not be performed, as members of a pair or
group have to mix behavioural strategies to make possible varied aims of conversations and other
social tasks [35]. These intuitive considerations suggest that synchrony cannot be the sole structural
ingredient of interactions, and some recent empirical studies on different interactive tasks also suggest it
cannot be the only such ingredient (e.g. [36–38]). Indeed, though Louwerse et al. [7] refer to their
findings as ‘synchrony’, they use the term to refer to a number of different coordination patterns
emerging in their expansive multimodal analysis.

Manyof the studies cited above are task-oriented. Participantswork together to solve a particular puzzle
or communicative goal. Such tasks are no doubt critical in our understanding of the temporal coordination
of human interactions. It is equally important to determine the presence and role of synchrony in natural
face-to-face interaction. It is reasonable to identify what is sometimes termed ‘phatic communion’—
casual face-to-face interaction—as one of our species’ longest-standing forms of interaction. Prior work
suggests that there is a relationship to affiliation in such interactions (e.g. [10,24,25]), but the mechanism
underlying this effect is still unclear. How this effect works, and how it relates to bodily synchrony, is
still not well understood.

Here we analyse a corpus of triadic human interaction. Triads offer an opportunity to tap into the
potential mechanisms underlying a variety of discourse processes, such as turn-taking, reference and
conceptual pacts [39–42]. This prior research motivates the present focus on triads as a source of
information about body synchrony itself. Do triads show group synchrony, reflecting a general average
affiliation among its three members? Or do triads show distinct patterns of synchrony in their
component dyads, potentially reflecting mutual affiliation only among those pairs? Does increased
bodily synchrony between a pair predict that they will form an alliance in future interactions? Using
cross-correlation in the signature of their body movements, we show that on average they reveal
behavioural synchrony in the component dyads. The triads also show synchrony between the pairs of
conversants, suggesting that the triad is loosely ‘moving together’ during group interaction. In order



Figure 1. An example frame of a conversational video with left, centre, and right members. The green boxes reflect regions of
interest. The optic flow method of Barbosa et al. [44] extracts the pixel changes and measures magnitude of change that can
serve as a proxy measure to body movement of each member (see also [10]).
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to determine the potential functional role of this synchrony, we predict it from a variety of individual
differences and outcome measures in an exploratory regression analysis.
2. Methods
A full description of the participants and the tasks can be found in Gervais et al. [43]. This includes
detailed summary of the interactive instructions, gameplay and procedures, individual differences and
questionnaires, and so on. In sum, participants (described below) arrived to a laboratory to engage in
‘small talk with strangers’. Triads were then seated in a room and video-recorded having a 10 min
conversation about any topic of their choosing. After 10 min, each participant was seated in a private
cubicle in front of a computer where they played a simultaneous one-shot Prisoner’s Dilemma (PD)
game with each of the other two individuals from their conversation. Each participant had a fund of
$3, and they were told they could ‘transfer’ or ‘keep’ it, that the other players had the same choice,
and that transferred money would be doubled, so that if they transferred $3, the recipient would
receive $6. Many other variables were measured, with an overall empirical goal of assessing how
subclinical psychopathy contributes to conversational behaviour and cooperative interaction. Here we
focus on particular features of the dataset that guide the current analysis.

2.1. Participants
The original study included 105 undergraduates at the University of California, Los Angeles (UCLA). All
participants were given $10 to show up to the task, in addition to receiving course credit (approx. 90% of
participants were also seeking course credit). They were all native English speakers, and represented a
range of ethnic backgrounds from UCLA’s diverse undergraduate population. Groups included
entirely male (15) and entirely female (20) triads. Members of the triads did not know each other
before their participation.

2.2. Time series from conversational video
Triads sat around a small table, facing each other. They were asked to converse about any topic they
wished, and were recorded for 10 min using a Canon Vixia HV30 camcorder, combined with an
Audio-Technica U841A omnidirectional condenser microphone.

We measured the body movement of each member of the triad. An optic flow method calculates
how pixels are changing from frame to frame to determine the magnitude of movement in the video
[44,45]. We isolated regions for each triad member, shown in figure 1. These regions were delimited in
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Figure 2. Raw magnitude (grey circles) from the optic flow method includes noise due to video compression and lighting in the
conversational video. Using a low-pass filter (black lines) we obtain a proxy measure of body motion over time that omits these
high-frequency artefacts.
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such a way as to maximize coverage of the whole body. This mostly included upper legs, torso,
and head, because the lower legs might move in such a way as to overlap with or enter the area of
another interlocutor’s region. We scanned entire videos to ensure that a region chosen did not ever
include part of the body of one of the other triad members. Changes in pixels in each region will reflect
likely body movement of the corresponding participant. This measure provides a time series for each
member, at the frame rate of the video. An example trio of time series is shown in figure 2, grey dots.

Time series were filtered to avoid high-frequency noise in influencing body correlation analysis.
Such noise can derive from at least two main sources: high-frequency fluctuations in the video (such
as from fluorescent lighting) and from the video compression algorithm (see [10] for a discussion of
filtering and validation of frame-differencing with source body movement). All videos were in AVI,
with approximate data rate of 3500 kb s−1, size 960 × 540 and 30 fps. We subjected the extracted optic
flow signals to a low-pass eighth-order Butterworth filter in R (creating a sharp dB cut-off) for a
relatively low frequency (0.05 of the Nyquist frequency). In order to find this cut-off, we were guided
by prior video differencing research that obtained body motion signals from similar video (e.g.
second-order filter at 0.2 Hz cut-off: [10,11]). Because the quality of the present videos differed, and
there appeared to be more periodic noise, we used a more aggressive set of parameters for this filter,
and judged the fit to a sample of the raw movement data. The same parameters were used across all
videos and these parameters were chosen before analysing the main results. As a stop-pass filter, the
cut-off frequency under these conditions occurs in the range of [0.6 Hz, 1.0 Hz]. Though this is lower
than the cut-off of prior work, visual inspection of the filtered time series confirmed that this
improved approximation of the body movement during the interaction, shown also in figure 2, solid
black lines. Prior to analysis, to ensure that the first few seconds of the filtered time series did not
drive our results, we trimmed 200 samples (approx. 6 s) from the start of the time series consistently
for all triads.
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Figure 3. On the left side is an aggregate reflection of correlation between two people, the cross-correlation function (triad #11). At
lag of 0, if two people are on average correlated in their movement, then we will see maximum correlation. When it is shifted
(illustrated below, with 3 s), this maximum should drop off as we lag the time series relative to each other. Black dots represent the
dependent measures extracted for each pair: maximum correlation, minimum correlation, cross-correlation function maximum and its
corresponding lag. On the right side, we show the ebb and flow of body correlation between two members of an example triad
(#11). In windows of 10 s, the correlation can approach maximum (r = 1), and occasionally members of a triad show negative body
correlation (r < 0). Next to that, the second-order measure of triadic synchrony was based on the cross-correlation function of these
two time series. This assesses whether a triad’s component dyads covary in synchrony.
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3. Measures
3.1. Dependent variables: body movement
We tested perhaps the most common measure of synchrony used in interaction research, namely
measurements based on time-aligned bodily covariation. These are most often measured via cross-
correlation as a signature of the coordination taking place during the triadic interaction. Though there
are numerous measures available [46] and debate about use of correlation in dyadic time-series
contexts [47], cross-correlation is often used because, compared with alternatives, its computational
basis is relatively transparent, and interpretation of its output is relatively clear. Importantly, we
compare observed cross-correlations in multiple ways to a surrogate statistical baseline. By combining
the most common measure of synchrony to our diverse set of covariates, our study thus serves as a
test of the potential role synchrony may be playing.

An example is shown in figure 3, using both windowed correlation and a cross-correlation function
for two pairs of one triad (left–centre, centre–right pairs). The windowed correlation scans 10 s segments
of the motion time series (cf. [48]). The 10 s duration was chosen because it should effectively bound
interpersonal bodily correlation that is in synchrony with a decay of several seconds (e.g. 3–4 s: [11]),
while being fine-grained enough to observe the variation in this correlation across the interaction.
Windows were extracted at each 10 s interval and did not overlap (giving approx. 60 windows per
triad). In each 10 s segment, we calculated the correlation in the body movement of each pair
composing the triad. A general observation here is that synchrony varies rather widely across an
interaction, suggesting interaction partners form a more loosely coupled system than may be assumed
from average analysis (cf. [49,50]).
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Across this windowed calculation of correlation, we extracted the maximum correlation and minimum
correlation observed in each pair. We also calculated an aggregate cross-correlation function of these
pairs, shown in figure 3, left. This function specifies the temporal relationship between body movements
of the pairs. If a pair tended to move at almost the same time, then correlation will be highest at a lag of
0, where the two time series overlap. As lag is changed, we overlap or ‘slide’ the time series over each
other, shifted in accordance with each lag. If two people are coordinating, increasing lag will reduce the
correlation in their body movement. We extracted the maximum cross-correlation value as the maximum of
this function, and we also took the maximum correlation lag, indicating the lag at which that maximum
occurred. If two people were moving synchronously, this maximum correlation lag would occur at 0.

To assess whether there is triadic synchrony, we use windowed cross-correlation as a basis for
what can be termed a second-order correlation. Taking the window-wise correlations shown in figure 3,
middle, we compute the cross-correlation of these new time series. We take the windowed cross-
correlation of all three pairs (left–centre, left–right, etc.) and calculate a cross-correlation. This reflects
the tendency for the dyads to covary together. If the component dyads are correlated, then this
second-order cross-correlation should also show a peak at a lag of 0 relative to a surrogate baseline.

All analysis scripts and raw data can be found at https://github.com/racdale/triadic-bodily-
synchrony.
Sci.7:200095
3.2. Baseline variables: surrogate pairs
To test whether the observed correlation differs from a baseline, we constructed surrogate pairs:
pairings of one participant with participants in other triads. For each triad, we constructed a surrogate
condition using data from all other triads, substituting one of these other participants (e.g. left) into
exactly the same analysis. Because these time series are drawn from different triadic interactions, their
cross-correlation ought to be closer to 0 than in the observed data.
3.3. Additional measures
An array of measures was collected in the original study in Gervais et al. [43]. Some measures characterized
the individuals in the interaction (e.g. median household income, sex, psychopathy and more [43]). Other
measures reflected the quality of the interaction, its potential outcome, and participant similarities.
Common ground was coded from the conversation video, as whether or not a dyad discovered one of a
set of commonalities (yes or no; same academic major, an acquaintance in common, etc.). Cultural style
similarity was coded by preparing a set of still image stimuli in which all exposed skin was replaced by
a colourless mask (leaving only clothing, hair and jewelry), and raters then scored pairs of these images
by how similar they were culturally. Other variables included similarity in ethnicity, language style
matching and cooperation versus defection in a one-shot PD game. All of these measures were taken
after the face-to-face interaction.1 The measures are therefore a potential window onto the role that
bodily synchrony might play in generating affiliation or alliance in subsequent ratings.

Importantly, as just noted, in the original task in Gervais et al. [43], most variables did not have
temporal priority such that they could be interpreted as potential causal variables of bodily
synchrony. For example, the PD variable was collected after interactions took place, and so the PD
outcome could not be interpreted as a cause of bodily synchrony. Here we simply take these variables
as correlates that may speak to functional considerations, without making strong commitments on the
causal basis for their contribution. All measures are summarized in table 1.
4. Analysis and predictions
4.1. Dyads show body correlation in time
If dyads synchronized, we should expect that component dyads would show increased body coordination
relative to the surrogate baseline. In this case, maximum synchrony across the interaction, maximum
cross-correlation and the relative distribution of the maximum lag location should all indicate synchrony.
1While measured after the interaction, in some cases the measures are proxies of traits observable by participants at the start of the
interaction, which could have influenced synchrony (such as ethnicity and style similarity).

https://github.com/racdale/triadic-bodily-synchrony
https://github.com/racdale/triadic-bodily-synchrony
https://github.com/racdale/triadic-bodily-synchrony


Table 1. Measures used in the body analysis and additional measures.

variable min M max s.d.

body-dependent variables

maximum correlation (r) 0.41 0.81 0.97 0.10

minimum correlation (r) −0.73 −0.48 −0.32 0.10

cross-correlation at lag 0 (r) −0.11 0.05 0.39 0.09

triadic correlation (r at lag 0) −0.19 0.16 0.51 0.15

additional measures

sex (1 = female) 0.00 0.57 1.00 0.49

childhood income (z) −1.72 0.02 2.20 1.00

psychopathy (z) −1.89 0.00 3.23 1.13

attractiveness (z) −1.78 −0.03 2.31 1.02

cultural style match (z) −2.17 0.00 2.27 1.00

language style match (LSM) 0.52 0.82 0.95 0.08

perceived common ground (0/1) 0.00 0.44 1.00 0.50

conversational interruptions (rate) 0.00 0.40 2.65 0.46

Prisoner’s Dilemma game (1 = cooperate; 0 = defect) 0.00 0.63 1.00 0.48

perceived warmth (z) −3.11 −0.07 1.27 1.01

perceived competence (z) −0.65 0.02 1.16 0.99

total laughter (count) 5.00 29.11 55.00 13.01

colaughter (%) 13.00 41.43 75.00 16.87

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200095
7

4.2. Triads show correlation in time
If triads synchronized together, then the correlations between component pairs ought to be correlated
with each other over time. In other words, if the participants seated on the left and middle were
correlated during a given time frame, we might expect the same correlation to be occurring with the
person on the right. This can be quantified relative to a surrogate baseline by calculating a second-
order cross-correlation: The sliding 10 s windowed correlation values should themselves correlate from
pair to pair. We tested this by calculating this second-order cross-correlation function and compared it
with the same value measured using the surrogate baseline.
5. Exploratory regression with additional measures
What communicative or affiliative function would this general body correlation serve? Because the
conversation took place before the collection of other measures, any relationship among these variables
can be interpreted as a potential role for bodily synchrony in driving interpersonal outcomes. We
recognize, of course, that this is a correlational study from a pre-existing corpus, so any causal verbiage
should be used with care. The temporal relationship in the original data collection procedures permits us
to use body motion as a dependent variable, predicted by the array of other measures. Any relationship
between the additional measures and the body correlation could be interpreted as a potential outcome of
bodily synchrony. We take a repeated-measures approach to our design, to increase within-triad power
and increase the probability of identifying any potential underlying patterns. By taking the 10 s
windows and treating these as the repeated measurement, we can use the fixed predictors (PD outcome,
common ground, cultural style matching, etc.) as repeat covariates.

To build this exploratory regression model, we aggregate the mean values across the array of
measures in table 1, for each dyad within the triad. For example, the values of the individual
differences and interactive variables from table 1 would be averaged for left–right members of the
interaction. These would then be paired with the outcome variable of how much body correlation
they showed in each 10 s window.



Table 2. Tests of general behavioural correlation relative to baseline. Model form: dv∼surrog + (1 + surrog | triad). Note: results
here are from a mixed-effects model, and maximal random-effect structure did not always converge. Results were thus checked
with analogous paired-samples t-test (observed–surrogate), with results significant and consistent.

dependent measure (r) observed surrogate t p

maximum correlation 0.81 0.74 6.78 1.2 × 10−1

minimum correlation −0.48 −0.55 6.26 4.0 × 10−1

cross-correlation at lag 0 0.05 0.00 4.02 5.8 × 10−5

triadic correlation 0.16 0.10 3.50 0.00047
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In order to control for within-triad unique patterns that may generate our results, we take a mixed-
effects regression approach. Using lmer in R, we built a mixed-effects regression model and specified an
intercept term for each triad. Though it is desirable to maximize this random effect structure (nested
slopes; [51]), the number of additional variables was simply too large for the model to converge. In
addition, choosing which variables to omit or include should be guided by theoretical concerns, and
we explicitly take an exploratory stance here. For this reason, we adopted an admittedly liberal
approach in our analysis, embracing the exploratory nature of the analyses. We interpret any
significant coefficients as a potential functional relationship between body correlation and interactive
and individual measures; such significant coefficients could be the grist for future experiments or
analyses.

Based on the many prior findings summarized in the Introduction, we may render a few predicted
outcomes. First, body correlation may signal affiliation, so that perceived warmth and common
ground may positively relate to it. If co-movement reflects the emergence of alliance during the
interaction, then we could predict that cooperation in the PD game may occur more frequently. By
factoring in a variety of variables in an exploratory regression model, we can test the relative
contribution of these additional measures.
6. Results
6.1. Body synchrony within triads
In all results reported in this section, unless otherwise noted, linear mixed effects models were used with
the maximal random effects structure [51]. The primary fixed factor was a variable that specified
observed data (N = 35 triads × 3 pairs = 105) versus surrogate baseline (N = 35 triads × 3 pairs × 34
surrogates = 3570). Nested slopes were included by specifying a random structure at the triad level.
For all models reported in table 2, we ensured variables and residuals were approximately normally
distributed, and also confirmed our results with a corresponding paired-samples t-test that directly
contrasted observed statistics with a mean surrogate. These yielded the same patterns of significance.

Maximum correlation shown in 10 s windows was higher in observed data than in the surrogate
condition, M = 0.81 versus 0.74, t = 6.78, p < 0.0001. In addition, minimal correlation in 10 s windows
was also significantly higher in the observed data, M =−0.48 versus −0.55, t = 6.26, p < 0.0001. This
negative correlation in observed dyads was reliable. Triads showed significantly negative minimum
correlation in their 10 s windows, indicating that during a casual interaction there were statistically
significant periods of time during which members were negatively correlated, one-sample t at triad
level: t34 =−43.83, p < 0.0001. These results are summarized in table 2.

On average, across interactions, participants showed positive bodily synchrony. Figure 4, left, shows
the average cross-correlation function across all pairs of a triad. In general, we see a low but statistically
reliable peak at lag of 0. Statistical significance of this peak was assessed with a linear mixed effects
model, comparing observed data with the same cross-correlation function at lag 0 for the surrogate
condition (shown in grey in figure 4, left). This cross-correlation is indeed quite low, though it is
comparable to prior tests for average body correlation across a conversation [10,11]. Table 2 shows the
output of the linear mixed effects model at lag of 0, showing that despite a small effect, it is reliable
when compared with the baseline surrogate profiles at the same lag. When data were separated by
pairs (e.g. left–middle chairs), we found the same statistically significant effect at lag of 0, so the
overall effects were not due to a particular position of participants in the video frame. When we
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Figure 4. On the left, the average cross-correlation function for observed data (black), with narrower lines reflecting standard error
(using conservative d.f. = Ntriads – 1 = 34). At its peak, this function shows a significantly greater value than the surrogate pairs,
shown in grey. In the middle, the distribution, across dyads, of the lag where the maximum cross-correlation is observed (N = 35
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plotted a histogram using our lag measure—the lag location of the maximal cross-correlation function—
we obtained a distribution that was centred near 0, with the large majority of dyads showing their
maximum cross-correlation at or near synchrony (figure 4, middle).

Are triads in synchrony together? We used a second-order correlation to test whether body
movement covaried across all pairs of the triad. In other words, does the extent to which left–middle
members were correlated relate to how middle–right members were correlated, and so on? By
computing the cross-correlation function of the 10 s window r values shown in figure 3, we see a
reliable lag-0 correlation (as above, observed pairs N = 105 and surrogate condition N = 3570).
Figure 4, right shows that triads tended to be correlated in a manner similar to their component pairs,
and perhaps at a higher degree, approximately r = 0.16. This is significantly greater than the
correlation observed across surrogate pairings. Our surrogate baselines in this analysis are a
conservative test of this triad-level synchrony, because each surrogate cross-correlation is computed
using one actual participant of a triad. We would expect, by chance, some cross-correlation within the
surrogate triad because the extent to which a baseline in (say) the left–middle surrogate is correlated,
should correspond with the middle–right surrogate, since one of the surrogate members (the observed
pair) correlates with each other (figure 3, right). Nevertheless, the observed triad second-order
correlation was significantly higher, r = 0.16 versus 0.10, t = 3.50, p < 0.0005.

Results here demonstrate that triads were in synchrony. First, pairs showed a low and statistically
reliable body correlation relative to baseline, at about r = 0.05. Though this seems low, this correlation
can be quite high in some 10 s periods of time (and even, though rarely, near maximum correlation of
1.0). In addition, triads showed second-order correlation that exceeded baseline: triads were moving
together together, at r = 0.16. As in prior work, we show that humans are in a low ‘hum’ of
behavioural synchrony across minutes of interaction.
6.2. Exploratory regression model
The exploratory regression model revealed a relationship with only three of our additional variables. To
assess potential relationships, we used a conventional significance cut-off ( p < 0.05), though the results
below would accommodate correction. Nevertheless, any results here should be interpreted cautiously,
as it is a purely exploratory analysis. The regression model was again a mixed-effects model
predicting the N = 6228 windowed correlations (across 105 pairs in 35 dyads) using predictors in the
form of several outcome and individual covariates.

Among the coefficients that appear to reveal some potential signal, two of these relationships are
paradoxically negative. Participants who were judged by raters as having lower levels of cultural style
similarity tended to show greater body synchrony. A second variable also exhibited a negative
relationship with body motion: Participants who show increased body correlation tended to have
lower language style matching. This coefficient has a magnitude suggesting a stronger relationship
than the one with cultural style matching. Table 3 shows unstandardized coefficients (B) and their
standard errors (s.e.). Laughter is also related to body synchrony. Triads who had more colaughter



Table 3. Regression model predicting correlation in 10 s segments. Model form: rw∼ sex +… + laughs + (1 | triad). Bold text
indicates significant predictors at the p < 0.05 level (see main text for summary of exploratory approach).

additional measure B s.e. t p

sex (male or female) −0.006 0.017 −0.35 0.727

childhood income (z) 0.015 0.009 1.64 0.101

psychopathy (z) −0.007 0.009 −0.81 0.418

attractiveness (z) −0.016 0.009 −1.82 0.069

cultural style match (z) −0.014 0.005 −2.60 0.009

language style match (LSM) −0.266 0.081 −3.29 0.001

perceived common ground (0/1) −0.010 0.012 −0.81 0.420

conversational interruptions (rate) 0.019 0.018 1.11 0.269

Prisoner’s Dilemma game (1 = cooperate; 0 = defect) −0.021 0.017 −1.25 0.212

perceived warmth (z) −0.009 0.009 −1.03 0.302

perceived competence (z) 0.004 0.011 0.34 0.735

total laughs (count) 0.000 0.001 0.47 0.639

colaughter (%) 0.136 0.047 2.90 0.004
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tended to have higher correlation. As we revisit below, this suggests that body synchrony may be partly
due to local effects of interaction structure. Laughter can be a shared and pronounced behavioural event,
and could drive some of the body correlation signal.

The exploratory model was run without maximizing random effects structure. To confirm that these
effects were still present with a more complex triad-level random structure, we ran a follow-up linear
mixed effects model with cultural style matching, language matching and laughter. All three variables
were significant, again with laughter and language style matching bearing the strongest relationship
to observed body synchrony.

In general, we were surprised by the absence of any effects across many of these additional measures.
There were neither significant relationships with PD play, nor with perceived warmth or competence.
This raises questions about the functional role of overt behavioural synchrony, something we revisit in
the General discussion.

6.3. Follow-up exploration of body/language interaction
As we discuss below, the relationship between body synchrony and language style matching may reflect
a trade-off. That trade-off could be described as ‘compensatory,’ in the sense that these dynamic
processes—moving together or speaking similarly—may operate together to support fluid interaction,
but in general when one of them is present, the other need not be. If a triad shares overt body
dynamics, it may not need to signal affiliation through language, and so it relaxes that constraint. This
predicts a kind of interaction between language style matching and body coordination.

To test this idea, we built a simpler model, factoring in only a pair’s maximum cross-correlation, and
their language style matching. We combined these variables as two fixed factors to predict PD
cooperation and perceived warmth, interactive outcome variables, treated as a binomial output
variable. It is important to note that this test is based on considerably less data, because the outcome
variable is only sampled twice for each pair composing the 35 dyads (N = 105 pairs × 2 PD runs = 210).

In this follow-up model, we do detect potential relationships between body correlation and language
style matching that suggests an interaction, p < 0.05. Their main effects are not significant in this model,
only their participation in this interaction predicting PD. The effect on cooperating in the game is shown
in figure 5. We revisit this in General discussion below, but observe that this may be a so-called
‘Goldilocks’ pattern. Too much coordination may appear disingenuous, while too little may indicate a
failed alliance. Though these are exploratory analyses and we must interpret them with caution, it
suggests that measures of pair similarity (such as language, or body movement) cannot be interpreted
in simple unidirectional terms—they may be in a trade-off, and may relate more complexity to other
interactive variables.
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6.4. Summary of results
Triads exhibited reliable body correlation, both within their component pairs, but also in the ‘ebb and
flow’ that they exhibited as a group. This correlation is low but significantly greater than a surrogate
baseline, built from the correlations of persons across conversations. This small but significant
correlation tended to organize itself around a lag of 0. When examining 10 s segments of body
correlation, humans sometimes show correlation as high as 0.8–0.9, indicating extremely tightly locked
movements; at other times, this correlation can be quite low, even as low as –0.5, indicating that there
is quite a range of correlation structure in any 10 s segment.

These data originated in a study examining personality and conversational behaviour that included
many additional measures. These measures permitted exploration of the potential functional role for
body correlation within the triad. We do not find strong relationships between body correlation and
these additional variables. If anything, our exploratory analysis revealed that cultural and language
style matching inversely correlate with body movement. As we summarize below, this may be due to a
more compensatory nature of body correlation: it may be serving to smooth out interactions that are
experiencing disruption at some other level. Given the exploratory nature of these analyses, and their
relatively weak outcomes, we expand cautiously on these theoretical implications below.
7. General discussion
Humans exhibit rich correlated structure while they interact. They do so in dance and coordinated group
activities [5,52], but also in the structure of our most prosaic joint actions, such as a casual conversation
[9,10,15,18]. The current results demonstrate that this is the case in triads. Component dyads show time-
locked body correlation patterns. The extent to which these dyads were moving together was also
correlated at the triadic levels: the triad was moving together together. In both cases, this correlation is
quite low, but statistically reliable.

But what is the functional significance of this correlated movement? Our exploratory regression result
turned up three potential relationships. Cultural and language style matching related negatively with
body correlation; colaughter related positively. The rest of our variables, including PD outcome, did
not relate to how much dyads moved together. Body correlation did not predict cooperation or
defection, nor the many other measures. This may be due to sampling resolution. Some of these
measures are derived from single-item responses in the post-interaction questions. In prior work,
some measures did correlate in interesting ways with players’ strategies in a PD game. For example,
greater speech rate convergence predicted cooperation, as did perceptions and warmth and
competence [24,25]. Interestingly though, two variables that are contributing significantly in our
model—culture and language style matching—did not show a relationship to PD game play in prior
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work [43]. In subsequent work, participants watched the videos and generally failed to correctly guess
the game play of the conversationalists, strongly suggesting that any reliable cues of cooperation in these
conversations are subtle at best [25].

Colaughter was positively associated with triadic synchrony in the current analysis, and was related to
PD gameplay in an earlier analysis with the same conversationalists [24,25]. Specifically, maleswho engaged
in more colaughter, and who produced a greater proportion of colaughs relative to individual laughs, were
more likely to cooperate. Moreover, that prior study found a positive association between degree of
convergence and colaughter counts: the more people laughed together, the more they converged in
speech rate. This dovetails nicely with the current finding that triads who laugh together more appear to
move more in synchrony. Laughter is intricately tied to breathing [53], and has been shown to signal
various kinds of pragmatic information, including that important for conversational rhythm [54,55].
Listeners from all over the world are quite adept at identifying friends versus strangers from 1 s excerpts
of colaughter as well, suggesting that the co-produced signal could potentially signal affiliation
information to third parties [56]. The current analysis reveals further the complexity of laughter signals in
potentially modulating interactive dynamics at multiple levels of analysis and timescales [18].
c.Open
Sci.7:200095
7.1. Generator versus signature of interaction
The original task on which this corpus is based was a generic conversational prompt, followed by other
tasks and surveys. This set-up may provide clues about the relatively weak effects observed. Participants
interacted before any other feature of the study was introduced. This means that body correlation could
be subject to the generic constraints of seeking to interact with other people. As in prior work, this
generates a low but reliable level of aggregate synchrony. The present results show that synchrony
can be both quite high and low across 10 s segments of the interaction, but when averaged it shows a
reliable positive correlation at lag 0 relative to baseline. This could reflect a general structural feature
of interactive exchanges. In other words, there was no element to the task instructions other than their
interaction that might serve to more clearly relate their dynamics (e.g. as in prior work: argument,
puzzle solving, etc.).

Body motion may be participating as a signature rather than a generator of potential future alliances or
affiliation. This predicts that, as a signature, any modification of the task may produce concomitant
changes in dynamics (e.g. in the body or language). For example, past work has shown that putting
participants in the situation of argument can impact this body correlation signature [10,11]. The
variance produced in a context such as client–therapist interactions may elicit a stronger signature of
the alliance produced between them [57]. The same may be said for potential romantic partners—the
increased variance associated with outcomes in a potential romantic encounter may render the body
signature stronger in its functional correlations (cf. [15]). Thus, with a more structured task goal, we
may have obtained different results. In casual conversation, the signature from body movement may
simply be too weak to discern potential alliance formation.

An important limitation of the present work is that the triads are captured in the same shot. This
means that the conversant in the middle position does not reveal forward/back body movement as
much as would those on the left and right. While it is likely that most body movement will displace
pixels in the video, even for the middle conversant, it may nevertheless mean a lower measurement
sensitivity as well. Expanding measures and improving sensitivity in future analyses may come from
other multi-person tasks that involve verbal and non-verbal designs (e.g. [40,58,59]). The aim of the
present research was to integrate motion signals from admittedly coarse video processing with a rich
set of interactive covariates. Higher-quality motion-capture data and other multimodal methods in the
future may yield data sources that overcome the need for aggressive filtering and lend more
confidence to segment-wise motion, such as facial expression, hand movement or nodding (e.g. [60,61]).

There is also promise in improving sensitivity by adapting time-series analysis methods that focus on
subtler features and relationships among body motion signals. For example, Dean & Dunsmuir [47]
suggest linear transfer function models, and work by Irvin and colleagues [62] suggests that nonlinear
causal analyses, like convergent cross mapping (CCM), offers unique insights. It may be valuable to
decompose frequency components of these interactions such as through wavelet methods [63], or even
to find explicit multi-person measures, some of them deriving from nonlinear analyses of coupled
systems like recurrence quantification [37,38] or cluster-phase methods [31]. Here we aimed to test
perhaps the most generic cross-correlation method, but it is clear that future work should seek to
systematize and codify where and when these more advanced methods may be relevant (cf. [46]).
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These analysis methods may also enhance exploration of the role of physical configuration relevant

here. In particular, causal analyses may determine if an interlocutor occupying a centre position drives
more of the conversational dynamic, or if the more aligned face-to-face configuration of the left and
right participants dominates these dynamics. The important structuring influence of physical
configuration has long been remarked in research on face-to-face human communication [64,65].

It is important to note that the number of possible analyses that can be conducted onmultiple time series
is rather large, and this poses a general challenge for the field of human communication. This challenge is
isolating the most fruitful measurements that contain signal regarding the progress or outcome of an
interaction. Here we started with the simplest thesis: signal may derive from time-aligned covariation of
gross body movement between three interacting humans. Our results offer some suggestive patterns, but
do not yield clear answers. The number of potential follow-up analyses is quite large: causal and leader/
follower dynamics, temporal changes across the course of interaction, the presence or absence of
particular modes or events in interaction, and so on. It is possible that the subtle uniqueness of any one
interaction cannot support what would be regarded as stable principles because interactive behaviours
specifically, and cognition in general, are massively contextually labile (cf. [66,67]).

It is also possible that synchrony is not serving a communicative signal, but indexing something else. For
example, the ‘weirdness’ of the interaction: in a tight, well-lit space, face-to-face with strangers, with the
camera rolling, perhaps few participants want to draw attention to themselves by moving. Pronounced
movements might be suppressed by the awkwardness of the exchange, but people still need to shift
around. When one person moves, others can take the opportunity to move, similar to the dynamics of
other disruptive phenomena such as coughing in the classroom [68]. Such shared states may ‘license’
more relaxed body movements, and the correlation structure in the body may index their satisfaction
with the task overall, because participants who license each other to move more (more correlation) may
have found the task less stressful. The positive relationship with laughter supports this more ‘local’
explanation, because laughter could also facilitate defusing the situation. Careful task analysis of this sort
would certainly help unpack the function of shared bodily dynamics, but they would require additional
outcome measures in future work.

7.2. ‘Goldilocks’ phenomenon?
But what of the relatively stronger negative relationship with language style matching? Past work may
help to explain this too. Some have characterized a compensatory role for the correlation of overt signals in
human interaction. For example, when participants perceive a breakdown in communication, they may
enhance the correlation of their speech and eye movements [16,69]. When participants perceive a task
partner as a member of an opposing group, bodily synchrony may be increased [30]. Body motion
may thus be participating with language and perceived cultural fit to help smooth out the general
structure of the interaction. If there is a breakdown in one end of the interaction, such as lower
language matching, then body motion correlation may compensate.

Though a promising theoretical avenue, this admittedly does not explain the lack of relationship of
body movement with perceived interruptions and warmth and competence. The sort of data we
analyse here is unusual—an array of rich signals coupled to a variety of functionally relevant
additional measures. If this dataset is reflective of general patterns of casual interaction, then there is
indeed much left to explain, and perhaps some concern. The signature from the body may be present,
but too weak as a signature of affiliative or alliance-building outcome in these more casual, prosaic
tasks (especially, perhaps, in triads and larger groups).

The interaction that is present between body movement and language style matching does predict PD
cooperation, albeit weakly. The pattern of data bears resemblance to a ‘Goldilocks’ phenomenon. Too
much shared behaviour (high z-scores in figure 5) could reflect dishonesty or disingenuousness. Too
little shared behaviour (low z-scores in figure 5) could reflect a failed alliance. A more careful balance
between these behaviours (line in figure 5, left), may reflect a ‘just right’ combination of behaviours to
support cooperation. Again, we need to interpret the results cautiously here given the smaller amount
of data in the PD decisions, but the pattern of results is sufficiently interesting to motivate future work.

7.3. Synergies and interaction
We tentatively note that this potential ‘trade-off’ between cultural, language and body mutuality may be
reflective of interacting systems seeking efficient communication. This general theoretical observation
should be made with caution, but we offer it here: body correlation and at least two other
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behavioural signals are not merely mutually reinforcing, but rather show an inverse relationship that

suggests one or the other may fill a particular interactive function. This relates to the important
observations of Fusaroli and colleagues [34,36]. They recommend the concept of ‘synergy’ to explain
the dynamics of human interaction (see also [37,38,70,71]). Interacting persons do not merely amplify
their component behaviours. Instead, they strike a functional balance that might reflect a kind of
stabilization of behaviour across a range of potential solutions to interaction (cf. [14,72]). There are
many ways that we can successfully structure our interactions. Humans must find a combination of
behaviours that succeeds in doing so without losing flexibility and the potential for rapid continuation
of an exchange. The result is a kind of balance among components. This predicts that interactive
behaviours ought to exhibit occasional trade-offs. The role played by language style matching may
obviate any contributions by the body and vice versa. Though the negative correlations we observe
suggest this, the weak outcome of our exploratory models recommend caution but, to us, excitement
in seeking follow-up analyses in other datasets and experimentation.

8. Conclusion
Triadic conversants engage in synchrony. The functional reason for it is not entirely clear. It could be an
epiphenomenon of general human interaction. Perhaps it reflects a generic balancing among mutual
behaviours in interaction. The functional role may be found in other analysis strategies not considered
here. The role of body correlation could emerge from the more local aspects of an exchange. Perhaps a
joke leads to a sharp 10 s window of mutual body entrainment, with laughter and other
accompaniments. At other times, an intense recounting of stress in our triads may elicit the opposite:
gesticulation in the storyteller, and staid listening in their partner. Future work should unpack these
more local relations, as they might explain the body correlation observed here and elsewhere.
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