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Abstract—In this paper, the event-triggered H∞ state es-
timation problem is investigated for a class of discrete-time
stochastic memristive neural networks (DSMNNs) with time-
varying delays and missing measurements. The DSMNN is
subject to both the additive deterministic disturbances and
the multiplicative stochastic noises. The missing measurements
are governed by a sequence of random variables obeying the
Bernoulli distribution. For the purpose of energy saving, an
event-triggered communication scheme is used for DSMNNs to
determine whether the measurement output is transmitted to
the estimator or not. The problem addressed is to design an
event-triggered H∞ estimator such that the dynamics of the
estimation error is exponentially mean-square stable and the
prespecifiedH∞ disturbance rejection attenuation level is also
guaranteed. By utilizing a Lyapunov-Krasovskii functional and
stochastic analysis techniques, sufficient conditions arederived
to guarantee the existence of the desired estimator and thenthe
estimator gains are characterized in terms of the solution to
certain matrix inequalities. Finally, a numerical example is used
to demonstrate the usefulness of the proposed event-triggered
state estimation scheme.

Index Terms—Memristive neural networks, stochastic neural
networks, state estimation, event-triggered mechanism, missing
measurements.

I. I NTRODUCTION

For decades, recurrent neural networks (RNNs) have been
attracting an ever-increasing research interest due to their
remarkable ability to exhibit dynamic temporal behaviors with
successful applications in a variety of areas including signal
processing, pattern recognition, image processing, associative
memory, combinatorial optimization and control engineering
[22], [25], [36], [43]. Accordingly, a large number of results
have recently been available in the literature on the dynamics
analysis issues (e.g. stability, synchronization and estimation)
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for various kinds of RNNs especially the stochastic RNNs.
In fact, in real neural networks, the synaptic transmissionis
actually a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabilistic
causes [13] and, if not properly handled, the resulting stochas-
tic disturbances would constitute one of the main source of
the performance degradations when implementing the neural
networks in engineering practice.

Since the announcement from the HP Lab on the ex-
perimental prototyping of the memristor [30], memristors
and memristive devices have gained wide research attention
for their prospective applications in non-volatile memories,
logic devices, neuromorphic devices, and neuromorphic self-
organized computation and learning. In the context of neural
networks, synapses are essential elements for computation
and information storage which needs to remember its past
dynamical history, store a continuous set of states, and be
“plastic” according to the synaptic neuronal activity. Allthis
cannot be accomplished by a resistor in traditional RNNs.
However, when the resistors are replaced by the memristors,
the resulting memristive neural networks (MNNs) could rather
completely solve these problems. Meanwhile, the implemented
MNNs could be more efficient than the traditional RNNs
when applied in brain emulation, combinatorial optimization,
knowledge acquisition and pattern recognition [26]. As such,
the dynamics analysis problems such as stability and syn-
chronization for MNNs have recently received considerable
research attention and a rich body of relevant literature has
been available for different kinds of MNNs such as memristive
recurrent neural networks [33], memristive fractional-order
neural networks [4], memristive cellular neural networks [10],
memristive Hopfield networks [40], memristive chaotic neural
networks [45] and memristive complex-value neural networks
[34], etc. It should be mentioned that almost all results ob-
tained so far have been exclusively for continuous-time MNNs.
In nowadays digitized world, more and more information
sequences arediscrete in nature for engineering applications
such as digital signal processing, time-series analysis and
network-based control, and therefore the discrete-time RNNs
have become a powerful means in dealing with sequence-based
tasks [17]. However, despite the clear engineering insights,
the discrete-time MNNs have gained very little attention
due mainly to the mathematical difficulties in quantifying
and tackling the state-dependent switching behaviors in the
discrete-time setting.

It is now well recognized that the time delays are inherent
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characteristics in hardware implementation of neural networks
which may lead to some complex dynamic behaviors such
as oscillation, divergence, and even instability in the network
systems. For continuous-time MNNs, so far, various time-
delays (including constant delays, time-varying delays, dis-
tributed delays and mixed time-delays) have been introduced
to model the lags in signal transmissions due to finite switching
speeds of amplifiers, and the impacts of the time delays on
the dynamical behaviors of continuous-time MNNs have been
thoroughly examined in the literature, see [12], [41] and the
references therein. In particular, in [12], several sufficient
conditions in terms of linear matrix inequalities have been
presented to ensure the global exponential synchronization
of multiple MNNs with time delays. Nevertheless, the corre-
sponding results for discrete-time MNNs have been very few
and this constitutes the main motivation of the present research
to shorten such a gap.

In neural network applications, it is quite common that the
neuron states are not fully accessible due probably to the large
scale of the networks and the implementation cost in moni-
toring network output, and this makes it significantly difficult
to analyze the dynamical behaviors of the real-time neural
networks. Therefore, in such cases, it becomes a prerequisite
to estimate the neuron states through available network mea-
surements before exploiting the merits of RNNs in tasks such
as classification, approximation and optimization, see e.g. [14],
[29], [35] for representative works. To be more specific, in
[35], the state estimators have been designed for a class of
neural networks with time-varying delays by employing the
Lyapunov functional and linear matrix inequality approach. In
[15], the state estimation problem has been considered for a
class of uncertain stochastic neural networks. Furthermore, the
phenomenon of missing measurements has been investigated
in [17] for the state estimation problem of coupled uncertain
stochastic networks. As for the state estimation problem of
MNNs, some initial efforts have been made in [27], [28]
by utilizing the passivity theory with or without time-delays.
Again, as far as the discrete-time MNN is concerned, the
state estimation remains an open problem that deserves further
investigation.

In the course of implementing large-scale RNNs consisting
of a large number of computing units, much resource (e.g. pro-
cessing, storage, communications) would have to be consumed
and the energy saving issue with resource constraints is becom-
ing an emerging topic of research that has started to draw some
initial attention. For state estimation problems of RNNs, it is
quite desirable to avoid unnecessary signal transmissions(from
the measured network outputs to the estimator) and reduce
the network burden as long as certain estimation performance
requirements (accuracy and convergence) are guaranteed. Re-
cently, the event-triggered mechanism (EVM) has received
much research attention because of its distinctive merits in sav-
ing resource. Unlike the conventional time-triggered scheme,
the main purpose of the EVM is to transmit signals only
when a certain triggered condition is met, and this allows
a considerable reduction of the network resource occupancy.
Therefore, in the past few years, the EVM has been applied
to various control and communication problems for complex

networks [16], networked control systems [9], [19], wireless
sensor networks [8], [32] and multi-agent systems [31]. In this
case, a seemingly natural idea is to investigate into the event-
triggered state estimation problem for discrete-time MNNsand
see how the efficiency of energy utilization can be improved.It
should be pointed out that the event-triggered state estimation
problem for RNNs neural networks has not received adequate
research attention yet, not to mention the case when the RNN
is in the discrete-time setting coupled with time-delays aswell
as deterministic and stochastic disturbances.

More importantly than all of that, compared with the
existing results, we can find that thediscrete-time stochastic
memristive neural networks (DSMNNs) with time-varying de-
lays are more comprehensive and practical than the established
ones. In this case, both the stability analysis based on the the-
ory of differential inclusion and the state estimation approach
without event-triggered scheme are no longer applicable. Mo-
tivated by the above discussions, in this paper, we endeavor
to study the event-triggeredH∞ state estimation problem for
delayed stochastic MNNs with missing measurements. The
problem addressed is to estimate the neuron states through
available output measurements subject to probabilistic missing
values under an event-triggered mechanism. By utilizing a
Lyapunov-Krasovskii functional and stochastic analysis tech-
niques, both the existence conditions and the explicit expres-
sion of the desired state estimators are established under which
the estimation error dynamics is stable and the prescribedH∞

disturbance rejection attenuation level is guaranteed.
The main contributions of this paper are highlighted as

follows: 1) a new yet comprehensive MNN model, namely,
discrete-time delayed stochastic MNN with missing measure-
ments, is proposed in order to reflect the engineering practice;
2) a new event-based state estimation problem is addressed
for the discrete-time MNNs with hope to save resource; 3) an
H∞ performance index is used to attenuate the effects from the
external disturbances on the estimation performance; 4) for the
underlying MNNs, a new technique is introduced to quantify
and then handle the state-dependent switching behaviors inthe
discrete-time setting; and 5) a unified framework is established
that is capable of coping with the simultaneous presence
of event-triggered effects, deterministic and stochasticdistur-
bances, time-varying delays as well as missing measurements.

II. PROBLEM FORMULATION

Consider the followingn-neuron discrete-time stochastic
memristive neural networks with time delays:

x(k + 1) =D(x(k))x(k) +A(x(k))f(x(k))

+B(x(k))g(x(k − τ(k))) + Lς(k)

+ σ(k, x(k), x(k − τ(k)))w(k)

(1)

where x(k) =
[
x1(k) x2(k) · · · xn(k)

]T
is the neu-

ral state vector;D(x(k)) = diag{d1(x1(k)), d2(x2(k)),
· · · , dn(xn(k))} is the self-feedback matrix with entries
|di(xi(k))| < 1; A(x(k)) =

(
aij(xi(k))

)

n×n
andB(x(k)) =

(
bij(xi(k))

)

n×n
are the connection and the delayed connec-

tion weight matrices, respectively;ς(k) ∈ R
n is the external

disturbance input vector belonging tol2([0,∞);Rn), L =
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diag{l1, l2, · · · , ln} is the intensity matrix of the deterministic
disturbance;τ(k) represents the time-varying transmission
delay which satisfies

τm ≤ τ(k) ≤ τM , k = 1, 2, · · · (2)

where the positive integersτm and τM are the lower and
upper bounds, respectively;w(k) is a scalar Wiener process
on (Ω,F ,P) with

E[w(k)] = 0, E[w2(k)] = 1, E[w(i)w(j)] = 0 (i 6= j), (3)

and σ : R × R
n × R

n → R
n is called the noise intensity

function vector (for the stochastic disturbance) satisfying

σT (k, u, v)σ(k, u, v) ≤ ρ1u
Tu+ ρ2v

T v, u, v ∈ R
n (4)

where ρ1 and ρ2 are known positive constants;
f(x(k)) =

[
f1(x1(k)) f2(x2(k)) · · · fn(xn(k))

]T
and

g(x(k−τ(k))) =
[
g1(x1(k − τ(k))) g2(x2(k − τ(k))) · · ·

gn(xn(k − τ(k)))
]T

are the nonlinear functions standing for
the neuron activation functions.

Remark 1: In real-world neural networks, some neural net-
works is often disturbed by environmental noises, and the
noise intensity has bound. Therefore, in this paper, we assume
that the DSMNN is subject to the multiplicative stochastic
noises, and this noise intensity described by the function vector
σ(·). We also assume that this noise intensityσ(·) is related
to the time and the system states and has upper bound.

For the neuron activation functions, the following assump-
tions are needed.

Assumption 1: [21] The neuron activation functionsf(·)
andg(·) satisfy

[f(x)− f(y)− Λ1(x − y)]T

× [f(x) − f(y)− Λ2(x− y)] ≤ 0, x, y ∈ R
n (x 6= y), (5)

[g(x)− g(y)−Υ1(x− y)]T

× [g(x) − g(y)−Υ2(x− y)] ≤ 0, x, y ∈ R
n (x 6= y) (6)

whereΛ1, Λ2, Υ1 andΥ2 are constant matrices.
Chua [6] stated that memristor needs to exhibit only two

sufficient distinct equilibrium states since digital computer
applications requiring only two memory states. On the other
hand, along the similar lines in [39], memristor-based neural
network (1) can be implemented by a large-scale integration
circuit. Then according to the feature of the memristor and
the current-voltage characteristic,di(xi(k)), aij(xi(k)) and
bij(xi(k)) are state-dependent functions with the form

di(xi(·)) =
1

Ci

[ n∑

j=1

(
1

Raij

+
1

Rbij

) +
1

Ri

]

=

{

d̂i, |xi(·)| > κi,

ďi, |xi(·)| ≤ κi,

sij(xi(·)) =
signij
CiRsij

=

{

ŝij , |xi(·)| > κi,

šij , |xi(·)| ≤ κi

(7)

wheres standsa or b, Ci is the capacitor,Ri is the parallel-
resistor.Raij andRbij are respectively the non-delayed and

time-varying delayed connection memristors between the feed-
backfj(·) and statexi(·).

signij =

{

1, i 6= j,

−1, i = j,

the switching jumps satisfyκi > 0, |d̂i| < 1, |ďi| < 1, ŝij and
šij are constants.

Denote

d−i = min{d̂i, ďi}, d+i = max{d̂i, ďi},

a−ij = min{âij , ǎij}, a+ij = max{âij , ǎij},

b−ij = min{b̂ij, b̌ij}, b+ij = max{b̂ij, b̌ij},

D− = diag{d−1 , d
−
2 , · · · , d

−
n },

D+ = diag{d+1 , d
+
2 , · · · , d

+
n },

A− = (a−ij)n×n, A+ = (a+ij)n×n,

B− = (b−ij)n×n, B+ = (b+ij)n×n.

It is clear thatD(x(k)) ∈
[
D−, D+

]
, A(x(k)) ∈

[
A−, A+

]

andB(x(k)) ∈
[
B−, B+

]
.

Define

D̄ ,
D+ +D−

2

=diag
{d+1 + d−1

2
,
d+2 + d−2

2
, · · · ,

d+n + d−n
2

}

,

Ā ,
A+ +A−

2
=

(a+ij + a−ij
2

)

n×n
,

B̄ ,
B+ +B−

2
=

(b+ij + b−ij
2

)

n×n
.

Then, the matricesD(x(k)), A(x(k)) and B(x(k)) can be
written as

D(x(k)) =D̄ +∆D(k),

A(x(k)) =Ā+∆A(k),

B(x(k)) =B̄ +∆B(k)

(8)

where

∆D(k) =

n∑

i=1

eisi(k)e
T
i ,

∆A(k) =
n∑

i,j=1

eitij(k)e
T
j ,

∆B(k) =

n∑

i,j=1

eipij(k)e
T
j .

Here,ek ∈ R
n is the column vector with thekth element being

1 and others being0, si(k), tij(k) and pij(k) are unknown
scalars satisfying|si(k)| ≤ d̃i, |tij(k)| ≤ ãij and |pij(k)| ≤
b̃ij with

d̃j =
d+j − d−j

2
, ãij =

a+ij − a−ij
2

, b̃ij =
b+ij − b−ij

2
.

The parameter matrices∆D(k),∆A(k) and∆B(k) can be
rewritten in the following compact form:

[
∆D(k) ∆A(k) ∆B(k)

]
= HF (k)E (9)
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whereH =
[
H H H

]
and E = diag{E1, E2, E3} are

known constant matrices with

H =
[
H1 H2 · · · Hn

]
,

Hi =
[
ei ei · · · ei

]

︸ ︷︷ ︸

n

,

Ei =
[
ET

i1 ET
i2 · · · ET

in

]T
(i = 1, 2, 3),

E1j =
[
eT1 eT2 · · · eTj−1 d̃je

T
j eTj+1 · · · eTn

]
,

E2j =
[
ãj1e

T
1 ãj2e

T
2 · · · ãjne

T
n

]
,

E3j =
[

b̃j1e
T
1 b̃j2e

T
2 · · · b̃jne

T
n

]
,

and F (k) = diag{F1(k), F2(k), F3(k)} are unknown time-
varying matrices given by

Fi(k) =diag{Fi1(k), · · · , Fin(k)},

F1j(k) =diag{0, · · · , 0
︸ ︷︷ ︸

j−1

, sj(k)d̃
−1
j , 0, · · · , 0

︸ ︷︷ ︸

n−j

},

F2j(k) =diag{tj1(k)ã
−1
j1 , · · · , tjn(k)ã

−1
jn },

F3j(k) =diag{pj1(k)b̃
−1
j1 , · · · , pjn(k)b̃

−1
jn }.

It is not difficult to verify that the matricesFi(k) (i = 1, 2, 3)
satisfyFT

i (k)Fi(k) ≤ In2 , whereIn2 denotesn2-dimensional
identity matrix.

Remark 2: Usually, the norm-bounded condition of uncer-
tainties is given as an assumption in most of the existing liter-
atures. However, in this paper, the state-dependent switching
to norm-bounded uncertainties is based on the feature of the
memristor and the current-voltage characteristics.

In this paper, the network output of (1) is of the following
form:

y(k) =α(k)Cx(k) +Nξ(k), (10)

z(k) =Mx(k) (11)

wherey(k)∈ R
m is the measurement output,z(k)∈ R

r is the
output to be estimated andξ(k) ∈ R

l is the disturbance input
belonging tol2([0,∞);Rl). The stochastic variableα(k) is a
Bernoulli-distributed white sequence taking values on0 or 1
with

Prob{α(k) = 1} = ᾱ,

Prob{α(k) = 0} = 1− ᾱ
(12)

whereᾱ ∈ [0, 1] is a known constant.
For resource-constrained systems, the event-based mecha-

nism has proven to be capable of reducing the information
exchange frequency and therefore improving the efficiency
in resource utilization. For the purpose of introducing the
event-based scheduling, we first denote the triggering instant
sequence by0 ≤ k0 ≤ · · · ≤ kι ≤ · · · and then define an
event generator functionϕ(·, ·) : Rm × R → R as follows:

ϕ(µ(k), δ) = µT (k)µ(k) − δyT (k)y(k) (13)

whereµ(k) = y(k) − y(kι). Here,y(kι) is the measurement
at latest event time (triggering instant) andδ > 0 is a given
positive scalar.

The execution (i.e., the measurement output is transmitted
to the estimator) is triggered as long as the condition

ϕ(µ(k), δ) > 0 (14)

is satisfied. Therefore, the next triggering instant is determined
iteratively by

kι+1 = inf{k ∈ N|k > kι, ϕ(µ(k), δ) > 0}. (15)

Remark 3: The event-triggered scheme is a kind of sam-
pling which generates the measurements and transmits the
data after the occurrence of a certain external event. Compared
to the conventional time-triggered scheme, the event-triggered
scheme shows a significant advantage of reducing the amount
of sampling instants. In other words, the signals are updated
only when necessary and, therefore, the unnecessary compu-
tation and transmission could be avoided. However, it is not
difficult to see that the introduction triggering condition(14)
gives reduce to the amount of data, and therefore an adequate
trade-off can be achieved between the efficiency in resource
utilization and the estimation performance.

In order to estimate the neuron statex(k) based on the
event-triggered scheme (14), we employ the following state
estimator

x̂(k + 1) =D̄x̂(k) + Āf(x̂(k)) + B̄g(x̂(k − τ(k)))

+K(y(kι)− Cx̂(k))
(16)

for k ∈ [kι, kι+1], where x̂(k) ∈ R
n is the estimate of the

neuron statex(k) andK ∈ R
n×m is the estimator gain to be

determined.
The dynamics of the estimation error can be obtained from

(1), (10), (11) and (16) as follows:






e(k + 1) =(D̄ −KC)e(k) + ∆D(k)x(k) +Kµ(k)

+ (1− ᾱ)KCx(k) + Āf̃(k)

+ ∆A(k)f(x(k)) + B̄g̃(x(k − τ(k)))

+ ∆B(k)g(x(k − τ(k))) + Lς(k)

−KNξ(k)− (α(k) − ᾱ)KCx(k)

+ σ(k, x(k), x(k − τ(k)))w(k),

z̃(k) =Me(k), k ∈ [kι, kι+1)

(17)

wheree(k) , x(k) − x̂(k), f̃(x(k)) , f(x(k)) − f(x̂(k)),
g̃(x(k − τ(k))) , g(x(k − τ(k))) − g(x̂(k − τ(k))) and
z̃(k) is the output estimation error. Then, by settingη(k) =
[xT (k) eT (k)]T , we have the following augmented system






η(k + 1) =W̃1η(k) + (ᾱ − α(k))W2η(k)

+ W̃3
~f(k) + W̃4~g(k − τ(k)) +W5ζ(k)

+W6w(k) +W7~µ(k),

z̃(k) =Mη(k), k ∈ [kι, kι+1)

(18)

where

~f(k) =
[

fT (x(k)) f̃T (x(k))
]T

,

~g(k − τ(k)) =
[
gT (x(k − τ(k))) g̃T (x(k − τ(k)))

]T
,

ζ(k) =
[
ςT (k) ξT (k)

]T
, ~µ(k) =

[
0 µT (k)

]T
,

M =
[
0 M

]
, W̃1 = W1 +∆D(k),

W̃3 = W3 +∆A(k), W̃4 = W4 +∆B(k),

W1 =

[
D̄ 0

(1− ᾱ)KC D̄ −KC

]

, W2 =

[
0 0

KC 0

]

,
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W3 =

[
Ā 0
0 Ā

]

, W4 =

[
B̄ 0
0 B̄

]

, W7 =

[
0 0
0 K

]

,

W5 =

[
L 0
L −KN

]

, ∆D(k) =

[
∆D(k) 0
∆D(k) 0

]

,

∆A(k) =

[
∆A(k) 0
∆A(k) 0

]

, ∆B(k) =

[
∆B(k) 0
∆B(k) 0

]

,

W6 =
[
σT (k, x(k), x(k − τ(k)))T

σT (k, x(k), x(k − τ(k)))
]T

.

Our main aim in this paper is to design a suitableH∞ state
estimator for stochastic memristive neural networks givenby
(1). More specifically, we are interested in looking for the gain
matrix K such that the following two requirements are met
simultaneously:

1) The augmented system (18) withζ(k) = 0 is exponen-
tially mean-square stable;

2) Under zero initial conditions, for a given disturbance
attention levelγ > 0 and all nonzeroζ(k), the outputz̃(k)
satisfies

∞∑

k=0

E
{
‖z̃(k)‖2

}
≤ γ2

∞∑

k=0

E
{
‖ζ(k)‖2

}
. (19)

III. M AIN RESULTS

Before proceeding to the stability analysis for system (18),
we introduce one lemma that will be useful in deriving our
results.

Lemma 1: [2] Let N = NT , H and E be real matrices
with appropriate dimensions, andFT (k)F (k) ≤ I, whereI
denotes the identity matrix of compatible dimension. Then the
inequalityN+HFE+(HFE)T < 0 if and only if there exists
a positive scalarε such thatN + εHHT + ε−1ETE < 0 or,
equivalently, 



N εH ET

εHT −εI 0
E 0 −εI



 < 0.

For the stability of system (18), we have the following
results.

Theorem 1: Let K be a given constant matrix. Then, under
Assumption 1, the augmented system (18) withζ(k) = 0 is
exponentially mean-square stable if there exist positive definite
matricesP = diag{P1, P2}, Q and positive scalarsλ∗

1, λ
∗
2 and

λj (j = 1, 2, 3) satisfying the following inequalities:

P < Λ∗I2n, (20)

Φ̃ =









Θ̃11 0 Θ̃13 Θ14 Θ15

∗ Θ̃22 0 Θ̃24 0

∗ ∗ Θ̃33 Θ34 Θ35

∗ ∗ ∗ Θ̃44 Θ45

∗ ∗ ∗ ∗ Θ̃55









< 0 (21)

where

Λ̃1 = I2 ⊗ Sym{
1

2
ΛT
1 Λ2}, Λ̃2 = I2 ⊗ (Λ1 + Λ2)/2,

Υ̃1 = I2 ⊗ Sym{
1

2
ΥT

1 Υ2}, Υ̃2 = I2 ⊗ (Υ1 +Υ2)/2,

Λ∗ = diag{λ∗
1, λ

∗
2}, I =

[
In 0
0 0

]

,

Θ̃11 = W̃T
1 PW̃1 + (λ∗

1 + λ∗
2)ρ1I+ (τM − τm + 1)Q

+ λ3δᾱ
2CTC − P − λ1Λ̃1,

Θ̃22 = −Q+ (λ∗
1 + λ∗

2)ρ2I− λ2Υ̃1,

Θ̃33 = W̃T
3 PW̃3 − λ1I2n, Θ̃13 = W̃T

1 PW̃3 + λ1Λ̃
T
2 ,

Θ̃44 = W̃T
4 PW̃4 − λ2I2n, Θ̃55 = WT

7 PW7 − λ3I2n,

Θ̃24 = λ2Υ̃
T
2 , Θ14 = W̃T

1 PW̃4, Θ34 = W̃T
3 PW̃4,

Θ15 = W̃T
1 PW7, Θ35 = W̃T

3 PW7, Θ45 = W̃T
4 PW7.

Proof: Choose a Lyapunov-Krasovskii functional for sys-
tem (18) as follows:

V (η(k)) = V1(η(k)) + V2(η(k)) + V3(η(k)) (22)

where

V1(η(k)) = ηT (k)Pη(k), (23)

V2(η(k)) =

k−1∑

i=k−τ(k)

ηT (i)Qη(i), (24)

V3(η(k)) =

k−τm∑

j=k−τM+1

k−1∑

i=j

ηT (i)Qη(i). (25)

In the case ofζ(k) = 0, calculating the difference of
V (k) along the system (18), and taking the mathematical
expectation, one has

E{∆V (η(k))}

=E{∆V1(η(k))} + E{∆V2(η(k))} + E{∆V3(η(k))}
(26)

where

E{∆V1(η(k))}

=E{V1(η(k + 1))− V1(η(k))}

=E{[ηT (k)W̃T
1 + ~fT (k)W̃T

3 + ~gT (k − τ(k))W̃T
4

+WT
6 w(k) + ~µT (k)WT

7 ]P [W̃1η(k) +W3
~f(k)

+W4~g(k − τ(k)) +W6w(k) +W7~µ(k)]

− ηT (k)Pη(k)}

=E{[ηT (k)W̃T
1 PW̃1η(k) + ~fT (k)W̃T

3 PW̃3
~f(k)

+ ~gT (k − τ(k))W̃T
4 PW̃4~g(k − τ(k)) +WT

6 PW6

+ ~µT (k)WT
7 PW7~µ(k) + 2ηT (k)W̃T

1 PW̃3
~f(k)

+ 2ηT (k)W̃T
1 PW̃4~g(k − τ(k)) + 2ηT (k)W̃T

1 PW7~µ(k)

+ 2~fT (k)W̃T
3 PW̃4~g(k − τ(k)) + 2~fT (k)W̃T

3 PW7~µ(k)

+ 2~gT (k − τ(k))W̃T
4 PW7~µ(k)]− ηT (k)Pη(k)},

(27)

E{∆V2(η(k))}

=E{V2(η(k + 1))− V2(η(k))}
(28)
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=E

{ k∑

i=k+1−τ(k+1)

ηT (i)Qη(i)

−

k−1∑

i=k−τ(k)

ηT (i)Qη(i)
}

≤E

{

ηT (k)Qη(k)− ηT (k − τ(k))Qη(k − τ(k))

+

k−τm∑

i=k+1−τM

ηT (i)Qη(i)
}

and

E{∆V3(η(k))}

=E{V3(η(k + 1))− V3(η(k))}

=E

{ k+1−τm∑

i=k+2−τM

k∑

i=j

ηT (i)Qη(i)

−

k−τm∑

i=k+1−τM

k−1∑

i=j

ηT (i)Qη(i)
}

=E

{ k−τm∑

i=k+1−τM

k∑

i=j+1

ηT (i)Qη(i)

−

k−τm∑

i=k+1−τM

k−1∑

i=j

ηT (i)Qη(i)
}

=E

{ k−τm∑

j=k+1−τM

(ηT (k)Qη(k)− ηT (j)Qη(j))
}

=E

{

(τM − τm)ηT (k)Qη(k)

−

k−τm∑

i=k+1−τM

ηT (i)Qη(i)
}

.

(29)

Noticing (4) and (20), it is easy to see that

σT (k, x(k), x(k − τ(k)))P1σ(k, x(k), x(k − τ(k)))

≤λmax(P1)σ
T (k, x(k), x(k − τ(k)))

× σ(k, x(k), x(k − τ(k))) (30)

≤λ∗
1(ρ1x

T (k)x(k) + ρ2x
T (k − τ(k))x(k − τ(k))),

σT (k, x(k), x(k − τ(k)))P2σ(k, x(k), x(k − τ(k)))

≤λmax(P2)σ
T (k, x(k), x(k − τ(k)))

× σ(k, x(k), x(k − τ(k))) (31)

≤λ∗
2(ρ1x

T (k)x(k) + ρ2x
T (k − τ(k))x(k − τ(k))).

Substituting (27)–(31) into (26) leads to

E{∆V (η(k))}

≤E{ηT (k)(W̃T
1 PW̃1 + (λ∗

1 + λ∗
2)ρ1I+ (τM − τm

+ 1)Q− P ]η(k) + ηT (k − τ(k))(−Q + (λ∗
1

+ λ∗
2)ρ2I)η(k − τ(k)) + ~fT (k)W̃T

3 PW̃3
~f(k)

+ ~gT (k − τ(k))W̃T
4 PW̃4~g(k − τ(k)) + ~µT (k)

×WT
7 PW7~µ(k) + 2ηT (k)W̃T

1 PW̃3
~f(k) + 2ηT (k)

× W̃T
1 PW̃4~g(k − τ(k)) + 2ηT (k)W̃T

1 PW7~µ(k)

+ 2~fT (k)W̃T
3 PW̃4~g(k − τ(k)) + 2~fT (k)W̃T

3 P

(32)

×W7~µ(k) + 2~gT (k − τ(k))W̃T
4 PW7~µ(k)}

=E{̟T (k)Φ̟(k)}

where

̟(k) =
[

ηT (k) ηT (k − τ(k)) ~fT (k)

~gT (k − τ(k)) ~µT (k)
]T

,

Φ =

[
Θ11 Π12

∗ Π22

]

with

Π12 =
[
0 Θ13 Θ14 Θ15

]
,

Π22 =







Θ22 0 0 0
∗ Θ33 Θ34 Θ35

∗ ∗ Θ44 Θ45

∗ ∗ ∗ Θ55






,

Θ11 = W̃T
1 PW̃1 + (λ∗

1 + λ∗
2)ρ1I+ (τM − τm + 1)Q− P,

Θ22 = −Q+ (λ∗
1 + λ∗

2)ρ2I, Θ33 = W̃T
3 PW̃3,

Θ44 = W̃T
4 PW̃4, Θ55 = WT

7 PW7, Θ13 = W̃T
1 PW̃3

and other parameters are defined in Theorem 1.
Taking (5), (6) and (15) into consideration, we have

E{∆V (η(k))}

≤E{̟T (k)Φ̟(k)− λ1[~f(k)− (I2 ⊗ Λ1)η(k)]
T

× [~f(k)− (I2 ⊗ Λ2)η(k)] − λ2[~g(k − τ(k))

− (I2 ⊗Υ1)η(k − τ(k))]T [~g(k − τ(k))

− (I2 ⊗Υ2)η(k − τ(k))]− λ3(µ
T (k)µ(k)

− δyT (k)y(k))}

≤E{̟T (k)Φ̟(k)− λ1[~f(k)− (I2 ⊗ Λ1)η(k)]
T

× [~f(k)− (I2 ⊗ Λ2)η(k)] − λ2[~g(k − τ(k))

− (I2 ⊗Υ1)η(k − τ(k))]T [~g(k − τ(k))

− (I2 ⊗Υ2)η(k − τ(k))]− λ3µ
T (k)µ(k)

+ λ3δᾱ
2ηT (k)CTCη(k)}

≤E{̟T (k)Φ̟̃(k)}

(33)

whereC =
[
C 0

]
andΦ̃ is defined by (21). SincẽΦ < 0, we

haveE{∆V (η(k))} ≤ −ǫE{‖η(k)‖} whereǫ = −λmax(Φ̃).
Then, by following the similar analysis in [17], the exponential
mean-square stability of the augmented system (18) with
ζ(k) = 0 is guaranteed and the proof is complete.

Now, let us consider theH∞ performance of the augmented
system (18). In the following theorem, a sufficient condition
is obtained that guarantees both the exponential mean-square
stability and theH∞ performance for the augmented system
(18).

Theorem 2: Consider the system (1) and let the estima-
tor parameterK be given. The augmented system (18) is
exponentially stable in mean square and satisfies theH∞

performance constraint (19) for all nonzeroζ(k) under the
zero initial condition if there exist positive definite matri-
ces P = diag{P1, P2}, Q and positive scalarsλ∗

1, λ
∗
2 and
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λj (j = 1, 2, 3) satisfying (19) and the following inequality:

Φ̌ =











Θ̌11 0 Θ̃13 Θ14 Θ15 Θ16

∗ Θ̃22 0 Θ̃24 0 0

∗ ∗ Θ̃33 Θ34 Θ35 Θ36

∗ ∗ ∗ Θ̃44 Θ45 Θ46

∗ ∗ ∗ ∗ Θ̃55 Θ56

∗ ∗ ∗ ∗ ∗ Θ66











< 0 (34)

where

Θ̌11 = W̃T
1 PW̃1 + (λ∗

1 + λ∗
2)ρ1I+ (τM − τm + 1)Q

+ λ3δᾱ
2CTC − P − λ1Λ̃1 + ~MT ~M,

Θ66 = −γ2I2n +WT
5 PW5, Θ16 = W̃T

1 PW5,

Θ36 = W̃T
3 PW5, Θ46 = W̃T

4 PW5, Θ56 = WT
7 PW5

and other parameters are defined in Theorem 1.
Proof: Note that the inequality (21) is implied by (34),

the proof of the exponential mean-square stability for (18)in
the case ofζ(k) = 0 follows immediately from Theorem 1.

For the H∞ performance analysis, we choose the same
Lyapunov-Krasovskii functional as in (22) and calculate the
difference ofV (η(k)) along (18) as follows:

E{∆V (η(k)) + ‖z̃(k)‖2 − γ2‖ζ(k)‖2}

=E{ηT (k)(W̃T
1 PW̃1 + (τM − τm + 1)Q+ λ3δᾱ

2CTC

− P + ~MT ~M)η(k) + ~fT (k)W̃T
3 PW̃3

~f(k)

+ ~gT (k − τ(k))W̃T
4 PW̃4~g(k − τ(k)) +WT

6 PW6

+ ~µT (k)WT
7 PW7~µ(k) + ζT (k)(WT

5 PW5 − γ2I2n)ζ(k)

+ 2ηT (k)W̃T
1 PW̃3

~f(k) + 2ηT (k)W̃T
1 PW̃4~g(k − τ(k))

+ 2ηT (k)W̃T
1 PW7~µ(k) + 2ηT (k)W̃T

1 PW5ζ(k)

+ 2~fT (k)W̃T
3 PW̃4~g(k − τ(k)) + 2~fT (k)W̃T

3 PW7~µ(k)

+ 2~fT (k)W̃T
3 PW5ζ(k) + 2~gT (k − τ(k))W̃T

4 PW7~µ(k)

+ 2~gT (k − τ(k))W̃T
4 PW5ζ(k) + 2~µT (k)WT

7 PW5ζ(k)}

=E{ϑT (k)Φ̄ϑ(k)}

where

ϑ(k) =
[

ηT (k) ηT (k − τ(k)) ~fT (k)

~gT (k − τ(k)) ~µT (k) ζT (k)
]T

and

Φ̄ =





Θ̄11 Π12 Θ16

∗ Π22 Π23

∗ ∗ Θ66





with Θ̄11 = W̃T
1 PW̃1 +(τM − τm +1)Q+λ3δᾱ

2CTC −P +
~MT ~M , Π23 =

[
0 ΘT

36 ΘT
46 ΘT

56

]T
and other parameters

defined in Theorems 1 and 2.
Using (5), (6) and (34), we have

E{V (η(k+1))−V (η(k))+‖z̃(k)‖2−γ2‖ζ(k)‖2} < 0. (35)

Under the zero initial condition, summing up (35) from0
to ∞ with respect tok and consideringE{V (η(∞))} ≥ 0, we
obtain (19) and the proof of Theorem 2 is then accomplished.

According to theH∞ performance analysis conducted in
Theorem 2, a design method of theH∞ state estimator for
(1) is provided in Theorem 3.

Theorem 3: Consider the system (1) and let the disturbance
attenuation levelγ > 0 be given. The augmented system
(18) is exponentially stable in mean square and theH∞

performance constraint (19) is met for all nonzeroζ(k) under
the zero initial condition if there exist positive definite ma-
tricesP = diag{P1, P2}, Q, and positive scalarsλ∗

1, λ
∗
2 and

ε, λj (j = 1, 2, 3) satisfying (20) and the following inequality:




Φ̌ Ȟ εĚT

∗ −εI(2n)7 0
∗ ∗ −εI(2n)7



 < 0 (36)

where

Φ̌ =

[
Π̌11 Π̌12

∗ Θ̌77

]

,

Π̌11 =











Θ̌11 0 Θ̌13 0 0 0

∗ Θ̃22 0 Θ̃24 0 0
∗ ∗ Θ̌33 0 0 0
∗ ∗ ∗ Θ̌44 0 0
∗ ∗ ∗ ∗ Θ̌55 0
∗ ∗ ∗ ∗ ∗ Θ̌66











,

Π̌12 =
[
Θ̌T

17 0 Θ̌T
37 Θ̌T

47 Θ̌T
57 Θ̌T

67

]T
,

Ȟ =





0 0 0 0 0 0 HT P̌T

0 0 0 0 0 0 HT P̌T

0 0 0 0 0 0 HT P̌T





T

, P̌ =

[
P1

P2

]

,

Ě =





S17 0 0 0 0 0 0
0 0 S37 0 0 0 0
0 0 0 S47 0 0 0



 ,

Θ̌11 = (λ∗
1 + λ∗

2)ρ1I+ (τM − τm + 1)Q+ λ3δᾱ
2CTC

− P − λ1Λ̃1 + ~MT ~M,

Θ̌13 = λ1Λ̃
T
2 , Θ̌33 = −λ1I2n, Θ̌37 = WT

3 PT ,

Θ̌44 = −λ2I2n, Θ̌47 = WT
4 PT , Θ̌55 = −λ3I2n,

Θ̌66 = −γ2I2n, Θ̌77 = −P, X = P2K,

Θ̌T
17 =

[
P1D̄ 0

(1− ᾱ)XC P2D̄ −XC

]

,

Θ̌T
57 =

[
0 0
0 X

]

, Θ̌T
67 =

[
P1L 0
P2L −XN

]

,

S17 =
[
E1 0

]
, S37 =

[
E2 0

]
, S47 =

[
E3 0

]

(37)

and other parameters are defined in Theorems 1 and 2. More-
over, if the above inequality is solvable, the state estimator
gain can be determined byK = P−1

2 X .
Proof: In order to eliminate the uncertainties in (34), we

use the Schur Complement Lemma and obtain

Ξ =

[
Π̌11 Ξ12

∗ Θ̌77

]

< 0 (38)

where

Ξ12 =
[
ΛT
17 0 ΛT

37 ΛT
47 Θ̌T

57 Θ̌T
67

]T
,

Λ17 = Θ̌17 + ST
17F

T
1 (k)HT P̌T ,

Λ37 = Θ̌37 + ST
37F

T
2 (k)HT P̌T ,

(39)
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Λ47 = Θ̌47 + ST
47F

T
3 (k)HT P̌T

and other parameters are defined in Theorems 2 and 3.
By consideringX = P2K, it follows from (39) that

Φ̌ + ȞF̌ (k)Ě + (ȞF̌ (k)Ě)T < 0 (40)

whereF̌ (k) = diag{F1(k), F2(k), F3(k)} and other parame-
ters have been defined in (37). According to the Lemma 1, it
can be easily shown that inequality (40) is implied by (36).
The rest of the proof follows Theorem 2 immediately.

Remark 4: In the extreme case, whenδ = 0, we can
see that{k0, k1, k2, · · · } = {0, 1, 2, · · · }. It means that all
measurements are transmitted to the side of the state estimator
at each sampling instant. Then, the addressed event-triggered
state estimation problem reduces to the traditional one. More-
over, whenτm = τM , the phenomenon of time-varying delays
should degenerate into the constant time-delays one.

Remark 5: For the event-triggeredH∞ state estimation
problem for delayed stochastic MNNs with missing mea-
surements, there are five main aspects which complicate the
design of the neuron state estimator, i.e. event-triggering
mechanism, interval time-varying delays, randomly missing
measurements, external additive deterministic noises as well as
the internal multiplicative stochastic noises. In our mainresults
(Theorems 1-3), all these five factors have been properly
handled and the established sufficient conditions include all the
system parameters, the event-triggering threshold, the lower
and upper bounds of the delays, and the missing probability
of the measurement output where the external deterministic
noises are attenuated through the prescribedH∞ performance
requirement and the internal stochastic noises have an impact
on the stability analysis through their intensity matrices. The
corresponding solvability conditions for the desired estimator
gains are expressed in terms of the feasibility of a few linear
matrix inequalities (LMIs) that can be solved using available
software package. It should be pointed out that Lyapunov-
Krasovskii functional is constructed to derive several delay-
dependent stability criteria and our developed algorithm would
have the advantage of less conservatism since more informa-
tion about the delays is employed.

Remark 6: For the convenience of the analysis, the trig-
gering condition (14) can be written as an equivalent form
µT (k)µ(k)
yT (k)y(k) > δ. Now, it can be easily seen that the triggering
condition is and hence the thresholdδ should lie in the interval
[0,+∞). Theoretically, when the chosen thresholdδ satisfies
0 < δ < infk≥0

µT (k)µ(k)
yT (k)y(k) , the triggering condition naturally

holds for all time instants which means that the measurement
outputs are transmitted at every time instants and the event-
triggered estimation approach reduces to the classical clock-
driven estimation one. Wheninfk≥0

µT (k)µ(k)
yT (k)y(k) < δ < ∞,

the triggering condition will not be satisfied always and
the measurement transmission will occur only at those time
instants when the triggering condition is violated. Actually,
for a practical system, we may first compute the relative error
µT (k)µ(k)
yT (k)y(k) according to the available measurement outputs
from the initial time instantk = 0 and then choose an
appropriate thresholdδ such that the triggering condition is

not satisfied for all time instants. As such, the communication
and computation resources can be saved effectively.

Remark 7: In Theorem 3, theH∞ state estimator is de-
signed for DSMNNs in terms of the solution to LMI (36).
Note that, for a standard LMI system, the algorithm has
a polynomial-time complexity. Fortunately, research on LMI
optimization is a very active area in the applied mathematics,
optimization and the operations research community, and
substantial speed-ups can be expected in the future.

IV. A N ILLUSTRATIVE EXAMPLE

In order to illustrate the validity of the proposed state
estimator, in this section, a real-world example will be used
to examine the main theoretical results.

Firstly, using memristors to replace resistors in the circuit
realization of the connection links of neural networks, it will
result in a memristor-based neural network. Then, by Kirch-
hoff’s circuit laws, the equation of theith circuit subsystem
is written as follows:

xi(k + 1) =
1

Ci

[ 2∑

j=1

(
1

Raij

+
1

Rbij

) +
1

Ri

]

xi(k)

+

2∑

j=1

signij
CiRaij

fj(xj(k)) +

2∑

j=1

signij
CiRbij

× gj(xj(k − τ(k))) + liςi(k)

+ σi(k, xi(k), xi(k − τ(k)))w(k)

(41)

where i = 1, 2, xi is the voltage of the capacitorCi. Then
from (7) and (41), we can construct the DSMNNs of the form

xi(k + 1) =di(xi(k))xi(k) +

2∑

j=1

aij(xi(k))fj(xj(k))

+

2∑

j=1

bij(xi(k))gj(xj(k − τ(k))) + liςi(k)

+ σi(k, xi(k), xi(k − τ(k)))w(k), i = 1, 2.
(42)

Moreover, the system parameters of the DSMNNs are set as
follows

d1(x1(·)) =

{

0.25, |x1(·)| > 0.02,

0.65, |x1(·)| ≤ 0.02,

d2(x2(·)) =

{

0.65, |x2(·)| > 0.02,

0.25, |x2(·)| ≤ 0.02,

a11(x1(·)) =

{

−0.20, |x1(·)| > 0.02,

0.90, |x1(·)| ≤ 0.02,

a12(x1(·)) =

{

−0.40, |x1(·)| > 0.02,

0.20, |x1(·)| ≤ 0.02,

a21(x2(·)) =

{

0.68, |x2(·)| > 0.02,

−0.22, |x2(·)| ≤ 0.02,

a22(x2(·)) =

{

0.32, |x2(·)| > 0.02,

0.05, |x2(·)| ≤ 0.02,
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b11(x1(·)) =

{

0.20, |x1(·)| > 0.02,

0.50, |x1(·)| ≤ 0.02,

b12(x1(·)) =

{

0.60, |x1(·)| > 0.02,

−0.10, |x1(·)| ≤ 0.02,

b21(x2(·)) =

{

0.50, |x2(·)| > 0.02,

−0.40, |x2(·)| ≤ 0.02,

b22(x2(·)) =

{

−0.30, |x2(·)| > 0.02,

0.10, |x2(·)| ≤ 0.02,

∆D(k) =

[
0.06 sin(0.6k) 0

0 0.06 sin(0.6k)

]

,

∆A(k) =

[
0.09 sin(0.8k) 0.18 sin(0.8k)
0.04 sin(0.8k) 0.22 sin(0.8k)

]

,

∆B(k) =

[
0.09 cos(0.5k) 0.03 cos(0.5k)
0.09 cos(0.5k) 0.12 cos(0.5k)

]

,

C =

[
0.10 0.20
0.20 0.30

]

, N =

[
0.10 0
0 0.20

]

,

L =

[
0.08 0
0 0.15

]

, M =
[
0.35 0.30

]
.

The activation functionsf(x(k)) andg(x(k)) are chosen as

f(x(k)) =

[
0.10x1(k)− tanh(0.40x1(k))

tanh(0.50x2(k))

]

,

g(x(k)) =

[
tanh(0.10x1(k))

0.02x2(k)− 0.06tanh(x2(k))

]

,

which satisfy the constraint (2) with

Λ1 =

[
−0.30 0

0 0

]

, Λ2 =

[
0.10 0
0 0.50

]

,

Υ1 =

[
0 0
0 −0.04

]

, Υ2 =

[
0.10 0
0 0.02

]

.

In the example, the probability is taken asᾱ = 0.85, the
disturbance attenuation level is chosen asγ = 0.95, constant
scalarsρ1 = ρ2 = 0.25, and the time-varying delays are set
as τ(k) = 3 − (sin(kπ))2. Then, it can be verified that the
upper bound and the lower bound of the time-varying delays
areτM = 4 andτm = 2, respectively.

By solving the LMI (36) in Theorem 3 with the help of
Matlab toolbox, we can obtain matricesP2 andX as follows:

P2 =

[
2.2358 0.0739
0.0739 0.9423

]

, X =

[
0.1291 0.3168
0.5607 0.6733

]

and then, according toK = P−1
2 X , the desired estimator

parameter is designed as

K =

[
0.0382 0.1184
0.5920 0.7052

]

.

In the simulation, the external disturbance inputs are as-
sumed to beς1(k) = ς2(k) = ξ1(k) = ξ2(k) = 3 exp(−0.30k)
× cos(0.20k). Simulation results are shown in Figs. 1-4.
Figs. 1 and 2 plot the state and its estimate for node 1 and node
2, respectively. The estimation errors for node 1 and node 2
are presented in Fig. 3. The event-based release instants and
release interval of the proposed event-triggered scheme are
displayed in Fig. 4. The simulation result has confirmed the
effectiveness of the estimation scheme presented in this paper.
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Fig. 1. The state and its estimate of node 1.
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Fig. 2. The state and its estimate of node 2.
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Fig. 3. Estimation error of node 1 and nod 2.
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Fig. 4. Event-based release instants and release interval.

V. CONCLUSIONS

In this paper, we have investigated the event-triggered state
estimation problem for a class of discrete-time stochastic
memristive neural networks with time-varying delays and
randomly occurring missing measurements. In the model of
measurement output, a stochastic variable according to the
Bernoulli distribution has been introduced to characterize the
randomly occurring missing measurements. Based on the state-
dependent future of memristive neural networks, by utiliz-
ing a Lyapunov-Krasovskii functional and stochastic analysis
techniques, an event-triggered state estimator is designed and
sufficient conditions are given to ensure both the exponential
mean-square stability of the output estimation error dynamics
and the prescribedH∞ performance requirement. Based on
the derived sufficient conditions, the explicit expressionof the
desired estimator gain has been given. Finally, a numerical
example has been provided to show the usefulness and ef-
fectiveness of the proposed estimator design method. Further
research topics include the extension of the main results
to more complex systems with more complicated network-
induced phenomena, see e.g. [3], [5], [7], [18], [20], [23],
[24], [38], [42], [44].
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