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Abstract

Deep learning has been widely used for medical image segmentation and a large number
of papers has been presented recording the success of deep learning in the field. A com-
prehensive thematic survey on medical image segmentation using deep learning techniques
is presented. This paper makes two original contributions. Firstly, compared to traditional
surveys that directly divide literatures of deep learning on medical image segmentation
into many groups and introduce literatures in detail for each group, we classify currently
popular literatures according to a multi-level structure from coarse to fine. Secondly, this
paper focuses on supervised and weakly supervised learning approaches, without includ-
ing unsupervised approaches since they have been introduced in many old surveys and
they are not popular currently. For supervised learning approaches, we analyse literatures
in three aspects: the selection of backbone networks, the design of network blocks, and the
improvement of loss functions. For weakly supervised learning approaches, we investigate
literature according to data augmentation, transfer learning, and interactive segmentation,
separately. Compared to existing surveys, this survey classifies the literatures very differ-
ently from before and is more convenient for readers to understand the relevant rationale
and will guide them to think of appropriate improvements in medical image segmentation
based on deep learning approaches.

1 INTRODUCTION

Medical image segmentation aims to make anatomical or
pathological structures changes in more clear in images; it
often plays a key role in computer-aided diagnosis and smart
medicine due to the great improvement in diagnostic effi-
ciency and accuracy. Popular medical image segmentation tasks
include liver and liver-tumour segmentation [1] [2], brain and
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brain-tumour segmentation [3] [4], optic disc segmentation
[5] [6], cell segmentation [7] [8], lung segmentation, pulmonary
nodules [9] [10], and cardiac image segmentation [11] [12].
With the development and popularisation of medical imaging
equipments, X-ray, Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) and ultrasound have become four
important image-assisted means to help clinicians diagnose dis-
eases, to evaluate prognopsis, and to plan operations in medical

IET Image Process. 2022;16:1243–1267. wileyonlinelibrary.com/iet-ipr 1243

https://orcid.org/0000-0002-2104-9298
https://orcid.org/0000-0002-8836-1382
https://orcid.org/0000-0001-6248-2875
mailto:leitao@sust.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-ipr
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fipr2.12419&domain=pdf&date_stamp=2022-01-17


1244 WANG ET AL.

institutions. In practical applications, although these ways of
imaging have advantages as well as disadvantages, they are useful
for the medical examination of different parts of human body.

To help clinicians make accurate diagnosis, it is necessary to
segment some crucial objects in medical images and extract
features from segmented areas. Early approaches to medical
image segmentation often depend on edge detection, tem-
plate matching techniques, statistical shape models, active con-
tours, machine learning, etc. Zhao et al. [13] proposed a new
mathematical morphology edge detection algorithm for lung
CT images. Lalonde et al. [14] applied Hausdorff-based tem-
plate matching to disc inspection, and Chen et al. [15] also
employed template matching to perform ventricular segmenta-
tion in brain CT images. Tsai et al. [16] proposed a shape-based
approach using horizontal sets for 2D segmentation of cardiac
MRI images and 3D segmentation of prostate MRI images.
Li et al. [17] used the activity profile model to segment liver-
tumours from abdominal CT images, while Li et al. [18] pro-
posed a framework for medical body data segmentation by com-
bining level sets and support vector machines (SVMs). Held
et al. [19] applied Markov random fields (MRF) to brain MRI
image segmentation. Although a large number of approaches
have been reported and they are successful in certain circum-
stances, image segmentation is still one of the most challeng-
ing topics in the field of computer vision due to the difficulty
of feature representation. In particular, it is more difficult to
extract discriminating features from medical images than nor-
mal RGB images since the former often suffers from problems
of blur, noise, low contrast, etc. Due to the rapid development
of deep learning techniques [20], medical image segmentation
will no longer require hand-crafted feature and convolutional
neural networks (CNN) successfully achieve hierarchical feature
representation of images, and thus become the hottest research
topic in image processing and computer vision. As CNNs used
for feature learning are insensitive to image noise, blur, con-
trast, etc., they provide excellent segmentation results for medi-
cal images.

It is worth mentioning that there are currently two cate-
gories of image segmentation tasks, semantic segmentation and
instance segmentation. Image semantic segmentation is a pixel-
level classification that assigns a corresponding category to each
pixel in an image. Compared to semantic segmentation, the
instance segmentation not only needs to achieve pixel-level clas-
sification, but also needs to distinguish instances on the basis of
specific categories. In fact, there are few reports on instance seg-
mentation in medical image segmentation since each organ or
tissue is quite different. We review the advances of deep learn-
ing techniques on medical image segmentation.

According to the number of labelled data, machine learning
is often categorised into supervised learning, weakly supervised
learning, and unsupervised learning. The advantage of super-
vised learning is that we can train models based on carefully
labelled data, but it is difficult to obtain a large number of
labelled data for medical images. On the contrary, labelled
data are not required for unsupervised learning, but the dif-
ficulty of learning is increased. Weakly supervised learning is
between the supervised and unsupervised learning since it only

requires a small part of data labelled while most of data are
unlabelled.

Prior to the widespread application of deep learning,
researchers had presented many approaches based on model-
driven on medical image segmentation. Masood et al. [21] made
a comprehensive summary of many model-driven techniques in
medical image analysis, including image clustering, region grow-
ing, and random forest. In [21], authors summarised different
segmentation approaches on medical images according to dif-
ferent mathematical models. Recently, only a few studies based
on model-driven techniques were reported, but more and more
studies based on data-driven were reported for medical image
segmentation. This paper mainly focuses on the evolution and
development of deep learning models on medical image seg-
mentation.

In [22], Shen et al. presented a special review of the appli-
cation of deep learning in medical image analysis. This review
summarises the progress of machine learning and deep learning
in medical image registration, anatomy and cell structure detec-
tion, tissue segmentation, computer-aided disease diagnosis and
prognopsis. Litjens et al. [23] reported a survey of deep learning
methods, the survey covers the use of deep learning in image
classification, object detection, segmentation, registration and
other tasks.

More recently, Taghanaki et al. [24] discussed the develop-
ment of semantic and medical image segmentation; they cate-
gorised deep learning-based image segmentation solutions into
six groups, that is, deep architectural, data synthesis-based,
loss function-based, sequenced models, weakly supervised, and
multi-task methods. To develop a more complete survey on
medical image segmentation, Seo et al. [25] reviewed classical
machine learning algorithms such as Markov random fields, k-
means clustering, random forest, and reviewed latest deep learn-
ing architectures such as the artificial neural networks (ANNs),
the convolutional neural networks (CNNs), and the recurrent
neural networks (RNNs). Tajbakhsh et al. [26] reviewed solu-
tions of medical image segmentation with imperfect data sets,
including two major data set limitations: scarce annotations and
weak annotations. All these surveys play an important role for
the development of medical image segmentation techniques.
Hesamian et al. [27] reviewed on three aspects of approaches
(network structures), training techniques, and challenges. The
network structures section describes the main, popular network
structures used for image segmentation. The training techniques
section discusses the J Digit imaging technique used to train
deep neural network models. The challenges section describes
the various challenges associated with medical image segmenta-
tion using deep learning techniques. Meyer et al. [28] reviewed
the advances in the application or potential application of deep
learning to radiotherapy. Akkus et al. [29] provided an overview
of current deep learning-based segmentation approaches for
quantitative brain MRI images. Zhou et al. [30] focused on three
typical types of weak supervision: incomplete supervision, inex-
act supervision and inaccurate supervision. Eelbode et al. [31]
focus on evaluating and summarising the optimisation methods
used in medical image segmentation tasks based primarily on
Dice scores or Jaccard indices.
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WANG ET AL. 1245

Survey

FIGURE 1 An overview of deep learning methods on medical image
segmentation

Through studying the aforementioned surveys, researchers
can learn the latest techniques of medical image segmen-
tation, and then make more significant contributions for
computer-aided diagnoses and smart healthcare. However,
these surveys suffer from two problems. One is that most of
them chronologically summarise the development of medical
image segmentation, and they thus ignore the technical branch
of deep learning for medical image segmentation. The other
problem is that these surveys only introduce related techni-
cal development but not focus on the task characteristics of
medical image segmentation such as few-shot learning and
imbalance learning, which limits the improvement of medical
image segmentation based on task-driven. To address these two
problems, we present a novel survey on medical image segmen-
tation using deep learning. In this work, we make the following
contributions:

1. We summarise the technical branch of deep learning for
medical image segmentation from coarse to fine as shown in
Figure 1. The summation includes two aspects of supervised
learning and weakly supervised learning. The latest applica-
tions of neural architecture search (NAS), graph convolu-
tional networks (GCN), multi-modality data fusion and med-
ical transformer in medical image analysis are also discussed.
Compared to the previous surveys, our survey follows con-
ceptual developments and is believed to be clearer.

2. On supervised learning approaches, we analyse literature
from three aspects: the selection of backbone networks,
the design of network blocks, and the improvement of
loss functions. This classification method can help subse-
quent researchers to understand more deeply motivations
and improvement strategies of medical image segmentation
networks. For weakly supervised learning, we also review lit-
eratures from three aspects for processing few-shot data or
class imbalanced data: data augmentation, transfer learning,
and interactive segmentation. This organisation is expected
to be more conducive to researchers in finding innovations
for improving the accuracy of medical image segmentation.

3. In addition to reviewing comprehensively the development
and application of deep learning in medical image segmen-
tation, we also collect the currently common public medi-
cal image segmentation data sets. Finally, we discuss future
research trends and directions in this field.

The rest of this paper is organised as follows. In Section II, we
review the development and evolution of supervised learning
applied to medical images, including the selection of backbone
network, the design of network blocks, and the improvement
of loss function. In Section III, we introduce the application
of unsupervised or weakly supervised methods in the field of
medical image segmentation and analyse the commonly unsu-
pervised or weakly supervised strategies for processing few-shot
data or class imbalanced data. In Section IV, we briefly intro-
duce some of the most advanced methods of medical image
segmentation, including NAS, application of GCN, and multi-
modality data fusion. In Section V, we collect the currently avail-
able public medical image segmentation data sets, and sum-
marise limitations of current deep learning methods and future
research directions.

2 SUPERVISED LEARNING

For medical image segmentation tasks, supervised learning is
the most popular method since these tasks usually require
high accuracy. In this section, we focus on the review of
improvements of neural network architectures. These improve-
ments mainly include network backbones, network blocks and
the design of loss functions. Figure 2 shows an overview on
the improvement of network architectures based on super-
vised learning.

2.1 Backbone networks

Image semantic segmentation aims to achieve pixel classifi-
cation of an image. For this goal, researchers proposed the
encoder–decoder structure that is one of the most popular
end-to-end architectures, such as fully convolution network
(FCN) [32], U-Net [7], and Deeplab [33]. In these structures,
an encoder is often used to extract image features while a
decoder is often used to restore extracted features to the original
image size and output the final segmentation results. Although
the end-to-end structure is pragmatic for medical image seg-
mentation, it reduces the interpretability of models. The first
high-impact encoder–decoder structure, the U-Net proposed by
Ronneberger et al. [7], has been widely used for medical image
segmentation. Figure 3 shows the U-Net architecture.

U-Net: The U-Net solves problems of general CNN networks
used for medical image segmentation, since it adopts a perfect
symmetric structure and skip connection. Different from com-
mon image segmentation, medical images usually contain noise
and show blurred boundaries. Therefore, it is very difficult to
detect or recognise objects in medical images only depending
on image low-level features. Meanwhile, it is also impossible to
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FIGURE 2 An overview of network architectures based on supervised
learning
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FIGURE 3 The U-Net architecture [7]

obtain accurate boundaries depending only on image semantic
features due to the lack of image detail information, whereas the
U-Net effectively fuses low-level and high-level image features
by combining low-resolution and high-resolution feature maps
through skip connections, which is a perfect solution for medi-
cal image segmentation tasks. Currently, the U-Net has become
the benchmark for most medical image segmentation tasks and
has inspired a lot of meaningful improvements.

3D Net: In practice, as most of medical data such as CT and
MRI images exist in the form of 3D volume data, the use of 3D
convolution kernels can better mine the high-dimensional spa-
tial correlation of data. Motivated by this idea, Çiçek et al. [34]
extended U-Net architecture to the application of 3D data, and
proposed 3D U-Net that deals with 3D medical data directly.

FIGURE 4 The V-Net architecture [35]

Feature Map

Conv Relu

Conv +

+

Relu

+

Feature Map

FIGURE 5 The recurrent residual convolutional unitalom2018recurrent

Due to the limitation of computational resources, the 3D U-Net
only includes three down-sampling, which cannot effectively
extract deep-layer image features leading to limited segmenta-
tion accuracy for medical images. In addition, Milletari et al. [35]
proposed a similar architecture, V-Net, as shown in Figure 4.
It is well known that residual connections can avoid vanishing
gradient and accelerate network convergence, and it is thus easy
to design deeper network structures that can provide better fea-
ture representation. Compared to 3D U-Net, V-Net employs
residual connections to design a deeper network (four down-
samplings), and thus achieves higher performance. Similarly, by
applying residual connections to 3D networks, Yu et al. [36] pre-
sented Voxresnet, Lee et al. [37] proposed 3DRUNet, and Xiao
et al. [38] proposed Res-UNet. However, these 3D Networks
encounter same problems of high computational cost and GPU
memory usage due to a very large number of parameters.

Recurrent Neural Network (RNN): RNN is initially designed
to deal with sequence problems. The long short-term mem-
ory (LSTM) network [39] is one of the most popular RNNs.
It can retain the gradient flow for a long time by introducing
a self-loop. For medical image segmentation, RNN has been
used to model the time dependence of image sequences. Alom
et al. [40] proposed a medical image segmentation method that
combines ResUNet with RNN. The method achieves feature
accumulation of recursive residual convolutional layers, which
improves feature representation for image segmentation tasks.
Figure 5 shows the recurrent residual convolutional unit. Gao
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WANG ET AL. 1247

et al. [41] joined LSTM and CNN to model the temporal rela-
tionship between different brain MRI slices to improve segmen-
tation accuracy. Bai et al. [42] combined FCN with RNN to
mine the spatiotemporal information for aortic sequence seg-
mentation. Clearly, RNN can capture local and global spatial
features of images by considering the context information rela-
tionship. However, in medical image segmentation, the capture
of complete and valid temporal information requires good med-
ical image quality (e.g. smaller slice thickness and pixel spacing).
Therefore, the design of RNN is uncommon for improving the
performance of medical image segmentation.

Skip Connection: Although the skip connection can fuse low-
resolution and high-resolution information and thus improve
feature representation, it suffers from the problem of the large
semantic gap between low- and high-resolution features, lead-
ing to blurred feature maps. To improve skip connection, Ibte-
haz et al. [43] proposed MultiResUNet including the Resid-
ual Path (ResPath), which makes the encoder features perform
some additional convolution operations before fusing with the
corresponding features in the decoder. Seo et al. [44] proposed
mUNet and Chen et al. [45] proposed FED-Net. Both mU-Net
and FED-Net add convolution operations to the skip connec-
tion to improve the performance of medical image segmenta-
tion.

Cascade of 2D and 3D: For image segmentation tasks, the cas-
cade model often trains two or more models to improve seg-
mentation accuracy. This method is especially popular in med-
ical image segmentation. The cascade model can be broadly
divided into three types of frameworks: coarse-fine segmen-
tation, detection segmentation, and mixed segmentation. The
first class is a coarse-fine segmentation framework that uses a
cascade of two 2D networks for segmentation, where the first
network performs coarse segmentation and then uses another
network model to achieve fine segmentation based on the pre-
vious coarse segmentation results. Christ et al. [46] proposed
a cascaded network for liver and liver-tumour segmentation.
This network firstly uses an FCN to segment livers, and then
uses previous liver segmentation results as the input of the
second FCN for liver-tumour segmentation. Yuan et al. [47]
first trained a simple convolutional–deconvolutional neural net-
works (CDNN) model (19-layer FCN) to provide rapid but
coarse liver segmentation over the entire images of a CT vol-
ume, and then applied another CDNN (29-layer FCN) to the
liver region for fine-grained liver segmentation. Finally, the liver
segmentation region enhanced by histogram equalisation is con-
sidered as an additional input to the third CDNN (29-layer
CNN) for liver-tumour segmentation. Besides, other networks
using the coarse-fine segmentation framework can be found
in [48] [49] [50]. At the same time, the detection segmentation
framework is also popular. First, a network model such as R-
CNN [51]or You-On-Look-Once (YOLO) [52] is used for tar-
get location identification, and then another network is used
for further detailed segmentation based on previously coarse
segmentation results. Al-Antari et al. [53] proposed a similar
approach for breast mass detection, segmentation and classifica-
tion from mammograms. In this work, the first step is to use the
regional deep learning method YOLO for target detection, the

second step is to input the detected targets into a newly designed
full-resolution convolutional network (FrCN) for segmentation,
and finally, a deep convolutional neural network is used to iden-
tify the masses and classify them as benign or malignant. Simi-
larly, Tang et al. [47] used faster R-CNN [54] and Deeplab [55]
cascades for localisation segmentation of the liver. In addition,
both Salehi et al. [56] and Yan et al. [57] proposed a kind of cas-
cade networks for whole-brain MRI and high-resolution mam-
mogram segmentation. This kind of cascade network can effec-
tively extract richer multi-scale context information by using a
posteriori probabilities generated by the first network than nor-
mal cascade networks.

However, most of medical images are 3D volume data, but a
2D convolutional neural network cannot learn temporal infor-
mation in the third dimension, and a 3D convolutional neu-
ral network often requires high computation cost and serves
GPU memory consumption. Therefore some pseudo-3D seg-
mentation methods have been proposed. Oda et al. [58] pro-
posed a three-plane method of cascading three networks to seg-
ment the abdominal artery region effectively from the medi-
cal CT volume. Vu et al. [59] applied the overlay of adjacent
slices as input to the central slice prediction, and then fed the
obtained 2D feature map into a standard 2D network for model
training. Although these pseudo-3D approaches can segment
object from 3D volume data, they only obtain limited accuracy
improvement due to the utilisation of local temporal informa-
tion. Compared to pseudo-3D networks, hybrid cascading 2D
and 3D networks are more popular. Li et al. [60] proposed a
hybrid densely connected U-Net (H-DenseUNet) for liver and
liver-tumour segmentation. This method first employs a sim-
ple Resnet to obtain a rough liver segmentation result, utilis-
ing the 2D DenseUNet to extract 2D image features effectively,
then uses the 3D DenseUNet to extract 3D image features,
and finally designs a hybrid feature fusion layer to jointly opti-
mise 2D and 3D features. Although the H-DenseUNet reduces
the complexity of models compared to an entire 3D network,
the model is complex and it still suffers from a large number
of parameters from 3D convolutions. For the problem, Zhang
et al. [61] proposed a lightweight hybrid convolutional network
(LW-HCN) with a similar structure to the H-DenseUNet, but
the former requires fewer parameters and computational cost
than the latter due to the design of the depthwise and spatiotem-
poral separate (DSTS) block and the use of 3D depth separable
convolution. Similarly, Dey et al. [62] also designed a cascade of
2D and 3D network for liver and liver-tumour segmentation.

Obviously, among the three types of cascade networks men-
tioned above, the hybrid 2D and 3D cascade network can effec-
tively improve segmentation accuracy and reduce the learn-
ing burdens.

In contrast to the above cascade networks, Valanarasu
et al. [63] proposed a complete cascade network namely KiU-
Net to perform brain dissection segmentation. The perfor-
mance of vanilla U-Net is greatly degraded when detecting
smaller anatomical structures with fuzzy noise boundaries. To
overcome this problem, authors designed a novel over-complete
architecture Ki-Net, in which the spatial size of the intermediate
layer is larger than that of the input data, and this is achieved by
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1248 WANG ET AL.

using an up-sampling layer after each conversion layer in the
encoder. Thus the proposed Ki-Net possesses stronger edge
capture capability compared to U-Net and finally it is cascaded
with the vanilla U-Net to improve the overall segmentation
accuracy. Since the KiU-Net can exploit both the low-level fine
edges feature maps using Ki-Net and the high-level shape fea-
ture maps using U-Net, it not only improves segmentation accu-
racy but also achieves fast convergence for small anatomical
landmarks and blurred noisy boundaries.

Others: A generating adversarial networks (GAN) [64] has
been widely used in many areas of computer vision. In its
infancy, the GAN was often used for data augmentation by gen-
erating new samples, which would be reviewed in Section III,
but later researchers discovered that the idea of generative con-
frontation could be used in almost any field, and was therefore
also used for image segmentation. Since medical images usu-
ally show low contrast, blurred boundaries between different
tissues or between tissues and lesions, and sparse medical image
data with labels, U-Net-based segmentation methods using pixel
loss to learn local and global relationships between pixels are
not sufficient for medical image segmentation, and the use of
generative adversarial networks is becoming a popular idea for
improving image segmentation. Luc et al. [65] firstly applied the
generative adversarial network to image segmentation, where
the generative network is used for segmentation models and the
adversarial network is trained as a classifier. Singh et al. [66] pro-
posed a conditional generation adversarial network (cGAN) to
segment breast tumours within the target area (ROI) in mam-
mograms. The generative network learns to identify tumour
regions and generates segmentation results, and the adversar-
ial network learns to distinguish between ground truth and seg-
mentation results from the generative network, thereby enforc-
ing the generative network to obtain labels as realistic as possi-
ble. The cGAN works fine when the number of training samples
is limited. Conze et al. [67] utilised cascaded pre-trained convo-
lutional encoder–decoders as generators of cGAN for abdom-
inal multi-organ segmentation, and considered the adversarial
network as a discriminator to enforces the model to create real-
istic organ delineations.

In addition, the incorporation of the prior knowledge about
organ shape and position may be crucial for improving medi-
cal image segmentation effect, where images are corrupted and
thus contain artefacts due to limitations of imaging techniques.
However, there are few works about how to incorporate prior
knowledge into CNN models. As one of the earliest studies in
this field, Oktay et al. [68] proposed a novel and general method
to combine a priori knowledge of shape and label structure into
the anatomically constrained neural networks (ACNN) for med-
ical image analysis tasks. In this way, the neural network training
process can be constrained and guided to make more anatom-
ical and meaningful predictions, especially in cases where input
image data is not sufficiently informative or consistent enough
(e.g. missing object boundaries). Similarly, Boutillon et al. [69]
incorporated anatomical priors into a conditional adversarial
framework for scapula bone segmentation, combining shape
priors with conditional neural networks to encourage models to
follow global anatomical properties in terms of shape and posi-

1×1 conv+BN+Relu
3×3 conv+BN+Relu
Concatenation connection

FIGURE 6 Dense connection architecture [70]

FIGURE 7 The U-Net++ architecture [71]

tion information, and to make segmentation results as accurate
as possible. The above study shows that improved models can
provide higher segmentation accuracy and they are more robust
since prior knowledge constraints are employed in the training
process of neural networks.

After proposing U-Net in [7], the encoder–decoder struc-
ture became the most popular structure in medical image seg-
mentation. The design of the network backbone focuses on
more efficient feature extraction in the encoder and feature
recovery and fusion in the decoder to improve segmentation
accuracy.

2.2 Network function block

2.2.1 Dense connection

Dense connection is often used to construct a kind of special
convolution neural networks. For dense connection networks,
the input of each layer comes from the output of all previous
layers in the process of forward transmission. Inspired by the
dense connection, Guan et al. [70] proposed an improved U-Net
by replacing each sub-block of U-Net with a form of dense con-
nections as shown in Figure 6. Although the dense connection
is helpful for obtaining richer image features, it often reduces
the robustness of feature representation to a certain extent and
increases the number of parameters.

Zhou et al. [71] connected all U-Net layers (from one to
four) together as shown in Figure 7. The advantage of this
structure is that it allows the network to learn automatically
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FIGURE 8 The inception architecture [75]. It contains four cascade
branches with the gradual increment of the number of atrous convolution,
from 1 to 1, 3, and 5, then the receptive field of each branch will be 3, 7, 9, and
19. Therefore, the network can extract features from different scales

importance of features at different layers. Besides, the skip con-
nection is redesigned so that features with different semantic
scales can be aggregated in the decoder, resulting in a highly
flexible feature fusion scheme. The disadvantage is that the
number of parameters is increased due to the employment of
dense connection. Therefore, a pruning method is integrated
into model optimisation to reduce the number of parameters.
Meanwhile, the deep supervision [72] is also employed to bal-
ance the decline of segmentation accuracy caused by the prun-
ing. Although the dense connection is helpful for obtaining
richer image features, it often reduces the robustness of feature
representation to a certain extent and increases the number of
parameters.

2.2.2 Inception

For CNNs, deep networks often give better performances than
shallow ones, but they encounter some new problems such as
vanishing gradient, the difficulty of network convergence, and
the requirement of large memory usage. The inception struc-
ture overcomes these problems. It gives better performance by
merging convolution kernels in parallel without increasing the
depth of networks. This structure is able to extract richer image
features using multi-scale convolution kernels, and to perform
feature fusion to obtain better feature representation. Inspired
by GoogleNet [73] [74], Gu et al. [75] proposed CE-Net by
introducing the inception structure into medical image segmen-
tation. The CE-Net adds atrous convolution to each parallel
structure to extract features on a wide reception field, and adds
1 × 1 convolution of feature maps, Figure 8 shows the architec-
ture of the inception. However, the inception structure is com-
plex leading to the difficulty of model modification.

2.2.3 Depth separability

To improve the generalisation capability of network models and
to reduce the requirement of memory usage, many researchers
focus on the study of lightweight networks for complex medi-
cal 3D volume data. Howard et al. [76] proposed MobileNet to
decompose vanilla convolution into depthwise separable convo-
lution and pointwise convolution. The number of vanilla con-
volution operation is usually DK × DK × M × N , where M is
the dimension of the input feature maps, N is the dimension
of the output feature maps, and DK is the size of the convo-
lution kernels. However, the number of the channel convolu-
tion operation is DK × DK × 1 × M and the point convolution
is 1 × 1 × M × N . Compared to vanilla convolution, the com-
putational cost of depthwise separable convolution is (1/N +
1/D2

K
) times than that of the vanilla convolution. Based on this,

Sandler et al. [77] proposed MobileNet-V2 that contains a novel
layer module, the inverted residual with linear bottleneck. In
this module, the input is a low-dimensional compressed repre-
sentation which is first expanded to high dimension and then
filtered with a lightweight depthwise convolution. Features are
subsequently projected back to a low-dimensional representa-
tion with a linear convolution. It allows to significantly reduce
the memory footprint needed during inference. By extending
the depth separable convolution to the design of 3D networks,
Lei et al. [78] proposed a lightweight V-Net (LV-Net) with fewer
operations than V-Net for liver segmentation. Besides, Zhang
et al. [61] and Huang et al. [79] also proposed the applica-
tion of depthwise separable convolutions to the segmentation
of 3D medical volume data. Other related works for lightweight
deep networks can be found in [80] [81]. Depthwise separa-
ble convolution is an effective way to reduce the number of
model parameters, but it may result in loss of accuracy in med-
ical image segmentation, and thus other approaches (e.g. deep
supervision) [78] need to be employed to improve segmenta-
tion accuracy.

2.2.4 Attention mechanism

For neural networks, an attention block can selectively change
input or assigns different weights to input variables accord-
ing to different importance. In recent years, most of researches
combining deep learning and visual attention mechanism have
focused on using masks to form attention mechanisms. The
principle of masks is to design a new layer that can identify key
features from an image, through training and learning, and then
let networks only focus on interesting areas of images.

Local Spatial Attention: The spatial attention block aims to cal-
culate the feature importance of each pixel in space-domain
and extract the key information of an image. Jaderberg et al.

[82] early proposed a spatial transformer network (ST-Net) for
image classification by using spatial attention that transforms
the spatial information of an original image into another space
and retains the key information. Normal pooling is equivalent to
the information merge that easily causes the loss of key infor-
mation. For this problem, a block called spatial transformer is
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Relu 1×1 Conv Sigmoid Resampler

FIGURE 9 The attention block in the attention U-Net [83]

FIGURE 10 The channel attention in the SE-Net [84]

designed to extract key information of images by performing a
spatial transformation. Inspired by this, Oktay et al. [83] pro-
posed attention U-Net. The improved U-Net uses an attention
block to change the output of the encoder before fusing features
from the encoder and the corresponding decoder. The attention
block outputs a gating signal to control feature importance of
pixels at different spatial positions. Figure 9 shows the architec-
ture. This block combines the Relu and sigmoid functions via
1 × 1 convolution to generate a weight map that is corrected by
multiplying features from the encoder.

Channel Attention: The channel attention block can achieve
feature recalibration, which utilises learned global information
to emphasise selectively useful features and suppress useless
features. Hu et al. [84] proposed SE-Net that introduced the
channel attention to the field of image analysis and won the
ImageNet Challenge in 2017. This method implements atten-
tion weighting on channels using three steps; Figure 10 shows
this architecture. The first is the squeezing operation, the global
average pooling is performed on input features to obtain the
1 × 1 ×Channel feature map. The second is the excitation oper-
ation, where channel features are interacted to reduce the num-
ber of channels, and then the reduced channel features are
reconstructed back to the number of channels. Finally, the sig-
moid function is employed to generate a feature weight map of
[0, 1] that multiplies the scale back to the original input feature.
Chen et al. [45] proposed FED-Net that uses the SE block to
achieve the feature channel attention.

Mixture Attention: Spatial and channel attention mechanisms
are two popular strategies for improving feature representation.
However, the spatial attention ignores the difference of differ-
ent channel information and treats each channel equally. On the
contrary, the channel attention pools global information directly
while ignoring local information in each channel, which is a rela-
tively rough operation. Therefore, combining advantages of two
attention mechanisms, researchers have designed many mod-
els based on a mixed domain attention block. Kaul et al. [85]
proposed the focusNet using a mixture of spatial attention and
channel attention for medical image segmentation, where the
SE-Block is used for channel attention and a branch of spatial

attention is designed. Besides, other related works can be found
in [80] [81].

To improve the feature discriminant representation of net-
works, Wang et al. [86] embedded an attention block inside the
central bottleneck between the contraction path and the expan-
sion path of the U-Net, and proposed the ScleraSegNet. Fur-
thermore, they compared the performance of channel atten-
tion, spatial attention, and different combinations of two atten-
tions for medical image segmentations. They concluded that
the channel-centric attention was the most effective in improv-
ing image segmentation performance. Based on this conclusion,
they finally won the championship of the sclera segmentation
benchmarking competition (SSBC2019).

Although those attention mechanisms mentioned above
improve the final segmentation performance, they only per-
form an operation of local convolution. The operation focuses
on the area of neighbouring convolution kernels but misses
the global information. In addition, the operation of down-
sampling leads to the loss of spatial information, which is espe-
cially unfavourable for biomedical image segmentation. A basic
solution is to extract long-distance information by stacking mul-
tiple layers, but this is low efficiency due to a large number of
parameters and high computational cost. In the decoder, the
up-sampling, the deconvolution, and the interpolation are also
performed in the way of local convolution.

Non-local Attention: Recently, Wang et al. [87] proposed a non-
local U-Net to overcome the drawback of local convolution
for medical image segmentation. The non-local U-Net employs
the self-attention mechanism and the global aggregation block
to extract full image information during the parts of both up-
sampling and down-sampling, which can improve the final seg-
mentation accuracy. Figure 11 shows the global aggregation
block. The non-local block is a general-purpose block that can
be easily embedded in different convolutional neural networks
to improve their performance.

It can be seen that the attention mechanism is effective
for improving image segmentation accuracy. In fact, spatial
attention looks for interesting target regions while channel
attention looks for interesting features. The mixed attention
mechanism can take advantages of both spaces and channels.
However, compared with the nonlocal attention, the con-
ventional attention mechanism lacks the ability of exploiting
the associations between different targets and features, so
CNNs based on non-local attention usually exhibit better
performance than normal CNNs for image segmentation
tasks.

2.2.5 Multi-scale information fusion

One of the challenges in medical image segmentation is a large
range of scales among objects. For example, a tumour in the
middle or late stage could be much larger than that in the early
stage. The size of perceptive field roughly determines how much
context information we can use. The general convolution or
pooling only employs a single kernel, for instance, a 3 × 3 kernel
for convolution and a 2 × 2 kernel for pooling.
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WANG ET AL. 1251

FIGURE 11 The global aggregation block in the non-Local U-Net [87]

Pyramid Pooling: The parallel operation of multi-scale pooling
can effectively improve context information of networks, and
thus extract richer semantic information. He et al. [88] first pro-
posed spatial pyramid pooling (SPP) to achieve multi-scale fea-
ture extraction. The SPP divides an image from the fine space to
the coarse space, then gathers local features and extracts multi-
scale features. Inspired by the SPP, a multi-scale information
extraction block is designed and named residual multi-kernel
pooling (RMP) [75] that uses four pooling kernels with differ-
ent sizes to encode global context information. However, the
up-sampling operation in RMP cannot restore the loss of detail
information due to pooling that usually enlarges the receptive
field but reduces the image resolution.

Atrous Spatial Pyramid Pooling: In order to reduce the loss
of detail information caused by pooling operation, researchers
proposed atrous convolution instead of the polling operation.
Compared with the vanilla convolution, the atrous convolu-
tion can effectively enlarge the receptive field without increas-
ing the number of parameters. Combining advantages of the
atrous convolution and the SPP block, Chen et al. [55] proposed
the atrous spatial pyramid pooling module (ASPP) to improve
image segmentation results. The ASPP shows strong recogni-
tion capability on same objects with different scales. Similarly,
Similarly, Lopez et al. [89] and Lei et al. [90] applied superpo-
sition of multi-scale atrous convolutions to brain tumour seg-
mentation and liver tumour segmentation, respectively, which
achieves a clear accuracy improvement.

However, the ASPP suffers from two serious problems for
image segmentation. The first problem is the loss of local
information as shown in Figure 12, where we assume that the
convolutional kernel is 3 × 3 and the dilation rate is 2 for three
iterations. The second problem is that the information could
be irrelevant across large distances. How to simultaneously
handle the relationship between objects with different scales is
important for designing a fine atrous convolutional network. In
response to the above problems, Wang et al. [91] designed an
hybrid expansion convolution (HDC) networks. This structure

FIGURE 12 The gridding effect (the way of treating images as a
chessboard causes the loss of information continuity)

uses a sawtooth wave-like heuristic to allocate the dilation rate,
so that information from a wider pixel range can be accessed
and thus the gridding effect is suppressed. In [91], authors
gave several atrous convolution sequences using variable
dilation rate, for example [1,2,3], [3,4,5], [1,2,5], [5,9,17], and
[1,2,5,9].

Non-local and ASPP: The atrous convolution can efficiently
enlarge the receptive field to collect richer semantic informa-
tion, but it causes the loss of detail information due to the grid-
ding effect. Therefore, it is necessary to add constraints or estab-
lish pixel associations for improving the atrous convolution per-
formance. Recently, Yang et al. [92] proposed a combination
block of ASPP and non-local for the segmentation of human
body parts, as shown in Figure 13. ASPP uses multiple parallel
atrous convolutions with different scales to capture richer infor-
mation, and the non-local operation captures a wide range of
dependencies. This combination possesses advantages of both
ASPP and non-local, and it has a good application prospect for
medical image segmentation.

The network function module is designed to perform more
efficient feature fusion. When feature is usually extracted by the
encoder, the feature is usually fused by the network function
module to enhance the feature representation. Feature fusion
is usually performed by fusing different scale information or
performing a more efficient way of feature transfer. Then
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1252 WANG ET AL.

FIGURE 13 The combination of ASPP and non-local architecture [92]

the feature is passed through the decoder to obtain a better
segmentation result.

2.3 Loss function

In addition to improved segmentation speed and accuracy by
designing network backbone and the function block, designing
new loss functions also resulted in improvements in subsequent
inference-time segmentation accuracy. Therefore, a great deal of
work has been reported about the design of suitable loss func-
tions for medical image segmentation tasks.

2.3.1 Cross entropy loss

For image segmentation tasks, the cross-entropy is one of the
most popular loss functions. The function compares pixel-
wisely the predicted category vector with the real segmentation
result vector. For the case of binary segmentation, let P (Y =
1) = p and P (Y = 0) = 1 − p, then the prediction is given by
the sigmoid function, where P (Ŷ = 1) = 1∕(1 + e−x ) = p̂ and
P (Ŷ = 0) = 1 − 1∕(1 + e−x ) = 1 − p̂, x is the output of neural
networks. The cross entropy loss is defined as

CE (p, p̂) = −(plog( p̂) + (1 − p)log(1 − p̂)). (1)

2.3.2 Weighted cross entropy loss

The cross-entropy loss deals with each pixel of images equally,
and thus outputs an average value, which ignores the class
imbalance and leads to a problem that the loss function depends
on the class including the maximal number of pixels. Therefore,
the cross-entropy loss often shows low performance for small
target segmentation.

To address the problem of class imbalance, Long et al. [32]
proposed weighted cross-entropy loss (WCE) to counteract
the class imbalance. For the case of binary segmentation, the

weighted cross-entropy loss is defined as

WCE (p, p̂) = −(𝛽plog( p̂) + (1 − p)log(1 − p̂)), (2)

where 𝛽 is used to tune the proportion of positive and negative
samples, and it is an empirical value. If 𝛽 > 1, the number of
false negatives will be decreased; on the contrary, the number of
false positives will be decreased when 𝛽 < 1. In fact, the cross-
entropy is a special case of the weighted cross-entropy when
𝛽 = 1. To adjust the weight of positive and negative samples
simultaneously, we can use the balanced cross-entropy (BCE)
loss function that is defined as

BCE (p, p̂) = −(𝛽plog( p̂) + (1 − 𝛽)(1 − p)log(1 − p̂)). (3)

In [7], Ronneberger et al. proposed U-Net in which the cross-
entropy loss function is improved by adding a distance function.
The improved loss function is able to improve the learning capa-
bility of models for inter-class distance. The distance function is
defined as

D(x ) = 𝜔0 − e
−(d1(x )+d2(x )2

2𝜎2 , (4)

where both d1(x ) and d2(x ) denote the distance between the
pixel x and boundaries of the first two nearest cells. So the final
loss function is defined as

L = BCE
(

p, p̂
)
+ D(x ). (5)

2.3.3 Dice loss

The Dice is a popular performance metric for the evaluation of
medical image segmentation. This metric is essentially a mea-
sure of overlap between a segmentation result and correspond-
ing ground truth. The value of Dice ranges from 0 to 1. ‘1’
means the segmentation result completely overlaps with the real
segmentation result. The calculation formula is defined as

Dice(A,B) =
2 × |A ∩ B|

A + B
× 100%, (6)

where A is a predicted segmentation result and B is a real seg-
mentation result.

For 3D medical volume data segmentation, Milletari et al. [35]
proposed V-Net that employs the Dice loss

DL(p, p̂) = 1 −
2⟨p, p̂⟩‖‖p‖‖1 +

‖‖p‖‖2

, (7)

where ⟨p, p̂⟩ represents the dot product of the ground truth of
each channel and the prediction result matrix.

It is worth noting that the Dice loss is suitable for uneven
samples. However, the use of the Dice loss easily influences
the back propagation and leads to a training difficulty. Besides,
the Dice loss has a low robustness for different models such
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WANG ET AL. 1253

as mean surface distance or Hausdorff surface distance due
to unbelievable gradient values. For example, the gradient of
softmax function can be simplified to (p− t ), where t is the
target value, and p is the predicted value, but the value of dice
loss is 2t 2/(p+ t )2. If values of p and t are too small, then
the gradient value will change drastically leading to training
difficulty.

2.3.4 Tversky loss

Salehi et al. [93] proposed the Tversky Loss (TL) that is a regu-
larised version of Dice loss to control the contribution of both
false positive and false negative to the loss function. The TL is
defined as

TL(p, p̂) =
p, p̂

p, p̂+ 𝛽(1 − p, p̂) + (1 − 𝛽)(p, 1 − p̂)
, (8)

where p ∈ 0, 1 and 0 ≤ p̂ ≤ 1. p and p̂ are the ground truth and
predicted segmentation, respectively. TL is equivalent to (7) if
𝛽 = 0.5.

2.3.5 Generalised dice loss

Although the Dice loss can solve the problem of class imbalance
to a certain extent, it does not work for serious class imbalance.
For instance, small targets suffer from prediction errors of some
pixels, which easily causes a large change for Dice values. Sudre
et al. [94] proposed an Generalised Dice Loss (GDL), the GDL
is defined as

GDL
(

p, p̂
)
= 1 −

1
m

2
∑m

j=1 𝜔 j

∑n

i=1 pi j p̂i j∑m

j=1 𝜔 j

∑n

i=1 (pi j+ p̂
i j

)
, (9)

where the weight 𝜔 = [𝜔1, 𝜔2, … , 𝜔m] is assigned to each class,

and 𝜔 j = 1∕(
∑n

i=1 pi j )
2
. The GDL is superior to the Dice loss

since different areas have the similar contributions to the loss,
and the GDL is more stable and robust during the training pro-
cess.

2.3.6 Boundary loss

To solve the problem of class imbalance, Kervadec et al. [95]
proposed a new boundary loss used for brain lesion segmenta-
tion. This loss function aims to minimise the distance between
segmented boundaries and labelled boundaries. Authors con-
ducted experiments on two imbalanced data sets with labels.
The results show that the combination of the Dice loss and the
boundary loss is superior to the single one. The composite loss
is defined as

L = 𝛼LGD (𝜃) + (1 − 𝛼)LB (𝜃), (10)

where the first part is a regularised Dice Loss that is defined
as

LGD (𝜃) = 1 − 2(𝜔G

∑
p𝜖Ω

g(p)s𝜃 (p)

+𝜔B

∑
p𝜖Ω

(1 − g(p))(1 − s𝜃 (p)))∕

((𝜔G

∑
p𝜖Ω

[
g(p)+s𝜃 (p)

]
+𝜔B

∑
p𝜖Ω

(2 − g(p) − s𝜃 (p)))), (11)

and the second part is the boundary loss that is defined as

LB (𝜃) = ∅G (p)s𝜃 (p), (12)

where if p𝜖G , then ∅G (p) = −||p− z𝜗G (p)||, otherwise
∅G (p) = ||p− z𝜗G (p)||. Besides,

∑
Ω

g(p) f (s𝜃 (p)) is used for
the foreground and

∑
Ω

(1 − g(p))(1 − f (s𝜃 (p))) is used for the

background. The LGD (𝜃) weight is 𝜔G = 1∕(
∑

p𝜖Ω
g(p))

2
and

the 𝜔B = 1∕(
∑

p𝜖Ω
(1 − g(p)))

2
. The Ω represents the pixel set

in the entire spatial domain.

2.3.7 Exponential logarithmic loss

In (9), the weighted dice loss is actually that the obtained dice
value divides the sum of each label, which achieves a balance
for objects with different scales. Therefore, by combining
focal loss [96] and dice loss, Wong et al. [97] proposed the
exponential logarithmic loss (EXP loss) used for brain seg-
mentation to solve problem of serious class imbalance. With
the introduction of the exponential form, the non-linearity
of the loss functions can be further controlled to improve
the segmentation accuracy. The EXP loss function is defined
as

LEXP = 𝜔dice × Ldice + 𝜔cross × Lcross, (13)

where two new parameter weights are denoted by 𝜔dice and
𝜔cross, respectively. The Ldice is an exponential log Dice loss,
and the Lcross is a cross-entropy loss

Ldice = E [(−ln(Dicei ))
𝛾Dice ], (14)

Lcross = E [𝜔l (−ln(pl (x )))𝛾cross ], (15)

and,

Dicei =
2(
∑

x
𝜎il (x )pi (x )) + 𝜀∑

x
(𝜎

il
(x ) + pi (x )) + 𝜀

, (16)
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1254 WANG ET AL.

𝜔l =

(∑
k

fk

fl

)0.5

, (17)

where x is pixel position, i is the label and l is the ground-truth
value at the position x. The pi (x ) is the probability value
outputted from the softmax.

In (17), fk is the frequency of occurrence of the label k,
this parameter can reduce the influence of more frequently
seen labels. Both 𝛾Dice and 𝛾cross are used to enhance the non-
linearity of the loss function.

2.3.8 Loss improvements

For medical image segmentation, the improvement of loss
mainly focuses on the problem of segmentation of small objects
in a large background (the problem of class imbalance). Chen
et al. [98] proposed a new loss function by applying tradi-
tional active contour energy minimisation to convolutional neu-
ral networks, Li et al. [99] proposed a new regularisation term
to improve the cross-entropy loss function, and Karimi et al.

[100] proposed a loss function based on Hausdorff distance
(HD). Besides, there are still a lot of works [101] [102] trying to
deal with this problem by adding penalties to loss functions or
changing the optimisation strategy according to specific tasks.

In many medical image segmentation tasks, there are often
only one or two targets in an image, and the pixel ratio of tar-
gets is sometimes small, which makes network training difficult.
Therefore, to improve network training and segmentation accu-
racy, it is easier to focus on smaller targets by changing loss
functions than to change the network structure. However, the
design of loss functions is highly task-specific, so we need to
analyse carefully task requirement, and then design reasonable
and available loss functions.

2.3.9 Deep supervision

In general, the increase of network depth can improve the fea-
ture representation of networks to some extent, but it simultane-
ously causes new problems such as vanishing gradient and gra-
dient explosion. In order to train deep networks effectively, Lee
et al. [72] proposed Deeply supervised nets (DSNs) by adding
some auxiliary branching classifiers to some layers of the neural
network. Dou et al. [103] proposed a 3D DSN for heart and
liver segmentation, which incorporates a 3D deep monitoring
mechanism into a 3D full convolutional network for volume-to-
volume learning and inference, eliminating redundant computa-
tion and reducing the risk of over-fitting in the case of limited
training data. Similarly, Dou et al. [104] presented a method for
fetal brain MRI cortical plate segmentation using a fully convo-
lutional neural network architecture with deep supervision and
residual connection, and obtained high segmentation accuracy
for brain MRI cortical plate segmentation. In fact, deep super-
vision not only constrains the discrimination and robustness of
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Transfer 
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DeepIGeoS

GM Interacting 

BIFSeg

Pre-trained 
Model

Domain 
Adaptation

Data 
Augmentation Synthetic 

Augmentation

Traditional 
Augmentation

FIGURE 14 The weakly supervised learning methods for medical image
segmentation

learned features at all stages, but also improves network train-
ing efficiency.

3 WEAKLY SUPERVISED LEARNING

Although convolutional neural networks show strong adaptabil-
ity for medical image segmentation, segmentation results seri-
ously depend on high-quality labels. In fact, it is rare to build
many data sets with high-quality labels, especially in the field of
medical image analysis, since data acquisition and labeling often
incur high costs. Therefore, a lot of studies on incomplete or
imperfect data sets are reported. We summarise these studies as
weakly supervised learning as shown in Figure 14.

3.1 Data augmentation

In the absence of largely labelled data sets, data augmentation
is an effective solution to this problem. However, general data
expansion methods produce images that are highly correlated
with original images. Compared to common data augmentation
approaches, GAN proposed by Goodfellow [64] is currently a
popular strategy for data augmentation since GAN overcomes
the problem of reliance on original data.

Traditional Methods: General data augmentation methods
include the improvement of image quality such as noise sup-
pression, the change of image intensity such as brightness,
saturation, and contrast, and the change of image layout such
as rotation, distortion, and scaling. Sirinukunwattana et al. [105]
utilised the Gaussian blur to achieve data enhancement, which
is helpful for performing gland segmentation tasks in the colon
tissue images. Dong et al. [106] randomly used the brightness
enhancement function in 3D MR images to enrich training
data for brain tumour segmentation. Contrast enhancement is
usually helpful when an image shows uneven intensity. Further-
more, Ronneberger et al. [7] used random elastic deformation
to perform data expansion on the original data set. In fact, the
most commonly method used for traditional data augmentation
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Prior Distribution Z

Condition C
Generator Image Discriminator Scale

FIGURE 15 The cGAN architecture [108]

is parametric transformation (rotation, translation, shear,
shift, flip, …). Since this kind of transformation is virtual
without computational cost and the annotation on medical
images is difficult, it is always performed before each training
session.

Conditional Generative Adversarial Nets (cGAN): In contrast
to the use of cGAN for supervised learning introduced in
Section II, this section focuses on the use of cGAN for data
augmentation. An original GAN generator denoted by G can
learn data distribution, but generated pictures are random,
which means that the generation process of the G is an
unguided state. In contrast, cGAN adds a condition to the
original GAN in order to guide the generation process of the
G . Figure 15 shows the architecture of cGAN. Guibas et al.

[107] proposed a network architecture composed of a GAN
[64] and a cGAN [108]. The random variables are input into
the GAN leading to the generation of a synthetic image of
fundus blood vessel label, then the generated label map is input
into the conditional GAN to generate a real retinal fundi image.
Finally, authors verified the authenticity of synthesised images
by checking whether the classifier can distinguish a synthesised
image from a real image. Mahapatra et al. [109] used a cGAN to
synthesise X-ray images with required abnormalities, this model
considers abnormal X-ray images and lung segmentation labels
as inputs, and then generates synthetic X-ray images with same
diseases as input X-ray images. At the same time, the segmented
label is obtained. In addition, there are also some other works
[110] [111] using GAN or cGAN to generate images to achieve
data enhancement. Although the image generated by cGAN
has many defects, such as blurred boundary and low resolution,
the cGAN provides a basic ideas for the later CycleGAN
[112] and StarGAN [113] used for the conversion of image
styles.

3.2 Transfer learning

By utilising trained parameters of a model to initialise a new
model, transfer learning can achieve fast model training for
data with limited labels. One approach is to fine-tune the pre-
trained model on ImageNet for the target medical image analy-
sis task, while the other is to migrate the training for data from
across domains.

Pre-trained Model: Transfer learning is often used to solve the
problem of limited data labelled in medical image analysis, and
some researchers found that using pre-trained networks on nat-
ural images such as ImageNet as an encoder within a U-Net-
like network and then performing fine-tuning on medical data
can further improve the segmentation effect of medical images.
Kalinin [114] et al. considered the VGG-11, VGG-16, and

Generator G Image: Y

Generator F

Image: X Discriminator G ScaleDiscriminator FScale

FIGURE 16 The Cycle GAN architecture [112]

ResNet-34 networks pre-trained on ImageNet as encoders of
the U-shaped network to perform semantic segmentation of
robotic instruments from wireless capsule endoscopic videos
of vascular proliferative lesions and surgical procedures. Simi-
larly, Conze et al. [115] used VGG-11 pre-trained on ImageNet
as the encoder of a segmentation network to perform shoulder
muscle MRI segmentation. Experiments demonstrate that the
pre-trained network is useful for improving segmentation accu-
racy. It can be concluded that a pre-trained model on ImageNet
can learn some common underlying features that are required
for both medical and natural images, thus retraining process is
unnecessary while performing fine-tuning is useful for training
models. However, the domain adaptive may be a problem when
applying pre-trained models of natural scene images to medical
image analysis tasks. Besides, popular transfer learning methods
are hardly applicable to 3D medical image analysis because pre-
trained models often rely on 2D image data sets. If the number
of medical data sets with annotations is large enough, it is pos-
sible that the effect of pre-training is weak for improving model
performance. In fact, the effect of a pre-trained model is unsta-
ble and it depends on segmentation data sets and tasks. Empir-
ically, we can try to use the pre-trained model if it can improve
segmentation accuracy, otherwise we need to consider designing
new models.

Domain Adaptation: If the labels from the training target
domain are not available, and we can only access the labels
in other domains, then popular methods are to transfer the
trained classifier on the source domain to the target domain
without labelled data. CycleGAN is a cycle structure, and
mainly composed of two generators and two discriminators.
Figure 16 shows the architecture of CycleGAN. First, an image
in the X domain is transferred to the Y domain by a generator
G, and then the output from the G is reconstructed back to
the original image in the X domain by the generator F. On the
contrary, the image in the Y domain is transferred to the X
domain by the generator F, and then the output from the F is
reconstructed back to the original image in the Y domain by the
generator G. Both discriminator G and F play discriminating
roles ensuring the style transfer of images. Huo et al. [116]
proposed a jointly optimised image synthesis and segmentation
framework for the task of spleen segmentation in CT images
using CycleGAN [112]. The framework achieves an image
conversion from the marked source domain to the synthesised
target domain. During training, synthesised target images are
used to train the segmentation network. During the test process,
a real image from the target domain is directly input into the
trained segmentation network to obtain desired segmentation
results. Chen et al. [117] also adopted a similar method using
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1256 WANG ET AL.

segmentation labels of MR images to achieve the task of cardiac
CT segmentation.

Chartsias et al. [118] used the CycleGAN to generate cor-
responding MR images and labels from CT slices and myocar-
dial segmentation labels, and then used synthetic MR and real
MR images to train the myocardial segmentation model. This
model obtains 15% improvement over the myocardial segmen-
tation model trained on real MR images. Similarly, there are
some other works that realise the image conversion between
different domains through the CycleGAN and improve the per-
formance of medical image segmentation [119] [120].

3.3 Interactive segmentation

Manually drawing medical image segmentation labels is usually
tedious and time-consuming, especially for the drawing of
3D volume data. Interactive segmentation allows clinicians
to correct interactively the initially segmented image gener-
ated by a model to obtain more accurate segmentation. The
key to effective interactive segmentations is that clinicians
can use interactive methods such as mouse clicks and out-
line boxes to improve an initial segmentation result from a
model. Then the model can update parameters and generate
new segmentation images to obtain new feedback from the
clinicians.

Wang et al. [121] proposed the DeepIGeoS using the
cascade of two CNNs for interactive segmentation of 2D
and 3D medical images. The first CNN called P-Net out-
puts a coarse segmentation result. Based on this, users
provide interactive points or short lines to mark wrong
segmentation areas, and then use them as the input of
the second CNN called R-Net to obtain corrected results.
Experiments were conducted on two-dimensional foetal
MRI images and three-dimensional brain tumour images,
and experimental results showed that compared with tra-
ditional interactive segmentation methods such as Graph-
Cuts, RandomWalks and ITK-Snap, the DeepIGeoS greatly
reduces the requirement for user interaction and reduces user
time.

Wang et al. [122] proposed the BIFSeg that is similar to the
principle of GrabCut [123] [124]. Users first draw a bounding
box, and the area inside the bounding box is considered as
the input of CNN, then an initial result is obtained. After that,
users perform an image-specific fine-tuning to make CNN
provide better segmentation results. The GrabCut achieves
image segmentation by learning a Gaussian mixture model
(GMM) from images, while the BIFSeg learns a CNN from
images. Usually CNN-based segmentation methods can only
deal with objects that have appeared in the training set, which
limits the flexibility of these methods, but the BIFSeg attempts
to use a CNN to segment objects that have not been seen
during training process. The process is equivalent to making
the BIFSeg learn to extract the foreground part of the object
from a bounding box. During the test, the CNN can better
use the information in the specific image through an adaptive
fine-tuning.

Rupprecht et al. [125] proposed a new interactive segmen-
tation method named GM interacting that updates image seg-
mentation results according to the input text from users. This
method changes the output of the network by modifying the
feature maps between an encoder and a decoder interactively.
The category of areas is first set according to the response of
users, then some guiding parameters including multiplication
and offset coefficients are updated through back propagation,
the feature map is finally changed resulting in updated segmen-
tation results.

The interactive image segmentation based on deep learning
can reduce the number of user interactions and the user time,
which shows broader application prospects.

3.4 Others works

Semi-supervised learning can use a small part of labelled data
and any number of unlabelled data to train a model, and its
loss function often consists of the sum of two loss functions.
The first is a supervised loss function that is only related with
labelled data. The second is an unsupervised loss function or
regularisation term that is related to both labelled and unla-
belled data.

Based on the idea of GAN, Zhang et al. [126] proposed a
semi-supervised learning framework based on the adversarial
way between segmentation network and evaluation network.
An image is fed into U-Net to generate a segmentation map,
which is then stacked with the original image and presented to
the evaluation network to obtain a segmentation score. During
the training process, the segmentation network is optimised
in two aspects, one is to minimise the segmentation loss of
labelled images and the other is to make the evaluation network
obtain high scores for unlabelled images. Besides, the evaluation
network is updated to assign low scores to unmarked images
but high scores to marked images. Due to this adversarial learn-
ing, the segmentation network obtains supervised signals from
both labelled and unlabelled images. Thus, the semi-supervised
learning framework achieves better segmentation effect in the
gland segmentation task for histopathology images. Similarly,
some other semi-supervised frameworks [127] [128] [99]
[129] are also proposed to optimise medical image segmenta-
tion.

Accurate and robust segmentation of organs or lesions from
medical images plays a vital role in many clinical applications,
such as diagnosis and treatment planning. However, it is difficult
for medical images to acquire the annotated data, as generat-
ing accurate annotations requires expertise and time. Weakly
supervised segmentation methods learn image segmentation
from border or image-level labels or from a small amount of
annotated image data, rather than using a large number of pixel-
level annotations, to obtain high-quality segmentation results.
In fact, a small amount of annotated data and a large amount
of unannotated data are more compatible with the real clinical
situation. However, in practice, the performance of weakly
supervised learning only provides rarely acceptable results for
medical image segmentation tasks, especially for 3D medical
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WANG ET AL. 1257

images. Therefore, this is a direction worth exploring in the
future.

4 CURRENTLY POPULAR DIRECTION

4.1 Network architecture search

Recently, the performance of convolutional neural network
models has been continuously improved. Researchers have
designed a large number of popular network architectures
for specific tasks such as image classification, segmentation,
and reconstruction. These architectures are often designed
by industry experts or academics for months or even years,
since the design of network architectures with excellent per-
formance usually requires a great deal of domain knowledge.
Therefore, the design process is time-consuming and laborious
for researchers without domain knowledge. So far, NAS [130]
has made significant progress in improving the accuracy of
image classification. The NAS can be deemed to a subdomain
of automatic machine learning [131](AutoML) and has a strong
overlap with hyperparametric optimisation [132] and meta
learning [133]. Current research on NAS focuses on three
aspects: search space, search strategy and performance esti-
mation. The search space is a candidate collection of network
structures to be searched. The search space is divided into a
global search space that represents the search for the entire net-
work structure, and a cell-based search space that searches only
a few small structures that are assembled into a complete large
network by the ways of stacking and stitching. The search strat-
egy aims to find the optimal network structure as fast as possible
in search spaces. Popular search strategies are often grouped
into three categories: reinforcement-based learning, evolution-
ary algorithms, and gradients. Performance estimation strategy
is the process of assessing how well the network structure
performs on target data sets. For NAS techniques, researcher
pay more attention to the improvement of search strategies
since search space and performance estimation methods are
usually rarely changed. Some improved CNN model based on
NAS [134] [135] have been proposed and applied to image
segmentation.

Most current studies on deep learning in medical image
segmentation depend on U-Net networks and makes some
changes to the network structure according to different tasks,
but in reality the non-network structure factors may be also
important for improving segmentation effect. Isensee et al. [136]
argued that too much manual adjustment on network structure
could lead to over-fitting for a given data set, and therefore pro-
posed a medical image segmentation framework no-new-UNet
(nnU-Net) that adapts itself to any new data set. The nnUnet
automatically adjusts all hyperparameters according to the
properties of the given data set without manual intervention.
Therefore, the nnU-Net only relies on vanilla 2D UNet, 3D
UNet, UNet cascade and a robust training scheme. It focuses
on the stage of pre-processing (resampling and normalisation),
training (loss, optimiser settings, data augmentation), inference
(e.g. patch-based strategies, test-time-augmentations integra-

tion, model integration), and post-processing (e.g. enhanced
single pass domain). In practical applications, the improvements
of network structure design usually depend on experiences
without adequate interpretability theory support. More-
over, more complex network models indicate higher risk of
over-fitting.

Weng et al. [137] first proposed an NAS-UNet for medical
image segmentation. The NAS-UNet contains the same two cell
architectures DownSC and UpSC. The difference between them
is that the former performs a search on the U-shaped back-
bone to obtain DownSC and UpSC blocks. The NAS-UNet
outperforms the U-Net and its variants, and its training time
is close to that of U-Net, but with only 6% of the number of
parameters.

To perform image segmentation in real time for high-
resolution 2D images (e.g. CT, MRI and histopathology images),
the study of compressed neural network models has become a
popular direction in medical image segmentation. The applica-
tion of NAS can effectively reduce the number of model param-
eters and achieves high segmentation performance. Although
the performance of NAS is stunning, the fact of why particu-
lar architectures perform well cannot be explained. Therefore,
it is also important for future research to better understand the
mechanisms which have a significant impact on performance
and to explore whether these properties can be generalised to
different tasks.

4.2 Graph convolutional neural network

The GCN [138] is one of the powerful tools for the study of
non-Euclidean domains. A graph is a data structure consisting
of nodes and edges. The early graph neural networks (GNNs)
[139] mainly address strictly graphical problems such as the
classification of molecular structures. In practice, the Euclidean
spaces (e.g. images) or sequences (e.g. text), and many common
scenes can be converted into graphs that can be modelled by
using GCN techniques.

Gao et al. [140] designed a new graph pooling (gPool) and
graph unpooling (gUnpool) operation based on GCN and pro-
posed an encoder–decoder model namely graph U-Net. The
graph U-Net achieves better performance than popular U-Nets
by adding a small number of parameters. In contrast to tra-
ditional convolutional neural networks where deeper is bet-
ter, the performance of the graph U-Net cannot be improved
by increasing the depth of networks when the value of depth
exceeds 4. However, the graph U-Net show stronger capabil-
ity of feature encoding than popular U-Nets when the value of
depth is smaller or equivalent to 4. Yang et al. [141] proposed the
end-to-end conditional partial residual plot convolutional net-
work CPR-GCN for automatic anatomical marking of coronary
arteries. Authors showed that the GCN-based approach pro-
vided better performance and stronger robustness than tradi-
tional and recent depth learning based approaches. Results from
these GCNs in medical image segmentations are promising, as
the graph structure has high data representation efficiency and
strong capability of feature encoding.
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1258 WANG ET AL.

4.3 Interpretable shape attentive neural
network

Currently, many deep learning algorithms tend to make
judgments by using ‘memorised’ models that approxi-
mately fit to input data. As a result, these algorithms can-
not be explained sufficiently and give convincing evidences
for each specific prediction. Therefore, the study of the
interpretability of deep neural networks is a hot topic at
present.

Sun et al. [142] proposed the SAU-Net that focuses on
the interpretability and the robustness of models. The pro-
posed architecture attempts to address the problem of poor
edge segmentation accuracy in medical images by using a
secondary shape stream. Specially, the shape stream and the
regular texture stream can capture rich shape-dependent infor-
mation in parallel. Furthermore, both spatial and channel
attention mechanism are used for the decoder to explain the
learning capability of models at each resolution of U-Net.
Finally, by extracting the learned shape and spatial atten-
tion maps, we can interpret the highly activated regions of
each decoder block. The learned shape maps can be used to
infer correct shapes of interesting categories learned by the
model. The SAU-Net is able to learn robust shape features
of objects via the gated shape stream, and is also more inter-
pretable than previous works via built-in saliency maps using
attention.

Wickstr⊘m et al. [143] explored the uncertainty and inter-
pretability of semantic segmentation of colorectal polyps in con-
volutional neural networks, and the authors developed the cen-
tral idea of guided back propagation [144] for the interpreta-
tion of network gradients. By using back propagation, the gra-
dient corresponding to each pixel in the input is obtained so
that the features considered by the network can be visualised.
In the process of back propagation, pixels with large and posi-
tive gradient values in an image should be paid more attention
due to high importance while pixels with large and negative gra-
dient values should be suppressed. If these negative gradients
are included in the visualisation of important pixels, they may
result in noisy visualisations of descriptive features. To avoid
creating noisy visualisations, the guide back propagation process
changes the back propagation of the neural network so that the
negative gradients are set to zero at each layer, thereby allowing
only positive gradients to flow backwards through the network
and highlight these pixels.

Medical image analysis is an aid to the clinical diagnosis,
the clinicians wonder not only where the lesion is located at,
but also the interpretability of results given by networks. Cur-
rently, the interpretation of medical image analysis is dom-
inated by visualisation methods such as attention and the
class-activation-map (CAM). Therefore, the research on the
interpretability of deep learning for medical image segmen-
tation [145] [146] [147] [148] will be a popular direction in
future.

4.4 Multi-modality data fusion

Multi-modality data fusion has been widely used in medical
image analysis because it can provide richer object features that
are helpful for improving object detection and segmentation
results. Dou et al. [149] proposed a novel multi-modal learn-
ing scheme for accurate segmentation of anatomical structures
from unpaired CT and MRI images, and designed a new loss
function using knowledge distillation to improve model train-
ing efficiency [150]. More specifically, the normalisation layer
used for different modalities (i.e. CT and MRI) is implemented
within separate variables, whereas the convolutional layer is con-
structed within shared variables. In each training iteration, sam-
ples for each modality are loaded separately and then forwarded
to the shared convolutional and independent normalisation lay-
ers, and finally the logarithms that can be used to calculate
knowledge distillation losses will be obtained. Moeskops et al.

[151] investigated a question whether it is possible to train a
single CNN to perform same segmentation tasks on different-
modality data. It is well known that CNNs show excellent per-
formance for image feature encoding and based on this, the
experiments in [151] furthermore demonstrate that CNNs are
also excellent for feature encoding of multi-modality data when
they are used for the same tasks. Therefore, a single system
can be used in clinical practice to automatically execute seg-
mentation tasks on various modality data without extra task-
specific training.

More relevant literatures can be found in the review on multi-
modal fusion for medical image segmentation using deep learn-
ing [152]. In this review, authors classified fusion strategies
into three categories: input-level fusion, layer-level fusion, and
decision-level fusion. Although it is known that multi-modal
fusion networks usually show better performance for segmen-
tation tasks than unimodal networks, multi-model fusion causes
some new problems such as how to design multi-modal net-
works to efficiently combine different modalities, how to exploit
potential relationships between different modalities, and how to
integrate multiple information into segmentation networks to
improve segmentation performance. In addition, the integration
of multi-modal data fusion into an effective single-parameter
network can help simplify deployment and improve the usability
of models in clinical practice.

5 DISCUSSION AND OUTLOOK

5.1 Medical Image Segmentation Data sets

In order to help clinicians make accurate diagnoses, it is neces-
sary to segment important organs, tissues or lesions from medi-
cal images with the aid of a computer and extract features from
segmented objects. As a result, various medical image data sets
and corresponding competitions have been launched to pro-
mote the development of computer-aided diagnosis techniques.
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WANG ET AL. 1259

FIGURE 17 Some images of benchmark data sets

In recent years, there has been a growing interest in devel-
oping more comprehensive computational anatomical models
with the development of deep learning techniques, which has
facilitated the development of multi-organ analysis models. The
multi-organ segmentation approaches are different from tradi-
tional organ-specific strategies in that they incorporate relation-
ships between different organs into models to represent more
accurately the complex human anatomy. In the context of multi-
organ analysis, brain and abdomen are the most popular in med-
ical image analysis. Thus there are many data sets on the brain
and abdomen such as BRATS [3] [153] [154], ISLES [155],
KITS [156], LITS [157], and CHAOS [158]. There are two rea-
sons for the emergence of large data sets: on the one hand, the
rapid development of imaging techniques, increasingly higher
resolution shows more detailed anatomical tissue, which pro-
vides a better reference for clinicians; on the other hand, with
the development of deep learning techniques, a large number
of training samples are necessary, so many research teams have
collected many samples and annotated data to form data sets in
order to train network models easily. In addition, stable organ
structures in the abdomen (e.g. the liver, spleen, and kidneys)
can provide constraints and contextual information for creat-
ing computational anatomical models of the abdomen. There
are also a small number of public data sets on hippocampus
and pelvic organs (e.g. Colon [159] and prostate [160]). Indeed,
the construction of more holistic and global anatomical mod-
els remains one of the greatest challenges and opportunities in
future due to the lack of large data sets to characterise the com-
plexity of the human anatomy. More discussions on multi-organ
analysis and computational anatomical methods can be found
in [161]. The review proposed by Cerrolaza et al. [161] fol-
lows a methodology-based classification of different techniques
that are available for the analysis of multi-organs and multi-
anatomical structures, from techniques using point distribution
models to the latest deep learning-based approaches.

There are many publicly available data sets for medical image
segmentation, Table 1 provides a brief description and list of
each data set. As shown in Figure 17, we also provide some

images of benchmark data sets. In fact, there are more public
data sets than in the list of Table 1 used for medical image seg-
mentation.

5.2 Popular evaluation metrics

In order to measure effectively the performance of medical
image segmentation model, a large number of metrics have
been proposed for evaluating the segmentation effectiveness.
The evaluation of image segmentation performance relies on
pixel quality, region quality and surface distance quality. In this
section, we give some popular metrics for evaluating the per-
formance of medical image segmentation. Pixel quality met-
rics include pixel accuracy (PA). Region quality metrics include
Dice score, volume overlap error (VOE) and relative volume
difference (RVD). Surface distance quality metrics include aver-
age symmetric surface distance (ASD) and maximum symmetric
surface distance (MSD).

PA: Pixel accuracy simply finds the ratio of pixels properly
classified, divided by the total number of pixels. For K + 1
classes (K foreground classes and the background), pixel accu-
racy is defined as

PA =

∑K

i=0 pii∑K

i=0

∑K

j=0 pi j

, (18)

where pi j is the number of pixels of class i predicted as belong-
ing to class j .

Dice score: it is a popular metric for image segmentation (and
is more commonly used in medical image analysis), which can be
defined as twice the overlap area of predicted and ground-truth
maps, divided by the total number of pixels in both images. The
Dice score is defined as

Dice =
2|A ∩ B||A| + |B| , (19)
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1260 WANG ET AL.

TABLE 1 Public data sets for medical segmentation

Objects Data set URL

Liver LiTS [157] https://competitions.codalab.org/competitions/17094

Sliver07 [162] http://www.sliver07.org/

3Dircadb [163] https://www.ircad.fr/research/3dircadb/

Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

CHAOS [165] https://chaos.grand-challenge.org

Pancreas Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

NIH Pancreas [166] http://academictorrents.com/details/80ecfefcabede760cdbdf63e38986501f7becd49

Colon COLONOGRAPHY [159] https://wiki.cancerimagingarchive.net/display/Public/CT+COLO
NOGRAPHY#dc149b9170f54aa29e88f1119e25ba3e

Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Heart AMRG Cardiac Atlas [167] http://www.cardiacatlas.org/studies/amrg-cardiac-atlas/

Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Lung LIDC-IDRI [168] https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI♯

VESSEL12 [169] https://vessel12.grand-challenge.org/

Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Prostate PROMISE12 [160] https://promise12.grand-challenge.org/

Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Brain OASIS [170] http://www.oasis-brains.org/

BRATS [3] [153] [154] https://www.med.upenn.edu/sbia/brats2018/registration.html

ISLES [155] http://www.isles-challenge.org/

mTOP [171] https://www.smir.ch/MTOP/Start2016

Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Kidney KITS [156] https://kits19.grand-challenge.org

CHAOS [165] https://chaos.grand-challenge.org

Spleen Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

CHAOS [165] https://chaos.grand-challenge.org

Hippocampus Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Hepatic Vessel Medical Segmentation Decathlon (MSD) [164] http://medicaldecathlon.com/index.html

Skin lesion ISIC [172] https://challenge.isic-archive.com/data

STARE STARE [173] https://cecas.clemson.edu/ ahoover/stare/

Thyroid TNSCUI [174] https://tn-scui2020.grand-challenge.org/

where A and B denote the ground truth and the predicted seg-
mentation maps, respectively.

VOE: It is the complement of the Jaccard index, it is
defined as

VOE (A,B) = 1 −
|A ∩ B||A ∪ B| . (20)

RVD: It is an asymmetric measure defined as

RVD(A,B) =
|B| − |A||A| . (21)

Surface distance metrics are a set of correlated measures
of the distance between the surfaces of a reference and pre-
dicted lesion.

Let S (A) denote the set of surface voxels of A. The shortest
distance of an arbitrary voxel v to S (A) is defined as

d (v, S (A)) = min
sA∈S (A

(‖v − sA‖), (22)

where ‖ ∙ ‖ denotes the Euclidean distance.
ASD: It is defined as

ASD(A,B) =
1||S (A)|| + ||S (B)||

( ∑
sA∈S (A)

d (sA, S (B))

+
∑

sB∈S (B)

d (sB , S (A))

)
. (23)
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MSD: It is also known as the Symmetric Hausdorff Distance,
and is similar to ASD except that the maximum distance that is
taken instead of the average:

MSD(A,B) = max

{
max

sA∈S (A)
d (sA, S (B)), max

sB∈S (B)
d (sB , S (A))

}
.

(24)

5.3 Challenges and future scope

It has been proved that fully automated segmentation of
medical images based on deep neural networks is very valu-
able. By reviewing the progress of deep learning in medical
image segmentation, we have identified potential difficulties.
Researchers successfully employed a variety of means to
improve the accuracy of medical image segmentation. Although
only the improvement of accuracy cannot account for the
performance of algorithms, especially in the field of medical
image analysis, where problems of class imbalance, noise
interference problems and serious consequences of missed
tests must be considered. In the following subsections, we will
analyse potential future research directions for medical image
segmentation.

5.3.1 Design of network architecture

In studies of medical image segmentation, the innovation of
network structure design is most popular, as the improve-
ment of network structure design shows clear effect and it is
easily transferred to other tasks. Through reviewing classical
models in recent years, we find that the basic framework of
encoder–decoder U-shaped networks with long and short
skipped connections has been widely used for medical image
segmentation. The residual network (ResNet) and the densely
connected network (DenseNet) have demonstrated the effect
of deepening network depth and the effectiveness of residual
structure on gradient propagation, respectively. Skip connec-
tions in deep networks can facilitate gradient propagation and
thus reduce the risk of gradient dispersion leading to improved
segmentation performance. Furthermore, the optimisation of
skipped connections will allow the model to extract richer
features.

In addition, the design of the network module is worth
exploring. Recently, spatial pyramid modules have been widely
used in the field of semantic segmentation. The atrous convo-
lution with fewer parameters allows for wider receptive fields,
and the feature pyramid allows for features with different scales
to be acquired. The development of spatial channel attention
modules makes the process of neural network feature extraction
more targeted, so the design of task-specific feature extraction
network modules is also well worth investigating.

The manual design of model structures requires rich expe-
riences, so it is inevitable that NAS will gradually replace the

manual design. However, it is difficult to search directly a
large network due to memory and GPU limitations. Therefore,
the future trend should be the combination of manual design
and the use of NAS technology. First, a backbone network
is designed manually, and then small network modules are
searched by NAS before training.

The design of different convolution operations is also
a meaningful research direction, such as atrous convolu-
tion, deformable convolution, and deep separable convolution.
Although these convolutions are all excellent for improving per-
formance of models, they still belong to traditional convolu-
tional categories. As a convolutional method of processing non-
Euclidean data, the graph convolution goes beyond the tradi-
tional convolution and is valuable for medical data because the
graph structure is more efficient and has a strong semantic fea-
ture encoding capability.

5.3.2 Design of loss function

In many medical image segmentation tasks, there are often only
one or two targets in an image, and the pixel ratio of targets
is sometimes small, which makes network training difficult. For
this problem, it is easier to focus on smaller targets by changing
loss functions than to change the network structure. However,
the design of loss functions is highly task-specific, so we need to
analyse carefully task requirement, and then design reasonable
and available loss functions.

In specific tasks of medical image segmentation, the use of
classical cross-entropy loss functions combined with a specific
regularisation term or a specific loss function has become a
popular trend. In addition, the use of domain knowledge or
a priori knowledge as regular terms or the design of specific
loss functions can yield better task-specific segmentation
results for medical images. Another avenue is an automatic
loss function (or regularisation term) search based on NAS
techniques.

5.3.3 Transfer learning

Medical imaging is usually accompanied by severe noise interfer-
ence. Moreover, the data annotation of medical images is often
more expensive than natural images. Therefore, medical image
segmentation based on pre-trained deep learning models on nat-
ural images is a worthy direction for future research.

In addition, transfer learning is an important way to achieve
weakly supervised medical image segmentation. In fact, trans-
fer learning is the use of existing knowledge to learn new
knowledge, and it focuses on finding similarities between exist-
ing knowledge and new knowledge. Since most data or tasks
are correlated, transfer learning allows us to share the model
parameters (or knowledge learned by the model) with the new
model in a way that speeds up the efficiency of model learn-
ing. Thus, transfer learning can solve the problem of insufficient
labelling data.
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5.3.4 Interactive segmentation

Although deep learning has achieved good results in many
image segmentation tasks, the vast majority of related works
have been with automatic segmentation methods. Many cases
still require interactive segmentation methods, such as the
annotation of radiotherapy targets, or when user correction is
required because the automatic segmentation results are not
good enough. In addition, training deep learning models often
requires a large number of labelled images as the training data
sets that can be done more efficiently with an interactive seg-
mentation tool.

Due to the superior performance of deep learning, the inter-
active image segmentation [126] based on deep learning can
reduce the number of user interactions and the user time that
shows broader application prospect.

5.3.5 Graph convolutional neural network

In general, convolution-based deep neural networks with trans-
lation invariance, rotation invariance, scale invariance, shared
convolution kernels and fast automatic feature extraction have
yielded remarkable results in the field of medical images. How-
ever, convolutional neural networks also have many limitations:
they rely heavily on geometric priors and it is difficult to cap-
ture the intrinsic relationships between different objects using
extracted local features, etc. GNN provides a powerful and intu-
itive modelling approach [175] to the problem of modelling
non-Euclidean spaces. Taking the studied objects as nodes and
the correlation or similarity between objects as edges, GNN is
able to integrate non-Euclidean data and extract invisible rela-
tionships between objects by exploiting their intrinsic relation-
ships, and it has been widely used in brain segmentation [176],
vessel segmentation [177], prostate segmentation [178], coro-
nary artery segmentation [141], etc.

5.3.6 Medical transformer

In recent years, deep neural networks based on U-shaped struc-
tures and skip connection have been widely used in various
medical imaging tasks. However, despite of the fact of achieving
excellent performance by CNNs, it is unable to learn global and
long-range semantic information interactions well due to the
limitations of convolutional operations. Recently, transformer-
based architectures have become very popular that replaces the
convolutional operator and use self-attention modules to com-
pose entire encoder–decoder structures that can encode long-
range dependencies. It has been a great success in the field of
natural language processing.

Dosovitskiy et al. [179] proposed Vision Transformer (ViT)
that is able to classify images directly using the Transformer.
Recently, a large number of researches [180] [181] [182] [183]
have applied the transformer to medical image segmentation.
CNNs have a comparative advantage in extracting the underly-
ing features. These low-level features form the key points, lines,

and some basic image structures at the patch level. However,
when we detect these basic visual elements, the higher level
visual semantic information is often more concerned with how
these elements relate to each other to form an object, and how
the spatial location of objects relates to each other to form the
scene. At present, the transformer is more natural and effec-
tive in dealing with the relationships between these elements.
However, if all the convolutional operators in CV tasks are
replaced by Transformer, it may suffer from many problems,
such as high computational cost and memory usage. From exist-
ing researches, the combination of Transformer and CNNs may
lead to better results.
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