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Abstract—In this paper, the event-triggered H., state es-
timation problem is investigated for a class of discrete-tne
stochastic memristive neural networks (DSMNNSs) with time-
varying delays and missing measurements. The DSMNN is
subject to both the additive deterministic disturbances ana
the multiplicative stochastic noises. The missing measuments
are governed by a sequence of random variables obeying the
Bernoulli distribution. For the purpose of energy saving, a
event-triggered communication scheme is used for DSMNNs to
determine whether the measurement output is transmitted to
the estimator or not. The problem addressed is to design an
event-triggered H., estimator such that the dynamics of the
estimation error is exponentially mean-square stable and he
prespecified Ho, disturbance rejection attenuation level is also
guaranteed. By utilizing a Lyapunov-Krasovskii functional and
stochastic analysis techniques, sufficient conditions arderived
to guarantee the existence of the desired estimator and thethe
estimator gains are characterized in terms of the solution d
certain matrix inequalities. Finally, a numerical example is used
to demonstrate the usefulness of the proposed event-triggsl
state estimation scheme.

Index Terms—Memristive neural networks, stochastic neural
networks, state estimation, event-triggered mechanism, issing
measurements.

I. INTRODUCTION

for various kinds of RNNs especially the stochastic RNNSs.
In fact, in real neural networks, the synaptic transmissgon
actually a noisy process brought on by random fluctuations
from the release of neurotransmitters and other prob#bilis
causes [13] and, if not properly handled, the resultingrsise

tic disturbances would constitute one of the main source of
the performance degradations when implementing the neural
networks in engineering practice.

Since the announcement from the HP Lab on the ex-
perimental prototyping of the memristor [30], memristors
and memristive devices have gained wide research attention
for their prospective applications in non-volatile menagri
logic devices, neuromorphic devices, and neuromorphie sel
organized computation and learning. In the context of Heura
networks, synapses are essential elements for computation
and information storage which needs to remember its past
dynamical history, store a continuous set of states, and be
“plastic” according to the synaptic neuronal activity. Afflis
cannot be accomplished by a resistor in traditional RNNs.
However, when the resistors are replaced by the memristors,
the resulting memristive neural networks (MNNS) could eath
completely solve these problems. Meanwhile, the implestént
MNNs could be more efficient than the traditional RNNs

For decades, recurrent neural networks (RNNs) have bé/glﬂen applied in brain emulation, combinatorial optimiaati

attracting an ever-increasing research interest due to t
remarkable ability to exhibit dynamic temporal behavioithw
successful applications in a variety of areas includingnaiig
processing, pattern recognition, image processing, &ts@c
memory, combinatorial optimization and control enginegri
[22], [25], [36], [43]. Accordingly, a large number of ressil
have recently been available in the literature on the dynam
analysis issues (e.g. stability, synchronization andreston)
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H@owledge acquisition and pattern recognition [26]. Ashsuc

the dynamics analysis problems such as stability and syn-
chronization for MNNs have recently received considerable
research attention and a rich body of relevant literature ha
been available for different kinds of MNNs such as memréstiv
recurrent neural networks [33], memristive fractionadier
peural networks [4], memristive cellular neural networks][
memristive Hopfield networks [40], memristive chaotic redur
networks [45] and memristive complex-value neural network
[34], etc. It should be mentioned that almost all results ob-
tained so far have been exclusively for continuous-time MNN
In nowadays digitized world, more and more information
sequences ardiscrete in nature for engineering applications
such as digital signal processing, time-series analysg an
network-based control, and therefore the discrete-tim&&N
have become a powerful means in dealing with sequence-based
tasks [17]. However, despite the clear engineering insjght
the discrete-time MNNs have gained very little attention
due mainly to the mathematical difficulties in quantifying
and tackling the state-dependent switching behaviors én th
discrete-time setting.

It is now well recognized that the time delays are inherent
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characteristics in hardware implementation of neural net& networks [16], networked control systems [9], [19], wissde
which may lead to some complex dynamic behaviors susknsor networks [8], [32] and multi-agent systems [31]his t
as oscillation, divergence, and even instability in themogk case, a seemingly natural idea is to investigate into thateve
systems. For continuous-time MNNSs, so far, various timériggered state estimation problem for discrete-time MNINd
delays (including constant delays, time-varying delayis; d see how the efficiency of energy utilization can be improved.
tributed delays and mixed time-delays) have been intradlucghould be pointed out that the event-triggered state estima
to model the lags in signal transmissions due to finite switgh problem for RNNs neural networks has not received adequate
speeds of amplifiers, and the impacts of the time delays mesearch attention yet, not to mention the case when the RNN
the dynamical behaviors of continuous-time MNNs have be&hin the discrete-time setting coupled with time-delaysva#
thoroughly examined in the literature, see [12], [41] and thas deterministic and stochastic disturbances.
references therein. In particular, in [12], several sw#fiti  More importantly than all of that, compared with the
conditions in terms of linear matrix inequalities have beeexisting results, we can find that thiscrete-time stochastic
presented to ensure the global exponential synchronizatimemristive neural networks (DSMNNSs) with time-varying de-
of multiple MNNs with time delays. Nevertheless, the corrdays are more comprehensive and practical than the estatlis
sponding results for discrete-time MNNs have been very fewnes. In this case, both the stability analysis based orhthe t
and this constitutes the main motivation of the presentarese ory of differential inclusion and the state estimation ajgmh
to shorten such a gap. without event-triggered scheme are no longer applicable. M
In neural network applications, it is quite common that thitvated by the above discussions, in this paper, we endeavor
neuron states are not fully accessible due probably to tige lato study the event-triggereH ., state estimation problem for
scale of the networks and the implementation cost in momelayed stochastic MNNs with missing measurements. The
toring network output, and this makes it significantly diffiic problem addressed is to estimate the neuron states through
to analyze the dynamical behaviors of the real-time neurlailable output measurements subject to probabilistasimg
networks. Therefore, in such cases, it becomes a preragjuisalues under an event-triggered mechanism. By utilizing a
to estimate the neuron states through available network mégapunov-Krasovskii functional and stochastic analysisht
surements before exploiting the merits of RNNs in tasks sualgues, both the existence conditions and the explicit @sqr
as classification, approximation and optimization, see[#4], sion of the desired state estimators are established uridehnw
[29], [35] for representative works. To be more specific, ithe estimation error dynamics is stable and the prescribgd
[35], the state estimators have been designed for a classdisturbance rejection attenuation level is guaranteed.
neural networks with time-varying delays by employing the The main contributions of this paper are highlighted as
Lyapunov functional and linear matrix inequality approalch follows: 1) a new yet comprehensive MNN model, namely,
[15], the state estimation problem has been considered fodiacrete-time delayed stochastic MNN with missing measure
class of uncertain stochastic neural networks. Furthegpntbe ments, is proposed in order to reflect the engineering escti
phenomenon of missing measurements has been investig&ed new event-based state estimation problem is addressed
in [17] for the state estimation problem of coupled unceartaior the discrete-time MNNs with hope to save resource; 3) an
stochastic networks. As for the state estimation problem &f., performance index is used to attenuate the effects from the
MNNs, some initial efforts have been made in [27], [28xternal disturbances on the estimation performance;rdhéo
by utilizing the passivity theory with or without time-dgk underlying MNNs, a new technique is introduced to quantify
Again, as far as the discrete-time MNN is concerned, tlad then handle the state-dependent switching behavitiig in
state estimation remains an open problem that deservéfurdiscrete-time setting; and 5) a unified framework is estaield
investigation. that is capable of coping with the simultaneous presence
In the course of implementing large-scale RNNs consistirgg event-triggered effects, deterministic and stochadistur-
of a large number of computing units, much resource (e.g. pteances, time-varying delays as well as missing measursment
cessing, storage, communications) would have to be cordume
and the energy saving issue with resource constraints @ec Il. PROBLEM FORMULATION
ing an emerging topic of research that has started to dra®e somconsider the followingn-neuron discrete-time stochastic
initial attention. For state estimation problems of RNNssi memristive neural networks with time delays:
quite desirable to avoid unnecessary signal transmissioma
the measured network outputs to the estimator) and reduce (K +1) =D(z(k))z(k) + A(z(k)) f (z(k))

the network burden as long as certain estimation performanc + B(x(k))g(x(k — 7(k))) + Ls(k) (1)
requirements (accuracy and convergence) are guaranteed. R +o(k,z(k), z(k — 7(k)))w(k)
cently, the event-triggered mechanism (EVM) has received .
much research attention because of its distinctive merigav- Where z(k) = [z1(k) 22(k) --- an(k)] is the neu-
ing resource. Unlike the conventional time-triggered sche ral state vector;D(xz(k)) = diag{di(z1(k)),d2(z2(k)),

the main purpose of the EVM is to transmit signals only-- dn(z.(k))} is the self-feedback matrix with entries
when a certain triggered condition is met, and this allowd:(xi(k))| < 1; A(x(k)) = (ai;(zi(k))) . and B(z(k)) =

a considerable reduction of the network resource occupan(by; (zi(k))),, ., are the connection and the delayed connec-
Therefore, in the past few years, the EVM has been appligdn weight matrices, respectively(k) € R" is the external

to various control and communication problems for compledisturbance input vector belonging ([0, );R™), L =
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diag{ly, 12, - ,1,,} is the intensity matrix of the deterministictime-varying delayed connection memristors between tad-fe
disturbance;r (k) represents the time-varying transmissioback f;(-) and stater;(-).
delay which satisfies
. L, i # J,
T ST ST, k=120 (2) SIgn“{—l, i=j

where the positive integers,, and 7, are the lower and the switching jumps satisf; > 0, |d;| < 1, |d;| < 1, 4;; and
upper bounds, respectively(k) is a scalar Wiener Processg, . are constants.

on (Q, F,P) with Denote
- . ~ - + _ ~ ~
ando : R x R" x R" — R” is called the noise intensity a;; = min{aij, ai}, - aj; = max{aij, ai},
function vector (for the stochastic disturbance) satigfyi b = min{Bij, Bij}, b:; = maX{Bij, Bij}7
UT(kauav)O—(kaua/U) < plUTU+p2UTU, u,v e R" (4) D~ :dlag{dl_’d;? vd;}a

Dt = diag{d],df, - ,d}},

where p; and p, are known positive coTnstants; A = (a7 ) AT = ()
- ij/mXn; - 75 /MXn;

Fa®) = [AlE) flak) - falzak)] and o o
g(a(k=r(k) = [gr(@r(k = 7(K)  ga(ws(k = 7()) -+ = (bijnxn, BT = (Bj)nxn
gn(zn(k —7(k)))]" are the nonlinear functions standing font is clear thatD(z(k)) € [D=,D*], A(z(k)) € [A~, AT]
the neuron activation functions. andB(z(k)) € [B~,B*].

Remark 1: In real-world neural networks, some neural net- Define
works is often disturbed by environmental noises, and the D+ + D~

. . . . . A
noise intensity has bound. Therefore, in this paper, wenassu D DT
that the DSMNN is subject to the multiplicative stochastic + - o+ — + _
noises, and this noise intensity described by the functamor :diag{ i +d, , dy + dy e dn +d, },

. S o 2 2 2

o(-). We also assume that this noise intensity) is related N B t 4
to the time and the system states and has upper bound. A éA +4 _ (aij aij) 7

For the neuron activation functions, the following assump- 2 N 2 _mxn
tions are needed. 5 éBJF +B~ (bij + bij)

Assumption 1: [21] The neuron activation functiong(-) 2 2 nxn
andg(-) satisfy

[f(z) = f(y) = Ar(z — )T Th.en, the matriceD(z(k)), A(x(k)) and B(xz(k)) can be

X [f(x) = f(y) = Aoz — )] <0, 2,y € R (x #£y), (5) WiHenas D(x(k)) =D + AD(K).

T _

[9(z) —g(y) — Ti(z —y)] A(z(k)) =4 + AA(K), 8)

x[g(x) —g(y) = T2(z —y)] <0, z,y eR" (z £ y) (6) B(a(k)) =B + AB(k)
whereA;, Ay, T and Yy are constant matrices. where

Chua [6] stated that memristor needs to exhibit only two n
sufficient distinct equilibrium states since digital cortgru AD(k) :Zeisi(k)eiT,
applications requiring only two memory states. On the other i=1
hand, along the similar lines in [39], memristor-based akur " .
network (1) can be implemented by a large-scale integration AA(k) = Z eitij(k)e;

i,j=1

circuit. Then according to the feature of the memristor and -
the current-voltage characteristié;(z;(k)), a;;(z;(k)) and A T

. . B(k) = ipij(k)e; .
bij(z;(k)) are state-dependent functions with the form (k) Z eipiy(k)e;

i,j=1
d (s 1 2 1 1 1 Here,e;, € R™ is the column vector with thiéth element being
(i) _a{ - (Rm.j + Rbij) + R; 1 and others being, s;(k), t;;(k) and p;;(k) are unknown
a scalars satisfyings; (k)| < d;, |t;j(k)| < a@i; and|[p;; (k)| <
di,  |ai()| < ks, dt —d; at —a bt — b
. X p P R B SO B M S R i
sis(ws()) = sighi; 8, [wi()] > ki, / 2 Y 2 Y 2
! CiRgij Sij, |z < ki The parameter matricesD(k), AA(k) and AB(k) can be

. . . rewritten in the following compact form:
wheres standsa or b, C; is the capacitorR; is the parallel- g P

resistor.R,;; and Ry;; are respectively the non-delayed and [AD(k) AA(k) AB(k)] =HF(k)E 9)
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where H = [H H H] and E = diag{E1, F», E3} are is satisfied. Therefore, the next triggering instant is deieed

known constant matrices with iteratively by
H=[H Hy --- H,], kyy1 = inf{k € N|k > k,, o(u(k),6) > 0}.  (15)
Hi=lei e - el Remark 3: The event-triggered scheme is a kind of sam-
n pling which generates the measurements and transmits the
E;=[E} EL --- EI] T i=1,2,3), data after the occurrence of a certain external event. Coedpa
o _[.T T T i T T T to the conventional time-triggered scheme, the eventirigd
By [el e €y diet €1 en} , R g
I . scheme shows a significant advantage of reducing the amount
Boy = [fljlel G2¢2 1 fljnen} ’ of sampling instants. In other words, the signals are update
Esj = [bjrel bjael - bjnel], only when necessary and, therefore, the unnecessary compu-

tation and transmission could be avoided. However, it is not
difficult to see that the introduction triggering conditi¢h4)

gives reduce to the amount of data, and therefore an adequate
F;(k) =diag{F;1(k), -+, Fin(k)}, trade-off can be achieved between the efficiency in resource
Fyj(k) =diagf{0,--- ,0,s,(k)d;",0,--- 0}, utilization and the estimation performance.

In order to estimate the neuron staték) based on the

and F (k) = diag{Fi(k), Fx(k), F5(k)} are unknown time-
varying matrices given by

) j71~71 f:]l event-triggered scheme (14), we employ the following state
Fy; (k) =diag{t;1 (k)a 31 o tin(k)ag, }s estimator
Fs;(k) =diag{pj1(k)by", -+ pjn(k)bj, ). ik +1) =Di(k) + Af (@ (k) + By(i(k —7())
It is not difficult to verify that the matrice$; (k) (i = 1,2,3) + K(y(k,) — Cz(k)) (16)
satisfy 7' (k) F; (k) < I,,2, wherel,,- denotes:?-dimensional . . _
identity matrix. for k € [k, k,41], whereiz(k) € R™ is the estimate of the

Remark 2: Usually, the norm-bounded condition of uncer€Uron stater(k) and i € R™*™ is the estimator gain to be

tainties is given as an assumption in most of the existireg-lit 9€termined.
atures. However, in this paper, the state-dependent sngfch The dynamics of the estimation error can be obtained from
to norm-bounded uncertainties is based on the feature of {& (10). (11) and (16) as follows:

memristor and the current-voltage characteristics. e(k +1) =(D — KC)e(k) + AD(k)x(k) + K u(k)
In this paper, the network output of (1) is of the following =
form: + (1= a)KCu(k) + Af (k)
+ AA(k)f(x(k)) + Bg(x(k — 1(k
y(k) =a()Ca(k) + NE(R), (10) D e W
2(k) =Ma(k) ) — KN&(k) — (a(k) — ) K Ca(k)
wherey(k)e R™ is the measurement outputik)c R” is the + ok, 2(k) x(k (k) w(k)
output to be estimated aridk) € R! is the disturbance input S — Mol T h ’
belonging tol» ([0, o0); R!). The stochastic variable(k) is a 2(k) =Me(k), & €[k, kiy1)
Bernoulli-distributed white sequence taking values(oar 1 wheree(k) 2 z(k) — 2(k), f(:v(k)) 2 fa(k) — f(2(K)),
with ~ A N
_n—a gla(k — (k) = g(z(k — (k) — g(2(k — 7(k))) and
Proba(k) =1} = a, - (12) Z(k) is the output estimation error. Then, by setting:) =
Probia(k) =0} =1-a [zT (k) eT(k)]T, we have the following augmented system

wherea € [0, 1] is a known constant.

For resource-constrained systems, the event-based mech 1k +1) =Win(k) + (a — a(k))Wan(k)

nism has proven to be capable of reducing the information + Waf(k) + Wag(k — 7(k)) + WsC (k) (18)
exchange frequency and therefore improving the efficienc + Wew(k) + Wrji(k),
in resource utilization. For the purpose of introducing the S(k) =Mn(k), k€ [k, kiat)

- ) Ly he+1

event-based scheduling, we first denote the triggeringumst
sequence by < ky < --- < k, < --- and then define an where
event generator functiop(-,-) : R™ x R — R as follows:

f) = [/ (k) FT (k)"
k),8) = T (k)u(k) — oyT (k)y(k 13
whereu(k)w(:ug(/(ig) )_ y(l];; :;(re),y(kj ii t):é rLeasur:m;nt g = T(k;) [ (@ (kT_ T(k:))) gT(x(k;T(kT))]T7
at latest event time (triggering instant) atid> 0 is a given C(k) [ (k) } , Ak) = [0 K (m )
positive scalar. M=[0 M], Wl =W, + AD(k),

The execution (i.e., the measurement output is transmittedyj,, — vy, + AA(k), Wy = Wy + AB(k)
to the estimator) is triggered as long as the condition ) ’ 0 ; 0 0
o o5 -t

o(u(k),8) >0 (14) (1-a)KC D-KC KC 0|
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Wgz[A 0]7 W4=[B 0:|a W7=|:0 0:|’ éll:Wlprl+()‘T+)‘;)plﬂ+(TM_Tm+1)Q
2 A 0 0B AD(K) OO K + Az0a’CTC — P — MA4,

Ws = [L —KN] . AD(k) = [AD(I@) o] ! O = —Q + (A} +A)pal — AT,

AAk) = [BAK) 01\ gy = [AB(R) 0 Ogs = Wy PWs = Milan,  O1g = Wi PWs+ XAy,
~ |AA(R) o] “ |AB(k) 0]’ Ous = W PWy — Nals,, Oss = W PWy — M\31o,,

W = [o7 (k, x(k), z(k — 7(k)))" O21 = MY, O =W{PWy, Oz =WiPWy,

o7 (k, 2(k), x(k — (k)] . O15 = WIPW:, O35 = WEPW,, ©u45 = WL PWs.

Our main aim in this paper is to design a suitablg, state
estimator for stochastic memristive neural networks gikgn
(1). More specifically, we are interested in looking for tr&rg Proof: Choose a Lyapunov-Krasovskii functional for sys-
matrix K such that the following two requirements are meg,, (18) as follows:
simultaneously:
1) The augmented system (18) wiglik) = 0 is exponen-
tially mean-square stable; Vn(k)) = Vi(n(k)) + Va(n(k)) + Va(n(k))  (22)
2) Under zero initial conditions, for a given disturbance
attention levely > 0 and all nonzera,(k), the outputz(k) \where

satisfies
o0 ~ oo . T
STE{IERIP} <D E{ICHR)?} - (19) Vi(n(k)) = n" (k)Pn(k), (23)
k=0 k=0 k-1
Va(n(k)) = 0" (1)Qn(i), (24)
[1l. M AIN RESULTS 2(n(k)) i kz;(k) (6
Before proceeding to the stability analysis for system ,(18) k—Tm
we introduce one lemma that will be useful in deriving our Va(n(k)) = Y ZnT (25)
results. j=k—Trm+1i=]
Lemma 1. [2] Let N = N7, H and E be real matrices
. . . . -
with appropriate dimensions, ankt (k) F'(k) < I, where [ In the case of((k) = 0, calculating the difference of

denotes the identity matrix of compatible dimension. THen t
inequalityN + H FE+(HFE)T < 0if and only if there exists
a positive scalae such thatN + eHH” + ¢ 'ETE < 0 or,

V (k) along the system (18), and taking the mathematical
expectation, one has

equivalently,
N eH ET E{AV (n(k))} (26)
T
eH™ —el 0 | <0. =E{AVi(n(k))} + E{AVa(n(k))} + E{AV3(n(k))}
E 0 —el
For the stability of system (18), we have the followingvhere
results.

Theorem 1. Let X' be a given constant matrix. Then, under  g(Av; (n(k))}
Assumption 1, the augmented system (18) wijtlt) = 0 is CE{Vi(n(k + 1)) — Va(n (k:))}
exponentially mean-square stable if there exist positefende ! ! ~
matricesP = diag{ Py, P>}, Q and positive scalars;, A5 and  =E{[n" (k)W + FrERWd + " (k — (k)WY

Aj (4 =1,2,3) satisfying the following inequalities: + Wlw(k) + i (k)W ] (Win(k) + W *( k)
P < NIy, (20) + Wag(k — (k) + Wew(k) + Wrii(k)]
o1 0 O13 ©14 O15 — 0" (k)Pn(k)}
.| * 2= 0 O 0 =E{[" ()W PWan(k) + [* (k)W PW3 (k)
P=1 o x Om Ou Ou) <0 @ g (k)W PWag(k — 7(k)) + W PWe
* * % O Oy 7 T . T P AN

where + 20" ()W PWag(k — 7(k)) + 20" (k)W PWzji(k)
- eI P + 2f " ()W PWag(h —7(k)) + 2f" (k)Wy PWeji(k)
R 2 (k= (k)W PW()] — o () Pk},
Tl =LbL® Sym{ETng}, Tg =L® (Tl + Tg)/2, 27)
e I, 0 E{AVj(n(k))}
v —amiog). 1= [G ), —E(Valn(k + 1)) - Va(n(k) )
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k

>

i=k+1—7(k+1)

=E " (i)Qn(i)

k—1
- > nT(i)Qn(i)}
i=k—7(k)
<E{n" (k)Qn(k) = n" (k = 7(k)Qnlk — 7(k))
k—Tm
+ Y nT(i)Qn(l)}
i=k+1—7n
and
E{AV5(n(k))}
=E{Vs(n (k+1))—V3( (k))}
k+1—7m

= ¥ S
i=k+2—7prr 1=7
k—Tm
S S i)}
i=k+1—7pr 1=7

k—Tm

= ¥y

i=k+1—7p i=5+1 (29)

k—Tm

D S St )}

i=k+1—7pr 1=7
0" ()Qn(k) = 0" ()Qn() }

=E{ (ra1 — )" (K)Q(K)
—Tm
- 2
i=k+1—7nr
Noticing (4) and (20), it is easy to see that
ol (k,x(k),z(k — (k) Pro(k, z(k), z(k — 7(k)))
max(Pr)o? (k, x(k), 2(k — 7(k)))
x o(k,x(k), z(k —7(k)))
<A (pra” (k)z(k) + pax (k — 7(k))z(k — 7(k))),
ol (k,z(k),z(k — 7(k)))Pao(k, z(k), z(k — 7(k)))
max (Po)o” (k, z(k), z(k — (k)
x o(k,z(k), z(k — 7(k))) (31)
<N (prat (k)z(k) + pax” (k — 7(k))z(k — 7(k)))-
Substituting (27)—(31) into (26) leads to
E{AV(n(k))}
<E{n" (k)W PW1 + (A + A3)pil + (Tar — T
+1)Q — Pln(k) +n" (k — (k) (=Q + (\{
+A3)pl)n(k — 7(k)) + 7 (k) W3 PWs f(k)
+ 4" (k = r(k)) W PWag(k — v(k)) + ji" (k)
x W PWrji(k) + 20" (k)W PWs f(k) + 21" (k)
x Wi PWag(k — (k) + 20" (k)W PWai(k)
+ 2f (k)WL PWag(k — 7(k)) + 27 (k)WL P

0" (DQn() }-

(30)

(32)

x Wafi(k) + 23" (k
—E{w” (k) D (k)}

— (k)W PWoji(k)}

where

|11 1o
¢ = |: * H22:|

with
Iz =[0 ©13 O O15],
©O99 0 0 0

Moy — | * O33 O34 Oss
22 * ¥ Ou Oy
* * * @55

I WlTPVNVE + (AT + )\z)plﬂ-i- (TM —Tm +1)Q — P,
@22 = —Q + ()\31F + )\;)pz]l, @33 = WgPW;;,
Ou = WIEPW,, Os5=WIPW;, ©13=W]PW;

and other parameters are defined in Theorem 1.
Taking (5), (6) and (15) into consideration, we have

E{AV (n(k))}
<E{@” (k)®w(k) — M[f(k) — (I ® Ay)n(k)]"
x [f(k) = (12 ® Ag)n(k)] — No[g(k — 7(k))
— (I @ T1)n(k — (k)" [§(k — 7(k))
— (I & To)n(k — (k)] — As(u” (k) (k)
—oy" (k)y(k))}
<E{@” (k)®w(k) — M[f(k) — (I ® Ay)n(k)]" ¢
x [f(k) — (Io ® Ao )n(k)] — No[g(k — (k)

= (Iz @ T1)n(k — 7(k))]

— (I ® Ta)n(k — 7(k))] — Aap” (k) (k)
+ AzoanT (k)T en(k)
<E{w” (k)®w(k)}

whereC = [C' 0] and® is defined by (21). Sincé < 0, we
have E{AV (n(k))} < —eE{||n(k)||} wheree = —Apax(®).
Then, by following the similar analysis in [17], the expotiah
mean-square stability of the augmented system (18) with
((k) = 0 is guaranteed and the proof is complete. [ |

Now, let us consider thél ., performance of the augmented
system (18). In the following theorem, a sufficient conditio
is obtained that guarantees both the exponential meamesqua
stability and theH, performance for the augmented system
(18).

Theorem 2: Consider the system (1) and let the estima-
tor parameterK be given. The augmented system (18) is
exponentially stable in mean square and satisfies Ahg
performance constraint (19) for all nonze¢¢k) under the
zero initial condition if there exist positive definite miatr
ces P = diag{P;, P>}, Q and positive scalars\j, \5 and
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Aj (4 =1,2,3) satisfying (19) and the following inequality: ~ According to theH,, performance analysis conducted in
Theorem 2, a design method of thé,, state estimator for

O 0 O3 O O15 O (1) is provided in Theorem 3.
* O 0 Oy 0 0 Theorem 3: Consider the system (1) and let the disturbance
R *  O33 O34 Os5 Os <0 (34) attenuation levely > 0 be given. The augmented system
* * ¥ Ou Oy5 Oy (18) is exponentially stable in mean square and ffig
* * * *  Os5 Osg performance constraint (19) is met for all nonz€fé) under
L * * * * *  Oge the zero initial condition if there exist positive definiteam
where trices P = diag{ P1, P>}, @, and positive scalara;, \5 and
e, \; (4 =1,2,3) satisfying (20) and the following inequality:

éll = V~V1TPW1 + (/\I + )\;)pl]l—l- (TA{ — Tm + l)Q

~ o ) H eET
=2 T T
+ A36a°C"C— P — M A + ]\{ M, * EI(Qn)7 0 <0 (36)
Ops = —72 1oy + WL PW5,  ©15 = W] PWs, * * —el(anyr
@36 = V~V3TPW5, @46 = WEPW5, @56 = W',frPW5 where
and other parameters are defined in Theorem 1. & My IIs
Proof: Note that the inequality (21) is implied by (34), x O’
the proof of the exponential mean-square stability for ({h8) O, 0 O 0 0 0
the case of/ (k) = 0 follows immediately from Theorem 1. « O 0 € 0 0
For the H., performance analysis, we choose the same 2 24
.. . . ~ * * @33 0 0 0
Lyapunov-Krasovskii functional as in (22) and calculate th 1I;; = ~ ,
3 i * * * @44 0 0
difference ofV(n(k)) along (18) as follows: .
* * *  Osp VO
E{AV (n(k)) + [IZ(&)II* = +*[IC(R) 17} NE. * % Oes |
:E{HT(’C)EW{PVW + (7:1;1 ~ Tm + 1}@;" Ndacte M= [6f; 0 ©f el oL ®6T7]T ,
+ " (k — 7(k))W) PWag(k — 7(k)) + W¢ PWs H=10 0 0 0 0 0 H'PT| ,P= L;} ,
T 2
+ i (R)WF PWai(k) + CT (k) (W PWs = 72T )C () 00000 0 HPE
20" ()W PWs () + 20 (R) W] PWag(h—r(k)) | 00 000 8 37)
- 37 )
+ 20" ()W PWrji(k) + 20" (k)W PWs((k) 0 0 0 Siz 00 0
7T 7T (1. ~ .
+ 2fT (W)W PWag(k — 7(k)) + 2f (k)W3 PWrji(k) O11 = (A} + M)l + (rar — 7 + 1)Q + Agda2C7C
+ 2f7(k)W§FPW5C( k) +2g (k T(k))Wi PWeji(k) — P —MA + MM,
F (k= r()WI PWsC(k) + 20" ()W PWsC(K)} @y = MAL, Ous = —Alon, Osr = WIPT,
:E{ﬁT( )(I)ﬁ(k)} é = —Xoloy, @47 = W4TPT, 955 = —A3lop,
Ocs = =7’ Ion, O =-P, X =PK,
where or _ [ PD 0 ]
T l1-a)XC PD-XC|’
o) = [ ®) k) FTE) o oxe
T’ or — 0 O or — PL 0
gt (k—7(k) @' (k) ¢*(k)] 57710 X | 677 |RL —-XN|’
and - Sir=[E1 0], Ssyr=[Ey 0], Sir=][E5 0
b — . 312 1(?[16 and other parameters are defined in Theorems 1 and 2. More-
. :2 @23 over, if the above inequality is solvable, the state estmat
66 gain can be determined by = P, ' X.
with ©1; = WlTplf[/l + (v — T + 1)Q + N36a2CTC — P+ Proof: In order to eliminate the uncertainties in (34), we
MTM, Ty = [0 ©F ©% ©L]" and other parametersuse the Schur Complement Lemma and obtain
defined in Theorems 1 and 2. i -
Using (5), (6) and (34), we have 2= [ *11 (512] <0 (38)
7
z 2 2 2
E(V(n(k+1) = V() +IZE)P =22 IR < 0. 35) e
Under the zero initial condition, summing up (35) frdin = _ [AT 0 AL AL T @T]T
to co with respect tok and considerin@®{V (n(cc))} > 0, we 2 oo G
obtain (19) and the proof of Theorem 2 is then accomplished. A7 = O17 + Si7Fy (R)H P, (39)

n Az7 = O37 + ST FL (k)H" P,
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A7 = Oy7 + ST FL (K)HT PT not satisfied for all time instants. As such, the communicati

. ] and computation resources can be saved effectively.
and other parameters are defined in Theorems 2 and 3. Remark 7: In Theorem 3, theH.. state estimator is de-
By consideringX = P, K, it follows from (39) that signed for DSMNNSs in terms of the solution to LMI (36).

Note that, for a standard LMI system, the algorithm has
a polynomial-time complexity. Fortunately, research onILM

where F'(k) = diag{ F (k), F»(k), F5(k)} and other parame- optimizat?on is a very active area in the applied mathe_rBatic
ters have been defined in (37). According to the Lemma 1,9Ptimization and the operations research community, and
can be easily shown that inequality (40) is implied by (36§_ubstantlal speed-ups can be expected in the future.
The rest of the proof follows Theorem 2 immediately. =

Remark 4: In the extreme case, whefi = 0, we can IV. AN ILLUSTRATIVE EXAMPLE
see that{ko, k1,k2,---} = {0,1,2,---}. It means that all . -
measurements are transmitted to the side of the state éstima I_n order_ to |_IIustrat.e the validity of the propqsed state
at each sampling instant. Then, the addressed eventmiggeesumatqr’ in this sgctlon, a _real-world example will bedise
state estimation problem reduces to the traditional onaeMo © &xamine the main theoretical results.

over, whenr,,, = 75, the phenomenon of time-varying delays FI'.rStIY’ u5|fngh memristors tol_rekpla<f:e re5|s|tors n tkhe _ctr:jircu
should degenerate into the constant time-delays one. realization of the connection links of neural networks, 1t w

Remark 5: For the event-triggeredd., state estimation result in a memristor-based neural network. Then, by Kirch-

problem for delayed stochastic MNNs with missing mearloffs_ circuit laws, the equation of théh circuit subsystem
é/vrltten as follows:

surements, there are five main aspects which complicate R

d+ HF(k)E+ (HF(K)E)' <0 (40)

design of the neuron state estimator, i.e. event-triggerin 1r 1 1 1

mechanism, interval time-varying delays, randomly migsin zi(k+1) :E[Z(F + R “)+ E}xi(k)
measurements, external additive deterministic noiseseisw/ fg=1 b ’

the internal multiplicative stochastic noises. In our maisults 2. sign,; 2 sign;
(Theorems 1-3), all these five factors have been properly +Z Ciz J,,fj(xj(k))JrZ C'g}%b?' D
handled and the established sufficient conditions incllidbea j=1 7 =1 7"
system parameters, the event-triggering threshold, tverlo x gj(w;(k —7(k))) + lisi (k)

and upper bounds of the delays, and the missing probability +oi(k,zi(k),x;(k — 7(k)))w(k)

of the measurement output where the external deterministic ) ) )

noises are attenuated through the prescriiedperformance Wheréi = 1,2, z; is the voltage of the capacitar;. Then
requirement and the internal stochastic noises have ancimpg&®™m (7) and (41), we can construct the DSMNNs of the form
on the stability analysis through their intensity matricEse 2

corresponding solvability conditions for the desiredrestior — z;(k + 1) =d;(z;(k))z; (k) + Z aij(xi(k))fi(x;(k))

gains are expressed in terms of the feasibility of a few linea j=1

matrix inequalities (LMIs) that can be solved using avdaab 2

software package. It should be pointed out that Lyapunov- + Zbij(xi(k))gj(xj(k —7(k))) + lisi(k)
Krasovskii functional is constructed to derive severalagiel j=1

dependent stability criteria and our developed algorithoo e +oi(k,xi(k), 2 (k — 7(k)w(k), i=1,2.

have the advantage of less conservatism since more informa- (42)

tion about the delays is employed. Moreover, the system parameters of the DSMNNs are set as

Remark 6. For the convenience of the analysis, the trigfollows

gering condition (14) can be written as an equivalent form

1T (k) (k) . . . . 0.25, |z1(-)] > 0.02,

ST 0. Now, it can be easily seen that the triggering dy(z1(+)) =

condition is and hence the threshéldhould lie in the interval 0.65, |21()] < 0.02,

[0, +00). Theoretically, when the chosen threshéldatisfies 0.65, lz2(-)| > 0.02,

T . —

0 < d < infg>g % the triggering condition naturally da(@2(")) = 0.25,  |z2())] < 0.02,

holds for all time instants which means that the measurement

outputs are transmitted at every time instants and the event , (. () — —0.20, [z1(-)[ > 0.02,

triggered estimation approach reducTes to the classicak<clo 0.90, |x1(-)| <0.02,
i imati " (k) (k)

drlven_ esur_nauon one. Wh_ernszo % < § < oo, —0.40, |a1(-)] > 0.02,

the triggering condition will not be satisfied always and  ai2(z1(-)) = 0.20 < 0.02

the measurement transmission will occur only at those time 20, f21()] e

instants when the triggering condition is violated. Aclyal 0.68, |za(-)| > 0.02,

foTr a practical system, we may first compute the relativererro agi (z2(-)) = —0.22,  |z2(-)] < 0.02,

M according to the available measurement outputs

yT (k)y (k)

from the initial time instantt = 0 and then choose an a9s(wa () = 0.32, [z2(-)[ > 0.02,

appropriate threshold such that the triggering condition is 0.05, |z2()] <0.02,
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) 0.20, |z1(-)| > 0.02,
X
1@ 0.50, |z1(-)] < 0.02,
) 0.60, |z1(-)| > 0.02,
xr =
12(2 —0.10, |z1(-)] < 0.02,
, 0.50, |z2(-)| > 0.02,
xr =
21 (@2( —0.40, |z2(-)] < 0.02,
) —0.30, |za(-)] > 0.02,
X
z2(2( 0.10, |z2()| < 0.02,
~ [0.06sin(0.6k)
AD(k) = I 0 0. 065111 0. 6k)} ’
~ [0.09sin(0.8k) 0.18sin(0.8k)
AA(k) = 0.04sin(0.8k)  0.22sin(0. 8k)} ’
~ [0.09 cos(0.5k)  0.03 cos(0.5k)
AB(k) = 10.09 cos(0.5k)  0.12cos(0.5k) ]’
[0.10  0.20 0.10 0
¢= 0.20 0.30] V= [ 0 0.20] ’
[0.08 0
L= K 0.15] , M =1[035 0.30].

The activation functiong (z

(k)) andg(z(k)) are chosen as

0.6

o — — —estimate of 2 (k) ||

03 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180

Time (k)

Fig. 1. The state and its estimate of node 1.

0.5 T T T
z3(k)

= = =estimate of xy(k)

Fa(k)) = [o.mzl(k) - tanf(0.40x1(k:))] |

tanh(0.50x2(k))

tanh(0.10z1 (k))
g(z(k)) = {0.02@(;{) - 0.06tanr(a:2(l~c))}

which satisfy the constraint (2) with

—0.30 0 0.10 0
Al_{ 0 0}’ AQ‘[ 0 0.50]’

0 0 010 0
Ti= [0 —0.04] L= [ 0 0.02] '

In the example, the prob

ability is taken as= 0.85, the

disturbance attenuation level is chosemas 0.95, constant

scalarsp; = po = 0.25, and the time-varying delays are set
. Then, it can be verified that theFig. 2. The state and its estimate of node 2.
upper bound and the lower bound of the time-varying delays

as7(k) = 3 — (sin(kn))?

arer); = 4 andt,, = 2, respectively.

By solving the LMI (36) in Theorem 3 with the help of

Matlab toolbox, we can obtain matricés and X as follows:

p, _ [22358 00739
27 10.0739 0.9423

and then, according td =
parameter is designed as

K _ [0:03820.1184]
= 105920 0.7052]

In the simulation, the ex
sumed to be; (k) = (k)
x cos(0.20k).

=& (k)
Simulation results are shown in Figs. 1-4
Figs. 1 and 2 plot the state and its estimate for node 1 and n¢
2, respectively. The estimation errors for node 1 and node

0.1291 0.3168
0.5607 0.6733

| x|

P, 'X, the desired estimator

ternal disturbance inputs are
= & (k) = 3exp(—0.30k)

are presented in Fig. 3. The event-based release instathts

release interval of the proposed event-triggered scheme ..

displayed in Fig. 4. The simulation result has confirmed t

[

0 20 40 60 80 100 120 140 160 180
Time (k)

0.8 T T T T
] Estimation error for z; (k)
06LY = = = Estimation error for z3(k) ||
L]
h
041y 7
h
0.2¢h 7

-1 ! ! ! !

L L L L L
0 20 40 60 80 100 120 140 160 180
Time (k)

. . . . . h—%g. 3. Estimation error of node 1 and nod 2.
effectiveness of the estimation scheme presented in tipisrpa
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(7]

10

T T T
[——* Event-based release and release interval |

9r 4

instants

(8]

El

4+ i
[10]
[11]
% 50 100 150 200
Time (k) [12]
Fig. 4. Event-based release instants and release interval. [13]
[14]

V. CONCLUSIONS

In this paper, we have investigated the event-triggeret@ stél5]
estimation problem for a class of discrete-time stochastic
memristive neural networks with time-varying delays andg)
randomly occurring missing measurements. In the model of
measurement output, a stochastic variable according to [?ﬁ
Bernoulli distribution has been introduced to characeetize
randomly occurring missing measurements. Based on the stat
dependent future of memristive neural networks, by utiliﬁg]
ing a Lyapunov-Krasovskii functional and stochastic assly
techniques, an event-triggered state estimator is desdignd
sufficient conditions are given to ensure both the expoabntﬂlgl
mean-square stability of the output estimation error dyinam
and the prescribed{,, performance requirement. Based on
the derived sufficient conditions, the explicit expressibihe (20]
desired estimator gain has been given. Finally, a numerical
example has been provided to show the usefulness and [&ft
fectiveness of the proposed estimator design method. &urth
research topics include the extension of the main resufs)
to more complex systems with more complicated network-
induced phenomena, see e.g. [3], [5], [7], [18], [20], [23],
[24], [38], [42], [44]. 23]
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