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Automatic Fuzzy Clustering Framework for
Image Segmentation
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Abstract—Clustering algorithms by minimizing an objective
function share a clear drawback of having to set the number of
clusters manually. Although density peak clustering is able to find
the number of clusters, it suffers from memory overflow when it is
used for image segmentation because a moderate-size image usually
includes a large number of pixels leading to a huge similarity
matrix. To address this issue, here we proposed an automatic
fuzzy clustering framework (AFCF) for image segmentation. The
proposed framework has threefold contributions. First, the idea of
superpixel is used for the density peak (DP) algorithm, which effi-
ciently reduces the size of the similarity matrix and thus improves
the computational efficiency of the DP algorithm. Second, we em-
ploy a density balance algorithm to obtain a robust decision-graph
that helps the DP algorithm achieve fully automatic clustering.
Finally, a fuzzy c-means clustering based on prior entropy is used in
the framework to improve image segmentation results. Because the
spatial neighboring information of both the pixels and membership
are considered, the final segmentation result is improved effectively.
Experiments show that the proposed framework not only achieves
automatic image segmentation, but also provides better segmenta-
tion results than state-of-the-art algorithms.

Index Terms—Density peak (DP) algorithm, fuzzy clustering,
image segmentation, superpixel.
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I. INTRODUCTION

C LUSTERING, grouping the objects of a dataset into mean-
ingful subclasses, is one of the most popular research top-

ics, since it is a useful tool for data mining [1], machine learning
[2], and computer vision [3]. With the rapid development of
intelligent technologies, automated knowledge discovery based
on clustering becomes more and more important. Although
many clustering algorithms have been successfully used in
image segmentation and data classification [4], [5], it is still
a challenging topic because it is difficult to achieve automatic
clustering and to provide fine results for image segmentation.
Image segmentation algorithms based on clustering have three
advantages. First, they can achieve unsupervised image segmen-
tation without labels. Second, they are more robust than other
image segmentation algorithms such as active contour models
[6], graph cuts [7], random walkers [8], and region merging [9],
since they require fewer parameters. Finally, clustering has a
clear advantage on multichannel image segmentation because
it is easy to apply clustering algorithms to high-dimensional
data classification. Inevitably, clustering has some disadvantages
for image segmentation as well. It is sensitive to noise because
the local spatial information of pixels is missed, and it takes
much time for high-resolution images, as repeated calcula-
tions and an iterative optimization are required for the same
pixels.

The first shortcoming is addressed by incorporating local
spatial information into objective functions to improve the ro-
bustness of algorithms to noise, such as fuzzy c-means (FCM)
clustering algorithm with spatial constraints (FCM_S) [10],
FCM_S1/S2 [11], fuzzy local information c-means clustering al-
gorithm (FLICM) [12], neighborhood weighted FCM clustering
algorithm (NWFCM) [13], the FLICM based on kernel metric
and weighted fuzzy factor (KWFLICM) [14], and deviation-
sparse fuzzy c-means with neighbor information constraint (DS-
FCM_N) [15]. Nonetheless, they have two limitations. One is
that they need much more time than conventional fuzzy c-means
clustering algorithm due to the high computational complexity,
and the running time is much worse when these algorithms are
used for color image segmentation, as the spatial neighboring
information is calculated in each iteration. The other one is that
these algorithms employ a fixed neighboring window for each
pixel in an image, which leads to a poor segmentation result. For
this problem, an instinctive idea is to employ adaptive neighbor-
ing information to improve segmentation results. Liu et al. [16]
improved FCM algorithm by integrating the distance between
different regions obtained by mean-shift [17] and the distance
of pixels into its objective function. However, as the algorithm
employs adaptive neighboring information, its computational
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complexity is still very high, which limits its practicability in
image segmentation.

For the second shortcoming, because the number of gray
levels is much smaller than the number of pixels in an image,
researchers often perform clustering on gray levels instead of
pixels to avoid the repeated distance computation, which can
indeed reduce the execution time of algorithms such as enhanced
FCM (EnFCM) [18], fast generalized FCM algorithm (FGFCM)
[19], and fast and robust FCM (FRFCM) [20]. These improved
FCM algorithms achieve a high computational efficiency by in-
tegrating histogram to its objective function. But it is difficult to
extend these algorithms to color images because the histogram of
color images is more complex than the one of grayscale images.
A new problem is how to reduce the computational complexity of
algorithms while efficiently improving the utilization of spatial
neighboring information. To reduce the computational complex-
ity while utilizing the adaptive spatial neighboring information,
Gu et al. [21] employed a superpixel approach to obtain adaptive
neighboring information and to reduce the number of clustering
samples. They proposed a fuzzy double c-means clustering
based on sparse self-representation (FDCM_SSR), which still
has a higher computational complexity than most of popular
algorithms. Inspired by superpixel technology [22] and EnFCM,
Lei et al. [23] proposed a superpixel-based fast FCM algorithm
(SFFCM) for color image segmentation. SFFCM has two ad-
vantages. One is that the proposed watershed transform based
on multiscale morphological gradient reconstruction (MMGR-
WT) is able to provide an excellent superpixel result that is useful
for improving the final clustering result. The other one is that
the color histogram is integrated into the objective function of
FCM to speed up the implementation of the algorithm. Although
SFFCM is excellent for color image segmentation, it requires the
number of clusters to be set manually.

To achieve automatic clustering algorithms, researchers tried
to estimate the number of clusters using different algorithms
such as eigenvector analysis [24], genetic algorithm [25], the
particle swarm optimization [26], and the robust learning-based
schema [27]. Although these algorithms can find the number
of clusters in any unlabeled data set, they are unsuitable for
image segmentation since the spatial information is missed and
the corresponding segmentation result is coarse. Density peaks
(DP) algorithm proposed by Rodriguez and Laio [28] first finds
the local density peaks of data, then computes the minimal
distance between a center and other centers that have higher
local density than the center, and finally obtains a decision-graph
to achieve fast clustering. However, DP algorithm only provides
decision-graph without giving the number of clusters. Wang and
Song [29] proposed a more robust and effective automatic clus-
tering algorithm to overcome the shortcomings of DP algorithm.
Though this new algorithm can obtain automatically the number
of clusters and provides better experimental results, it is still
unsuitable since the spatial information of images is ignored.

In this paper, we propose an automatic fuzzy clustering frame-
work (AFCF) for image segmentation. The proposed AFCF
is inspired by image superpixel, the DP algorithm, and prior
entropy-based fuzzy clustering. Although the similarity matrix
of an image is often huge, which limits the application of the DP
algorithm in image segmentation, we use a superpixel algorithm
to simplify an image to obtain a small similarity matrix that
depends on the number of superpixel. Based on the small simi-
larity matrix, we compute the corresponding decision graph. To
obtain automatic clustering algorithms, we need to improve the

decision graph to obtain the number of clusters directly without
human–computer interaction. Finally, prior entropy is integrated
into FCM to improve segmentation results. The proposed AFCF
is able to achieve automatic image segmentation with a high
precision. Three advantages of the proposed AFCF are presented
below.

1) AFCF is a fully automatic clustering framework for im-
age segmentation, where the number of clusters is not a
required parameter, unlike existing clustering algorithms.

2) AFCF provides accurate number of clusters and achieves
better image segmentation than state-of-the-art algorithms
because of the utilization of both the spatial information
of images and prior entropy.

3) Because image superpixel addresses the problem of mem-
ory overflow, AFCF has a low memory demand compared
to algorithms connected with the DP algorithm.

The rest of this paper is organized as follows. In Section II,
we illustrate motivations of this work. In Section III, we propose
our methodology and analyze its superiority. The experimental
results on synthetic and real images are described in Section IV.
Finally, Section V concludes this paper.

II. MOTIVATIONS

Image segmentation results provided by clustering always
depend on the number of clusters. Although a lot of existing
adaptive clustering algorithms [30], [31] can automatically esti-
mate the number of clusters, they are difficult and unwieldy for
practical image segmentation. The DP algorithm can generate a
decision-graph that is helpful for finding the number of clusters
but it suffers from high computational complexity when it is
used in image segmentation. To achieve automatic clustering
for image segmentation, two problems need to be overcome.
The first one is to remove redundant information of images to
obtain a small similarity matrix used for the DP algorithm. The
second one is to improve the DP algorithm to obtain accurate
number of clusters and to achieve better image segmentation.
We employ superpixel algorithms to simplify the computation
of the DP algorithm, then utilize a density balance algorithm to
find the number of clusters, and use prior entropy to improve
image segmentation effect.

A. Parameter-Free Clustering

In popular clustering algorithms, such as k-means, FCM, and
spectral clustering, the number of clusters is set manually. DP
algorithm can automatically recognize potential cluster centers
assuming that a cluster center often has higher density than its
surrounding points and that a cluster center often has a relatively
large distance from other cluster centers with high density. For
each sample xi, the local density ρi and the minimal distance
δi can be computed. Both ρi and δi are obtained from the data.
The local density ρi of the sample xi is presented as follows:

ρi =

N∑
j=1,j �=i

e−
d2
ij
dc (1)

where N is the total number of samples in a data set, 1 � i, j �
N , and dij denotes the Euclidean distance between xi and xj .
The dc is the cutoff distance that is an essential global decay
parameter of the weight. The value of dc is usually around 2%
of neighbors [28]. According to (1), ρi describes the density
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Fig. 1. Image segmentation framework using the DP algorithm.

intensity of xi using Gaussian kernel. In general, a large ρi is
considered as a cluster center while a small ρi is considered as
noise or outliers in data sets.

The parameter δi indicates the minimal distance between the
sample xi and any other samples with higher density. The δi is
defined as

δi = min︸︷︷︸
j:ρj>ρi

(dij). (2)

Note that δi = maxj(dij) is used for the sample with the
highest density. The anomalously large value of δi is help-
ful for recognizing the hidden cluster centers. By building a
decision-graph with horizontal-axis ρ and vertical-axis δ, we
can easily choose the samples of high ρ and relatively high
δ as cluster centers. However, it is very difficult to select the
appropriate cluster centers when there is a series of continuous
sparse points in decision-graphs. To simplify the selection of
cluster centers, the DP algorithm designs a new decision scheme
by individually computing γi = ρiδi sorted in decreasing order.
The new scheme can effectively avoid interference of false
centers and easily define the potential centers. After finding the
cluster centers, each remaining pixel is allocated to the same
cluster as its nearest neighbor of higher density.

Yet it is difficult to extend the DP algorithm for image
segmentation, since the computation of ρ and δ depends on a
very large similarity matrix. For example, the similarity matrix
corresponding to an image of size P ×Q has a large size of
(P ×Q)× (P ×Q), which always causes memory overflow
if P or Q is large. To overcome this issue, the downsam-
pling approach is often used to reduce the size of the matrix
(P ×Q)× (P ×Q) [32], [33]. Fig. 1 shows the image seg-
mentation framework using the DP algorithm. In Fig. 1, one can
obtain cluster centers easily because there are two points with
large value of ρ and δ in the decision-graph. However, the final
segmentation result is coarse. Furthermore, Fig. 2 shows more
results generated by the DP algorithm.

Figs. 1 and 2 show that the DP algorithm is able to achieve
roughly automatic image segmentation. The segmentation result
is good when the input image (the first image) is simple, but the
results are poor when input images (the last three images) are
complex as shown in Fig. 2. To improve these segmentation
results, two issues need to be addressed.

1) The downsampling operation is a rough way to reduce
the size of a similarity matrix. We need to develop a new
algorithm that is not only able to reduce the size of a
similarity matrix, but also can preserve the structuring
information of images.

2) Decision-graphs need to be improved to obtain automati-
cally the number of clusters.

Fig. 2. Segmentation results using the DP algorithm. The DP algorithm
provides a good segmentation result for the first image but poor segmentation
results for the last three images.

In this paper, we employ superpixel algorithms to address the
first issue, and use a density balance algorithm to overcome the
second issue. The detailed description is presented in Section III.

B. Superpixel-Based Fast FCM

Automatic and fast image segmentation algorithms have
important practical value for intelligent image understanding
systems. First, image segmentation is a key step in image un-
derstanding, as the computational efficiency of algorithms con-
tributes to the practical value of image understanding systems.
Second, a fast image segmentation algorithm can reduce the
requirement and consumption of hardware resources, which is
especially important for mobile electronic devices. Therefore,
improved computationally efficient image segmentation algo-
rithms are of much practical significance. However, compared
with some fast image segmentation algorithms [34], [35], clus-
tering algorithms have a lower computational efficiency when
they are used to segment high-resolution images. Fortunately,
superpixel technology [36] plays a key role in improving the
execution efficiency of image segmentation algorithms. Super-
pixel means that an image is divided into a large number of
small and independent areas with different sizes and shapes
[37]. Based on the superpixel result of an image, one can use
a pixel to replace all pixels in a superpixel area to reduce
efficiently the number of pixels in an image. Motivated by this,
Lei et al. proposed SFFCM [23] for color image segmentation.
The SFFCM addresses two difficulties in existing clustering
algorithms for color image segmentation. One is that the SFFCM
presents an excellent superpixel approach named MMGR-WT,
and the superpixel image obtained by MMGR-WT is helpful for
improving segmentation effect because the adaptive neighboring
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Fig. 3. Image segmentation framework using the SFFCM.

information of pixels is integrated into the objective function of
clustering algorithms. The other one is that the color histogram
is integrated into the objective function to achieve fast clustering
due to the fact that the number of different pixels in a color image
has been effectively reduced.

The objective function of SFFCM is

J =
N ′∑
l=1

c∑
k=1

Slu
m
kl

∥∥∥∥∥∥
⎛
⎝ 1

Sl

∑
p∈∂l

xp

⎞
⎠− vk

∥∥∥∥∥∥
2

(3)

where ∂l represents the lth superpixel area,Sl is the total number
of pixels in the superpixel area ∂l, 1� l � N ′. N ′ is the total
number of superpixel area in an image f , and c is the number
of clusters. The ukl represents the fuzzy membership of the lth
superpixel area with respect to the kth cluster, vk denotes the
kth clustering center, and xp denotes a pixel in a color image f .

According to (3), the membership partition matrix ukl and the
cluster center vk of the SFFCM are given as follows:

ukl =

∥∥∥( 1
Sl

∑
p∈∂l

xp

)− vk

∥∥∥−2/(m−1)

∑c
j=1

∥∥∥( 1
Sl

∑
p∈∂l

xp

)− vj

∥∥∥−2/(m−1)
(4)

vk =

∑N ′
l=1 u

m
kl

(∑
p∈∂l

xp

)
∑N ′

l=1 Slum
kl

. (5)

It can be seen from (3)–(5) that the computational cost of
the SFFCM is clearly lower than the FCM due to the fact that
N ′ � N . Therefore, the SFFCM achieves fast and effective
color image segmentation. The image segmentation framework
based on the SFFCM is shown in Fig. 3.

In Fig. 3, the segmentation result is better than the result shown
in Fig. 1. The main reason can be attributed to the superpixel im-
age generated by the MMR-WT. The result further demonstrates
the advantages of the SFFCM. Although the SFFCM achieves
fast and robust image segmentation, the number of clusters is
still an essential parameter, which limits the application of the
SFFCM. Moreover, the use of Euclidean distance to measure
the similarity between different superpixel areas in the SFFCM
causes erroneous segmentation results as shown in Fig. 4.

For the problem shown in Fig. 4, hidden Markov random fields
(HMRF) [38], [39] is a popular algorithm for overcoming the
problem. HMRF uses cluster centers and the prior probability
of membership to obtain the final membership called posterior
probability [40]. Motivated by this, in this work, we employ
fuzzy clustering based on prior entropy to achieve image seg-
mentation. The detailed analysis is presented in Section III-B.

Fig. 4. Error segmentation results using the SFFCM (c = 3 for each image).

III. METHODOLOGY

In Section II, we presented the motivation of this paper. We
employ parameter-free clustering to obtain automatically the
number of clusters as well as employ the image superpixel
and fuzzy clustering based on prior entropy to achieve image
segmentation. Based on these two ideas, we present the stages
of segmentation framework of images using the proposed AFCF
as shown in Fig. 5.

First, the proposed AFCF employs a superpixel algorithm
to obtain presegmentation result. Second, the DP algorithm is
performed on the superpixel image to generate a decision-graph.
Because the number of areas in the superpixel image is much
smaller than the number of pixels in the original image, a
small similarity matrix is obtained resulting in a small memory
requirement and a low computational complexity for the DP
algorithm. After that, the density balance algorithm is used
to obtain a more robust decision-graph that directly outputs
the number of clusters. By computing the maximal interval of
adjacent points, the points in the decision-graph are divided into
two groups; the first group of points is considered as cluster
centers. Finally, a fuzzy clustering based on prior entropy is
used for achieving image segmentation.

A. Decision-Graph on Superpixel Images

The DP algorithm achieves semiautomatic clustering because
one can choose the number of clusters according to a decision-
graph, but it generates a huge similarity matrix resulting in
memory overflow and high computational cost as well as it
ignores the spatial information of images.

Because a superpixel algorithm can smooth the texture details
and preserve the structuring information of objects, we employ
it to reduce the size of the similarity matrix. Then we use a
density balance algorithm and the maximal interval to obtain
automatically the number of clusters. In practical applications,
because different superpixel algorithms can be selected, we only
propose a framework of automatic fuzzy clustering but not a
specific algorithm in this paper. Fig. 6 shows superpixel results
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Fig. 5. The proposed stages of the image segmentation framework, which is fully automatic for image segmentation. (a) Image. (b) Superpixel image. (c) Color
distribution of the superpixel image. (d) Histogram of the superpixel image. (e) Decision-graph obtained by the DP algorithm. (f) Improved decision-graph using
the density balance algorithm. (g) Segmentation result using the FCM based on prior entropy.

Fig. 6. Superpixel results provided by different superpixel algorithms. (a) Image. (b) SLIC. (c) DBSCAN. (d) LSC. (e) GMMSP. (f) HS. (g) MMGR-WT. The
number of superpixel area is 200 for the SLIC, DBSCAN, LSC, and HS. For the GMMSP, the size of areas is 20× 20. For the MMGR-WT, r1 = 2 and η = 0.1.

TABLE I
COMPARISON OF SIMILARITY MATRIX USING DIFFERENT SUPERPIXEL

ALGORITHMS FOR AN IMAGE SIZE OF 321 × 481

provided by different superpixel algorithms such as SLIC [41],
DBSCAN [42], LSC [43], GMMSP [44], HS [45], and MMGR-
WT [23]. Note that each of the SLIC, DBSCAN, LSC, and HS
requires one parameter, i.e., the number of superpixel area; the
GMMSP also requires one parameter that is the size of areas; but
the MMGR-WT needs two parameters that include the initial
structuring element denoted by r1 and the minimal threshold
error denoted by η. Table I shows the number of areas in different
superpixel images for an image size of 321 × 481. In practical
applications, η is usually a constant and η = 10−4 in [23]. We
set η = 0.1 here in order to obtain more superpixel areas for fair
comparison.

Table I shows that these superpixel algorithms can efficiently
reduce the total number of pixels in an image and thus obtain a
small similarity matrix to improve the computational efficiency
of the DP algorithm. Moreover, a superpixel area integrates both
the color features and the spatial structuring features, which is
helpful for improving image segmentation results. For instance,
the size of the similarity matrix is reduced from (321× 481)2

to 200× 200 using the SLIC as shown in Fig. 6(b).
According to the aforementioned superpixel algorithms and

the DP algorithm, the local density denoted by ρI and the
minimal distance denoted by δI are presented as follows:

ρI =

N ′∑
J=1,J �=I

SJe
−D2

IJ
dc (6)

where 1 ≤ I, J ≤ N ′, DIJ denotes the Euclidean distance be-
tween ∂I and ∂J . SJ is the total number of pixels in the J th
superpixel area, dc is the cutoff distance, and δI indicates the

Fig. 7. Decision-graphs according to the DP algorithm and MMGR-WT.
(a) Image 1. (b) Decision-graph of image 1. (c) Image 2. (d) Decision-graph
of image 2.

minimal distance between the area ∂I and any other area with
higher density. The δI is defined as

δI = min︸︷︷︸
J:ρJ>ρI

(DIJ ) (7)

where δI = maxJ(DIJ ) for the superpixel area with the highest
density. To speed up the computation, DIJ is defined as

DIJ =

∥∥∥∥∥∥ 1

SI

∑
p∈∂I

xp − 1

SJ

∑
q∈∂J

xq

∥∥∥∥∥∥ . (8)

It can be seen that DIJ is different from dij . According to the
DP algorithm and γi = ρiδi, we can obtain the initial decision-
graph as shown in Fig. 7. Fig. 7 shows that although one can
easily select the number of clusters depending on the decision-
graph, it is difficult to obtain automatically the number of clusters
by setting a threshold for the decision-graph. In Fig. 7(a), the
threshold ranges from 0.15 to 0.56, while it ranges from 0.1 to
0.38 for Fig. 7(b).

B. Number of Clusters

To achieve fully automatic clustering, we propose a new
decision-graph by using a density balance algorithm. We only
compute the maximal interval in the new decision-graph, with-
out having to select the number of clusters.
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Algorithm 1: The Density Balance Algorithm.
Input: γj
Output: φj

1: Initialization: set a = 1000 and
η = 0.1, χ = χ1, χ2, . . . χa+1, where
χ1 = 0, χ2 = 0.001, χ3 = 0.002, and χa+1 = 1.

2: for j = 1 to N ′, do
3: for e = 1 to a+ 1, do
4: while χe ≤ γj do
5: for b = 1 to N ′, do
6: if ‖χe − γb‖ ≤ κ then
7: ϕb = 1
8: else
9: ϕb = 0

10: end if
11: ξ(χe) = ξ(χe) + ϕb

12: end for
13: φj = φj + ξ(χe)
14: end while
15: end for
16: end for

The density balance algorithm aims to map the original
decision-graph γj into a new decision-graph φj that is superior
to γj for finding the best number of clusters, where 1 ≤ j ≤ q,
where q denotes the number of superipixel area. Let a denote
the number of intervals in the range [0,1] and κ denote the
radius of the neighborhood, whereχ = {χ1, χ2, . . . , χa+1} rep-
resents the set of data interval, χ1 = 0, χ2 = 1/a, χ2 = 2/a,
and χa+1 = 1. Generally, a is chosen empirically and let
a = 1000. We define that ξ(χκ) is the number of γj under the
constraint condition ‖χa − γj‖ ≤ κ , where 1 ≤ e ≤ a+ 1 and
γj is the normalized result γj = (γj −min(γj))/(max(γj)−
min(γj)), e, a ∈ N+. ξ(χe) can be computed as follows:

ξ (χe) =

N ′∑
j=1

ϕj (9)

ϕj =

{
1, ‖χe − γj‖ ≤ κ

0, otherwise
. (10)

We define that φj is the mapping result of γj , where φj can
be computed as follows:

φj =
∑

χe≤γj

ξ (χe). (11)

We presented the pseudocode of the algorithm as recorded in
Algorithm 1.

According to the Algorithm 1, we compute the new decision-
graphs corresponding to Fig. 7(a) and (c). Fig. 8 shows the
results.

Comparing Figs. 7 and 8, it is clear that the proposed density
balance algorithm is useful for finding the best number of
clusters as it is able to distinguish efficiently cluster centers and
noncluster centers.

C. Prior Entropy-Based Fuzzy Clustering

According to Section III-B, we can obtain the number of
clusters and the final clustering result using the superpixel-based

Fig. 8. New decision-graphs of Fig. 7(a) and (c).

DP algorithm. However, in [28], Euclidean distance is used
to measure the similarity between different superpixel areas,
which often leads to poor segmentation results for complex
images as shown in Fig. 4. Since both the covariance analysis
and the Markov random field (MRF) are useful for improving
high-dimensional data classification [46], [47], we integrate
them into the FCM algorithm, and propose prior entropy-based
fuzzy clustering algorithm (PEFC).

Based on superpixel results of images and the number of
clusters provided by the Algorithm 1, we propose the objective
function of PEFC as follows:

J =

N ′∑
l=1

c∑
k=1

SluklΦ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠

+

N ′∑
l=1

c∑
k=1

Slukl log

(
ukl

πk

)
(12)

where 1
Sl

∑
p∈∂l

xp is the mean value of the superpixel area ∂l.
TheΣk is the covariance matrix with respect to the correlation of
different dimensions. The proportion πk is the prior probability
of the superpixel area 1

Sl

∑
p∈∂l

xp belonging to vk, which
satisfies 0 ≤ πk ≤ 1 and

∑c
k=1 πk = 1. The πk indicates that

the MRF is integrated into the objective function of the PEFC.
It is clear that the objective function of the PEFC has a more
complex structure than the FCM, as the PEFC fuses multiple
factors that influence image segmentation results.

Furthermore, c is the number of cluster prototypes, which is
provided by Algorithm 1, vk is the kth cluster center, ukl rep-
resents the membership intensity of the superpixel 1

Sl

∑
p∈∂l

xp

with respect to the kth clustering center vk, which satisfies
0 ≤ ukl ≤ 1 and

∑c
k=1 ukl = 1, and Sl denotes the number of

pixels within the lth superpixel area ∂l.
In (12), Φ( 1

Sl

∑
p∈∂l

xp|vk,Σk) denotes the multivariate
Gaussian distribution, which is defined as follows:

Φ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠ = − log ρ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠ .

(13)
In (13), ρ is the Gaussian density function, which is presented
as follows:

ρ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠ =

[
exp(− 1

2 ((
1
Sl

∑
p∈∂l

xp)− vk)
T

×∑−1
k (( 1

Sl

∑
p∈∂l

xp)− vk))

]

(2π)D/2|∑k |1/2
(14)
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where D denotes the dimension of image data or the number of
image channel, Σk is a diagonal matrix of size D ×D, and |Σk|
is the determinant of Σk. Substituting (14) into (13), we get

Φ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠

=
1

2

⎛
⎜⎝
⎛
⎝ 1

Sl

∑
p∈∂l

xp − vk

⎞
⎠T

Σ−1
k

⎛
⎝ 1

Sl

∑
p∈∂l

xp − vk

⎞
⎠

+ log |Σk|+Dlog(2π)

⎞
⎠

.

(15)

According to
∑c

k=1 ukl = 1 and
∑c

k=1 πk = 1, we use the
Lagrange multiplier approach to compute the optimal value, and
we have

J =
N ′∑
l=1

c∑
k=1

SluklΦ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠

+

N ′∑
l=1

c∑
k=1

Slukl log

(
ukl

πk

)

− λ1

(
c∑

k=1

ukl − 1

)
− λ2

(
c∑

k=1

πk − 1

)
(16)

where λ1 and λ2 are Lagrange multipliers. Thus, we have

∂J

∂ukl
= SlΦ

⎛
⎝ 1

Sl

∑
p∈∂l

xp|vk,Σk

⎞
⎠+ Sl

(
log (

ukl

πk
) + 1

)

− λ1 = 0.

According to
∑c

k=1 ukl = 1, the solution of ∂J
∂ukl

= 0 yields

ukl =
πk exp(−Φ( 1

Sl

∑
p∈∂l

xp|vk,Σk))∑c
h=1 πh exp(−Φ( 1

Sl

∑
p∈∂l

xp|vh,Σh))
. (17)

By computing ∂J
∂vk

= 0, we have

∂J

∂vk
=

N ′∑
l=1

Slukl

⎛
⎜⎜⎜⎝
∂

[
(( 1

Sl

∑
p∈∂l

xp)− vk)
T

×Σ−1
k (( 1

Sl

∑
p∈∂l

xp)− vk)

]
∂vk

⎞
⎟⎟⎟⎠

=
N ′∑
l=1

Slukl

⎛
⎝
⎛
⎝ 1

Sl

∑
p∈∂l

xp

⎞
⎠− vk

⎞
⎠

= 0

and

vk =

∑N ′
l=1 ulk

∑
p∈∂l

xp∑N ′
l=1 ulkSl

. (18)

Fig. 9. Comparison of data classification using FCM and PEFC, respectively.
(a) The 3-D data. (b) FCM. (c) PEFC.

Similarly, we compute ∂J
∂Σk

= 0

∂J

∂Σk

=
N ′∑
l=1

c∑
k=1

1

2
uklSl

⎛
⎜⎜⎜⎝
∂

[
(( 1

Sl
Σp∈∂l
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×Σ−1
k (( 1

Sl
Σp∈∂l

xp)− vk)

]
∂Σk

+
∂log |Σk|

∂Σk

⎞
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=

N ′∑
l=1

Slukl

⎛
⎜⎝−

⎛
⎝
⎛
⎝ 1

Sl

∑
p∈∂l
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⎞
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⎞
⎠T

Σ−2
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⎛
⎝
⎛
⎝ 1

Sl

∑
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⎞
⎠− vk

⎞
⎠+Σ−1
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⎞
⎠

= 0

The solution of ∂J
∂Σk

= 0 yields

Σk=

∑N ′
l=1 Slukl((

1
Sl

∑
p∈∂l

xp)− vk)
T
(( 1

Sl

∑
p∈∂l

xp)− vk)∑N ′
l=1 Slukl

.

(19)
Finally, by computing ∂J

∂πk
= 0,

∂J

∂πk
= −

N ′∑
l=1

Sl
ukl

πk
− λ2 = 0

according to
∑c

k=1 πk = 1, we have

πk =

∑N ′
l=1 uklSl∑N ′
l=1 Sl

. (20)

According to (17)–(20), we obtain a membership partition ma-
trix U = [ukl]

c×N ′
, the cluster center V = [vk]

c×D, the covari-
ance matrixΣ = [Σk]

c×(D×D), and the proportionπ = [πk]
c×1.

We can see from (17)–(20) that the PEFC integrates the adap-
tive neighboring information of prior probability distribution,
and it considers the distribution characteristic of data. Therefore,
it is often used to divide high-dimensional data into different
groups. Fig. 9 shows an example where the PEFC is used for the
classification of 3-D data.

Based on the analysis of Section III-A–III-C so far, we
propose the detailed steps of the AFCF in the following. The
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Fig. 10. Segmentation results using the proposed AFCF. (a) Images. (b) SLIC-
AFCF. (c) LSC-AFCF. (d) MMGR-AFCF. The number of superpixel area is 200
for SLIC and LSC. For MMGR-WT, r1 = 2 and η = 10−4.

AFCF mainly includes three parts: superpixel pre-processing,
the improved DP algorithm based on Algorithm 1, and the PEFC.

The detailed steps of the AFCF1 are as follows.
Step 1: Compute the superpixel result of the original im-

age, where each area of the superpixel image
is denoted by the mean value, x̂l =

1
Sl

∑
p∈∂l

xp.
As a result, we get a data set to be classified
x̂ = {x̂1, x̂2, . . . , x̂N ′ } and a corresponding color
histogram S = {S1, S2, . . . , SN ′ }, where Sl denotes
the total number of pixels in the superpixel area ∂l;

Step 2: Implement the DP algorithm on x̂ to obtain γj ;
Step 3: Implement Algorithm 1 to obtain φj and the number

of clusters;
Step 4: Initialize the variables U(0),V(0),Σ(0), and π(0)

using FCM algorithm, where the weighting exponent,
the convergence condition, and the maximal number
of iterations are 2, 10−5, and 50, respectively;

Step 5: Set the loop counter t = 0;
Step 6: Update the variables U(t),V(t),Σ(t), and π(t);

1) Update the membership matrix U(t) using
(17).

2) Update the cluster center V(t) using (18).
3) Update the covariance Σ(t) using (19).
4) Update the prior probability π(t) using (20).

Step 7: If max
{
U(t) −U(t+1)

}
< 10−5, then stop, other-

wise, set t = t+ 1 and go to step 6.
In this paper, three excellent superpixel algorithms, namely

SLIC, LSC, and MMGR-WT, are used for the AFCF to obtain
three automatic image segmentation algorithms, i.e., SLIC-
AFCF, LSC-AFCF, and MMGR-AFCF. Fig. 10 shows the seg-
mentation results generated by these three algorithms. It can be
seen that they obtain the same number of clusters but offer dif-
ferent segmentation results. The MMGR-AFCF obtains a better
result than the SLIC-AFCF and LSC-AFCF, for the MMGR-WT
generates a better superpixel result than the SLIC and LSC.

IV. EXPERIMENTS

We conducted experiments on two types of images: syn-
thetic color images with complex texture information (image
size is 256× 256), as well as real images from the Berkeley
segmentation dataset and benchmark (BSDS500) [48] (image
size is 481× 321 or 321× 481). Two synthetic images include
three and four different colors and textures, respectively. The
BSDS500 includes 300 training images and 200 testing images.

1Source code is available at https://github.com/SUST-reynole/AFCF

There are 4–9 ground truth segmentations for each image in
BSDS500, and each ground truth is delineated by one human
subject. All algorithms and experimental evaluations are per-
formed on a workstation with an Intel(R) Core (TM) CPU,
i7-6700, 3.4 GHz, and 16 GB RAM.

To evaluate the effectiveness and efficiency of the proposed
AFCF, ten popular clustering-based image segmentation algo-
rithms are considered for comparisons. These include FCM [49],
FGFCM [19], HMRF-FCM [40], FLICM [12], NWFCM [13],
Liu’s algorithm [16], NDFCM [50], FRFCM [20], DSFCM_N
[15], and SFFCM [23]. In addition, because the proposed AFCF
is an image segmentation framework, three different algorithms,
SLIC-AFCF, LSC-AFCF, and MMGR-AFCF, have been consid-
ered in our experiments.

A. Parameter Setting

Comparative algorithms and the proposed AFCF require three
indispensable parameters, namely, the weighting exponent, the
minimal error threshold, and the maximal number of iterations.
In our experiments, the values of these parameters are 2, 10−5,
and 50, respectively. The parameter setting of comparative algo-
rithms follows the original paper. As all comparative algorithms
require a neighboring window except the FCM, HMRF-FCM,
FLICM, Liu’s algorithm, and SFFCM, a window of size 3× 3
is used for those algorithms that require a neighboring window
for fair comparison. The spatial scale factor and the gray-level
scale factor in the FGFCM are λs = 3 and λg = 5, respec-
tively. The NWFCM only refers to the gray-level scale factor,
λg = 5. The three parameters, the spatial bandwidth hs = 10,
the range bandwidth hr = 10, and the minimum size of final
output regions hk = 100, are used for Liu’s algorithm. Except
three indispensable parameters mentioned above and the number
of the cluster prototypes, the FCM, HMRF-FCM, FLICM, and
DSFCM_N do not require any other parameters. In the FRFCM,
both the structuring element and the filtering window are a
square of size 3× 3 for fair comparison. For the SFFCM and the
proposed MMGR-AFCF, they share two same parameters used
for the MMGR-WT, r1 = 2, and η = 10−4. For the proposed
SLIC-AFCF and LSC-AFCF, the number of superpixel areas is
set to 400 here.

B. Results on Synthetic Images

We demonstrate that the proposed framework is able to pro-
vide accurate number of clusters and achieve better image seg-
mentation than comparative algorithms. Two synthetic images
are considered as testing images, where we use the texture in-
formation of the Colored Brodatz Texture database2 to generate
complex texture images. Then these two images are corrupted
by two kinds of noise–Gaussian noise and Salt & Pepper noise.
The final segmentation results are shown in Figs. 11 and 12.

Note that all comparative algorithms require the number of
clusters except the proposed AFCF since it is fully automatic
for image segmentation. Figs. 11(c) and 12(c) show the final
decision-graph and it is clear that the number of clusters c is 3
for Fig. 11 and c is 4 for Fig. 12, which demonstrates that the
proposed AFCF is effective for finding the best value of c. For
fair comparison, c = 3 and c = 4 are used for all comparative
algorithms in Fig. 11(a) and (b), respectively.

2[Onlne]. Available: http://multibandtexture.recherche.usherbrooke.ca/
colored%20_brodatz.html

http://multibandtexture.recherche.usherbrooke.ca/colored%20_brodatz.html
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Fig. 11. Comparison of segmentation results on the first synthetic image.
(a) The original synthetic image including three areas with different texture
and color. (b) The noisy image corrupted by the mixture noise (the mean value
is zero and the variance is 0.05 for the Gaussian noise; the density of Salt &
Pepper is 0.1). (c) The decision-graph. (d) FCM. (e) FGFCM. (f) HMRF-FCM.
(g) FLICM. (h) NWFCM. (i) Liu’s algorithm. (j) NDFCM. (k) FRFCM. (l)
DSFCM_N. (m) SFFCM. (n) SLIC-AFCF. (o) LSC-AFCF. (p) MMGR-AFCF.

Fig. 12. Comparison of segmentation results on the second synthetic image.
(a) The original synthetic image including four areas with different texture and
color. (b) The noisy image corrupted by the mixture noise (the mean value
is zero and the variance is 0.05 for the Gaussian noise; the density of Salt &
Pepper is 0.1). (c) The decision-graph. (d) FCM. (e) FGFCM. (f) HMRF-FCM.
(g) FLICM. (h) NWFCM. (i) Liu’s algorithm. (j) NDFCM. (k) FRFCM. (l)
DSFCM_N. (m) SFFCM. (n) SLIC-AFCF. (o) LSC-AFCF. (p) MMGR-AFCF.

Fig. 11(d) shows that the FCM provides a poor segmentation
result since the spatial information of images is missing. Al-
though the FRFCM and DSFCM_N integrate spatial information
of images into their objective function, lots of pixels are classi-
fied falsely as shown in Fig. 11(k) and (l). The FRFCM obtains a
poor result, since the multivariate morphological reconstruction
is unsuitable for images with complex texture. The DSFCM_N
employs the sparse representation to improve image segmenta-
tion results, but it is not effective for images corrupted by the
mixture noise. Fig. 11(e), (g), (h), and (j) provides good segmen-
tation results because the neighboring information employed by
the FGFCM, FLICM, NWFCM, and NDFCM is effective for
improving segmentation results. Furthermore, Liu’s algorithm
and the HRMF-FCM provide better results, which show that
they are robust for images corrupted by noise. The AFCF has a
strong capability of noise suppression, and the MMGR-AFCF
obtains the best result that looks similar to the result provided
by the HMRF-FCM.

Fig. 12(a) has a more complex shape and texture than
Fig. 11(a). In Fig. 12(d), (e), and (l), the FCM, FGFCM, and
DSFCM_N generate poor segmentation results because they
obtain wrong cluster centers, which indicates that the three
algorithms have a weak capability of pixel classification for
complex images corrupted by noise. Fig. 12(f)–(j) offers similar
results, which means that HMRF-FCM, FLICM, NWFCM, ND-
FCM, and Liu’s algorithm have a limited capability for improv-
ing segmentation effect on complex images. Both the SFFCM
and AFCF obtain better segmentation results as shown in Fig.
12(m)–(p), which shows that the superpixel technology and the
prior entropy are effective for improving segmentation results
on complex images. Similar to Fig. 11(p), the MMGR-AFCF
obtains the best segmentation result as shown in Fig. 12(p).

To evaluate the performance of different algorithms on noisy
images, two performance indices are employed here. The first
is the quantitative index score (S) that is the degree of equality
between pixel sets Ak and the ground truth Ck [20]. The second
is the optimal segmentation accuracy (SA) that is the sum of the
number of the correctly classified pixels divided by the number
of ground truth pixels. They are defined as

S =

c∑
k=1

Ak

⋂
Ck

Ak

⋃
Ck

(21)

SA =

c∑
k=1

Ak

⋂
Ck∑c

j=1 Cj
(22)

where Ak is the set of pixels belonging to the kth class found
by an algorithm while Ck is the set of pixels belonging to
the class in the ground truth. All algorithms are performed
on the two synthetic images corrupted by different kinds and
levels of noise. The experimental results are shown in Tables II
and III. As the algorithms used in experiments show different
performance for images corrupted by different kinds of noise,
we further presented the mean value and the root-mean-square
error (RMSE) of S and SA in Tables II and III.

In Tables II and III, the FCM obtains low mean value and
high RMSE of S and SA because it is sensitive to both Salt &
Pepper noise and Gaussian noise. The NWFCM, FRFCM, and
DSFCM_N show better performance than the FCM, but they
are poor compared to other comparative algorithms, especially
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TABLE II
SCORES (S%) ON THE FIRST SYNTHETIC IMAGE CORRUPTED BY NOISE (c = 3), WHERE SP REPRESENTS SALT & PEPPER

NOISE AND G REPRESENTS GAUSSIAN NOISE

The best values are provided in bold.

TABLE III
SEGMENTATION ACCURACIES (SA%) OF DIFFERENT ALGORITHMS ON THE SECOND SYNTHETIC IMAGE CORRUPTED BY NOISE (c = 4), WHERE

SP REPRESENTS SALT & PEPPER NOISE AND G REPRESENTS GAUSSIAN NOISE

The best values are provided in bold.

when the noise level is high. The DSFCM_N is robust against
Salt & Pepper noise, but it is sensitive to Gaussian noise, and
thus it is difficult to obtain a good segmentation result using the
DSFCM_N for images corrupted by the mixture noise.

The FGFCM, HMRF-FCM, FLICM, Liu’s algorithm, and
NDFCM obtain similar average performance for the first syn-
thetic image as shown in Table II, but the FLICM shows worse
performance than other four algorithms for the second synthetic
image as shown in Table III. The SFFCM shows excellent perfor-
mance for two synthetic images. We can see that the SFFCM is
insensitive to both Salt & Pepper noise and Gaussian noise when
the noise level is low, but it is sensitive to Gaussian noise when
the noise level is high, as shown in Table III. The proposed AFCF
shows better performance than comparative algorithms except
the SFFCM. Especially, the MMGR-AFCF obtains the largest
mean value as well as the smallest RMSE of S and SA on two
synthetic images, which demonstrates that the MMGR-AFCF is
robust against different kinds of noise corruption.

C. Results on Real Images

Here we demonstrate the superiority of the AFCF on real im-
age segmentation with images from BSDS500. The parameters
values in all algorithms are the same as those in Section IV-B
except the FRFCM and SFFCM. The related parameters of the
FRFCM and SFFCM follow the original papers [20] and [23].
In addition, the CIE-Lab color space is used for all algorithms
for a fair comparison.

To evaluate the performance of different algorithms for real
image segmentation, we consider the probabilistic rand index
(PRI), the covering (CV), the variation of information (VI), the
global consistency error (GCE), and the boundary displacement
error (BDE) [51], as the performance metrics. Both PRI and CV
are usually used for the evaluation of the pixelwise classification
task, where PRI is the similarity of labels and CV is the overlap
of regions between two clustering results. VI is also used for
the purpose of clustering comparison, and it is the distance
of average conditional entropy between two clustering results.
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Fig. 13. Segmentation results using the proposed AFCF. The first row denotes
original images. The second, fourth, and sixth rows denote decision-graphs
obtained by SLIC-AFCF, LSC-AFCF, and MMGR-AFCF, respectively. The
third, fifth, and seventh rows are segmentation results generated by the three
proposed algorithms.

Additionally, GCE and BDE are often used for the evaluation
of image segmentation, where GCE computes the global error
to which two segmentations are mutually consistent and BDE
measures the average displacement error of boundary pixels
between two segmentations. In general, a good segmentation
corresponds to high value of PRI and CV, but corresponds to
low values of VI, GCE, and BDE.

First, we demonstrate that the proposed AFCF is able to obtain
an accurate number of clusters for real images. As it is difficult to
give an accurate number of clusters for each image in BSDS500,
we choose five simple images as shown in Fig. 13. According to
the proposed AFCF that includes the SLIC-AFCF, LSC-AFCF,
and MMGR-AFCF, the corresponding decision-graphs and seg-
mentation results are obtained as shown in Fig. 13. We can see
that the SLIC-AFCF, LSC-AFCF, and MMGR-AFCF obtain
the approximate number of clusters, indicating that the AFCF
provides similar number of clusters for an image independent of
the selected superpixel algorithm.

In Fig. 13, the SLIC-AFCF and MMGR-AFCF obtain the
same number of cluster for each image, but the LSC-AFCF
obtains different results for images “97010” and “376020.”
In practical applications, because three superpixel algorithms
lead to different presegmentation results, it is impossible to
obtain the same number of clusters for each image in the
BSDS500 using three algorithms. However, Fig. 13 shows that
three suprepixel algorithms can obtain an approximate number
of clusters. Because the MMGR-WT has been able to provide
better superpixel results, we consider the number of clusters
provided by the MMGR-AFCF for comparative algorithms in
the following experiments.

TABLE IV
AVERAGE PERFORMANCE ON FIVE IMAGES SHOWN IN FIG. 13

The best values are provided in bold.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON THE

BSDS500 DATASET

The best values are provided in bold.

Table V shows the performance of the proposed AFCF on real
image segmentation. Because our purpose is to demonstrate that
the proposed AFCF can obtain the best number of clusters, we
present the average values of PRI, CV, VI, GCE, and BDE on five
images shown in Fig. 13. The proposed AFCF can automatically
obtain the value of c, which means that the AFCF obtains a value
of c adaptively. However, the conventional clustering algorithms
use a fixed value of c for each image. In Table IV, the fixed value
of c and the adaptive value of c are used for AFCF, respectively.
It is clear that the adaptive value of c is superior to the fixed value
of c, which demonstrates that the proposed AFCF is effective for
obtaining an accurate number of clusters.

Also, we applied all algorithms on each image in the
BSDS500, using the same value of c obtained by the proposed
MMGR-AFCF for all algorithms. Experimental results on some
images are shown in Figs. 14 and 15. Moreover, Table V
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Fig. 14. Comparison of segmentation results on six images from the BSDS500
using different algorithms.

shows the performance comparison of different algorithms on
BSDS500.

In Figs. 14 and 15, we can see that the FCM, FGFCM,
HMRF-FCM, FLICM, NWFCM, KWFLICM, NDFCM, FR-
FCM, and DSFCM_N generate segmentation results including
a great number of isolated regions. Therefore, it is difficult to
obtain fine contours for segmentation results. The main reason
is that these algorithms employ fixed-size windows to obtain
spatial neighboring information. The Liu’s algorithm, SFFCM,
and the proposed AFCF obtain better segmentation results due to
the employment of superpixel algorithms, which means that the
adaptive spatial information is useful for improving segmenta-
tions. However, because the MMGR-WT always generates bet-
ter superpixel areas than the SLIC and LSC, the MMGR-AFCF
provides better segmentation results than the SLIC-AFCF and
LSC-AFCF. Compared to the SFFCM that employs the Sobel
operator, the MMGR-AFCF employs the structured forests (SE)
[52] to generate a gradient image to be used for the MMGR.
Therefore, the MMGR-AFCF provides better superpixel results
than the SFFCM. Furthermore, as the former employs prior

Fig. 15. Comparison of segmentation results on ten images from the BSDS500
using different algorithms.

entropy to obtain the final result, it has clear advantages than
the later for image segmentation.

In Table V, the FCM, FGFCM, FLICM, NWFCM, NDFCM,
and DSFCM_N obtain similar values of PRI, CV, VI, GCE, and
BDE, which shows that these algorithms have similar perfor-
mance on real image segmentation. Similarly, the HMRF-FCM
has a similar performance with the FRFCM. Liu’s algorithm
clearly outperforms other algorithms due to the employment
of superpixel images generated by mean-shift algorithm. The
SFFCM obtains better CV, VI, and GCE but worse PRI and
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TABLE VI
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

TABLE VII
COMPARISON OF EXECUTION TIME (IN SECONDS) OF DIFFERENT ALGORITHMS

The best values are highlighted.

BDE than Liu’s algorithm. The proposed SLIC-AFCF and LSC-
AFCF show similar performance with Liu’s algorithm. However,
they are superior to Liu’s algorithm since the proposed AFCF
is fully automatic and it has lower computational complexity
than Liu’s algorithm. The proposed MMGR-AFCF provides
the best results in each of the five performance metrics, which
demonstrates that the MMGR-AFCF is able to obtain excellent
segmentation results for real images.

D. Computational Cost

The proposed image segmentation framework can be roughly
divided into two stages. The first is image superpixel and the
second is automatic fuzzy clustering. It is well known that the
computational complexity of the SLIC and LSC is O(N ×K ×
t′), and the MMGR has lower computational complexityO(N ×
T ′) than the SLIC and LSC, where both t′ and T ′ are iterations
and they are often smaller than t. For the AFCF, as both the
construction of decision-graph and the decision of the number
of clusters do not require iterations, they are fast as compared
to subsequent fuzzy clustering algorithms. Consequently, the
computational complexity of the proposed AFCF is O(N ′ ×
c× t), where N is the total number of pixels and N ′ is the total
number of superpixel areas. It is clear that AFCF has a lower
computational complexity due to N ′ � N . Table VI shows the
computational complexity of different algorithms.

In Table VI, w denotes the size of neighboring window and
K denotes the number of neighboring centers. The DSFCM_N
has the highest computational complexity since the neighboring
information is computed on each pixel. The SFFCM has the
lowest computational complexity since the MMGR is fast and
N ′ � N .

Furthermore, to estimate the practicability of different algo-
rithms, we computed the execution time of different algorithms
on all images in the BSDS500 and Table VII shows the com-
parison of average execution time on 500 images. It is known
that the FLICM, HMRF-FCM, NWFCM, and Liu’s algorithm
are quite time-consuming [16]. Moreover, the FRFCM has a
lower computational complexity than the FGFCM and NDFCM
[50]. Therefore, we only present the execution time of the FCM,
FRFCM, DSFCM_N, SFFCM, and the proposed SLIC-AFCF,

LSC-AFCM, MMGR-AFCF in Table VII. The execution time
further demonstrates that the proposed AFCF is fast and it is
practical.

In Table VII, we can see that the SFFCM is the fastest
due to the utilization of superpixel and color histogram. The
DSFCM_N needs a long execution time because the neighbor-
ing information is repeatedly computed in each iteration. The
proposed SLIC-FCM and LSC-FCM require a similar execu-
tion time that is longer than the MMGR-AFCF, for both the
SLIC and LSC has a higher computational complexity than the
MMGR-WT. Clearly, the proposed MMGR-AFCF is not only
faster than all comparative algorithms (except the SFFCM), but
also it is fully automatic for image segmentation.

V. CONCLUSION

In this paper, we have studied automatic image segmenta-
tion algorithms using fuzzy clustering. We proposed an AFCF
for image segmentation by integrating superpixel algorithms,
density peak clustering, and prior entropy. The proposed AFCF
addresses two difficulties in existing popular algorithms. It is
fully automatic for image segmentation since the number of
clusters is obtained automatically and it provides better image
segmentation results than popular clustering algorithms due to
the employment of superpixel algorithms and the prior entropy.
The proposed AFCF was used to segment synthetic and real
images, demonstrating that it is able to obtain accurate number
of clusters. Moreover, the AFCF is superior to state-of-the-art
clustering algorithms because it provides the best segmentation
results.

However, we only use the average color in a superpixel area
as the features of the superpixel area, which is a drawback for
image segmentation. In the future, we will consider convolu-
tional neural networks to extract image features and will explore
feature learning algorithm to achieve better automatic image
segmentation.
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