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Abstract

The purpose of this research work is to presents a novel event-based predictive modelling tech-

nique, namely, Event Modeller Data Analytic (EMDA), applicable for a large-scale real-time

complex system. Borrowed from the Event Tracker and Event Clustering method, EMDA

continuously estimates and builds a correlation map between system input (triggered data)

and output (event data) parameters while predicting system failure based on machine perfor-

mance metrics. With the aid of advanced machine learning models, EMDA can potentially

predict linear and non-linear problems, thereby improving rapid decision-making for system

engineering problems. For proof of concept, EMDA was used to analyse the mystery of an

escalating harmonic failure trend in one of the Malaysian power plants. Analysis of the har-

monic parameter in their Continuous Ship Unloader machines indicates that the power quality

is stable as per IEEE standards; however, in practice, repetitive harmonic failures occur and

the reasons remain unknown. The hypothesis associated with this research is that: "A fault in

a power system distribution could be influenced not only by internal events but also by external

events such as environment and climate change". In addition to the conventional method

used by the power system engineers, we challenge the body of knowledge in the subject area

by exploring and potentially incorporating external variables that may influence the state of

the system. Software-In-the-Loop application was developed using the National Instrument

LabVIEW. The purpose of this deployment was to test and validate the concept and to demon-

strate whether the correlation analysis was in synchronisation with the latent knowledge (KPI)

translated into the system. EMDA was also used as a tool to visualise the occurrences of the

system parameters and its KPIs with a predictive analytical approach to data. This research

conducts extensive experimental work on both industrial and synthetic data to evaluate the

proposed method. The results of the study reveal that in addition to the known parameters

that may affect harmonic filter performance, there is one new parameter that shows a reason-

able correlation with performance. The previously unknown parameter is the humidity of the

operational environment having a significant impact on the occurrence of harmonic failure.

This proved the hypothesis set in the underpinning research endeavour presented in this thesis.

By controlling the humidity of the operational environment and deploying EMDA, the state

transition and trends were accurately predicted. The results of this research can help power

generation plants to devise adaptive strategies to optimise the performance of plants.
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Chapter 1

Introduction

1.1 Research Background

Power utilities are recognised as the backbone of industry and modern society, supporting

several other critical infrastructures such as transportation, communications, military, water

and etc. [4, 5]. They play an important role in distributing and generating reliable energy

in order to ensure global business stability and sustainability. The power sector is viewed as

the key sector that significantly contributes to the growth of country’s economy [6]. In fact,

to maintain economic development, continuous supply of power is required at an affordable

price. Power utilities around the world would have to guarantee their infrastructure has the

capacity and capability to provide uninterrupted electricity while maintaining its integrity in

sustaining the environment.

With increasingly growing fossil-fueled power plants around the world, there have been

many environmental concerns, notably CO2 emissions and greenhouse gas (GHG4). Statistic

shows that fossil fuel emission from electricity generation accounts for 42% of the total global

CO2 emission [7]. In fact, the world depends on fossil fuels to meet its daily energy needs.

Although most governments increasingly embrace renewable energy sources such as solar, wind

and geothermal, fossil fuels still dominate the world’s source of energy for several reasons. The

main reason is that fossil fuels produce significant amounts of energy per unit mass, which is

one of the cheapest fuel sources on the planet. Also, its Calorific Value (CV) is one of the best

compared to any other petrol. Fossil fuels are available globally and may not be depleting

soon. Furthermore, the carbon and hydrogen molecules in fossil fuels make them highly stable,
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rendering easier storage, transfer and transport. Most significantly, fossil fuels are capable of

producing huge amount of energy at a single location, hence they are widely found in utility

sites.

Even though renewable energy research has been an active field since the last decade,

this environmentally friendly technology requires a huge amount of capital expenditure and a

significant amount of transition time. The situation differs from one region to another due to

the different rates of market growth. Developed countries, such as the United Kingdom, have

been steadily generating and using renewable energy since 2000. This is in line with the EU

Renewable Energy Directive, which requires the EU as a whole to produce 20% of its energy

from renewable sources by 2020 [8]. In 2017, the UK generated 29.3% of its electricity from

renewable sources. The gas share is the largest at 40.4%, followed by nuclear at 20.8%. The

remainder are 6.7% from coal and 2.9% from other fuels [9].

In contrast, developing countries, such as Malaysia, which has a steady increase in en-

ergy demand, electrical generation are mainly dominated by gas (43.5%) and coal (42.5%),

accounting for 86% of the country’s energy mix. The remaining share is hydro (13%) followed

by other fuels at 1% while renewable energy is only at 0.2% [10]. Although Malaysia has large

renewable energy resources from solar, hydro and biomass, the Energy Commission has de-

cided to replace the 6,256 MW obsolete power plant with more than 10,000 MW over the next

decade, with 92.30% still being dominated by gas and coal. This indicates that the country is

still committed to fossil-fuel option.

Even though Malaysia has been promoting renewable energy in its Five-Fuel Diversification

Strategy since 2001, research has shown that the percentage of renewable energy implementa-

tion is still low due to high installation costs but low generation capacity [11]. Much renewable

energy operates on a small scale; therefore, it can only be considered as a supplement to the

installed capacity. Malaysia receives up to four to six hours of sunlight on daily average, which

promises a solar energy resource but requires a large area to generate a reasonable amount

of electricity. Meanwhile, hydro needs a large area, which would lead to the displacement

of inhabitants from the flooded areas. However, as with other countries around the world,

the Malaysian government had to reconsider its plan to build and operate a nuclear power

plant since the Fukushima nuclear disaster in 2011. Other renewable energy options, such

as biomass, solid waste and biogas plants, show some growth, but currently, only six plants
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operate with a total capacity of 24.7 MW. This suggests that renewable energy is still not

being significantly developed [12].

With new generation projects expected to contribute to overall system reliability and

efficiency improvement, existing plants will be maintained to ensure reserved capacity is kept

at 30%, to cover for any sudden system grid shortfalls due to system instability, plant outages

or fuel shortages. The system operator must ensure that the plants are available, maintain

a strict quality standard and provide services at a competitive cost, while at the same time

reducing the risk for energy shortages in the system grid, which may affect national safety.

Three main criteria that could sustain the performance of these plants are system stability,

system security and system reliability. The concept of power system stability and security

relates to the ability of the power generators to maintain synchronisation with the system

grid without any disruption, while the system can instantaneously revert to its steady-state

operation when disruptions are introduced into the system. Reliability, on the other hand, is

determined by the performance of the entire supply chain, which includes the supply of fuel

and raw materials, the availability of machines and the distribution of power.

Knowing that machine availability is one of the key aspects, any failure that occurs during

the power generation process will cause the system grid to be interrupted. Monitoring of Power

Quality (PQ) has been the focus of research and development for many years. The main focus

is to protect the equipment and minimise the losses while increasing the levels of operational

safety. However, systems are becoming more complex as they are being further developed for

improvement. Huge numbers of control drives and other non-linear loads have been installed

to satisfy the demands of modern lifestyles. It has led to instability of the power system,

creating high noise levels in the system grids and decaying the electrical distribution system.

Even worse, climate change has an impact on the environment that the system operates in

[13]. In some cases, particularly for hot countries, the electrical distribution system requires air

conditioning to protect the electrical equipment in the substation. In normal circumstances,

if the air conditioning fails, it may surpass the permitted set point and may not protect the

equipment. When the global temperature rises, the potential rate of failure also increases.

Research has shown that the long-term average global temperature is increasing, which has a

significant negative impact on the performance of the machines [13].

PQ has become a significant issue for a modern power industry in order to protect elec-
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trical and electronic equipment by identifying the sources of disturbances and providing an

appropriate solution to mitigate them [14, 15]. The key reasons for PQ disturbances are

the widespread use of switching circuits, capacitors, inverters and converters, particularly in

renewable energy sources, and the implementation of Industrial Internet of a Thing (IIoT)

and Smart Home, leading to unbalanced lighting control loads and excessive use of computer

and data processing equipment in daily life [16]. PQ disruptions cause various problems for

power suppliers and customers, such as malfunctions, instability, short lifespan and loss of

electrical equipment. Harmonic disturbances, on the other hand, contributed to power losses

in transmission lines, power transformers and rotating machines.

In order to maintain a good PQ in the power system, it is important to consider the

sources and causes of PQ disturbances in order to appropriately mitigate them. Traditional PQ

monitoring methods used by utilities are typically based on visual inspections, which are indeed

laborious and time-consuming.. A highly automated hardware-and software-based monitoring

system is therefore required to provide sufficient information on the overall system, understand

the primary sources of disturbances, seek better solutions and predict future disturbances.

Various Artificial Intelligence (AI) techniques offer a better solution to automatically classify

PQ disturbances. AI is a cognitive science with rich research activities in the fields of Image

Processing, Natural Language Processing (NLP), Robotics, Machine Learning (ML), Deep

Learning (DL), Expert Systems, Fuzzy Sets and Heuristic Search [17]. Among these methods,

Expert System, ML and DL are commonly used to solve power system problems [18]. ML uses

approaches from neural networks, statistics, operations research and physics to find hidden

insights into data without explicitly programmed where to look or what to infer. DL uses

massive neural networks with several layers of processing units, taking advantage of advances in

computing power and improved training techniques to learn complex patterns in large volumes

of data [19]. There are four types of ML/DL techniques; Supervised Learning, Unsupervised

Learning, Semi-Supervised Learning and Reinforcement Learning with Supervised Learning is

the most common technique for detecting PQ issues.

Previously, conventional methods use manual configurations and visual inspection to mon-

itor the quality of the power supply in the system. This method was too difficult to interpret

and time-consuming. Later, an automated classification system, which uses the signal process-

ing technique was developed and currently advancing with various Machine Learning and Deep
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Learning approach. Various combinations of features extraction and classifiers have proven to

locate PQ disturbances accurately while using synthetic data. However, this is not the case

with real industry data. Real industry data are complex and much more complicated when

there are external or environmental factors that could potentially influence the state of the

system. This creates a gap in existing techniques, which motivates authors to investigate the

relevance of the environmental parameter to the issue of PQ disturbances. In addition, with

the current emergence of big industrial data, system engineer must ensure that the system is

robust and capable of performing ML/DL techniques in real-time applications. Disturbance

data exists in the order of microseconds, which greatly enhances the record data [20].In con-

sequence, it will burden learning classifiers to run unimportant parameters that result in high

computation. The authors, therefore, suggest a method that could minimise the dimensional

by selecting the most relevant data to be trained automatically, while incorporating a new

unknown parameter that was previously considered irrelevant in the system state.

1.2 Research Motivation

The motivation for this research project is to contribute to new knowledge of the system

engineering learning method to the discovery of unknown or external parameters that could

affect the entire system of complex behaviour. As mentioned by [21], "As technology continues

to improve, systems are becoming more complex as they are developed. Scientists can access

more data and are looking for better ways to interpret and ultimately solve complex problems".

This is consistent with this research learning method in finding a better way to solve complex

systems by developing Software-In-The-Loop (SIL) framework, to measure and test various

parameters that cause the system to be ineffective.

1.3 Research Context

The machine learning techniques has been tremendously improved in line with the technology

within the system engineering computational learning theory and study of pattern recogni-

tion. The algorithm that has been developed is able to recognise large data acquisition and

complex system and able to make decision based on learning experience of the complex data.

There are many researchers who have been working on machine learning techniques and their
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specific application. [22] has applied the machine learning techniques in a real-time infer-

encing mechanism which uses the knowledge provided by the learning algorithm, to decide

which alarms to block when there is a string of alarm sequence obtained via the SCADA

from a power distribution system. [23] has been working on Machine-Learning Approaches

to Power-System Security Assessment in extracting and synthesising relevant information and

reformulate it in a suitable way for decision making. [24] has introduced the pattern learning

approach for Dynamic Security Analysis (DSA) classification using neural network to obtain

system security status without running time-consuming time domain simulation. Reflecting

to the ineffectiveness system issues in specific case study at JEV power station, this machine

learning techniques are motivated to identify the missing parameter on system of the system

(SoS) which could validate and verify the abnormality in the system. The existing controllers

are able to access the entire input/output modules throughout the system hence are able to

initiate the event tracking purposes. The event tracking data will be communicating with the

Software in the Loop system in Real-Time for learning purposes.

1.4 Research Aim, Objectives & Questions

The aim of this research is to propose a machine learning framework architecture that au-

tomates and integrates real-time data acquisition and raw data analysis processes, accessing

internal and environment parameter that caused harmonic phenomena in power generation

system. To address the aim of this research, the following objectives are established:

1. To capture and to allow for visualisation of system architecture randomness in real-time

using available data from the server.

2. To calculate the correlation index (weight) for each parameter using the basic logic of the

number of coincidence in a time-span; interpreting changes in the values of input-output

(I/O) data as I/O events.

3. To reduce the dimensionality of the I/O events by detecting if the I/O events coincide,

and cluster them as related events according to its rank.

4. To investigate the status of the system state by calculating the Key Performance Indica-

tor defined in manufacturing system literature; linking with the I/O events in Software-
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In-the-Loop (SIL) environment framework.

5. To develop a data analytics platform, to train, test and validate the data using Machine

Learning algorithm; and compare the performance.

6. To test and validate the proposed system using synthetic data; to prove the capability

and the advantages of the proposed framework and later examine the outcome with a

real-industry data.

Two research questions are posed to stipulate the study:

• What are the internal and environmental events within the power system distribution

that affect harmonic filter performance? Internal events, is referring to dynamics and

interactions within plant machinery, and environmental event, is for fluctuations in tem-

perature, humidity and pollution in the plant vicinity.

• Is the bathtub theory of harmonic filters performance a reliable mechanism for predicting

its performance at the these periods: (1) an “early failure” (burn-in) period, where the

hazard function decreases over time, or (2) a “random failure” (useful life) period, where

the hazard function is constant over time, or (3) a “wear-out” period, where the hazard

function increases over time.

1.5 Research Hypothesis

The hypothesis that underpins this research is: "A fault in a power system distribution will

be influenced not only by internal events but also by external events such as environment

and climate change". Power system engineer utilised signal processing approach, to locate

the fault solely based on the time domain and the frequency domain of the electrical signal.

We challenged this by looking at all possible knowledge that is available within the defined

system, including the conventional approach. The key objective of this thesis is to provide

an optimal practical and technical platform to demonstrate the interrelationship between the

power system parameter and other knowledge available in the system state. Hence, a CSU

machine with frequent harmonic failure was used as a case study to test the hypothesis.
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1.6 Research Design

To address the stated research questions, the study reported in this thesis employed a real-time

system modelling design. This is a two-phase design where the researcher investigates the root

causes of harmonic phenomena using synthetic data before moving to real industrial data. The

design aims at generalising the findings of the first phase through the use of system modelling.

This approach enables the researcher to test the applicability of the proposed method before

applying it to big data analytics. Figure 1.1 presents the proposed framework for real-time

system modelling.

Figure 1.1: Proposed Framework for Real-Time System Modelling
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1.7 Main contribution of the research work

The potential practical applications of this research are as follows:

1. Formulate new knowledge information in the diagnosis of PQ disturbances, thus incor-

porating the influence of the environmental parameter such as temperature, humidity

and wind speed in the intelligent system loop.

2. Develop a novel and scalable architecture that links the embedded system with the

machine learning algorithm and predicts the system state pattern for real-time decision-

making tool.

3. The discovery of known and unknown parameters and their relationship within the state

of the system, and group them in order of its importance in real-time, hence providing

system status based on the Key Performance Indicators.

4. A robust system engineering tools and knowledge engineering technique to meet the

challenges of the dynamic, autonomous, adaptive and self-organising embedded systems,

and, seamless/secure interaction of the embedded system/cyber-physical systems with

their environment.

1.8 Structure of the thesis

This thesis is organised in the following Chapters:

• Chapter Two

This chapter provides a literature review on the main concepts of PQ disturbances,

feature extraction, feature selection and classifier that are used within this research.

The subject areas: Power system and PQ disturbances issues are first described. Then

the signal processing techniques and sensitivity analysis techniques, which are suitably

used in analysing PQ disturbance data, are discussed. Next, the relevant classifiers

techniques for machine learning are demonstrated. Finally, a summary on analysis using

different techniques is presented.

• Chapter Three

This chapter proposed the Event Modeler Data Analytic (EMDA) technique to investi-

9



Introduction: Chapter 1 Structure of the thesis

gate industrial control and monitoring issues. First, predictive analytics big data issues

are explained. The proposed EMDA technique, which includes three stages: (1) access

to plant data, (2) Event Modeller Technique, and (3) the development of a predictive

model, is further elaborated. The selected predictive model is finally explained.

• Chapter Four

This chapter explains the industrial case study that is experiencing an escalating trend

in harmonic failure. The chapter provides a general overview of the power plant, followed

by a detailed explanation of the target machine. Next, the results of the PQ assessment

will be discussed. Finally, the data collection setup and the counter-measure of the

limitation in the existing plant are presented.

• Chapter Five

This chapter extends the industrial case study in Chapter 4 by applying the event mod-

eller technique using synthetic data. The purpose of the SIL is to assess the suitability

and applicability of event modeller technique in power system environment. The chapter

discusses the development of a real-time application using the National Instrument Lab-

VIEW, followed by the introduction of a k-disturbance signal. The chapter concludes

with the result of the synthetic data.

• Chapter Six

This chapter focuses on the implementation of real industry data using EMDA technique.

The chapter enhanced the SIL framework, which was built to meet the needs of industrial

data applications in Chapter 4. It further describes the arrangement of the data set

for the CSU machine. Eight (8) predictive model patterns of the CSU machine state

were established and labelled. The chapter concludes with the experiment’s results and

eloborates the main findings of this study.

• Chapter Seven

This chapter concludes the thesis by discussing the contributions of this research to the

knowledge body. In addition, the implications of the findings to the PQ disturbance

environment is discussed. The chapter ends by identifying research limitations and

possible research extensions.
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Chapter 2

Literature Review

2.1 Overview

The previous chapter presented a detailed view of the research background and identified

the research gap that the study aims to address. This chapter reviews relevant researches

in the area including the problem domain and techniques used within this research. The

chapter is presented in nine main sections. Section 2.2 introduced power system in general

followed by PQ disturbance in Section 2.3. This section aims to provide different types of PQ

disturbance. In reviewing the technique to troubleshoot PQ problems, Section 2.4 reviews

the traditional technique followed by the conventional signal processing technique in Section

2.5. The existing techniques help to reduce irrelevant input on PQ disturbance using Input

Variable Selection and Sensitivity Analysis are reviewed in Section 2.6 followed by the available

classifiers technique in Section 2.7. Section 2.8 compares all the techniques followed by Section

2.9 which summarised the chapter and its place in the thesis.

2.2 Power System

The term power system in the utility company is the ability of the generator to provide

electricity to the grid (load) at the desired quality with minimum interruptions as possible. The

power system is commonly subjected to disturbances during operation. [25] mentioned that

power systems are examples of complex systems in which generators and loads are dynamically

interconnected. Hence, they can be seen as networked systems, where each bus is a node in
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the network. This shows that the relationship between the generator system and the grid

system all the way to the supply chain are critical in achieving the overall power system

stability. Most of the industry in any part of the world has modernised and invested in high

technology devices which are mainly controlled by a drive system to achieve higher efficiency

performance. [26] agreed with this issue as they mentioned that “with increasing utilisation of

high power-electronic converters, power-system modelling and stability analysis become ever

more challenging”. This is because the utilisation of the high power-electronics converters

creates more disturbance and noise in the system, which could lead to instability of the power

system.

2.2.1 Power System Stability

For any power utilities company supplying energy to the grid system, three (3) main criteria

that could sustain the performance of the energy distribution are the system reliability, system

security and system stability. The system reliability is the probability of a system to provide a

desired function under specific operating conditions during its lifetime. The systems are able

to consistently operate at the required parameters without reaching the undesired state or

condition. To attain system reliability, the system must be secured most of the time, during

and post fault periods. The system security refers to the ability to withstand contingencies

without interrupting the system function. It is the measurement of the system robustness to

its contingency. To attain system security, the system must be stable and concurrently run in

time varying attributes. This system stability is referring to the ability of the system to sustain

its operation and remain stable even though a disturbance has been introduced in the system.

This instability and insecurity could lead to catastrophic consequences of system disturbances

such as blackouts. In the power utilities environment, the concept of power system stability

and security relates to the ability of the generators to maintain synchronisation with the grid

system without any interruption and the system is able to return to the point of steady-

state operation if a system disturbance has been introduced. [26] define the power-system

stability as traditionally analysed by the phasor theory, which describes the slow dynamics of

power systems, where electromagnetic transients have negligible effect. Ideally, when dealing

with power system stability issues, a modelling technique is one the leading techniques in

simulating an adequate time-domain system modelling which includes the system behaviour
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of the past, present and future. These models components consist of mathematical relations

comprising physical behaviour of the components. The past system behaviour is based on

historical data, experience data, disturbance occurrence, and the intrinsic characteristic that

contributes to improvement of operating conditions. The present system behaviour refers to

the real-time calculation analysis, which includes the estimation of eliminating bad data from

the measurement and includes the estimation of un-defined information. Power flow analysis

is one of the examples which calculate the real-time power flow distribution of the system. [27]

recommend that power flow is the most accurate approach to model the steady-state behaviour

of balanced three-phase electrical power systems. Two main methods are: (1) Gauss-Seidel,

and (2) Variation process: which is either a Newton-Raphson (N-R) method, or Jacobian

method. Finally, the future time system behaviour referring to analysing the supposed system

by simulation in order to provide decision for the system development plan, system operation

and emergency control strategy. It is crucial to analyse the power system output under different

operating conditions to ensure stable operation of the power system. Analysis involves studies

such as load flow, and both steady state and transient stability. The subject of stability thus

encompasses modelling, computation of load flow in the transmission grid, stability analysis

under both steady-state and disturbed conditions and appropriate controls to enhance stability.

2.2.2 Power System Fault

[28] mentioned that faults, dynamic operations, or nonlinear loads in power system often

cause various types of power quality disturbances which include voltage sags, voltage swells,

switching transients, impulses, notches, flickers and harmonics. These internal disturbances

could lead to a power system fault that could affect the entire system. However, it is likely

that there is also the possibility of a power system fault due to external parameters, which

could also lead to system failure. This is in line with the research objectives of this study that

is to further explore the root cause of the ineffectiveness of the harmonics filter. The external

parameters may include temperature, humidity, lightning, dust particle, and etc. [29] argues

that the existing techniques are capable to automatically identify and classify various types of

distribution-level power quality disturbances, however, they do not provide any information

on the locations of the disturbance sources. This motivates them to identify the solution

in making a decision on the location of the disturbance which includes the information on
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changes in Disturbance Power (DP) and Disturbance Energy (DE) as energy tends to flow

toward the disturbance source. The problem of fault diagnosis, (i.e. detection, isolation and

identification) of such nonlinear power networks is formulated as a comprehensive sensing or

sparse signal recovery problem.

2.3 Power Quality Disturbance

One critical aspect in power quality studies is the ability to perform automatic power quality

monitoring and data analysis while another principal aspect of a power quality study is the

coordination between the power system behaviour and the equipment performance. As dis-

cussed in the power system fault, there are seven (7) types of power quality disturbance which

will be discussed in detail on the following.

2.3.1 Transient

The term “transient” means lasted for a short duration. Power system defined transient as

a rapid disturbance in the system for a short period of time which created an undesirable

distortion and ranked as the most damaging of all disturbance [30]. The power transient is

divided into two parts which are oscillatory transient and impulsive transient [31].

2.3.1.1 Oscillatory Transient

An oscillatory transient occurs when there is a repetitive change in the steady-state condition

in a short duration of time which tends the power signal to alternately swell and shrink

rapidly. This kind of disturbance occurs in an inductive and capacitive load mainly in motors

and capacitor bank, which has repetitive switching behaviour [30]. In modern industries, most

of the motors are operated with variable speed drives for controlling purposes and these drives

will be tripped with overvoltage alarm indicating the occurrence of an oscillatory transient

[31].

2.3.1.2 Impulsive Transient

Impulsive transient in the steady-state condition occurs as a spontaneous rise of high voltage

or high current level in either a positive or negative direction in a short duration of time. This
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kind of disturbance is always referring to mainly lightning strikes, followed by poor grounding,

inductive loads switching, utility fault clearing and Electrostatic Discharge [31]. The conse-

quences of this disturbance will be as bad as physical damage since the electromagnetic field

created by the lightning will be conducted to the equipment and the structure of the machines.

2.3.2 Short Duration Voltage Variation

Short Duration Voltage Variation (SDVV) refers to a slight change or difference in the steady-

state condition in a short period of time which leads to three types of disturbance which are

Interruption, Voltage Sags and Voltage Swell. This kind of disturbance always occurs due to

a high current drawn by large loads or poor wiring connection [31].

2.3.2.1 Interruption

Interruption in a power system refers to a voltage loss or loss of supply in the steady-state

system which could happen either instantaneously (0.5 to 30 cycles), momentarily (30 cycles

to 2 seconds), or temporarily (2 seconds to 2 minutes) depending on the duration [31]. This

classification of duration is in line with the IEEE-1250 Standard [32], in which the value of

voltage drop is below 10% of nominal voltage. This interruption is usually caused by lightning

strikes, animal or tree interrupting the distribution line, destructive weather and equipment

failure. This type of disturbance could lead to data loss or corrupted, which could lead to a

very costly impact.

2.3.2.2 Voltage Sags

Voltage sags refers to a decrease or a reduction of voltage from the steady-state levels at a

given frequency in a short duration of 0.5 cycles to 1 minute. This kind of disturbance always

occurs in the system faults or large energy switching condition like large motors start-up and

power transformer energising [31]. This disturbance will likely cause a significant voltage drop

to the rest of the circuit. Among power quality problems, voltage sags are typically the most

common.

15



Literature Review: Chapter 2 Power Quality Disturbance

2.3.2.3 Voltage Swell

Voltage swell is the alternate of Voltage Sag which refers to an increase of voltage from

the steady-state levels at a given frequency for the short duration of 0.5 cycles to 1 minute

[31]. This kind of disturbance always occurs in a high-impedance neutral connection, sudden

reductions in large loads or single-phase faults on a three-phase system. The consequences of

this disturbance could be observed from the data errors, the flickering of lights, degradation

of electrical contacts, semiconductor damage in electronics and insulation degradation .

2.3.3 Long Duration Voltage Variation

Long Duration Voltage Variation (LDVV) is referring to a slight change or difference in the

steady-state condition in a longer period of time which leads to four types of disturbance which

are Over-voltage, Under-voltage, Sustained Interruption and Voltage Unbalance [31].

2.3.3.1 Over-voltage

Over-voltage is the extended of Voltage Swells in long term Voltage Swell which refers to an

increase of voltage for more than a minute [31]. This kind of disturbance always occurs due to

incorrect power transformer tap setting while the actual loads have been reduced accordingly

[33]. Consequently, this disturbance will definitely create a high current draw and cause

unnecessary tripping of downstream circuit breakers while the equipment will be stressed and

overheat.

2.3.3.2 Under-voltage

Under-voltage is the extent of Voltage Sag in a long term that caused a decrease or reduction

of voltage, for more than a minute duration [31]. This kind of disturbance always occurs

during large load switching on, or switching a capacitor bank off, as well as overloaded circuits

application [33]. The consequence of this disturbance is overheating in motors and can lead to

the failure of non-linear loads. If this Under-voltage scenario is extended for a longer period,

it may be due to a severe equipment fault or configuration issues which need to rectified.
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2.3.3.3 Sustained Interruption

A sustained interruption is the longer period of interruption, which refers to a voltage loss or

loss of supply in the steady-state system, which could happen for more than 2 minutes. All

this classification of duration is in line with the IEEE-1250 Standard [32], which the values of

voltage drop are below 10% of nominal voltage [31].

2.3.4 Voltage Unbalance

A voltage unbalance fault occurs when the voltages of the three phases are not equal [31].

This kind of disturbance is always referring to the source of supply. If one of the phases has

less than 5% of the rated voltage, the system is said to be unbalanced. The consequence of

this disturbance is excessive heat when the supply is connected to the motor component. The

motor controller tends to result in intermittent failure if there is a greater imbalance in the

disturbance.

2.3.5 Waveform Distortion

A steady-state power system represents an ideal balanced voltage or current sinewave graph

shape, without any distortion. However, this ideal waveform may get affected by some dis-

tortions from any of five categories which are direct current offset, harmonic distortion, inter-

harmonics, notching and noise [31]. The consequences of this disturbance could cause damage

or disruption to IT equipment.

2.3.5.1 DC Offset

A Direct Current (DC) offset refers to the presence of this DC Voltage in the AC system, which

leads to overheating and saturation of the transformer, and probably reduces the transformer

life expectancy. The problem of this DC offset is mainly due to the disturbance in the power

electronics converters [31]. The consequence of this disturbance could cause the transformer

not delivering full power to the load, and the subsequent distortion of the waveform could lead

to further instability in the electronics of the transformer.
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2.3.5.2 Harmonics

Harmonics distortion refers to the corruption in the fundamental of a sine wave at frequencies

that are multiples of the fundamental [31]. The complete harmonic spectrum detailing the

phase angles and magnitudes of the harmonic components clearly illustrates the harmonic dis-

tortion levels. Harmonic distortion may also be described by the Total Harmonic Distortion

(THD) as an effective measure [34]. The symptom of the harmonics problem includes over-

heating of the transformer, the neutral conductors and other electrical distribution equipment,

as well as the circuit breaker tripping and the loss of synchronisation timing. Consequences

of the harmonic issues may lead to losses in the form of heat with associated loss of efficiency.

It may also contribute to higher noise levels in transformers and motors while the harmonic

currents and voltages may lead to ground fault circuit interrupters falsely tripping. Other

loads that contribute to this problem include variable speed motor drives, lighting ballasts

and a higher rated UPS system. Methods used to mitigate this problem include over-sizing of

neutral conductors, installation of K-rated transformers and harmonic filters.

2.3.5.3 Inter-harmonics

Inter-harmonics refer to the waveform distortion resulting from the signal imposed on the

supply voltages by electrical equipment such as frequency converters, induction motors and

arcing devices. Inter-harmonics consist of voltage or current frequency components that are

not integer multiples of the supply system operating frequency. The consequences of these

Inter-harmonics may result in flickering of fluorescent and arc lighting, as well as computers

[31].

2.3.5.4 Notching

Notching refers to a periodic voltage disturbance caused by power electronic devices such as

variable frequency drives and rectifiers commutated from one phase to another during normal

operation [31]. Voltage notching characterises an unusual case that falls between harmonics

and transients. In a steady-state system, notching could be distinguished by the harmonic

spectrum of the affected voltage. This disturbance could lead to system fault, data loss and

transmission problem issue [34].

18



Literature Review: Chapter 2 Troubleshooting Power System Quality

2.3.5.5 Noise

Noise in the waveform is referring to undesirable voltage or current signal on the power system,

which needs to be resolved using an appropriate component such as line conditioners, filters and

isolation transformers. A signal exceeding 200 kHz is defined as noise [31]. Noise may also be

defined as any undesirable power signal distortion, which is neither transients nor harmonics

distortion. The noise can be generated by power electronics devices, control circuits, arc

welder, switching power supplies and radio transmitter. There is some other condition that

could lead to noise which is poor grounded sites and data corruption. Noise can cause technical

equipment problems such as data errors, equipment malfunction, long-term component failure,

hard disk failure, and distorted video displays. Data corruption is one of the most common

results of noise .

2.3.6 Voltage Fluctuation

Voltage fluctuation refers to a systematic variation of the waveform voltage or a series of

random voltage changes in small dimensions, i.e. 95 to 10% nominal at low frequency, generally

25Hz [35]. Any load exhibiting significant current variation can cause voltage fluctuation. This

disturbance could lead to flickering of incandescent lamps [31]. Moreover, the Arc furnaces are

the most common cause of voltage fluctuation on the transmission and distribution system.

Removing the offending load, relocating the sensitive’s equipment, or installing power line

conditioning or UPS devices are methods to resolve the problem.

2.3.7 Power Frequency Variation

Power frequency variation refers to deviations occurring in the fundamental frequency, usu-

ally 50 or 60 Hz. The frequency is based on utility generators’ rotational speed [31]. The

fundamental frequency is set within strict limits under normal steady-state operation, but

departures from these limits may be due to faults affecting the bulk transmission system.

Frequency variation is more common, especially when the generator is heavily loaded; the IT

equipment is frequency-tolerant and generally not affected by minor shifts in the local fre-

quency generator. This disturbance may cause a motor to run faster or slower to match the

frequency of the input. This would cause the motor to run inefficiently and lead to additional

heat and motor degradation through increased motor speed and/or additional current draw.
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2.4 Troubleshooting Power System Quality

When dealing with power quality issues, a single power system could be observed in different

aspects depending on the problem that arises in the system. [28] define troubleshooting the

Power System Quality as the activities of detecting and classifying power quality events, char-

acterising and locating events, studying equipment sensitivity, and modelling of the system

and equipment that are closely related and interdependent. The power quality event could

be observed from the data acquisition and physical inspection of the equipment in line with

the Condition Based Monitoring (CBM) data. Whenever an abnormality was found, a power

quality trouble-shooter will collect sufficient measurement to characterise and locate the ab-

normalities. Later it will observe the sensitivity of the system by varying some parameters

in order for them to model the characteristics into waveform to compare against the types of

disturbance discussed earlier. [29] highlight the two common disturbance types are capacitor

switching and voltage sag, where it is possible to determine whether a disturbance originates

in front of or behind a recording device. In this scenario, power quality troubleshooting is a

little bit tricky and need certain tacit knowledge and experience in evaluating the waveform

to ensure it is closely related to the abnormality faced.

2.4.1 Power Quality Instrument

In the modern industry, most of the troubleshooting analysis required an instrument to mea-

sure the parameters in order to make a decision. This instrument is suggested to be calibrated

to ensure all data are accurate to give explicit information on the problem. [36] mentioned that

PQ troubleshooting instrument must have two operation modes which are Real-time Mode

and Post-Processing Mode. For real-time mode, the data are collected and classified accord-

ingly while in Post-processing Mode, all data are further analysed to determine the source and

severity of the disturbances. These operation modes are important to ensure that the trou-

bleshooting processes are systematic as trouble-shooter has the option of changing the mode

depending on the criticality of the initial findings. In addition to that, five important features

related to PQ troubleshooting instrument, as introduced by [36], were essential for all trouble-

shooters as guidelines for them to perform the job. The features includes: (1) Availability of

raw waveform data for further analysis as some existing PQ monitors have limited capability
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to export raw waveform data, making them unsuitable for a number of troubleshooting appli-

cations, (2) Flexible data acquisition schemes in which the raw waveform should be collected

in the user defined formats, (3) Flexible snapshots to ensure the reliability of event captured.

(4) Disturbance source detection which is able to determine if a disturbance originates from

upstream or downstream of the metering point and (5) Easy verification of instrument setup

with a diagnosis function that can check if the instrument connection and probe ratios are

appropriately established.

2.4.2 Power Quality Trouble-shooter Device

Modern technology in the areas of Power Quality troubleshooting has been improved from the

classical point to point measurement to the data acquisition processing software which reduces

the troubleshooting time and increase the possibility of determining the problem arose in the

system. [36] has suggested three number of ways to construct a PQ trouble-shooter device

which includes: (1) Developing the entire system using digital signal processors or similar

hardware which has unlimited control over the system. The developer is free to customize the

troubleshooting features specifically to the problem, but it has to start from the very basic

hardware level and required expertise and time to develop the system. (2) Combining the

custom hardware with the existing commercial Data Acquisition (DAQ) card. This is a little

bit more flexible as the developer could customise its own signal-conditioning circuit hardware

on the existing commercial DAQ card but attention to detail is required to ensure the DAQ

card connection are accurately established. (3) By using the completely commercial DAQ

hardware and software development platform which takes full advantage of the commercial

signal-conditioning and DAQ hardware. It significantly reduces hardware development effort,

but the developer has to comply with the specification/limitation provided by the vendors.

2.4.3 Power Quality Troubleshooting Methods

The characteristic of undesired power system is subjective, which required troubleshooting

methods. [36] mentioned that some existing PQ monitors report did not have waveform

snapshot, only depending on processed data. The point is that the true conditions experienced

by the system may not be revealed since the data may have been manipulated by a series of

built-in algorithms. Therefore, [36] have agreed with five troubleshooting methods to observe
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the characteristics of the Power Quality disturbance, which includes:

1. Waveform snapshots which provide the trouble-shooter recordings of signal waveforms

and sufficient raw data for further analysis in either auto (discretion) or manual mode

(user-specified).

2. Data Trending Analysis which requires trouble-shooter to trend the data analysis using

a statistical summary tool (histogram plot) or trends correlation among themselves and

later conclude the preliminary findings.

3. Automatic Disturbance Capture using Power Quality Instrument which will provide

information in terms of type and frequency of the disturbance.

4. Disturbance-Source Detection which will locate the direction of the Power Quality dis-

turbance origin.

5. Verification of Instrument Setup by having a self-diagnosis feature for verification of

instrument connection and later to ensure the magnitude, polarity, and phase sequence

of the input signals are consistent with the user’s configuration. The instrument setup

is verified by displaying line power flow, phase sequence, degree of voltage imbalance,

and a few other parameters.

2.5 Signal Processing Techniques

The process of interpreting the type of PQ disturbance involved three (3) layers which include

Feature Extraction, Classification and Feature Selection [37]. Dealing with pattern recognition

in PQ involves both traditional and modern signal processing methodologies. Many researches

were conducted since 2000 (Scopus) in line with the increase of nonlinear load applications in

daily usage. The process of classification is highly critical in reducing the different possibilities

of root causes in any application. To make the study relevant to PQ problems, various types

of disturbances need to be classified according to magnitude and duration [38].

2.5.1 Feature Extraction

Feature extraction is the classification process in PQ, which involves a different algorithm

for different problems. The main challenge of these classification processes is to obtain an
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accurate result with minimum computational time. Furthermore, it is frequently mentioned

that it is critical to apply practical techniques to solve these issues in real-time. Figure 2.1 is

an overview of the available feature extraction techniques in signal processing methods.

Figure 2.1: Different Signal Processing Methods in Feature Extraction

2.5.1.1 Fourier Transform

The most widely used computational algorithm for stationary signals is the Fourier Transform

(FT) which extracts the time domain signal into specific frequency domains in two dimensions,

frequency and amplitude. Three main algorithms that use FT are Discrete Fourier Transform

(DFT), Fast Fourier Transform (FFT) and Short Time Fourier Transform (STFT). The differ-

ence between DFT and FFT is the extraction speed. DFT converts the sinusoidal signal into

frequency. However, both methods lack information about time. STFT resolves the timing

issue by dividing the signal into windows with segments and localising it in a different time

dimension. Unlike DFT and FFT, STFT works for non-stationary signals. The fundamental

operation of STFT is to slice up the signal into suitable overlapping time segments while per-
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forming Fourier analysis on each slice to ascertain the frequencies contained in it [39]. The

drawback of STFT is the constant window size for all frequencies in the signal, thus only

producing good resolution either in time or the frequency domain depending on the window

size [40]. Note that STFT is inappropriate for non-stationary PQ disturbances due to the un-

certainty principle of incompatibility between time and frequency. However, the generalised

version of Fourier transform known as Fractional FT (FRFT) was recently introduced, offering

additional order control to visualise the disturbance and extract features from time, frequency

and intermediate domains which make them comparable with Stockwell Transform [41] which

will be further discussed later.

2.5.1.2 Wavelet Transform

Unlike FT, the Wavelet Transform (WT) algorithm provides three-dimensional information

(frequency, amplitude and time). It is suitable for both non-stationary and stationary signals.

It also provides both real and complex output compared to FT, which only provides complex

output. The signal is mainly converted into a various scales of a short term waveform called

"mother wavelet." In [42], an overview and comparison of commonly used wavelets result-

ing in the Daubechies wavelet are presented as the most widely used mother wavelets. The

Daubechies wavelet transform performs very well in analysing PQ. The main advantage of WT

over STFT is it uses short windows at high frequencies and long windows at low frequencies,

thus narrowly monitoring the features of non-stationary signals [40]. The WT results in win-

dowing segmentation techniques and is able to hold the characteristic of the signal in different

frequency bands. It is sensitive to signal irregularity but not quite sensitive to the regular

signal behaviour, but it is suitable for detecting and extracting disturbance of different type

of PQ disturbance. Three main algorithms that use WT in PQ applications are Continuous

Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and Wavelet Packet Trans-

form (WPT). The main difference between the CWT and DWT is the scale parameter [43].

The CWT discretizes scale more finely than the DWT. The CWT typically uses exponential

scales with a base smaller than 2, while the DWT always uses exponential scales with the base

equal to 2. On the other hand, WPT is a generalization of wavelet decomposition that offers

a richer signal analysis [43].

A review in [37] posits the wide use of WT in solving different PQ problems including
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disturbance detection, feature extraction, data compression and data denoising of PQ dis-

turbances. For disturbance detection, [37] has briefly highlighted the success of researchers

in detecting and localizing non-stationary PQ disturbance signal using different techniques;

Multi-Resolution Analysis (MRA) [44], and Multiresolution Signal Decomposition (MSD) [45].

A wide area of feature extraction has been using CWT and DWT for PQ classifications which

later on extended to the hybrid approach of DWT-FFT for fuzzy expert decision making [46],

Wavelet Network (WN) for larger classification [47], Adaptive Wavelet Network (AWN) for

dynamic environment [48], Multi-Wavelet Transform (MWT) for transient disturbance [49],

and Wavelet MRA (WMRA) for online classifications [50]. In addition, the Wavelet Packet

Transform based on Hidden-Markov Model (WPT-HMM) [51] and Wavelet Packet Energy

(WPE) based on Multiclass Support Vector Machine (MSVM) [52] had also been used for

power distribution classification purposes.

It was mentioned in [53] that with the advancement of PQ monitoring equipment, there

were issues on data storage and communication when dealing with a big amount of PQ data

while and noise that could affect the recognition rate of the classifiers. Therefore, the integra-

tion of Spline WT and Radial Basis Function (RBF) in [54] was reported to be successful in

data compression while denoising schemes which use WT are capable of suppressing the noise

riding.

[55] suggested that a WT-SVM algorithm is a powerful tool in any real-time applications.

The wavelet-based Global Disturbance Ratio (GDR) index used in [56] for Optimal Multi-

Event Classification, results in high computation simplicity, accuracy and adaptability with a

large potential for online classification. This research is in line with the current study to select

a lower computational time approach. In [57], a hybrid approach combining WT and HT

using simplistic mathematics has been presented by the author to detect and classify different

types of PQ events. In [58], the author presented a new mother wavelet for electromagnetic

transients applications using an adaptive wavelet algorithm based on the best classification

results. [59] investigated the performance of PQ event using WT and Weighted Extreme

Learning Machine finding and observed that these WT-WELM methods are robust and have

better classification of speed and higher recognition accuracy. In spite of the success of WT,

there are few PQ problems that cannot be resolved with WT including Voltage Swell (Heavy

load switching or capacitor bank switching) [60].
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2.5.1.3 Stockwell Transform

Another leading classification method in the PQ assessment is the Stockwell Transform (ST)

[61]. It is a hybrid of the STFT and WT which provides the time-frequency representations

with frequency-dependent resolution. The key feature of this algorithm is its ability to detect,

localize and quantify the disturbance in both low frequency and high-frequency components

which comprise most of the PQ disturbances such as voltage sag, voltage swell, momentary

interruption, oscillatory transients, notches, harmonics with sag and swells. Moreover, it is

also capable of providing a better time-frequency representation of a signal to be applied as

inputs to intelligent classifiers. The three leading ST algorithm are Discrete Stockwell Trans-

form (DST), Discrete Orthogonal Stockwell Transform (DOST) and Fast Discrete Stockwell

Transform (FDST).

DST has high computational cost due to its high redundancy on its large size data repre-

sentation [61] & [62]. To overcome this drawback, DOST was introduced [40]. DOST sets on

the orthonormal basis function which samples the DST with non-redundancy while retaining

the original phase properties. It has multiple scales and a referenced phase. However, it is

quite challenging during the interpreting stage as it provides coarse time-frequency represen-

tations with its frequency resolution proportionally scaled to the logarithm of the frequency

[63]. In other words, the zero redundancy has made the signal interpreting becomes difficult

due to insufficient information in the signal. On the other hand, the FDST algorithm which

was introduced in [64] proves to be low computational cost and uses fewer resources.

A review by [18] reports the success of ST in PQ analysis including the hybrid approach

of ST-Dynamic [65] in reducing run-time, the ST-MRA techniques in performing variable

window changing [66], and hybrid of windowed FT and ST to extract distinctive features of

PQ signals [67]. ST has also been used as a feature extraction method for different classifiers

such as Probabilistic NN [68]; Fuzzy Expert System [69]; Rule Base [70]; Decision Tree [64],

[71]; Fuzzy Decision Tree [72]; and ANN [73].

ST is a popular method amongst analysts and researcher such as [74] who investigated the

performance of the hybrid decision tree and Fuzzy C-means clustering algorithm based on ST,

demonstrating higher efficiency in comparison with other methods. [75] presented a rule-based

ST as an extraction tool, and Adaptive Boost with decision stump as a weak classifier for PQ

assessment to be better than SVM and Decision Tree. [76] suggested the hybrid of ST-WT with
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PNN as an intelligent classifier to effectively detect PQ events in noisy environments. Recently,

[77] introduced a modified S-Transform (MST) achieving desired time–frequency resolution for

various PQ disturbances signals and investigated its performance with the standard ST using

three classifiers (BP, SVM and ELM). Results showed that MST performed better than ST in

low SNR while ELM has higher accuracy, faster and independence from a training set.

2.5.1.4 Hilbert Huang Transform

Hilbert Huang Transform (HHT) is also among the latest algorithms used in the PQ dis-

turbance assessment by extracting non-stationary signals. HHT is the combination of time-

frequency analysis of Empirical Mode Decomposition (EMD) and instantaneous estimation

of Hilbert Transform (HT). It estimates the frequency, amplitude and phase. The EMD is

a technique for detecting and localizing the transient features including the periodical notch,

voltage dip, and transient oscillatory disturbance by generating the Intrinsic Mode Function

(IMF) from a non-stationary signal [78]. The orthogonal signal produced by HT is phase

shifted by 90 degrees from the original signal. The HT features are proven to be less sensitive

to noise level [79].

A review in [80] discusses the original methods [81], and the applications of classifiers e.g.

Radial Basis Function [79]; Relevance Vector Machine [82]; and Support Vector Machine [83],

[84], [85]. The HHT has also been presented in a mathematical morphology [86] and multi-

disturbance complex [87] while in [88], the HHT was improvised orthogonally for Voltage

Flicker Analysis. [89] investigated the classification performance of voltage sag sources in an

EMD-SVM algorithm and compared it with WT-PNN and EMD-PNN. The results show that

the EMD-SVM scores the highest efficiency and accuracy.

[73] investigated the performance of HHT-PNN with different classifiers and extraction

methods, highlighting the persistent demand for intelligent techniques to perform well in single

stage and multiple PQ events. The latest research adapting HHT was carried out in [90] where

comparisons were made between feature extraction performances with ST in detecting voltage

sag in the power grid. The conclusion was that in real-time analysis, ST is not capable of

detecting noise as much as HHT.
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2.5.1.5 Gabor Transform

Gabor Transform (GT) [91] on the other hand is the extended version of STFT which uses

Gaussian function as a window while the resulting function is again transformed with FT to

derive the Time-Frequency analysis. The Gaussian function has the same properties of the

time and the frequency domains. It was found effective in monitoring the frequency variation

of a signal as time varies [92] and have less computational time. However, it has a drawback in

a trade-off between time and frequency resolutions, caused by the fixed width of the window.

Nevertheless, GWT which is the hybrid of GT and Wigner distribution function [93] has

improved the time and resolution at the same time and covers the cross-term problem of

WDT and the low clarity of GT.

The application of GT in PQ prediction was reported in [94]. A new synthetic methodol-

ogy integrate GT with Probabilistic Neural Network (PNN)demonstrating high classification

capability in noisy conditions. In [95], the author presented a combination of GT-ANN meth-

ods for transient fault identifications. The method confirmed that GT was able to detect and

localize signal disturbance. [96] proposed a new method for online detection using DGT-SVM,

resulting in a reduction in features of the disturbance while minimizing the execution time

and memory for training and testing purposes.

[97], introduced the hybrid of finite impulse response window with GT (FIR-DGT) for the

detection and combination of SVM with Type-2 Fuzzy Kernel (T2FK-SVM) as a classifier

leading to the reduction of computational cost and improvement in accuracy due to fast

learning and execution. In [98], the author investigated the performance of the [97] with other

methods demonstrating high overall accuracy.

2.5.1.6 Other Miscellaneous Transform

Apart from the above techniques, some other extraction techniques have played significant roles

in the PQ detection and classifications including Kalman Filter [99], [100]; Extended Kalman

Filter (EKF) [101] and Unscented Kalman Filter (UKF) [102]. Meanwhile, [103] and [104]

introduced Time-Frequency ambiguity plane with kernel techniques using Time Frequency

Representation (TFR) and [105], [106] used two dimensional time-time representation TT

Transform. Other techniques such as Chirplet Transforms [107]; Mathematical Morphology

(MM) [108]; Slant Transform [109]; and Teager Energy Operator (TEO) [110] have proposed
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methods to extract certain disturbances. Other extraction techniques such as Spectral Kur-

tosis [111]; Principal Curves (PC) based on Principal Component Analysis (PCA) [112]; and

Sparse Signal Decomposition (SSD) [15] have made important progress in feature extraction

techniques.

2.5.2 Feature Selection

Feature selection is a process of selecting the most useful and relevant data to ensure low

redundancy in classifying the PQ Disturbance. Based on the extraction data, optimisation

techniques such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Ant

Colony Optimisation (ACO) are the common techniques used to reduce the level of redundancy

and complexity in the data-set while contributing to high accuracy classification and reducing

the overall computational time. The main challenge of this process is to achieve the shortest

computational time. Figure 2.2 is an overview of the relevant feature selection techniques.

Figure 2.2: Different Optimisation Techniques in Feature Selection.

2.5.2.1 Genetic Algorithm

The GA is inspired by the natural evolution (for e.g. mutation, selection and crossover) which

uses an adaptive heuristic search method in finding the optimum solution. The process starts

by initiating and evaluating each candidate of a population stochastically, and later to select

the parent while recombining (mutation) the pairs of parents to form a new population. The

process (iteration) is competitively repeated until it satisfies the optimised global solution

by eliminating poor solutions using generic parameters (crossover and mutation) based on a

heuristic.
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[113] presented an optimisation technique for selecting the best features out of 128 features

obtained from WPT using GA and Simulated Annealing (SA) and produced highly accurate

grid search methods while the classification of SVM classifier has significantly reduced the com-

putational time. [114] investigated the performance of Extension Genetic Algorithm (EGA)

with K-means and fuzzy c-means demonstrating the high accuracy (96%) of EGA and its

advantage in removing off the extension of experience rule.

[115] presented a meta-heuristic Micro-Genetic Algorithms (MGA) to detect and classify

electric power disturbances with low computational, simplicity and reduction in resources.

[116] combines the optimisation performance of GA (structure optimisation) and Harmony

Search (parameter optimisation) in the classification of the time-series sequential data in train-

ing the HMM structure. The results show that the optimised HMM has a higher probability

in classifying the global maximum compared with the un-optimised HMM.

2.5.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was firstly developed by Jim Kennedy, inspired by the

simulation of social behaviour based on bird flocking, fish schooling and swarming theory. This

optimisation tool uses the concept of sharing information in adjusting the velocity and particle

position based on individuals’ and the neighbouring particle (members of the population)

experiences. The algorithm starts by identifying the location and velocity of every particle.

Later, each particle will evaluate the objective function and update the best solution to find

the best global solution. The iteration will be continuous until it obtains the best position.

The PSO was applied to a number of engineering applications including PQ. PSO is a

powerful heuristic searching algorithm for finding the optimal parameters. PSO has some key

advantages over other optimisation techniques in terms of search capabilities, memory of a

good solution, algorithmic simplicity, simple implementation, low computational effort, high

accuracy, high speed and convergence [117].

[118] used the PSO algorithm to specify the optimal parameters for the membership func-

tion parameter in a fuzzy system to detect and classify PQ disturbances. The results showed

great capability and high accuracy under noisy conditions. PSO has also been used to dis-

tinguish between the types of sag, interruption and swelling in the deep learning-based clas-

sification. The robustness of the PSO in dealing with noise is also noteworthy [119]. [120]
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introduced the hybrid of fuzzy C-means and Adaptive PSO to optimise the cluster centre of

features into distinct groups resulting in maximum classification accuracy. The accuracy per-

formance of APSO and GA techniques were also compared, showing that GA-based clustering

yield better results in some disturbance pattern; however, it is computationally expensive

compared to APSO.

2.5.2.3 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is one of the most recent optimisation techniques. The ACO

is mainly used in dynamic applications such as circuit switch networks, and packet-switched

routing network while having the potential to retain memory among the entire colony. ACO is

an effective optimisation tool which helps in refining data clusters by optimising the Euclidean

distance of each data points from the centre. [121] presented a Hybrid of ACO (HACO)

and fuzzy C-means clustering algorithm in generating a decision tree for classifying various

power signal disturbance classifications resulting in robust pattern classifier and high pattern

recognition accuracy compared with other optimisation methods such as PSO, GA and classic

ACO.

2.6 Sensitivity Analysis Techniques

In spite of the successful progress in signal processing methods, there are still demands for new,

hybrid or improvised ways to solve PQ control and classification problems. Furthermore, it is

vital to include external parameters in the data to observe any other impact which could link

to the PQ problems. In this section, the relevance of input variable selection and sensitivity

analysis within the context of time-critical and computation resource-limited dimensionality

reduction problems [122] are investigated. It may challenge the ways of feature extraction

from the modern complex systems and infrastructure.

Real-time data acquisition is materialised by industrial controller system and supervisory

control and data acquisition (SCADA) system providing big data on the machine state, in-

strumentation values, alarms and sequence of events. This requires large database memory

to store, process and for communication capabilities to guarantee continuous monitoring and

control. As systems get more complex, the amount of data collected from multiple sources
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grows; subsequently, it is more challenging to identify the most useful and relevant parameters

of performance and system state. This could worsen the curse of dimensionality problem in

a large data set. Eventually, it needs to find a way on how to eliminate input variables that

have the least impact on the system rapidly, computationally cheap and reliable.

2.6.1 Feature Extraction

In the next section, details related to the existing techniques that have been developed in recent

years in the context of Input Variable Selection (IVS) and Sensitivity Analysis is presented.

Figure 2.3 shows a summary of feature extraction techniques using input variable selection

and sensitivity analysis methods.

Figure 2.3: Different Input Variable Selection and Sensitivity Analysis in Feature Extraction.
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2.6.1.1 Input Variable Selection

A relevant learning algorithm is needed to evaluate a large scale complex system. The task

of selecting input variables is largely dependent on the discovery of relationships within the

available data to identify suitable predictors of the model output [123]. The objective of input

variable selection (IVS) is three-fold: improving the prediction performance of the predictors,

producing faster and more cost-effective predictors and providing a better understanding of

the underlying process that generate the data [124]. A comprehensive review by [122] has

highlighted the IVS from (1) Primary or Original Variable Methods (OVIVS) and (2) Sec-

ondary or Derived Variable Methods (DVIVS) perspectives. The major distinctions between

those two lies in the issue of keeping variable intact and only deciding on their redundancy,

or in contrast, transforming them to new subsets of variables.

The DVIVS relates to data storage and the processing of new variables. These issues

contribute to the computational overhead of DVIVS, making them less attractive to use in

a time constraint (real-time) data-driven decision support system. In contrast with DVIVS,

OVIVS does not add burden to the time-critical data integration. It is hard to find an IVS

method that could fulfil (1) promptness, (2) accuracy, (3) computational efficient (in terms

of time and resource critical applications). The modern and evolving complex systems have

huge data acquisition capabilities making IVS an essential technique in extracting relevant

information to manage interrelations and dynamics of a component within the environment

questionable. The machine operation itself has massive data changes while the other operations

such as key performance index data, power system data, and environment data will cause the

system even more complicated with the increased number of system parameters. Therefore,

the process of identifying suitable predictors may take a longer time and may or may not

produce accurate results due to its complexity.

2.6.1.2 Sensitivity Analysis

Sensitivity Analysis (SA) in the process of engineering is minimising computational overhead

by eliminating the input variables that have the least impact while focusing on the more signif-

icant variables by exploring the type of relationship between the input and output parameter

of the system.

The review by [122] categorised sensitivity analysis into (1) Analytical Based which com-

33



Literature Review: Chapter 2 Feature Selection (Sensitivity Analysis)

prises of Differential Analysis, Green Function, Couple/De-Couple Direct and (2) Sampling-

Based which includes Monte Carlo and Latin Hypercube Morris, Analysis of Variance (ANOVA),

Fourier Amplitude Sensitivity Test (FAST), Time uncertainty, and Entropy-Based Epistemic.

Each of these methods has its own advantages and disadvantages which vary in terms of result

accuracy, scalability, heterogeneity and derived variable or original variables.

2.6.1.3 Event Tracking

It has been discussed in [122], [21], [125], [126] that most of the sensitivity analysis techniques

are inefficient due to their computational constraint, time-consuming and high dependency on

historical data. However, this Event Tracking method uses an input-output occurrence matrix

populated at ‘pre-defined’ time intervals, a link between the data of actual event (Event Data)

to the cause of the triggered events (Trigger Data) by using data mapping concept.

2.6.2 Feature Selection

The success of the Feature Selection techniques in detecting the most useful and relevant data

does not stop the researcher(s) from exploring other methods which could further optimise

the system. One of the heuristic methods recently introduced is Event-tracking [122]. Event

tracker produces an input-output occurrence matrix that needs to be optimised by grouping it

according to its interrelationship and internal dynamics of the component within the ecosys-

tem. This could be achieved by performing clustering methods which will be further discussed

as follows.

2.6.2.1 Event Clustering

The principle of interrelation causal events of “Event Tracker” was further extended to the

“Event-Clustering” in real-time data modelling by [125]. This method intends to tackle control

and stability operation in a large and complex system. It uses the Rank Order Clustering

(ROC) which was initially introduced by King (1980) [127] by rearranging the row and column

of a matrix in the iterative manner of decreasing value order. However, these methods are

compounded by the assumption of highly similar groups of data, and it will be placed into a

mutually exclusive block. The group will either be replaced by a new value representing the

group (clumping) or assigned as a unique type of label (portioning) [128]. Furthermore, real-
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time clustering always assumes that the changes in the input may trigger events. A detailed

step by step of implementing the Event Clustering algorithm is discussed in [21] and [125].

2.7 Classifiers Techniques

The application of Artificial Intelligence (AI) as classifiers in PQ has had exponential growth

in the last ten years. It has a relation to human thinking that automates the decision making

and problem-solving based on its learning capabilities [53]. Artificial Neural Network (ANN)

is among the most popular and influential classes of machine learning algorithms. The ANN

model has been applied not only in PQ but various applications of pattern classification,

pattern recognition, optimisation, prediction, automatic control and function approximation

(Regression). The motivation of this ANN technology has always been to develop an AI system

that is capable of acquiring knowledge like a human brain, by extracting pattern through a

sequence of real value activation of this neuron learning and its inter-neuron weight strength

connection.

The revolution of ANN started from 1940’s as a computational model using threshold

logic [129]. Later in 1960’s the perceptron convergence theorem [130], and limitation of simple

perceptron was discovered [131] but challenging to be practised with the X-OR problem. Later

in the 1980’s, significant progress was achieved with the content such as addressable memory

system of Recurrent NN [132], [133] and the back-propagation learning algorithm for multi-

layer perceptron’s [134] which solved the X-OR problem [135].

Later in 1990, the Unsupervised Learning was given a new life to NN technology while it has

consistently improved the previous Supervised Learning until it has won many official pattern

recognition awards. Some other machine learning progress are SVM [136], Long Short-Term

Memory [137], Convolutional Neural Network (CNN) [138] and Deep Belief Networks [139].

A comprehensive review by [140] has highlighted the detailed overview of a neural network

and deep learning, respectively. Figure 2.4 shows a summary of classifiers using different AI

Techniques.
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Figure 2.4: Different Artificial Intelligence Techniques in Classifiers.

2.7.1 Supervised Learning

The traditional Feed-Forward networks which consist of Multi-Layer Perceptron’s (MLPNN)

and Radial Basis Function Network (RBS) are widely used in pattern recognition, speech

recognition, system identification, medical diagnosis and fault detections. Both MLPNN and

RBF structures are only static approximators. [141] has successfully used MLPNN to classify

the PQ disturbance using four output nodes representing the type of disturbances: voltage

sag, voltage swell, transient and harmonic distortions. [142] revealed that ANN was more

accurate than fuzzy logic as the classification tool for various PQ disturbances but can be

slower and very complex. [143] has implemented ANN to classify PQ disturbances, achieving
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more than 90% accuracy for all type of disturbances.

On the other hand, the RBF neural network is a forward network model with good perfor-

mance, global approximation, low training time capabilities and free from the local minimum

problems [144], [145]. The structural simplicity and training efficiency of RBFN have made

it a nonlinear mapping capability which is able to augment new training data without re-

training [146]. [147] has shown that RBF techniques require less sampled data for harmonic

assessment. [145] has effectively estimated the fundamental, fifth harmonic and seventh har-

monic components in converter waveforms using RBF. Since the feed-forward neural networks

cannot retain information about the infinite past, their performances in identifying nonlinear

dynamical system will not be as good as those of the recurrent neural networks.

The Recurrent MLP’s is a special kind of feed-forward neural network with additional

memory neurons and local feedback. It can deal with nonlinear time-varying systems and

capable of attenuating noise by interacting with signals using their own dynamics [148]. Two

types of the most common RNN are the Elman NN and Jordan NN. Both RNNs used the back-

propagation learning algorithm for training. During the training phase, the error is propagated

backwards from the output layer to adjust the weights of all feed-forward connections while

keeping the constant weight [149]. The main difference for both RNN is that the Elman NN

has information feed-back from the hidden layer, whereas the Jordan NN uses feedback from

the output layer. The self-connections of the context nodes in the Elman network also make it

sensitive to the history of input data which is very useful in dynamic system modelling [150]. A

common problem of RNN mainly comes from inappropriate network structure and parameters.

An undersized network is unable to generate a satisfying performance, whereas an oversized

network might have poor generalisation capability [148]. [151] used RNN on PQ data which

have problems related to sag and swell. The outcome shows excellent performance in terms of

accuracy, sensitivity and specificity in comparison with FFBP neural network. [152] applied

the Jordan type NN to track maximum power point for the wind speed controller without

requiring the knowledge of wind speed, air density or turbine parameters.

Decision tree (DT) is a kind of classifier similar to tree structure. DT has the advantages

of simple structure, convenient expansion and fast classification speed. DT is usually used to

recursively select the best feature and segment of the training data according to the feature

[153]. Knowing that SVM is affected by kernel function, [154] combined SVM and binary DT
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classifier that reduces the number of decisions made in the testing phase for classifying power

quality disturbances. [64] examined FDST based on DT classifier with 40 dB noise power

which obtained the best classification accuracy among other classifier such as PNN, expert

system, ANN, neuro-fuzzy, and SVM. Recently, [153] found that DT classified faster and more

accurately compared to SVM and KNN. When using mathematic algorithm, DT could classify

multiple PQ disturbance with low computational effort [155].

Naïve Bayes (NB) is a probabilistic classifier with strong independent assumptions. It is

based on Bayesian theorem, which assumes the presence of a particular feature of a class,

which is unrelated to the presence of any other feature. Key advantage of using NB is that

it requires small amount of training data to estimate the parameters for classification. [156]

found NB works efficiently in recognising the features when pairing with fast Time-Time

transform. [157] found NB and and k-Nearest Neighbors (KNN) are comparative robust when

dealing PQ events. Recently, [158] found that KNN and NB perceived the accuracy of 96%

in identifying and diagnosing the harmonic sources in the power system. On the other hand,

[159] recently trained NB to develop a classifier that is capable of classifying PQ signals with

100% accuracy.

2.7.2 Unsupervised Learning

The Self-Organizing Feature Map (SOM) developed by [160] is easily trained and has attractive

properties such as topological ordering and good generalisation. It implements a character-

istic non-linear mapping from the high-dimensional space of input signals onto a typically

2-dimensional grid of neurons [161], [162]. The analysis using SOM provides accurate results

with a significant saving in computation time, reduction of the online computational require-

ments. The advantage of SOM is that it tries to identify significant patterns in the disturbance

feature vectors and assign them to different disturbance classes [163]. It can be used for clus-

tering data without explicit knowledge of the input data. SOM technique is chosen mainly due

to its ability to analyse and classify data with a high level of complexity. SOM is an excellent

tool for the visualisation of high dimensional data. [164] and [165] used a novel approach

for PQ disturbance classification using Self Organizing Learning Array (SOLAR) system with

Wavelet transform to classify PQ disturbance. Based on the outcome, they highlighted three

advantages over a typical neural network: data-driven learning, local interconnections and
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entropy-based self-organisation. In [166], a PQ disturbance recognition based on S-transform

and SOM was used to recognise the types of power disturbance signals with a great noise.

Meanwhile, [167] used SOM to locate the PQ source of disturbance including transient dis-

turbances. In [168], the author proposed a SOM-BP hybrid network to further separate and

locate fault diagnosis for wind power generation application.

The Boltzmann Machines [169] is widely used in combined optimisation and associated

memory problems which solve the process scheduling issue. It can move (temporarily) to-

wards the worst state to escape from local traps, and it uses a probability rule to update the

state of a neuron and its energy function [170]. The energy function hardly ever falls into a

local minimum which made it very useful for solving combinatorial problems and topological

observability problem [171]. The architecture of a Boltzmann machine is arranged in a two

dimensional array. The neurons within each row are fully connected, as well as the neurons

in each column. The self-connection within the neuron is a positive value while the weight

of the connection between neurons is a negative value. The values of the weights are chosen

such that the global energy of the network reflects the extent of the consensus of the neurons

state [172]. The Boltzmann machine is more efficient in solving the topological observability

problem compared to Hopfield. The learning algorithm is very slow in networks with many

layers of feature detectors, but it is fast in "Restricted Boltzmann Machines" which have a

single layer of feature detectors. To solve learning problem, Boltzmann machines make many

small updates to their weights, and each update requires them to address many different search

problems [173].

2.7.3 Hybrid Learning

The Adaptive Resonance Theory [174] is widely used in pattern recognition, face recognition,

and data clustering. It is capable of classifying a large, highly-dimensional and time-varying

set of input data [175]. The learning is completed when all the patterns are grouped into

homogeneous clusters. Contrary to SOM, the initial number of clusters and cluster centres are

not specified in advance, but the clusters are allocated incrementally [176]. An ART network

can be considered as a vector classifier; it classifies an input pattern (or vector) depending

on the number of stored patterns it most resembles. The ART network contains four types:

ART1, ART2, ART3 and Fuzzy ART. The ART-1 uses a supervised clustering algorithm and is
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usually applied to binary input patterns. The ART-2 uses unsupervised clustering algorithm

and are typically referred to either analogue or binary input patterns. It has fast learning

capabilities, and easily adaptable to a non-stable environment while managing to precisely

and automatically decide the number of clusters. The ART3 is applied to the biochemical

mechanism of a transmitter in the human brain system to a neural network to carry out the

hierarchical search [177]. Fuzzy ART is the combination of ART1 features and fuzzy set theory

[178]. In [177], a gas turbine unit used ART2 networks to correctly diagnose fault with rapid

training. The outcomes were highly reliable as it indicated the onset of developing faults

while it was flexible in providing the mechanism for predictive maintenance requirements.

[179] has presented a pattern recognition algorithm based on five types of ART to detect and

classify High Impedance Fault (HIF) in a power distribution network. The results have shown

that Fuzzy ART and Fuzzy ARTMAP have the highest accuracy while ART1 has the worst

outcome.

2.7.4 Deep Learning

Deep learning is inspired by the architecture depth of the brain. Hinton, Osindero & Teh (2006)

[139] made a breakthrough in solving the failure of training deep multi-layer neural network

by introducing Deep Belief Network (DBN) in which the learning algorithm trains one layer

at a time. Later, [180] introduced the Auto-Encoders. Both concepts exploit the unsupervised

learning algorithm of Restricted Boltzmann Machine. The advancement of deep network

study gained popularity for solving classification and regression tasks. In addition, there are

also some new areas which include dimensionality reduction, modelling textures, modelling

motion, object segmentation, information retrieval, robotics, natural language processing and

collaborative filtering.

The Convolutional Neural Networks (CNN) is a leading deep learning model in detection,

segmentation and recognition of objects and regions in images. It is inspired by the biological

architecture, which has multiple layers of neuron collections with learn-able weights and biases.

The network consists of three layers of convolution: max-pooling, rectified linear unit (ReLU)

and local normalisation, followed by a fully connected layer and a linear classifier at the

top [181]. The outputs are overlapped to obtain a better representation of the original objects

[182]. CNN uses local connections to extract spatial information efficiently and shared weights
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to significantly reduce the number of parameters. CNN exploits the local correlation using

local connectivity between the neurons of nearby layers. The power of CNN depends on the

connections (weights) of the network; hence, it is vital to find a set of proper weights. The CNN

is also widely used in computer vision, natural language processing [183], Optical Character

Recognition (OCR) and speech recognition [184]. Some key advantage of this method is that

it tends to provide better generalisation when facing computer vision problems, and it exploits

the local correlation using local connectivity between the neurons of near layers. Recently,

[185] has used CNN and Softmax regression to classify power quality signals and compare with

another technique of autoencoder and SVM, which results are superior than those obtained

by an Auto-encoder.

Auto-encoders are simple learning circuits which aim to transform inputs into outputs

with the least possible amount of distortion. It has been introduced in line with the Hebbian

learning rules to address the problem of backpropagation in unsupervised learning globally.

Later, the Auto-encoders are stacked and trained bottom-up in the form of RBM followed by

a supervised learning phase to train and tune the entire architecture.

The Restricted Boltzmann Machines (RBM) is a generative stochastic artificial neural

network that can learn using distribution probability over its set of inputs [186]. It works in

an unsupervised manner with one visible and one hidden layer. The network is an undirected

graphical model in which the neurons in one layer that are all connected to the neurons in a

second layer [187]. In [188], the author highlights the efficiency of RBM tool in dimensionality

reduction of input data [189]. It is also used in classification, regression, collaborative filtering,

feature learning and topic modelling. In most application, it became the fundamental building

blocks of the Deep Belief Networks (DBN). RBM’s have three parameters: connection weights,

visible biases, and hidden biases. [187] briefly elaborate RBM calculation flow, which consists

of two repeating steps. When the input data is added to the visible layer, the hidden layer

will be calculated using the visible layer’s value. Next, the visible layer is calculated using the

sampling results from the hidden layer. This step was repeated to update the formula. To the

best knowledge of the author, no research has been done in the area of PQ classification using

RBM.

Deep Belief Networks (DBN) was developed by [173] as a pre-training tool for a deep neural

network. It comprised two parts: layer-wise greedy unsupervised learning pre-training part
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and supervised the fine-tuning process part. The pre-training part is a stack or (multi-hidden-

layered) of RBM which reconstruct the input data when learning the new representation with

no label information provided. The fine-tuning part is the deep auto-encoder together with

the Softmax regression layer [190], which encodes the inputs to new representations and then

decodes the representation to the reconstruction of the inputs [191]. The nodes of any single

layer do not communicate with each other. By applying DBN for pre-training and fine-tuning,

the computational effort has been improved. It avoids random guesses at starting point and

reduces training duration and final training error. However, as dimensionality increases, the

computational effort also rapidly increases [192]. DBN is widely used to recognise, cluster

and generate images, voices, text, video sequences and motion-capture data, data fitting,

recognition and classification. In [193], DBN is used as a semi-supervised classifier. Recently,

DBN has made a significant breakthrough in solving the overfitting problem caused by the

conventional backpropagation algorithm [194]. To the author’s best knowledge, no research

has been done in the area of PQ disturbance using DBN.

2.7.5 Support Vector Machine

Support Vector Machine (SVM) was first introduced by [136] as a machine learning tool for

classification and regression analysis. In general, the SVM is used to determine the best hy-

perplane that divides any two different classes into two. The capability of the SVM algorithm

produces better classification performance compared to the ANN. In linear classification, the

SVM algorithm will separate the samples in the hyperplanes into two classes (Class 1 and

Class 0) while setting up a distinct margin between the two classes. Margin refers to the

sum of a minimum distance between the training data set with the separating hyperplane.

Compared to ANN, the activation function in SVM uses the kernel functions to transform

the nonlinear separable dataset into a new high dimensional feature space. A wide range of

Kernel functions includes Linear Kernel, Polynomial Kernel, Radial Basis Kernel and Sigmoid

Kernel. SVM is widely applied in the large classification problems due to its capabilities of

handling large feature vector dimension and better generalization properties.
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2.7.6 Fuzzy Expert System

Fuzzy set theories consider human expert knowledge to simplify decision making for highly

complex problems. It generally makes approximations on uncertainties based on binary logic,

by mapping the object to the membership function values in the set. The application of natural

language terms in Fuzzy sets was introduced by [195] based on the original idea of [196] which

mentioned about the ranges in logic truth values. In classification studies, the Fuzzy Expert

System (FES) uses fuzzy sets along with the fuzzy rule base, which offers human reasoning

capabilities to classify the elements.

2.7.7 Other Classifiers

Apart from the above techniques, some other classifiers have played a significant role in the

PQ detection and classifications activity which includes Hidden Markov Model (HMM) [197],

[198]; Probabilistic Neural Network (PNN) [68], [81], [199], [200], [201], [202], [76]; Optimized

ANN [203], Adaptive Boost (AdaBoost) [75], Extreme Learning Machine (ELM) [77] and

Weighted Extreme Learning Machine (WELM) [59].

2.8 Summary Analysis

The summary analysis on different methods and techniques in proposing the most suitable

data analytic techniques are illustrated as per Table 2.1. Six main criteria have been set

to compare between the available techniques which include: (1) Scalability of the data, (2)

Original or Derived based approach, (3) Support Heterogeneity Data, (4) Producing Accurate

Results, (5) Global Solution and (6) cheap computational time. The observation reveals that

most of the techniques are not scalable and have long computational time. This is mainly due

to the properties of the variables which requires more effort to handle a growing amount of

data which is not selective. Even though most of the techniques produce accurate results and

is a global solution, the solution data may not include the external parameters which may

also potentially be the contributing factor to the problem. Meanwhile, producing a real-time

solution is an advantage in order to make a fast decision to avoid further loss. Therefore, to

the author’s best knowledge, the event modeller technique is capable of addressing this issue.

With the help of a suitable Machine Learning techniques, the synergy of these two techniques
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Table 2.1: Summary Analysis of Different Techniques

Methods Category Scalable
Data

Original/
Derived

Hetero-
geneity

Accurate
Results

Global
Solution

Computational
Time

Signal Processing Methods
Discrete Fourier Transform Fourier No Derived No No No Long
Fast Fourier Transform Fourier No Derived No No No Long
Short Time Fourier Transform Fourier No Derived Yes No No Long
Continous Wavelet Transform Wavelet No Derived Yes Yes No Short
Discrete Wavelet Transform Wavelet No Derived Yes Yes No Short
Wavelet Packet Transform Wavelet No Derived Yes Yes No Short
Discrete Stockwell Transform Stockwell No Derived No Yes Yes Long
Discrete Orthogonal Stockwell Stockwell No Derived No Yes Yes Short
Fast Discrete Stockwell Transform Stockwell No Derived Yes Yes Yes Short
Hilbert-Huang Transform Hilbert-Huang No Derived Yes Yes Yes Short
Gabor Transform Gabor No Derived Yes Yes Yes Short
Kalman Filter Others No Derived Yes Yes Yes Short
Extended Kalman Filter Others No Derived Yes Yes Yes Short
Unscented Kalman Filter Others No Derived Yes Yes Yes Short
Time Frequency Representation Others No Derived Yes Yes No Long
TT-Transform Others No Derived Yes Yes Yes Short
Chirplet Transform Others No Derived No No No Long
Mathematical Morphology Others No Derived Yes Yes Yes Short
Slant Transform Others No Derived Yes Yes Yes Short
Teager Energy Operator Others No Derived Yes Yes Yes Short
Spectral Kurtosis Others No Derived Yes Yes Yes Short
Principal Curves Others No Derived Yes Yes Yes Short
Sparse Signal Decomposition Others No Derived Yes Yes Yes Short

Input Variable Selection Techniques
Variable Ranking Original Variables No Original Yes No Yes Long
Wrapper Methods Original Variables No Original Yes No Yes Long
Embedded Methods Original Variables No Original Yes Yes Yes Long
Filter Methods Original Variables No Original Yes No Yes Long
Regression Derivable Variable No Derived No Yes No Long
Clustering Derivable Variable No Derived No No No Long
Heuristics Computational No Derived Yes No No Long
Optimization & Simulation Computational No Derived Yes No No Long
Statistics Computational No Derived Yes No Yes Long
Data mining Computational No Derived No No Yes Long

Sensitivity Analysis Techniques
Differential Analysis Analytical S.A. No Original Yes Yes Yes Long
Green Function Analytical S.A. No Original Yes Yes Yes Long
Couple/De-Couple Direct Analytical S.A. No Original Yes Yes Yes Long
Monte Carlo and Latin Hypercube Sampling Based S.A No Original Yes Yes Yes Long
ANOVA Sampling Based S.A No Original Yes Yes Yes Long
Fourier Amplitude Sensitivity Test Sampling Based S.A No Original Yes Yes Yes Long
Time uncertainty Sampling Based S.A No Original Yes Yes Yes Long
Entropy Based Epistemic Sampling Based S.A No Original Yes Yes Yes Long
Event Tracker Event Based S.A Min Original Yes Yes Yes Short
Event Clustering Event Based S.A Min Original Yes Yes Yes Short

Classifiers Techniques
Feed-Forward Neural Networks Supervised No(1) Derived Yes Yes No Long
Multi-Layer Perceptron (MLPNN) Supervised No(1) Derived Yes Yes No Long
Decision Tree (DT) Supervised No(1) Derived Yes Yes No Long
Naïve Bayes (NB) Supervised No(1) Derived Yes Yes No Long
Radial Basis Function Supervised No(1) Derived Yes Yes No Long
Hopfield Neural Network (RNN) Supervised No(1) Derived Yes Partially No Long
Elman Neural Network (RNN) Supervised No(1) Derived Yes Partially No Long
Jordan Neural Network (RNN) Supervised No(1) Derived Yes Partially No Long
Self-Organizing Feature Map Unsupervised No(1) Derived Yes Yes Yes Medium
Boltzmann Machines Unsupervised No(1) Derived Yes Yes Yes Long
Convolutional Neural Networks Deep Learning No(2) Derived Yes Yes Yes Medium
Restricted Boltzmann Machine Deep Learning No(2) Derived Yes Yes Yes Medium
Deep Belief Networks (DBN) Deep Learning No(2) Derived Yes Yes Yes Medium
Stacked Auto Encoder (SAE) Deep Learning No(2) Derived Yes Yes Yes Medium
Adaptive Resonance Theory 1 Hybrid No(1) Derived Yes Yes Yes Long
Adaptive Resonance Theory 2 Hybrid No(1) Derived Yes Yes Yes Fast
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will suggest a new methodology framework a fast decision to avoid further loss. Therefore,

to the author’s best knowledge, the event-based analysis is capable of addressing this issue,

which will be further discussed in the next chapter.

2.9 Summary

This chapter reviews the existing literature on PQ disturbances, with special emphasis on

troubleshooting techniques in both traditional and modern technology. Modern technique is

progressing well with simulation data, but there is a gap in the handling real-time industry

data which need to sort-out the dimensionality reductions problem. Replying to the key

research question about including the environment parameter in the system state analysis,

finding a proper research methodology that could deploy the relationship between all input

variables with the system KPIs with time constraints and low computational effort is the main

objective.

Borrowing from the signal processing methods, the author is looking at adapting the event-

based technique with the same approach with the Feature Extraction and Feature Selection

framework. The technique which comprises of Event Tracker and Event Clustering, are cate-

gorised as the only sensitivity analysis method that competently works with complex systems

with regards to heterogeneity and a large number of input variables in real-time [122]. Having

said that, a new approach in real-time sensitivity analysis methodology will be introduced in

Chapter 3 which will build a map of correlation between system input and output parameters.

With the correlation data in hand, the importance of applying machine learning on the data

was discussed based on the literature. The existing ML techniques available in the literature,

such as classification, which is to be used in the proposed approach of this research, have

shown promising results. Furthermore, the widely used supervised learning such as Multi-

Layer Perceptron Neural Network, Decision Tree and Naïve Bayes, which are the focal part of

this research are to be explored in this work. Thus, contributing new knowledge in predictive

modelling of a large-scale complex system. For proof of concept, an industrial case study which

experiencing significant technical and economic benefits will be discussed in later chapters.
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Event Modeller Technique

3.1 Overview

As mentioned in the previous chapter, there are various ways to troubleshoot PQ disturbance

problems. The conventional method uses manual configurations and visual inspection to

monitor the quality of the power supply in a system. This method was too difficult to interpret

and time-consuming. Later, the signal processing method was introduced to automatically

classify the PQ problem. Although this technique has been progressing well with various

artificial intelligence learning techniques, it doesn’t reflect well to a real industry data which

is complex and having external influence such as machine utilisation, energy efficiency and

environment factor. Having considered this influence factor in the assessment, the system

is getting more complex as it is. There is a need to deploy this information in a dynamic

platform that connects the embedded system with its Key Performance Indicator (KPI) to a

Discrete Event Simulation (DES) running in real-time. This platform will be trained using

machine learning tools for classification purpose. The main challenge is to produce a real-time

critical accurate knowledge that represents the system’s state, at a minimum cost. Two main

objectives are (1) to minimise the computational overhead by eliminating the input variables

having the least impact and (2) focus on the most significant variables by designing a DES

framework that considers all possible factors that could lead to a PQ disturbance problem in

a single scan. The gaps in the existing methods reviewed in Chapter 2 have been identified,

proposing a novel Event Modeller Data Analytics technique that could illustrate the research

method in this thesis.
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This chapter is divided into seven (7) sections. Section 3.2 aims to discuss the predictive

analysis concept in general. This is followed by section 3.3, which aims to provide an overview

of the event modeller technique with the associated predictive learning techniques using event

based sensitivity analysis approach. Section 3.4 intends to discuss on how data is accessed and

explored. Section 3.5 explains the event modeller technique and how it integrates with KPI

transfer function. Section 3.6 discusses predictive model development using various machine

learning technique and why the chosen techniques over other techniques are explained. Finally,

Section 3.7 provides a summary of the chapter and its place in the thesis.

3.2 Predictive Analytic

Predictive analytics has received a lot of attention in recent years due to advances in supporting

technology, particularly in the areas of big data and machine learning [204–206]. Predictive

analytics is the branch of the advanced analytics used to make a prediction about unknown

future events. It uses a number of data mining, predictive modelling, and analytical techniques

to bring together the information from historical data, business process, IT and management

team, to make predictions about future and thus optimise it for business benefits [207].

Predictive analytics has been around with different names. The term “data mining” and

“knowledge discovery” has been used by commercial and academic consecutively, to describe

the processes involved in creating predictive models [208]. The core of predictive analytics

relies on capturing relationships between explanatory variables and the predicted variables

from past occurrences and exploiting them to predict the unknown outcome. It is important

to note that the accuracy and usability of the prediction results will depend significantly on

the level of data analysis and the quality of assumptions [209].

As this research is posed to predict the variables that caused machine failures and deal

with big data analysis in real-time, a predictive analytics method is chosen to leverage on the

information provided by the machine, while gaining new insight for PQ disturbance funda-

mental research. The goal of this research framework is to integrate the tools and techniques

for predictive analytics and data visualisation with a domain-specific modelling environment

that makes PQ disturbance problem specification becomes easier. Knowing that big data has

a big implication on the predictive model process, it is important to define the term "predictive
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model" and "big data analytics" and how it is associated in the following sub-sections.

3.2.1 Predictive models

Predictive models are used to predict behaviour or values for new occurrences. It involves

data mining or statistical probability to estimate the future outcome using historical data

or transaction data [210]. In general, it extracts data from a massive database and uses

this data to predict future events or behaviour with the help of advanced algorithm such

as neural network, decision trees, linear regression, logistic regression, ridge regression, time

series, ANOVA and support vector machine to find the hidden pattern. The core element

of predictive models is the predictor, a variable that can be measured for an individual or

an entity to determine various risks and opportunities [211]. For example, a manufacturing

plant may consider the machine’s KPI such as energy efficiency, machine availability and

environment index as a predictor to determine the performance of the machine operations.

Once data has been collected for the relevant predictors, a statistical model is formulated.

Various applications use a predictive model to predict future event such as manufacturing

[212], financial prediction, Internet of Things [213, 214], machinery [215], health and energy

management system [206]. The use of this predictive model has steadily increased over the

past several years [216]; however, there is still a lack of capitalisation of the data available for

it to make accurate decision [217]. There are four steps in predictive models as follows:

1. Descriptive Analytics. Describing the raw data from multiple sources, to give a valuable

insight into the past without knowing the reason.

2. Diagnostic Analytics. Drilling down the historical data to find out the dependencies of

why it happened.

3. Predictive Analytics. Predicting future trends using the findings from descriptive and

diagnostic models by telling what is likely to happen.

4. Prescriptive Analytics. Making a decision to eliminate the future problem by prescribing

what action to advise the stakeholder.

Predictive models are often discussed in the context of big engineering data such as data

from sensors, instruments, data acquisition, servers and connected systems in a big data
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arrangement. This would make the prediction model very challenging in predicting accurate

future events. [218] view big data as one of the most escalating IT problems in the next decade

due to the enormous demands in different area such as science, industrial, military, medicine,

ecology, safety and others. The following subsection will further discuss the challenges in

handling big data.

3.2.2 Big Data Analytics

The increase in manufacturing data has made it challenging to conduct process analysis. There

is a need to manage this massive amount of data to ensure heterogeneity data is captured for

predictive analytics purposes. Many organisations collect data from different sources, which

make it very challenging to analyse data using traditional data management which is expensive

and time-consuming [219]. Big data refers to massive, high growth and diversified information

assets that can bring a lot of valuable information. It involves more than just managing the

volume of data [220]. Earlier, most researchers categorised data to the three pillars of words

which are volume, variety and velocity. Volume refers to the size or enormous amounts of

available data [221]. Variety refers to different types of data such as a vast range of systems

and sensors, or formats such as text, images, audio and video. Velocity refers to the speed

at which the data is collected and processed, such as real-time data or data stream from

different sources [222]. Therefore data with huge volume, high velocity, and great variety can

be referred to big data.

Recently, big data are associated with veracity, validity, and volatility [223]. Veracity refers

to noise, biases or abnormality in the data. This is to ensure the data is clean by performing

pre-processing stage. Validity refers to the quality of the data to be analysed. Valid data is the

key in making the right decision, producing a clear and accurate pattern or knowledge while

mining the data. Volatility, on the other hand, refers to data optimisation. High volatility

data makes the data relevant and available to be analysed. In today’s real-time scenario, a

massive amount of data is collected continuously, and it is vital to make sure the data selected

are relevant and valid, to get high accuracy results. The data is valid if it is converted into

useful information [224]. Big data gathered from different sources such as mobile phones,

social media feeds, IoT devices, databases, servers, and engineering applications. The data is

meaningless unless a scientific algorithm is implemented to extract valuable information from
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the voluminous data to make accurate decisions. The process of extraction and analysis using

this scientific algorithm is called Big Data Analytics. A term “Big data analytics”, is a set

of advanced technologies designed to work with large volumes of heterogeneous data. It uses

complex data mining algorithms in high-performance processors [225]. Big Data Analytics

is used to process a large number of data sets to uncover hidden patterns, market trends,

customer preferences and much other useful information that can be helpful for organisations

to make decisions to enhance their business. With Big data analysis, it is possible to process the

data very quickly and efficiently, which was not possible using traditional business intelligence

solutions.

There is a huge challenge in processing big data as follows:

1. Data sampling issue. Different data type makes it difficult to sample it.

2. Data extraction issue. To take out useful data from overall big data is crucial and

challenging.

3. Data structuring issue. The performance of the analytic process may vary due to this

data structuring process.

4. Data interpretation issue. The set of data is normally referred to as a group, and it is

very challenging to cluster the same groups.

5. Data complexity issue. Some data represent various format and highly complex which

affects performance and response time of the analytic process.

6. Data storage issue. Data storage issue is due to a large scale data, as most storage

devices are insufficient to store incoming data from various resources, so data storage is

becoming a challenge in big data.

7. Infrastructure issue. Infrastructure of an organisation can be a challenge for big data

analytics; a security breach of the organisation can directly affect the security and privacy

of data in big data analytics.

8. Data privacy issue. Data privacy focuses on the use and processing of individual data,

such as the development of policies in place to ensure the proper use of personal informa-

tion accessed and exchanged by the user. It can have a negative impact on the privacy
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of consumers while affecting business growth, sales performance and other competitive

disadvantages.

9. Data management issue. Data management is a crucial issue in big data because it can

affect performance, response rate and usability of a big data analytics solution.

Recently, cloud computing provides an efficient infrastructure to cater for this complexity

[226]. Cloud computing offers access to data storage, processing and analytics on a more

scalable, flexible, cost-effective and even secure basis than can be achieved with an on-premises

deployment. These characteristics are essential when data volumes are growing exponentially,

to ensure storage and processing resources are available as needed, as well as to get added

value from that data. However, due to some restricted confidential data, some company

doesn’t allow the manufacturing plant data to be shared in cloud computing.

It is useful to indicate the types of data involved in manufacturing. There are two types

of manufacturing data, known as structured data and unstructured data. Structured data is

the most common data using as a pre-defined data format collected from the manufacturing

operation such as field sensors, SCADA system, Enterprise Resource Planning (ERP) and

Manufacturing Execution System (MES). Unstructured data, on the other hand, are data

collected from an external system such as email and document management system. However,

it is difficult to extract and analyse process information from unstructured data [227].

As this chapter is intended to propose a predictive modelling technique in handling manu-

facturing complex big data, there is a need to solve the big data problem using an alternative

method which filters the output data into smaller scale, that have an influence to any uncer-

tain input data rather than analysing the entire raw data. Before proceeding further on the

proposed method, it is important to highlight the general workflow of a predictive analytics

technique, to observe how the proposed method fits and to build a predictive model that could

help system engineer solve complex plant data.

3.2.3 Predictive Analytics Workflow

Figure 3.1 illustrates a typical workflow of a predictive analytics process which will be discussed

further in the following steps:

1. Step 1: This stage involved importing data from various sources, such as real-time
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Figure 3.1: Predictive Analytic Workflow

SCADA system, databases, web archives and spreadsheets. The sources contain manu-

facturing structured data which has been converted into a formatted file (for e.g. .txt

or .csv) for the pre-processing stage.

2. Step 2: The data access in the previous stage is explored, extracted and selected. Differ-

ent data sources are combined and cleaned by removing outliers. A good, clean source

of data is important to get a good chance of pattern or relationships. This stage is

equivalent to the signal processing technique and sensitivity analysis technique reviewed

in Chapter 2.

3. Step 3: Develop an accurate predictive model based on the aggregated data using statis-

tics, curve fitting tools, or machine learning to predict an event or outcome. This stage

involved splitting the data into two parts, one is used to create an analytic model and

the remaining is used to test and validate the training model. The complexity of this

stage is highly dependent on how the data is pre-processed in the previous stage.

4. Step 4: The final step in the predictive model workflow is to integrate the model into

the main production system. Using desktop application or built-in SCADA system, the

model could forecast an outcome at some future state or time, based on changes to the

real-time data inputs to automate decisions and business processes.

Before introducing the Event Modeller Data Analytics technique in the next section, it

will be necessary to note that the proposed technique only cover the first three steps of this

workflow. The final step is reserved for future works when the predictive model is tested and

validated. This is to ensure the most effective model is chosen to warrant accurate prediction.
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3.3 Event Modeller Data Analytics Technique

Figure 3.2: Event Modeller Data Analytics Technique Overview

Sensitivity Analysis is an important technique in measuring the degree of influence that

an independent variable has on its uncertainty inputs [228]. It has the potential to minimise

the computational overhead by eliminating the input variables that have the least impact on

the system [126, 229–233]. However, this technique is found to be very challenging in finding

a true representation, especially when there is uncertainty in the input-output variables [234].

The competency of this sensitivity analysis was reviewed in Chapter 2 and understood that

most of the technique is computationally constraint, time-consuming and highly dependent

on historical data. [235] recommends a model-free solution which later [236] introduced Event

Tracker to solve the sensitivity analysis problem in high complexity systems. It is capable of

capturing the cause-effect relationships between triggers (input variables) and events (output

variables) within a specified period of time.

In most recent studies, [233] has introduced EventiC to solve the sensitivity analysis prob-

lem more intelligently, by removing all logical boundaries of isolation that exist in complex

systems with the principle that every acquirable knowledge affects the output unless proven

otherwise. The motivation for this research is to provide a solution for filling the gap between
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the existing sensitivity analysis techniques with the machine learning techniques, contributing

new knowledge in predictive modelling in a large-scale complex system. The proposed Event

Modeller Data Analytic technique built a map of correlation between system input and out-

put parameters while predicting the system fault based on the machine performance metrics.

Having reflected to the predictive modelling workflow discussed in Section 3.2.3, the proposed

Event Modeller Data Analytics technique is divided into three steps, as illustrated in Figure

3.2. The main steps are (1) accessing the plant data, (2) pre-processing the data and (3)

developing predictive models based on the data. Details of each step will be further discussed

in the following sections.

3.4 Stage 1: Access and Explore Data

This is the most important step in any research or assessment in predictive modelling tech-

nique. It is debated to find the best and accurate data fit to represent the system state.

Most industries such as power plant, manufacturing, automotive, and aerospace reveal that

the process of evaluating accurate models in real-time is expensive and an extremely time-

consuming process [233]. In addition, dealing with big data as explained in Section 3.2.2 makes

it more challenging. Engineering data emanated from the control system (i.e. electromechani-

cal device, electrical drives, transmitter, sensors, motors, actuators, alarm) proliferates via the

industrial Supervisory Control and Data Acquisition (SCADA) system. An efficient sensitivity

analysis technique is required to sort and reduce this big data into a smaller scale, which helps

data to be trained in a faster and less computational environment. Figure 3.3 illustrates a

common flow in accessing data in industrial system architecture. In this development, data

were extracted in two main modes known as real-time data and historical data. The real-time

data runs simultaneously with the SCADA system, providing direct access to the system via

the Open Platform Communication (OPC) server. For e.g., a level transmitter with a specific

tag_name updated the bunker level measurement in both local network (SCADA System) and

system development (Event Modeller) via the OPC server connection. The main advantage

of having this mode is that the system could predict system failure in real-time. Alterna-

tively, the historical data logged in the data acquisition server is converted into a .csv file

format, an excel file which could be easily accessed by both development software and system
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engineer. The main advantage of having the historical data mode is that whenever there is

a communication problem during operation, it could still run in offline mode. However, the

main challenge is to ensure all input-output variables in the main controller are linked to the

system development with the same functionalities. Errors in linking the tag_name on either

side will cost error to the system analysis, which mislead the prediction process. To avoid this

error, it is recommended to use the same tag_name for both sides, and thorough connectivity

test has to be in place during the development period.

Figure 3.3: Step 1: Access and Explore Data

3.5 Stage 2: Event Modeller Technique

The event modeller technique is designed to evaluate the relationship between the actual events

(Output Data) to the cause of the triggered events (Input Data) using a data mapping concept.

It groups the high correlation system parameters in the form of matrices and places them

into mutually exclusive blocks. This creates an input-output relationship, which considered

both internal and external factors. One significant difference between the proposed event

modeller with other traditional data modelling technique is how the input data make an

assumption on its output data. The traditional method assumes the input-output relationship

as a true representation of a known data series, while the event modeller technique makes no

assumption about it. This makes the proposed event modeller technique becomes neutral in

making a judgement of the input-output relationship. Figure 3.4 illustrates the event modeller
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techniques which comprises of Event Tracker, Event Clustering and a Look-up table.

Figure 3.4: Event Modeller Techniques

Industrial data are complex. In this system development, event tracker [126] use cause-

effect detection to dynamically track the complexity of each triggered-event relationship. It

generates a sensitivity index which measures the impact of the relationship between the trig-

gered data and the event data pairs. High sensitivity index score will be indicated while

the lesser impact relationship will be eliminated. This will reduce the computational effort

while achieving dimensional reduction. The Event Tracker is a computationally efficient tech-

nique that focuses on the state changes of the involved system components. It merely takes a

snapshot of the system states, which helps engineers in observing system performance [237].

Event Clustering is designed to improve the real-time sensitivity analysis, by automatically

re-arranging the input-output relationship in rank order of its importance and relevance. This

technique interprets the changes in the value of input-output data at the given level, detecting

the coincidence and finally groups it as a related event. The process of calculating the number

of coincidence occurs at a specified scan rate time interval, to ensure a relationship weight

is established for modelling and control purposes [233]. Despite filtering the unimportant

relationship occurs between the input-output relationship, event clustering has the potential

to identify new influencing parameters that were previously thought irrelevant, which make it
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unique and interesting to improve the data quality.

A look-up table is an array of data to map input values to output values. It is used

to transform the input data into a more desirable output format. The lookup table allows

replacing run-time computation or logic circuitry with a simpler array indexing operation

[238]. Retrieving a value from a look-up table is faster rather than examining it from the

whole database. With the advantage of the logical separation of data, it makes it relevant

to prepare the data for machine learning purposes. In this system development, the look-up

table is used to match the outcome of the event clustering with the industrial key performance

indicator expressed within the system state operation.

3.5.1 Event Modeller Basic Parameter

Before proceeding further into the event modeller technique, it is vital to explain the basic

parameters of the event modeller technique, which are borrowed from [126]. Event modeller

defines an input and output occurrence matrix [+ -] at pre-specific time intervals. This matrix

subsequently describes the relationships between causes that trigger events (trigger data) and

the actual events (event data), enabling the construction of a discrete event framework for

sensitivity analysis. A short description of discrete event systems, together with the definitions

and impact of trigger data and event data, are summarised in Table 3.1.

Table 3.1: Summary of Basic Description for Event-Modeller

Description Definition Impact
Discrete
Event System

The disparate occurrence of events
in a specified time span.

Any changes in the input/output will change the
system state.

Triggered
Data (TD)

Any input variable whose value
transition registered an event.

Any Individual or combination of input variables
may have different effects on different system outputs
ED = {TD1, TD2,.., TDn}

Event Data
(ED)

The series of data that represent the
state of the system at a given time

Any Individual or combination of input variables
may have different effects on different system outputs
ED = {TD1, TD2,.., TDn}

Triggered
Threshold
(TT)

A given numerical value set point
that the values of TD series based
on experts/historical data

The fluctuations in the TD series that are interpreted
as triggers are determined in comparison with the TT.

Event
Threshold
(ET)

A proportion or percentage of an
overall range of values of TD
series over the time scale

The fluctuations in the ED series that are interpreted
as triggers are determined in comparison with the ET

Search
Slot (SS)

A fixed time slot within which
batches of TD and ED are captured The fixed time slot(scan rate) is determined by experts.

Analysis
Span (AS)

The time span within which a
period of sensitivity analysis occurs. Comprised of a number of consecutive SS.
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3.5.2 Exclusive-NOR Functionality

Having defined the Event Modeller basic parameter in the previous section, it is worth noting

the Exclusive-NOR logic that is widely used in the Event Modeller technique. The output

value of this logic can be set to 0 and 1 depending on the state of the input/output. If both or

none of the input/output event data is triggered, the value is 1; otherwise, it is 0. This logic

made Event Modeller a unique technique, which eliminates all the logical boundary restrictions

present in a complex system, with the principle that any acquired knowledge or data (input)

influences the output unless it is not demonstrated. In addition, the technique is not only

capable of filtering unwanted data but is capable of including information that was thought

to be irrelevant to the system. Table 3.2 present the table truth for an Exclusive-NOR logic.

Table 3.2: Exclusive-NOR Functionality

Input 1 Input 2 Output
0 0 1
0 1 0
1 0 0
1 1 1

3.5.3 Event Modeller Basic Assumption

There are a number of assumptions that need to be made before implementing the Event

Modeller. These assumptions are borrowed from [239] and can be listed as:

3.5.3.1 Assumption 1: Delays

The delay between EDs and the respective TDs is negligible, and all TDs lead to a specific

ED (for all intent and purposes instantaneous).

3.5.3.2 Assumption 2: Thresholds

The triggers and event thresholds are a pre-specified range of signal fluctuation for every

data series and determined the system expert, which remains fixed within sampling time.

Thresholds are usually based on a percentage of a signal’s real value which has to be assumed

as an event. For example, a signal with a value of 100 units and a 1% threshold is detected

as an event if its value exceeds 101 or decreases 99 units at the next analysis span (sample).
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3.5.3.3 Assumption 3: Homogeneity of the data series

The event data series is assumed to be stationary covariance (mean and variance remain

constant during the analysis span).

3.5.3.4 Trigger-Event detection

Equation 3.1 and 3.2 indicate the relationship between each event triggered by input at t and

t− 1 with respect to changes in output. Each change to the output in a given time span can

be expressed as an event and the positive value of the inputs as triggers, thus output can be

defined as Event Data (ED). Both Inputt and Inputt−1 can be considered as Triggered Data

(TD).

if(Inputt − Inputt−1) > Θ T rigger→ TDt (3.1)

if(Outputt −Outputt−1) > Ψ Event→ EDt (3.2)

3.5.3.5 Sample scan size

The system expert defines the sample size (i.e. the number of samples that construct the

incident matrix). The data series does not have a maximum sample size, but commonly 250

samples are taken as the minimum sample size. The data is then transferred to the EventiC

algorithm to construct the incidence matrix.

3.5.3.6 Average sensitivity analysis weight

In order to find the average SA weight, all diagonal ROC matrices for complete sample numbers

must be applied. The normalised weight of each input variable is the output coefficient of the

system.

3.5.3.7 Event Modeller Limit

Event Modeller Limit (EML) or also known as Cut-Off Threshold is a mechanism to deduct

the less important input variables and is in the range 0 ≤ EML ≤ 1 [126]. For example, when

EML = 0.95, all inputs with an average SA weight of less than 0.95 or 95% are deducted.
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3.5.3.8 False negative test

A false-negative test is carried out in addition to a cut-off threshold, to ensure the inputs are

not unnecessarily discounted. In order to confirm these eliminations, a false negative test must

be performed by a system expert analyst.

3.5.4 Rank Order Clustering

The Rank Order Clustering (ROC) technique proposed by King (1980) [127] uses matrix ma-

nipulation techniques to rearrange the rows and columns of the matrix in an iterative manner.

The approach ultimately results in a matrix structure, in which both rows and columns are

arranged in order of decreasing value in a finite number of steps. The determination of clusters

of occurrence in block diagonal format is an efficient algorithm. This method is limited as it

is based on the premise that data classes will be highly similar and grouped into blocks which

are mutually exclusive. In the cluster analysis method, a group of data values are ‘similar’

according to a ‘similarity criteria’. They can either be replaced by a new value representing

the group (clumping) or assigned a unique type of label (partitioning) [128, 240].

The Event Modeller technique embraced the ROC technique, to establish a cause-effect

grouping of system inputs (originating from sensors/actuator’s) and outputs (system perfor-

mance indicators).

3.5.4.1 Rank Order Clustering Algorithm

Turning now to the ROC algorithm, step-by-step implementation of the ROC method is

explained as follows.

1. Step 1: Populate machine-part incident matrix (MPIM), where elements are presented

as “0” or “1”. Zero (0) indicates no operation and one (1) indicates an active operation.

Parts are arranged in columns and machines are in rows.

2. Step 2: A weight for each row i and column j(in a m by n matrix) are calculated using

Equation 3.3 [127].

Rowi : Wi =
m∑

j=1
aij2m−j (3.3)

Columnj : Wj =
m∑

i=1
aij2n−i (3.4)
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Figure 3.5: Machine Part Incidence Matrix

3. Step 3: Read the series of 1 and 0s from left to right in the matrix as a binary number

2i (0 to i− 1 number of rows). Rank the rows in the order of decreasing values. In the

case of a tie, rank the rows in the same order as they appear in the current matrix.

4. Step 4: Numbering from top to bottom, is the new order of rows the same as the rank

order determined in the previous step.

5. Step 5: Reorder the rows in the part-machine incidence matrix by listing them in de-

creasing rank order.

Figure 3.6: Incident Matrix Row Ranking

6. Step 6: In each column of the matrix, read the series of 1s and 0s from the top to the

bottom of the binary number 2i (0 to j− 1 number of rows). Rank the columns in order

of decreasing value. In the case of a tie, rank the columns in the same order as they

appear in the current matrix.

7. Step 7: Numbering from left to right, is the current order of columns the same as the

rank order determined in the previous step.

8. Step 8: Reorder the columns in the part-machine incidence matrix by listing them in

decreasing rank order, starting with the left column.
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Figure 3.7: Incident Matrix Column Ranking

3.5.5 Event Modeller Algorithm

The existing Event Modeller technique proposed by [233] is improved for optimisation pur-

poses. The following are the step by step implementation of the algorithm.

Step 1: Set Event Modeller Limit (EML) in %.

Step 2: Set Threshold Setting (Th) in %.

Step 3: Assign Upper Limit (ULT h) and Lower Limit (LLT h) with the following equation:

ULT h = 100 + Th

100 (3.5)

LLT h = 100− Th
100 (3.6)

Step 4: Populate First Triggered Data (TD1)

Step 5: Multiply First Triggered data with Upper Limit,

TD1UL = TD1 · ULT h (3.7)

Step 6: Multiply First Triggered data with Lower Limit,

TD1LL = TD1 · LLT h (3.8)

Step 7: Populate Next Triggered Data (TD2).
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Figure 3.8: Combining all Incidents Matrix

Step 8: Evaluate the different between First Triggered Data (TD1) and Next Triggered

Data (TD2):

TDdiff = TD1 − TD2 (3.9)

Step 9: Determine the final output for the first pair (TDOutput):

if (TDdiff > TD1UL)⇒ TDOutput = 1

else if (TDdiff < TD1LL))⇒ TDOutput = 1

else⇒ TDOutput = 0

(3.10)

Step 10: Populate First Event Data (ED1).
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Step 11: Get First Event Data Benchmark (ED1B).

Step 12: Get First Event Data Setting (ED1S).

Step 13: Assign First Event Data Upper Limit (ED1UL and Lower Limit (ED1LL with the

following equation:

ED1UL = ED1S + ED1B (3.11)

ED1LL = ED1S − ED1B (3.12)

Step 14: Populate Next Event Data (ED2).

Step 15: Evaluate the different between First Event Data (ED1) and Next Triggered Data

(ED2):

EDdiff = ED1 − ED2 (3.13)

Step 16: Determine the final output for the first pair (EDOutput):

if (EDdiff > ED1UL)⇒ EDOutput = 1

else if (TDdiff < ED1UL)⇒ EDOutput = 1

else⇒ TDOutput = 0

(3.14)

Step 17: Repeat Step 4 to Step 9 for Next set of Triggered Data (Input).

Step 18: Repeat Step 10 to Step 16 for the Next set of Event Data (Output).

Step 19: Repeat Step 17 to Step 18 to complete first batch of Input-Output data.

Step 20: Populate the first batch of input-output event coincidence matrix with binary

weighting values of exclusive NOR function.

Step 21: Populate the second batch of input-output event coincidence matrix with binary

weighting values of exclusive NOR function.

Step 22: Average each input-output event coincidence.

Step 23: Sort rows of the resultant binary matrix into decreasing order of their decimal

weights.
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Step 24: Repeat steps 20 to 23 for every column.

Step 25: Repeat steps 20 to 24 until the position of each element in each row and column

does not change.

Step 26: A weight for each row i and column j (in a m by n matrix) is calculated using

Equation 3.3 for row and Equation 3.4 for column.

3.5.6 Key Performance Indicator

Modern manufacturing process produces huge data within the control system. This data will

be meaningful if it is translated into a performance measure. Metrics used to characterise

such performance measures are referred to as Key Performance Indicators (KPIs). The use of

existing shop-floor to measure and monitor industrial KPIs has been a trend. [241] used OLE

which integrates with DES modelling capabilities to measure the KPIs for a brewery industry.

[242] used data-driven scheme of KPIs prediction and diagnosis for hot strip mill industry.

[243] proposes an analytics solution for calculating statistical KPIs in the Human Machine

Interface (HMI) layer. Some HMI products have built in libraries which allow Standard KPI

calculation but it is not suitable for all types of industry. Therefore, there is a need to translate

a suitable KPI that suit the type of operation. Basic KPIs are calculated directly from the

output operation data, and they serve as the foundation for Overall performance KPIs [244].

The reliability of a machine is indirectly proportional to the period it is working by going

through all phases of product life cycle management. The first stage is the early failure period,

where no preventive maintenance policy is needed, and the failure is corrected on an occurrence

basis. The next phase is the useful life where failure occurs randomly, and the Maintenance

Policy is determined by the equipment’s operating condition. The final stage is the wear

out where a preventive maintenance policy for a fixed time is needed as the probability of

a malfunctioning item will increase over time. A bath-tub curve in Figure 3.9 presents the

three-phase of this reliability period [1].

3.5.6.1 Time-based Key Performance Indicator

Time-based KPIs are data related to time duration, defining activities associated with produc-

tion and maintenance. The general viewpoints for measuring time base KPIs are machine, op-
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Figure 3.9: Reliability Bath-tub Curve Image: courtesy of [1]

erator or order production. However, in practice, actual production time differs from planned

production time. This is because actual production time incorporate machine breakdowns,

shift changeover and quality deterioration. Thus, the calculation of KPI has to consider all

these factors to reflect accurate metrics. Hence it is important to understand the KPI inter-

relationship. A hierarchical structure for KPI categorisation proposed by [244] is shown in

Figure 3.10.

The time-based KPIs studied in this project are Availability, Instantaneous Utilisation,

Schedule Utilisation and Performance. Considering a piece of equipment operating life, the

time probability until a breakdown or dysfunction occurs is known as Mean Time Between

Failures (MTBF) that is directly proportional to the number of years a machine has been

functioning as determined by the following equation:

MTBF = Operating Life of a Number of Items

Total Number of Failures
(3.15)

Similarly, the time probability of failed system, under maintenance proceedings, is restored to

operable conditions within the downtime period is known as Mean Time To Repair (MTTR)

which is a measure of Maintainability. MTTR is directly proportional to the Total Repair
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Figure 3.10: KPI Categorisation

Time defining by the following equation:

MTTR = Total Repair time of a Number of items

Total Number of Failures
(3.16)

Availability is defined as the relationship between Maintainability and Reliability by the fol-

lowing Equation:

Availability = MTBF

MTBF +MTTR
(3.17)

Alternatively, availability could also be calculated as the ratio of Run Time to Planned Pro-

duction Time. It takes into account all events that halt planned production long enough where

it makes sense to track a reason for being down (typically several minutes).

Availability = Run Time

P lanned Production T ime
(3.18)

Run Time is simply Planned Production Time less Stop Time, where Stop Time is defined as

total time where the manufacturing process was intended to be running but was not met due
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to Unplanned Stops (e.g., Breakdowns) or Planned Stops (e.g., Changeovers). [245]

Run Time = Planned Production T ime− Stop T ime (3.19)

The Instantaneous Utilisation is defined by the following Equation:

Instantaneous Utilisation = Busy T ime

Available T ime
(3.20)

This indicator accounts statistics on a machine’s usage at discrete intervals in time by ponder-

ing the Utilisation as a function of time. This metric considers all resources in the manufactur-

ing system including all non-schedules periods a workstation was not planned for production.

On the other hand, Schedule utilisation reports the cumulative average utilisation over the

period that the resource was scheduled in the system [246].

Schedule Utilisation = Busy T ime

P lanned Production T ime
(3.21)

Performance takes into account anything that causes the manufacturing process to run at less

than the maximum possible speed (including both Slow Cycles and Small Stops). Performance

is the ratio of Net Run Time to Run Time. It is calculated as:

Performance = Ideal Cycle T ime× Total Count
Run Time

× 100% (3.22)

Ideal Cycle Time is the fastest cycle time that your process can achieve in optimal circum-

stance. Therefore, when it is multiplied by Total Count the result is Net Run Time (the fastest

possible time to manufacture the parts). Since rate is the reciprocal of time, Performance can

also be calculated as:

Performance =
T otal Count
Run T ime

Ideal Run Rate
× 100% (3.23)

Quality takes into account parts made that do not met quality standards, including parts that

need to be reworked. OEE Quality is similar to First Pass Yield, in that it defines Good Parts

as parts that successfully pass through the manufacturing process for the first time without

any rework. Quality is calculated as:
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Quality = Good Count

Total Count
× 100% (3.24)

OEE takes into account all losses, resulting in a measure of truly productive manufacturing

time. It is calculated as:

OEE = Availability × Performance×Quality (3.25)

If the equations for Availability, Performance, and Quality are substituted in the above and

reduced to their simplest terms the result is:

OEE = Good Count× Ideal Cycle T imes
P lanned Production T ime

(3.26)

3.5.6.2 Energy and Emission Based Key Performance Indicator

To complement the Time-Based KPIs discussed earlier, it is useful to look at the energy

consumption and emission contribution that could potentially harm the environment. In

general, energy consumption can be calculated by multiplying the motor rating (kW) with the

duration it operates. There are three states of motor known as run, idle and stop. During

running state, the motor is capable to operate at its 100% loading while in idle state, the

motor operates at 25% of its loading. Obviously, there is no loading when it stops.

Busy EC = Busy T ime

Motor Rating ×No of Motors× 3600 (3.27)

Idle EC = Idle T ime

Motor Rating ×No of Motors× 3600× 0.25 (3.28)

Thus, to calculate Total Energy Consumption, both busy and idle has to be added.

Total EC = Busy EC + Idle EC (3.29)

Having the total energy consumption, it is easier to calculate the carbon footprint which

consist of Carbon Dioxide Emissions (kgCO2), Methane gases (kgCH4), Nitrous oxide gases

(kgNO2) and Carbon Dioxide Equivalent (kgCO2e), courtesy of UK Greenhouse Gas Report-

ing: Conversion Factors 2017, [247] which will be discussed in Equation 3.30 to Equation 3.33
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as follows:

Carbon Dioxide Gases (CO2) = Total EC × 0.448581 (3.30)

Methane Gases (CH4) = Total EC × 0.000412 (3.31)

Nitrous Oxide Gases (NO2) = Total EC × 0.002339 (3.32)

Carbon Dioxide equivalent Gases (NO2) = Total EC × 0.451331 (3.33)

As a key performance indicator, the energy consumption ratio can be calculated with the

following equation:

Energy Consumption Ratio = Total EC

Total Production
(3.34)

Green House Gases Ratio = kgCO2e

Total Production
(3.35)

3.5.6.3 Event Modeller Key Performance Indicator Transfer Function

Considering the time-based KPI, energy-based KPI and environment-based KPI in the previ-

ous subsection, it is essential to integrate the Event Modeller technique with thsese KPIs for

data analytics purposes. In EMDA, KPI plays the role of a human, monitors the manufac-

turing line in real-time. All machine activity such as in-service, breakdowns, and failure does

impact the KPI metrics. Having tailored it with the event modeller input-output relationship,

rational information from the system state could be generated in the form of look-up table

as shown in Figure 3.11. Accessing both data from KPI and Event Modeller Technique in a

single look-up table platform, the machine learning algorithm could retrieve this packeted data

in predicting future events. At this proof of concept stage, both are running independently.

For future work, if both systems are tested to be compatible, it could be run simultaneously

for a real-time predictive model. So far this section has discussed on the second step of the
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Figure 3.11: Automatic Translation of KPI Transfer Function

proposed EMDA technique which focused on the Event Modeller, KPI and the integration of

the Event Modeller and KPI. The following section will discuss the third step of the proposed

EMDA technique, further elaborating the machine learning model that has been selected to

be used in this research.

3.6 Stage 3: Develop Predictive Models

Predictive modelling incorporates mathematical techniques, machine learning and data min-

ing to explore knowledge in order to make predictions about unknown future events. A

mathematical approach uses an equation-based model that describes the phenomenon under

consideration while machine learning and data mining uses a "black box" approach, which

requires an extensive simulation effort to train model input from the output to make a pre-

diction. Some of the applications include predictive maintenance [248], fault diagnosis [249],

control system [250], and quality control [251]. Predictive modelling is often performed using
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curve and surface fitting, time series regression, or machine learning approaches. Regardless

of the approach used, the process of creating a predictive model is the same across methods.

The steps are summarized in the following Table 3.3.

Table 3.3: Summary of Predictive Model Steps

Steps Description
Step 1 Clean the data, to eliminate outliers and treating missing data.
Step 2 Identify a parametric or non-parametric predictive modelling approach to use.
Step 3 Pre-process the data into a suitable form for the chosen modelling algorithm.
Step 4 Specify a subset of the data to be used for training the model.
Step 5 Train, or estimate, model parameters from the training data set.
Step 6 Conduct model performance or goodness-of-fit tests to check model adequacy.
Step 7 Validate (Testing) predictive modelling accuracy on data not used for calibrating the model.
Step 8 Use the model for prediction if satisfied with its performance.

As explained in the introduction of this Chapter, the objective of this research is to deploy

machine learning platforms that could predict the variables causing machine failure. Machine

failure could be due to different reason, such as climate change, device failure, system in-

terruptions, or operator mishandling. Thus a suitable supervised learning model has to be

decided. In supervised learning, the training sets are composed of known input data and

response values. The training sets feed the machine learning system that tries to generalise

the function involved in mapping new data sets [217]. Then it follows up with testing sets,

to validate the model accuracy. There are numerous applicable classification methods, such

as Support Vector Machine, Logistic Regression, Random Forest, Naïve Bayes, Decision Tree

and artificial neural networks. However, a choice of classifiers is crucial in order to provide a

meaningful solution to the problem. In terms of precision and speed, each model has its own

advantages and disadvantages.

Figure 3.12 illustrates the EMDA classification technique. The packet data from the

look-up table is transferred to the predictive model platform. Once the data is exported, all

steps in Table 3.3 are implemented according to the modelling approach. There are various

supervised learning technique can be employed within the EMDA platform as discussed in

Section 2.7. A choice of classifiers is crucial in order to provide a meaningful solution as there is

no one algorithm works well for every problem. As an introduction to EMDA technique, three

classification modelling approaches have been chosen, namely, Decision Tree (DT), Multi-layer

Perceptron Neural Network (MLPNN) and Naïve Bayes (NB). Four main criteria have been set
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Figure 3.12: Classification using Machine Learning

to justify the selection of classifier techniques which include (1) Type of the Learning, (2)Type

of the Data, (3) Complexity and (4) Support Real-Time which will be further discussed in the

following Table 3.4.

3.6.1 Decision Tree

DT model recursively separates data samples into branches to construct a tree structure in

order to improve the accuracy of the classification. Every tree node is either a leaf node or a

decision node. All decision nodes are split, to test the values of some data attribute functions.

Each branch of a decision node corresponds to another test result. Every leaf node has a class

label attached to it.

DT classifiers are simple and straightforward. The classifier can handle a variety of input

data that is nominal, numeric and textual, capable of processing invalid datasets or missing

values, and is a high-performance classifier with a limited number of efforts [252]. The decision

tree is developed in two steps to learn the model using the training dataset and to test the
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Table 3.4: Criteria in Selecting the Classifiers

Description DT MLPNN NB
Type of
Learning

Supervised
Learning

Supervised
Learning

Supervised
Learning

Type of
Data

Numerical and
categorical data

Numerical and
categorical data

Binomial and
categorical data

Complexity
Able to handle
multi-output
problems

Capability to
learn non-linear
models

Super
Simple

Real-time
resource

Yes but with
limitation.

Yes. Capability
to learn models
in real-time

Yes. Capability
to be updated
frequently.

model using the test dataset to evaluate the model. In a training dataset, the decision tree

is constructed by obtaining significant attributes (variables) to be the root and nodes of the

tree. Significant attributes are computed using entropy and information gain (for C4.5 tree

type) as in Equation 3.36 and 3.38

E(C) = −
c∑

i−1
Pilog2pi (3.36)

Where C in Equation 3.36 denotes the computation of entropy of a target variable. Meanwhile,

Equation 3.37 is used to compute the entropy of a target variable (C) with a condition of

an attribute (X). While in Equation 3.38 is to obtain gain information which indicates the

significant attribute to be a node of the tree.

E(C,X) =
∑

C∈X

P (C)E(C) (3.37)

Gain(C,X) = E(C)− E(C,X) (3.38)

Selection of an attribute to be a node in the tree is based upon the highest value of gain

information (Equation 3.38). A branch with entropy of 0 will be a leaf node while a branch

with entropy more than 0 needs further splitting. The general algorithm for building DT is

as follows:

1. Start with the entire training subset and a vacant tree
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2. If all training samples are of the same class label c at the current node n, then the node

becomes a leaf node with label c

3. Or else, select the splitting attribute x that is the most important in separating the

training samples into different classes. This attribute x becomes a decision node

4. A branch is created for each individual value of x, and the samples are partitioned

accordingly

5. The process is iterated recursively until a certain value of specified stopping criterion is

achieved

3.6.2 Multi-Layer Perceptron Neural Network

Artificial Neural Network (ANN) is a machine learning approach which mimics the functioning

of the nervous system. It is usually referred to as biologically motivated and highly sophis-

ticated analytical techniques. They are capable of modelling extremely complex non-linear

functions. The neural network consists of several neuron layers. The number of layers depends

on the best fit for the problem model studied. When the neural network is fed with data, back-

propagation or forward propagation algorithms will run to update the connection strength and

reduce the cost function. ANN are analytical techniques based on cognitive system learning

processes and brain neurological functions, capable of predicting new patterns (on specific at-

tributes) from other patterns (on the same or other attributes) following a method of so-called

learning from existing data [253].

Back-propagation MPLNN is the most popular ANN architecture. MLPNN is known to be

an efficient function approximation medium to predict and classify problems. The structure of

MLPNN is organised into layers of input, output and hidden layers of neurons. When at least

one hidden layer exists, the network’s actual computations are then processed. Each neuron

in the hidden layer adds its input attributes to xi after multiplying them by the respective

connection weights to wij and computes its output to yj using the Activation Function (AF) of

that amount. AF can be either threshold function, a sigmoidal, hyperbolic tangent, or radial

basis function:

yi = f(
∑

WijXi) (3.39)
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where f is the activation function. Back-Propagation (BP) works by presenting each input

pattern to the network where the estimated output is computed by performing weighted sums

and transfer functions. The sum of the squared differences between the desired and the

estimated values of the Mean Square Error, MSE output neurons is defined as:

MSE = 1
2

∑
j

(ydj − yj)2 (3.40)

where ydj is the desired value of output neuron j and yj is the estimated output of that

neuron. In Equation 3.39, each weight wij is adjusted to reduce the MSE of Equation 3.40 as

fast as possible. BP applies a weight correction to reduce the difference between the network

estimated outputs and the desired ones; i.e., the neural network can learn and can thus reduce

the future errors [254, 255]. BP is easy to implement and works well in general. Nonetheless,

it has a slow convergence approach and can be trapped in the local minima [163]. Another

drawback of the MLPNN models is that they require the initialisation and adjustment of many

individual parameters in order to optimise their performance.

3.6.3 Naïve Bayes

Probabilistic approaches to classification are a common machine learning task. Examples

include Bayesian-based classifiers [256, 257], which performance is good in terms of accuracy.

In recent work, the classifier’s predictive performance (accuracy 90.3%) has proven to be the

best in predicting the chemical Ames mutagenicity with 5-fold cross-validation [258]. The

Naïve Bayes (NB) classifier is particularly appropriate when the dimensionality of the inputs

(variables) is high [259]. NB is a classification algorithm for binary (two-class) and multi-class

classification problems. The NB algorithm is a simple probabilistic classifier that calculates

a set of probabilities by counting the frequency and combinations of values in a given data

set based on the Bayes’s Theorem with the conditional independence assumptions. Bayes’

Theorem is formulated as [260]:

P (c|ti) = P (c)P (ti|c)
P (ti)

(3.41)

where c is a class of the target variable (C)(c ∈ C)

P (c|ti) is the posterior probability of class (target) given predictor (attribute). P (c) is the
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prior probability of class. P (ti|c) is the likelihood which is the probability of predictor given

class. P (ti) is the prior probability of predictor.

3.7 Summary

Event Modeller Data Analytic (EMDA) was introduced in this chapter as a technique to predict

the pattern of system problem in a time-constrained complex system. Borrowed from the

EventTracker and EventiC principle of the interrelation of causal events, the EMDA technique

cohesively blended with translated KPI which makes systems more intelligent in classifying the

state of the machine that deals with real-time events. For testing and validating purpose, three

machine learning models, which include Decision Tree (DT), Multi-Layer Perception Neural

Network (MLPNN) and Naïve Bayes has been chosen to integrate with the EMDA technique.

This technique embraced the predictive analytics workflow, consisting of four steps. However,

EMDA only progressed up to step 3, which left step 4 for future works. Details of each step and

how it is integrated within the proposed EMDA technique has been discussed extensively in

this chapter. The basic parameter of DES, including all algorithm and mathematical function

used within the research is also presented in this chapter. As proof of concept, this technique

will be used to solve the industrial case study in Chapter 6.
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Industrial Case Study

4.1 Overview

The power industry is essential to the industrial world, transporting energy along the supply

chain to residential, commercial, government infrastructure and to consumers for daily life

activity. Power plant generates electricity and convert them into High Voltage (HV) before

transfer it to the system grid. This can reduce the energy losses while transmitting it in long

distance. When the energy reach the substations, it is then convert into Low Voltage (LV)

before it distributed to consumers. Figure 4.1 shows a general power generation supply chain.

The reliability of the individual power plant is determined by the performance of the

entire supply chain, which includes the performance of the equipment, the quality of the

generated power and control lines, as well as the supply of materials. The performance of the

machinery is one of the highest priorities in operation and maintenance of the power station

as it has direct impact on the financial, reputation, security and safety of the plant. The

performance of a Continuous Ship Unloader (CSU) machine in a Malaysian Power Plant is

being used as a case study in studying the failures of harmonic filters. The implication of these

frequent failures has increased machine downtime and disruption to the national grid while

reducing the personnel safety and plant availability. To solve the problem, an effort to analyse

both internal and environment parameter that may have a significant impact on the system

is highly desirable. A set of Key Performance Indicators (KPI) are selected for continuous

monitoring of the machines and to determine the effect of internal and environmental events

that may demonstrate high correlations with failures of harmonics filters. The aim is to
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propose a Real-Time Software in the Loop (SIL) framework that identifies the inputs which

have a significant impact on the ineffectiveness of the machine power system. The judgement

between useful/useless and relevant/irrelevant for the performance affecting events (input)

depends on the speed and the quality of the separation process.

Figure 4.1: Power Generation Supply Chain, Image: courtesy of Australian Energy Market Operator [2]

The hypothesis to be tested is that the implementation of EMDA could lead to (a) offering

operation manager the key performance indicator status of the plant in real-time (b) providing

system engineer with known and unknown parameter that could lead to power system failure.

(c) decision aid system in making necessary action before fault occurs again in the future. (d)

suggesting ways to schedule an efficient operation activity and (e) providing information to

tune the machine.

This chapter aims to address the industrial case study and how the EMDA technique

introduced in the previous chapter can be used to predict future fault patterns. The remainder

of this chapter is divided into six main sections. Section 4.2 provides a general overview of a

power generation industry. Section 4.3 describes the detailed breakdown of the target machine.

In this section, sufficient information is presented to ensure that the reader understands the

operation of the system. Section 4.4 brings out the result of the PQ Assessment Initiatives

to highlight the gap in this study. The chapter then discusses the industrial data collection

set-up in Section 4.5. Chapter 4 is finally summarised in Section 4.6.
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4.2 Power Generation Industry

The main objective of this section is to gain a sufficient understanding of the power generation

main processes with its sub-processes which have a significant relationship to the Key Perfor-

mance of the whole plant availability. The coal-fired power plant is a type of power plant that

uses the combustion of coal to generate electricity. In general, this plant is driven by three

main component which are generator, steam turbine and supercritical boiler which supported

by Coal Handling Plant and other Balance of Plant (BOP)’s. The conversion of this coal into

electricity is a multi-faceted process:

1. Coal Unloading and pulverising process feed via Coal handling Plant

2. Combustion of pulverised coal in Super Critical Boiler

3. Extraction of thermal energy from pressurised steam to rotate Steam Turbine

4. Generation of electricity in Power Generators

Figure 4.2: Coal Fired Power Plant Overview, Image: courtesy of [3]

4.2.1 Coal Handling Plant

Coal is unloaded from the vessel and transferred to the coal yard via a series of belt conveyors.

The Stacker Reclaimer machines then ferry the incoming coal at the coal yard to the selected
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stockpiles, which is later being reclaimed and transported to the coal bunker by another series

of conveyor belt. Before entering the bunker, the coal will pass through another necessary

segregation process at the coal crusher house, where coal with the size of less than 50mm will

be crushed and directly sent to the bunkers by the belt conveyors. The rejected coal (sized

more than 50mm) will be sent back to the coal yard. The coal retained inside the bunker

will be re-crushed into pulverised fuel in a pulveriser. Primary air is being used to convey the

pulverised fuel into the furnace located inside the boiler for a smooth combustion process to

take place.

4.2.2 Super Critical Boiler

During the boiler start-up, Liquefied Fuel Oil (LFO) is used until stable firing is achieved at

approximately 30% of the generator load. Then the pulverised fuel from the Coal Handling

Plant is used to firing between 30% till 100% load. Secondary air from Force Draft Fan is used

as combustion air. Demineralised water is supplied to the boiler steam drum and thousands

of water tubes inside the boiler. The heat generated from the combustion process turns water

into steam inside the steam drum.

The steam is then moved to a series of superheaters while unconverted steam inside the

steam drum will be recirculated to water wall. Bottom ash and fly ash will be the by-product

of this combustion process. The bottom ash will be sent to Bottom Ash Bin before being sent

out to ash pond. Meanwhile, fly ash in the flue gas will be filtered by Electrostatic Precipitator

(ESP) and stored in a silo before transporting to the cement industry. SO2 inside the flue

gas is then treated inside the Flue Gas Desulphurization (FGD) before being released to the

environment through the chimney.

4.2.3 Steam Turbine

Steam emitted from the steam drum will pass through a series of superheaters before entering

the High Pressure (HP) steam turbine. The steam released from here will then be relayed

to the reheater positioned inside the boiler, before being channelled into the Intermediate

Pressure (IP) and Low Pressure (LP) Turbine. The high energy from the steam turns and

spins the turbine blades at a nominal speed of 3000 rpm. The exhausted steam released from

the LP Turbine is reverted to the condenser and regenerated into water through a condensation
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process.

4.2.4 Power Generator

A turbine rotates the generator rotor and hence creates an electric current. The voltage

produced at 26kV and stepped up to 500kV by the generator transformer. The electricity

later enters the transmission line and exported to the grid system. Once the electricity is

dispatched to the grid, it will then be distributed to the consumers.

4.3 Continuous Ship Unloader Machine Breakdown

As was pointed out in the introduction to this chapter, the CSU machine is experiencing

frequent harmonic filters failures. This frequent failure is linked to the application of control

drives and other nonlinear loads in the industry have resulted in the deterioration of PQ in the

electrical distribution system. In general, PQ is the measurement of the voltage, current and

frequencies in a stochastic power system event, to ensure that the system is stable and reliable

as per IEEE standards which allow the loads to be operated without disturbing, damaging or

reducing the performance, efficiency and life expectancy [261].

The harmonic issue in line with other PQ disturbance (e.g., voltage sags, voltage swells,

switching transients, impulses, notches, and flickers) has been vigorously debated as the main

reasons for machine failure, operation downtime and injury to the personnel [262]. It has

been widely agreed that the three (3) main criteria that could sustain the performance of

the electrical distribution system are reliability, security, and stability. The system reliability

refers to the consistency of operating at the optimum condition without reaching any undesired

state. System security is the level of robustness required to withstand its integrity, while system

stability refers to the ability of the system to maintain its operation and remain stable even

though disturbance has been introduced in the system [263].

In the context of this study, power system stability and security relate to the ability of

the CSU machine to consistently supply stable voltage to the Regenerative (REGEN) drives

without any interruption or fault, while if there is any, it is capable of restoring to its steady

state efficiently. Original Equipment Manufacturer (OEM) has ensured the electrical system

is designed based on its total connected load and has the capacity to deal with high-frequency
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solid-state switching devices such as control drives and other non-linear loads. The disadvan-

tages of this non-linear loads are that it generates harmonics currents while degrading the

electrical system and deviating from the sinusoidal waveform. To overcome the presence of

these PQ disturbances, the OEM has designed the system with a harmonic filter, also known

as "EMC filters" to cancel out the harmonic distortion in the system by diverting it into the

low impedance path. Before proceeding to discuss further on the harmonic issue, it will be

necessary to explain the key features of a CSU machine.

4.3.1 Continuous Ship Unloader Overview

Figure 4.3: Continuous Ship Unloader Overview

The CSU serves to handle power station coal and is designed to unload ocean-going vessels

from 35 000 DWT up to 150 000 DWT in load capacity . The material to be unloaded is

reclaimed by the bucket elevator in the ship’s hold and transferred to the rotary feeding table

which conveys the material further to the boom belt conveyor via the central chute system

and hopper. The materials discharged from the boom conveyor are transferred to the portal

belt conveyor, from where it is further transported to either one of the two jetty belts by the

help of a two-way chute.

83



Industrial Case Study: Chapter 4 CSU Machine Breakdown

To unload residual material, provision is made for the use of a front loader which is lowered

into the ship’s hold to feed the bucket elevator by scooping and pushing the material from

the ship’s bottom and the corners. The transportation of the front loader will be carried out

by means of the luffing, slewing and travel gears. For that reason, the front loader will be

fixed at the connecting beam to a suspension device and lowered into and subsequently, to be

lifted out of the hold. The connecting beam for the front loader will be attached at the lower

part of the elevator tube. The weight of the front loader cannot exceed 18 tons. The main

component in CSU machine is divided into 7 main areas as follows:

1. Bucket Elevator

2. Rotary Feeding Table

3. Boom Conveyor

4. Main Slewing & Hoisting

5. Electrical House (E-House)

6. Central Chute & Portal Conveyor

7. Travel Gear

4.3.1.1 Bucket Elevator

Bucket elevator is connected to the CSU to be lifted and lowered such that the axis of the

bucket elevator will be in the vertical direction over the whole lifting range. The vertically

movable bucket elevator foot is connected to the carrying tube via the guide rollers and the

vertical cylinder. In order to increase the average unloading capacity, taking into account the

unloading of the remainder, the lower part of the bucket elevator features a bent design that

allows the areas under the hatch wings to be reached.

The chain speed is limited to 1.8 m/s during normal unloading operation. The running

direction of the bucket elevator can be changed for inspection purposes or for removing bulky

foreign pieces. The chain speed during inspection works is about 0.30 m/s. The chain speed

(1.8 m/s) for unloading operation as well as changing of running direction (chain speed about

0.3 m/s) can be controlled either from the remote control station or the operator cabin. The

chain speed for inspection (about 0.3 m/s), in unloading and backward direction, can be
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controlled via the local control station. The bucket elevator is driven by an electromechanical

drive unit which consists of electric motors, shaft mounted gearbox with coupling & brake and

chain wheels. The mounted-on bucket elevator drives are shrink-fitted to both sides of the

drive shaft. The driveshaft rests on the steelwork using two pillow blocks.

The bucket elevator is connected to the vertical-holding platform by an external toothed

large-diameter anti-friction bearing. In the "out of operation" position, the bucket elevator

foot is positioned over the runaway of the unloader. The bucket elevator can operate within

a slewing range of 360o, which is endless. The exact slewing position of the bucket elevator

foot is registered via an encoder being in mesh with the ball-race slewing connection using a

pinion.

The Bucket Elevator slewing gear drive unit consists of a planetary gearbox with flange-

mounted multi disc brake and with a flange-on-hydraulic motor. A drive pinion, mounted on

the drive shaft, meshes with the external toothing of the slewing ring and provides slewing

motion.

4.3.1.2 Rotary Feeding Table

The buckets reclaim the material to be handled in the lower area of the bucket elevator foot

and transfer it to the rotary feeding table. The discharge of the material approximately starts

at the peak of the drive chain wheel and is completed after a slewing movement covering an

angle of 30o - 45o. With the rotary feeding table, the coal will be transported in the rotation

direction and discharged by the removal arm via the movable chutes onto the boom conveyor.

In the area of rotary feeding table, probes are installed, which in case of chute or feeding table

clogging initiate the bucket elevator drives to switch off. The rotary feeding table is driven by

an electromechanical drive unit consisting of two flange-mounted gear motors.

4.3.1.3 Boom Conveyor

Materials discharged from the bucket elevator is directed to the rotary feeding table and

transported to the boom belt conveyor. The boom belt conveyor transports the material to

be carried out to the central chute, from where it is transferred to the portal belt conveyor. The

carrying belt is guided over three-piece troughed idler sets whereas the return belt guides over

one-piece and two-piece idlers. Within the material feeding area, the idlers are provided with
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buffer rings. In order to improve the belts running characteristics, a training idler station

is arranged behind the return as well as in front of the drive pulley. The belt conveyor is

equipped with safety devices consisting of emergency pull chord switches, belt sway switches

and speed monitoring switch. The drive of the boom belt conveyor is made uo of LV motor,

hydraulic coupling, flexible coupling, drum brake and gearbox. The gearbox is connected to

the pulley by means of a shrink disc. In order to absorb the reaction power resulting from

the driven end torque, the support for the frame torque is mounted on the steel profile of the

take-up station.

4.3.1.4 Main Slewing & Hoisting

Slewing gear of the CSU machine consists of a double-row slewing connection with external

toothing, designed as a double-row roller bearing, and four drive units laterally attached to the

slewing connection. The boom is slewed parallel to the runaway and manually locked using a

bolt when it is out of position. The locking bolt on the limit switch prevents any accidental

start of the slewing gear. Rotary cam limit switches limit the slewing range (maximum +/-

90o) of the boom. The final positions of the slewing range are limited by a limit switch in each

slewing direction, the slewing movement being detected electronically by means of a resolver.

Bumper arranged at the limit stops absorb the kinetic energy, in case the slewing gear

rotates beyond the electric limit stops against the buffer stops. An encoder is used to register

the exact slewing position. One slewing gear drive unit consists of a planetary gearbox with a

flange-mounted multidisc brake, a flexible coupling and a flanged-on hydraulic motor. A drive

pinion, mounted on the drive shaft, meshes with the external toothing of the slewing ring and

provides for the slewing motion. At the front end, the boom and the counterweight boom are

connected with the vertical-holding platform of the bucket elevator. In the middle of the ship

unloader, they are attached to the pylon by heavy-duty hinged bearings in such a way that

the axis of the bucket elevator remains in the vertical direction over the entire hoisting length.

The hoisting movement and bucket elevator are affected by one hydraulic cylinder which

is centrally mounted under the counterweight boom. The respective power pack (hydraulic)

is installed on the slewing platform. The boom hoisting position is detected by an absolute

encoder and transmitted to the control unit.
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4.3.1.5 Central Chute & Portal Conveyor

The central chute system is designed to transfer the material discharged from the boom belt

conveyor to the portal belt conveyor. The system is composed of a stationary part with a

hopper arranged at the portal beam and a slewing part connected to the pylon. The central

chute system is equipped with inspection doors. The lower parts of the central chute were

designed with intermediate hopper. It serves to equalise the material flow and limit the

converting rate which will be transferred to one of the jetty conveyors by the portal conveyors.

The hoppers were equipped with monitoring devices in order to observe the upper operation

limit and the upper emergency limit. In case the filling degree reaches the upper operation

limit, the speed of the bucket elevator eases off and further decreased as long as the upper limit

remains. In case the upper emergency limit is breached, the bucket elevator will be totally

switched off.

The portal belt conveyor reclaims the material discharged from the boom belt conveyor.

By the help of a gate, the material flow will be levelled and is transported to the two way

chute, from where it is directed to one of the two jetty belt conveyors. The drive pulley,

the discharge hood as well as the pre and main cleaner are arranged at the head of the belt

conveyor, whereas the return pulley, the take-up device with return hood, the safety cleaner

and the skirting completely covering the material transfer zone are located at the rear of the

belt conveyor. The magnetic separator is installed above the discharge hood. The drives of

the portal belt conveyor consist of LV motor, flexible coupling, drum brake and gearbox. The

gearbox is connected to the drive shaft of the pulley by a shrink disc. Absorbing the reaction

power resulting from the driven end torque, is by the frame torque support resting on the steel

profile of the take-up station. The belt conveyor is equipped with safety devices which consist

of emergency pull chord switches, belt sway switches and speed monitoring switch.

4.3.1.6 Travel Gear

The travel gear is driven by 10 geared motors. Each motor moves two runner wheel of a

two-wheel bogie. The electric motor is flanged-connected to the gearbox which is screw-fixed

to the two-wheel bogie and connected with the pinion shaft. The travel movements of the ship

unloader are decelerated on a time-delay basis with the help of a frequency variable motor,

where the delay interval can be adjusted. Only at the moment, when the ship unloader stands
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still, the multi-disk brakes flanged to the gearboxes are closed.

4.3.2 Continuous Ship Unloader Electrical System

So far, this section has focused on the CSU machine in general. The electrical aspect of the

CSU machine will be discussed in the following section. It is important to understand the

electrical distribution system of this machine and to have a better understanding on how the

PQ assessment initiative is implemented, which will be discussed later in this chapter. Figure

4.4 is the single line diagram for the entire CSU machine.

The main component for the electrical system in the CSU machine is divided into 5 main

areas as follows:

1. Incoming Transformer

2. System Protection

3. Motors

4. REGEN & Control Drives System

5. DC-Bus distribution system

4.3.2.1 Incoming Transformer

CSU machine is designed with a 3.3KV/0.438KV Cast Resin Transformer which is more com-

pact and requires less space. This dry type transformer is self extinguishing and maintenance-

free. It does not produce toxic gases while only needing air to cool which make it easy to

maintain. For monitoring purposes, a Current Transformers (CT’s) is installed at the LV side

of the incoming voltage to feed into Multi-function SOCOMEC device.

4.3.2.2 System Protection

A Circuit Breaker (CB) is required to protect the CSU machine whenever there is an event of

excessive current from an overload or short circuit within the electrical system. This machine

is designed with an Air Circuit Breaker (ACB) which is more efficient, less bulky and cheaper

in cost. With non-explosive and silent operation behaviour, this type of circuit breaker is

suitable for repeatable duty operating characteristics which meets the CSU machine operation

88



Industrial Case Study: Chapter 4 CSU Machine Breakdown

Figure 4.4: CSU Machine Single Line Diagram

demand. 2 types of CB’s is used, Maintenance feeder (-Q01) CB which cover the maintenance

circuit and other essential load and Main feeder ACB (-Q00) CB rated at 2000 A which covers

the entire CSU machine load.

4.3.2.3 Motors

Induction motor is used to drive the CSU machine operation. The construction of the motor is

simple but robust and mechanically strong. This type of motor is highly efficient and provides

high starting torque to operate the CSU machine capacity. The following Table 4.1 provides

the list of motors for the CSU machine.

4.3.2.4 REGEN & Control Drives System

Operating the CSU machines requires precise control. Variable frequency drive controls the

movement to meet a different speed requirement of the machine. To operate these drives, a

bridge rectifier circuit is required to converts the alternating current (AC) input into a direct

current (DC). When bucket elevator is driven downward, energy flow is reversed, that is, from

the load, through the motor, back to the drive. This spare energy could be regenerated using

89



Industrial Case Study: Chapter 4 CSU Machine Breakdown

Table 4.1: Motor List for CSU Machine

No Motor Rating Quantity
1 0.2 kW Motor 14
2 1.5 kW Motor 3
3 2.2 kW Motor 2
4 4.0 kW Motor 1
5 7.5 kW Motor 1
6 10.9 kW Motor 1
7 11 kW Motor 1
8 22 kW Motor 2
9 37 kW Motor 1
10 55 kW Motor 1
11 75 kW Motor 1
12 132 kW Motor 1

REGEN drives. Regenerative control gives a motor the capability to act as a generator while

in operation. Energy is regenerated during the braking process (regenerative braking), and

the output energy is supplied to an electrical load. This would also provide higher efficiency

levels in the electrical distribution system.

The electrical system must ensure that the power supplied to the drives is clean. Therefore,

it requires a power quality filters circuit, which includes Power Contactors (K01), EMC Filter

(Z01), Varistor (V01), and Line Reactance Choke (L01). The EMC filter eliminates intolerable

electromagnetic disturbance from the power supply, which could harm the drive system. The

varistor provides reliable and economic protection against high voltage transients and surges.

The Line Reactor (Choke) reduces the risk of damage to the drive from poor phase balance

or severe disturbance on the supply network. It also reduces harmonic current emission.

4.3.2.5 DC-Bus Distribution System

The 3-phase supply from the Main feeder -Q00 is distributed to the busbar line. The busbar

line supplies energy to the DC-bus distribution, rectifier circuit and other loads including

LV motors and cubicle fan motors. The bucket elevator unloads coal from the vessel to the

CSU machine used high inertia load. This requires a high voltage supply to move up to 1800

tonne/hr capacity of coal with different speed control. Therefore, the DC bus distribution

system needs up to 630 VDC to accommodate the demand. To meet this requirement, the

DC bus has to achieve 400 VDC via a bridge rectifier circuit which consists of Circuit Breaker
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(Q01), Power Contactors (K04), Bridge Rectifier (G01) and Resistor (R01). Combining this

with the REGEN drive output from the power quality filter circuit, the DC-Bus will be able

to supply 630 VDC to meet the load demand.

This section has presented the electrical system of a CSU machine which includes system

protection, drives system and all electrical devices installed within the machine. The next

part of this section will discuss the control system of the machine, which covers the system

architecture and the main component of the control system. It is important to understand this

system and to have a good overview of how the real-time data collection setup is implemented,

which will be discussed at the end of this chapter.

4.3.3 System Architecture for Continuous Ship Unloader

The system architecture for the CSU machine used Programmable Logic Control (PLC) to

automate and coordinate the entire machine operation. It reads real-time information from

the input sensors and devices, converting it into signals that can be processed by the Central

Control Unit (CCU). The CCU then makes an instantaneous decision, to decide on the next

status of the machine with respect to the pre-programmed logic stored in the memory. At

the same time, the PLC synchronises with Supervisory Control Aided And Data Acquisition

(SCADA) system to distribute, monitor, gather and process real-time data through a Human

Machine Interface (HMI), by helping operators to control the movement of the machine, thus

make important decisions to ensure the machine is safely handled. Having discussed the overall

system architecture for the CSU machine, description of the main components of the control

system in this machine are as follows:

1. Hardware

2. Software

3. Network Communication

4.3.3.1 Hardware

Hardware refers to the physical elements that make all electronic devices within the PLC net-

works communicating with each other and physically tangible. The main hardware involves

a controller module, input modules, output modules, a communication module, power supply

91



Industrial Case Study: Chapter 4 CSU Machine Breakdown

Figure 4.5: CSU Machine Control System

and HMI monitor. Figure 4.5 illustrates the control system configuration for CSU machine. It

is divided into four main areas which are Control Cabin, e-house, superstructure and substruc-

ture. The CSU machine controller communicates with the main controller at Coal Handling

System through a fibre-optic connection via a Medium Distance fibre optic repeater. The

controller then synchronised the machine operation within the four main areas with a short

distance fibre optic repeater. Alternatively, for a Radio Remote Control (RRC) configuration,

the controller communicates with a Profibus Remote I/O scanner, to control the CSU machine

remotely at 735MHz frequency. Other hardwares such as Digital and Analogue Module (Input

& Output) and ControlNet module are used to link between the sensor and controller. The

following Table 4.2 shows the hardware list for the CSU machine.

4.3.3.2 Software

Software is a set of instructions, data or programs used to operate computers and execute

specific tasks. Without software, the hardware discussed previously is useless. Rockwell Au-

tomation used Studio 5000 Logix Designer or previously known as RSLogix 5000 to program,

design and configure the entire Allen Bradley family controller products and other related
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Table 4.2: Control System Configuration Hardware List for CSU machine

No Device Description Qty
1 1756-PB72 ControlLogix. Power supply unit. 24V DC. 1
2 1756-L61 ControlLogix Logix5561 Processor 2MB Memory 1
3 1756-CNBR ControlLogix ControlNet Redundant Media Module 2
4 SST-PFB-CLX PROFIBUS DP Remote I/O Scanner Module 1
5 1786-RPFM ControlNet Medium-distance Fiber Repeater 2
6 1786-RPA ControlNet Modular Repeater Adapter Module∼ 6
7 1786-RPFS ControlNet Short-Distance Fiber Module 4
8 1794-IB32 Flex I/O Input Module, 24V DC, 32 Sink Inputs 10
9 1794-OB32P Output Module, 24V DC, 32 Source Outputs 4
10 1794-IE8 Flex I/O Analog Input Module 8 Single-Ended Inputs∼ 5
11 1794-ACNR15 FLEX I/O ControlNet Redundant Adapter Module 10
12 1794-OE4 Flex I/O Analog Output Module 12 Bit 4 Single Outputs 2
13 PV1000 PanelView Standard 1000 Graphic Terminals 1
14 1794-IB16 FLEX I/O Input Module, 24V DC, 16 Sink Inputs 19
15 1794-OB16P Flex I/O 16 Source Outputs Module, 24V DC, 3
16 1794-OB8EP FLEX Output Module 24VDC 8-Port Electronically 7

devices. Its intuitive programming environment allows users to work collaboratively to design

and maintain their systems. On the other hand, Allen Bradley used Studio View Designer or

previously known as Panel Builder 32 which allows system engineer to create a control panel

application for the standard Panel View operator terminal (HMI). A panel Builder applica-

tion allows the operator to interact with a logical arrangement such as machine status, alarms,

events, indicators and push-button.

4.3.3.3 Network Communication

Network communication is the transmission of data between the main controller with other

devices such as PLC, I/O chassis, HMI and drives within the network to exchange data. The

physical connection is established using either cable media or wireless media. Allen Bradley

uses the ControlNet network to support real-time control of I/O. It is an open industrial

network protocol and is managed by “Open DeviceNet Vendors Association” or ODVA. It

utilises the Common Industrial Protocol (CIP) for the upper layers of the Open Systems In-

terconnection or “OSI model” that has seven layers which include physical, data link, network,

transport, session, presentation and application. The ControlNet coax media system consists

of components, such as the trunk, drop cables, taps, cable connectors, terminating resistors,
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nodes and repeaters to create segments, links, and bridges for network communication. Nodes

are the physical devices that require an address to function on the ControlNet network. A tap

connects these nodes to the coax media system via the trunk cables and the cable connector.

A collection of nodes, tap, trunk cables and connector formed a segment which provides a

network for a repeater.

Having defined how Allen Bradley apply its network communication, the network topology

for the CSU machine use two channels redundant linear bus topology, Channel A and Channel

B. There is no overall network parameter that says which channel to use, each node decides

on its own. At any time, whether a network has valid or invalid redundant cabling, there can

be a mix in which channel any node is listening to; some nodes could be listening on Channel

A and some could be listening on Channel B. In the event of a cable failure on one of the

channel, the other channel will take over. In terms of a repeater, the CSU machine uses fibre

repeater modules with fibre adapter to establish a connection between the main controller in

the e-house to the other three locations in the network. The fibre repeater modules send an

optical signal through the fibre cable to the next fibre repeater module on the network.

So far this section has focused on the key features of a CSU machine which covers the

machine overview, electrical system and control system architecture. The following section

will discuss on the power quality assessment initiative to monitor the frequent breakdown

incidence as per discussion earlier in this section.

4.4 Power Quality Assessment Initiatives

As the machine mainly controls the operation of bulk handling in three-axis, it is essential

to monitor the movement is within the safe limits. These movements are mainly controlled

by drive system. Due to the fact that drive system deals with a high frequency solid state

switching, it then generates high harmonic currents which disturbs and degrades the electrical

system. As mentioned at the beginning of this section, a harmonic filter is installed to reduce,

or mitigate harmonics to a tolerable level. When these harmonics are left unattended, it

can potentially lead to expensive damage to the component, which results in high machine

breakdown and maintenance cost. To take this into account and address this concern, Power

Quality Assessment Initiative has been conducted to evaluate Power Quality level and identify
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the source fault that contributes to high harmonic failure.

The CSU machine was assessed as per International Standard IEEE 519, 1992, which

sets the limit for both harmonic voltages and currents at the Point of Common Coupling

(PCC) in a system. It limits voltage THD (Total Harmonic Distortion), defined as the ratio

of the RMS value of the harmonic voltage to the RMS value of the fundamental (50Hz)

voltage, to a maximum of 5%. Individual voltage harmonic magnitudes are limited to 3% of

the fundamental voltage value [264]. The remaining loads were assessed as per International

Standard IEC 61000-3-4 setting the limits for the emission of harmonic currents in low-voltage

power supply system for the requirement with rated current greater than 16A [265].

Figure 4.6: Power Quality Analyser Loggers with Clamp CT’s and Flexible Voltage Probes

4.4.1 Power Quality Measurement Setup

Several measurement tools are available for PQ measurement. PQ analysers are the most

commonly used tool to observe real-time readings while collecting historical data for analysis.

In most cases, when the analyser is not built in the distribution system, a handheld analyser

is used. A PQ analyser is used to continuously monitor and analyse the electricity lines by

measuring several electrical parameters. These include AC voltage, AC current, power and

frequency to detect disturbance events, such as voltage sags and swells, transients, harmonic

distortion, and voltage/current imbalance.

The advantage of using handheld PQ analyser is that it is capable of providing real-time

data on the screen. However, it has a limitation in recording long term data for continuous PQ

events. In this assessment, a commercial PQ analyser – Fluke 1735 Three Phase PQ logger has

been installed at the Point of Common Coupling (PCC) using Clamp Current Transformer

(CT’s) and Flexible voltage probes to record the associated parameters for up to 45 days.

The PCC for the 1250KVA Main Incoming Transformer is located at the secondary part of
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Table 4.3: Load Description and Time Interval for Power Quality Measurement at CSU Machine

No Load Description Rating Interval
(sec)

Log Duration
(min)

1 1250kVA Incoming 3.3 kV/0.438 V 30 1440
2 Maintenance Winch 22 kW X 3 1 15
3 Maintenance Circuit (LHT) 1 5
4 Maintenance Circuit (Floodlight) 1 5
5 Maintenance Circuit (Cabin) 1 5
6 Maintenance Circuit (Motor Heater) 1 5
7 Control Volt. Distribution 2.5 kVA 1 5
8 Rectifier (U01-U03) 20 A X 3 1 30
9 Water Spraying Pump 7.5 kW 1 5
10 Rectifier of Magnetic Separator 10 kW 1 5
11 Magnetic Separator Conveyor 4 kW 1 5
12 Diverter Flap Actuator 1.5 kW 1 5
13 Power Cable Reel 1.5 kW 1 5
14 Water Hose Reel 1.5 kW 1 5
15 Rail Clamp Landside 2.2 kW 1 5
16 Rail Clamp Seaside 2.2 kW 1 5
17 Boom Conveyor 110 kW 1 30
18 HPP II Pump Motor 1 132 kW 1 30
19 HPP II Pump Motor 2 75 kW 1 30
20 HPP I Bucket Elevator foot 37 kW 1 30
21 Bucket Elev Thruster Brake 1-4 0.2 kW X 4 1 40
22 VVVF Drives Input 1 10
23 Bucket Elevator Drives 1 200 kW 1 30
24 Bucket Elevator Drives 2 200 kW 1 30
25 Portal Conveyor Drives 55 kW 1 30
26 Rotary Feeding Table Drives 1 22 kW 1 30
27 Rotary Feeding Table Drives 2 22 kW 1 30
28 Travel Drives 200 kW 1 30
29 Travel Gear Motor 1-10 1.5 kW X 10 1 50
30 Travel Gear Brake 1-10 0.2 kW X 10 1 10
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the circuit, which is located in the GH103 panel, in line with the SOCOMEC Multi-function

meter as per Figure 4.7. On the other hand, the PCC for the VVVF Drives input for the

Master-REGEN is located in the GH112 panel as per Figure 4.8. In addition, the voltage

probe and clamp CT’s were also located at 30 different locations as illustrated in Table 4.3.

Each location has different sampling time (log duration) depending on the size of the load.

The sampling interval is set at 1 second for short data logging and 30 seconds for long data

logging (1-day data).

To fulfil the objectives of this assessment, safety precautions have been taken to ensure all

measurement data follows the following steps.

1. Coordination with maintenance engineer for the installation of electrical instruments or

measurement instruments.

2. Check all necessary permits are in order. Inform plant owner before starting the works.

3. Make sure all safety gloves and tools are available to hook up a portable power meter

4. Installation of electrical instruments for loads to be measured: (a) Open electrical panel

and perform a safety check before start installation works. (b) Install current clamp

(CT1, CT2, CT3) to clamp on busbar/cables (L1, L2, L3) for current measurements.

(c) Connect L1, L2, L3 and N on the busbar/cables.

5. Connect the auxiliary power supply to a portable power meter. (a) Turn on the power

supply to the meter. (b) Check meter for correct settings and configurations.

6. Check meter for correct measurement on the display.

7. Leave portable power meter at the location for measurements. Thereafter, it will be

dismantled and transferred to another point for measurement purposes.

8. Inform plant owner upon completion of works.

4.4.2 Power Quality Assessment Results

Potential harmonic instability is either from the incoming supply or the high-frequency switch-

ing drives. Therefore, the primary measurement points for this PQ assessment install at the

Main Incomers and the VVVF Drives Input. Figure 4.9 and Figure 4.10 shows the results for

Total Harmonic Distortion (THD) and Harmonic spectrum, which were recorded for 16 hours

within 30-sec intervals at the Main incomers.
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Table 4.4: Data Tabulation for CUL-1 Main Incomer

Parameters (Main Incomer) Units Minimum Maximum Average

Voltage
Vab 385.9 V 424.0 V 411.2 V
Vbc 216.8 V 423.8 V 382.4 V
Vca 241.8 V 424.1 V 381.5 V

Current
Ia 32 A 1718 A 525.8 A
Ib 46 A 1870 A 639.9 A
Ic 30 A 1568 A 217.6 A

Voltage Unbalance % Unbalance 0.10 % 41.60 % 2.60%
Current Unbalance % Unbalance 8.80 % 16.70 % 52.80%

Total Harmonic Distortion Voltage (THDV)
THDvab 0.40 % 1.60 % 1.00 %
THDvbc 0.30 % 1.50 % 1.00 %
THDvac 0.50 % 1.90 % 1.10 %

Total Harmonic Distortion Current (THDi)
THDia 1.90 % 20.80 % 4.50 %
THDib 1.80 % 25.80 % 3.70 %
THDic 1.90 % 82.20 % 12.00 %

Total Demand Distortion Current (TDDi)
TDDia 0.10 % 2.60 % 1.30 %
TDDib 0.10 % 1.80 % 1.20 %
TDDic 0.10 % 2.20 % 0.80 %

Frequency f 49.77 Hz 50.13 Hz 49.98 Hz

Table 4.5: Data Tabulation for CSU VVVF Master Drives Input

Parameters (Master-REGEN) Units Minimum Maximum Average

Voltage
Vab 400.3 V 413.8 V 407.1 V
Vbc 400.5 V 413.8 V 407.1 V
Vca 399.2V 413.8 V 406.2 V

Current
Ia 32.3 A 267.8 A 134.7 A
Ib 36.7 A 270.8 A 139.2 A
Ic 37.2 A 277.7 A 144.1 A

Voltage Unbalance % Unbalance 0.07 % 0.20 % 0.15 %
Current Unbalance % Unbalance 2.10 % 8.80 % 3.30 %

Total Harmonic Distortion Voltage (THDV)
THDvab 0.90 % 1.70 % 1.30 %
THDvbc 0.90 % 1.80 % 1.20 %
THDvac 0.90 % 1.90 % 1.40 %

Total Harmonic Distortion Current (THDi)
THDia 4.00 % 25.70 % 11.20 %
THDib 4.00 % 26.00 % 11.00 %
THDic 3.80 % 22.90 % 9.60 %

Frequency f 49.90 Hz 50.00 Hz 49.98 Hz
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Table 4.6: Data Tabulation for CSU VVVF Slaves 1-REGEN Drives Input

Parameters (Slave1-REGEN) Units Minimum Maximum Average

Voltage
Vab 387.7 V 410.0 V 405.7 V
Vbc 387.7 V 410.1 V 405.9 V
Vca 386.6 V 409.3 V 404.8 V

Current
Ia 102.8 A 289.7 A 184.2 A
Ib 109.8 A 296.1 A 190.6 A
Ic 117.2 A 304.5 A 199.2 A

Voltage Unbalance % Unbalance 0.12 % 0.19 % 0.17 %
Current Unbalance % Unbalance 2.60 % 6.60 % 4.10 %

Total Harmonic Distortion Voltage (THDV)
THDvab 1.10 % 1.60 % 1.30 %
THDvbc 0.90 % 1.60 % 1.30 %
THDvac 1.10 % 1.70 % 1.40 %

Total Harmonic Distortion Current (THDi)
THDia 3.50 % 10.20 % 5.60 %
THDib 3.60 % 10.80 % 5.90 %
THDic 3.40 % 8.70 % 5.00 %

Frequency f 50.00 Hz 50.00 Hz 49.98 Hz

Table 4.7: Data Tabulation for CSU VVVF Slaves 2-REGEN Drives Input

Parameters (Slave2-REGEN) Units Minimum Maximum Average

Voltage
Vab 399.7 V 409.9 V 405.2 V
Vbc 400.1 V 409.9 V 405.4 V
Vca 398.7 V 409.0 V 404.3 V

Current
Ia 93.1 A 268.7 A 172.2 A
Ib 98.7 A 247.2 A 177.1 A
Ic 103.3 A 277.7 A 181.9 A

Voltage Unbalance % Unbalance 0.15 % 0.20 % 0.17 %
Current Unbalance % Unbalance 1.80 % 5.40 % 2.80 %

Total Harmonic Distortion Voltage (THDV)
THDvab 1.10 % 1.70 % 1.30 %
THDvbc 1.00 % 1.60 % 1.20 %
THDvac 1.00 % 1.70 % 1.40 %

Total Harmonic Distortion Current (THDi)
THDia 4.10 % 11.20 % 6.50 %
THDib 4.00 % 11.20 % 6.40 %
THDic 3.80 % 9.10 % 5.60 %

Frequency f 49.95 Hz 50.05 Hz 50.0 Hz
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From the results, it is proven that the harmonic distortion at the PCC is relatively low,

with the majority of the measured period are below 2% for voltage distortion and demand

distortion. There is an occurrence of power quality phenomena during this measurement

period at PCC. However, the incoming supply voltage was drop at 216.8 V for voltage phase

b-c and 214.8 V for voltage phase c-a. This large variation is due to incoming supply Vbc

and Vca was drop (under-voltage) to approximately 230V for 2.5 hours. Based on the data

analysed in Table 4.4, the maximum loading condition at PCC is about 85.9 %, 93.5 % and

78.4 % for each phase respectively. It is also observed that the voltage fluctuated from 400

V to 415 V despite no occurrence of under-voltage. This variation could be an issue to the

equipment that has lower voltage tolerance value and sensitive to voltage. Hence, equipment

voltage tolerance should be verified in order not to operate beyond its operating condition.

On the other hand, the result for VVVF drives input is shown in Figure 4.11 and Figure 4.12

for both Total Harmonic Distortion and Harmonic Spectrum. From the results, it is proven

that the harmonic distortions at the VVVF Master & Slave Drive Input are also relatively

low, with the majority of the measured period are below 2%. The voltage and current are

relatively constant for all three phases and there is no sign of unbalanced voltage compared

to the Main Incomer results. A further PQ analysis is extended to the main load connected

to the REGEN drives which includes the Bucket Elevator Motors and Rotary Feeding Table

Motors. The result shows that all connected loads meet the IEC Std. 61000-3-4 limits for

both voltage and current distortion.

4.4.3 Power Quality Assessment Summary

From previous discussion, it can be seen that the assessment results have indicated that the

harmonic distortion at the PCC is relatively small, with a majority of the recorded mea-

surement to be below 2% for voltage distortion and demand distortions. Thus, there is no

evidence that could support the existence of Power Quality issues. In terms of harmonics and

voltage unbalance, the results indicates that the measurement is within the allowable toler-

ance. However, the dilemma of high repeatable harmonic filters failures motivates the quest

for alternative methods, which could consider external parameters in the system state change

of actual event (Event Data) to the cause of the triggered events (Trigger Data) in constraint

time [122]. This could be done by adapting the event modeller technique, to group the high
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correlation system parameters together, to form an input-output relationship which is not

limited to internal parameters only. As such, a homogeneous system of this high correlation

will suggest the highest possible root cause of the harmonics problem while eliminating the

unimportant parameters in near real-time.

4.5 Industrial Data Collection Setup

In the previous section, it has been explained that there is no evidence of PQ disturbance

signal, which results in highly frequent harmonic filter failures at the CSU machine. The

following section elaborates on how to consider the event modeller technique, to explore the

known and unknown parameter and its relationship within the environment system, which may

potentially create a relationship of harmonic failure between them. In order to comply with

the existing infrastructure, some modifications are required to ensure all essential information

is kept within the SCADA system environment.

4.5.1 Limitation on the Existing Infrastructure

The CSU machine is well equipped with the standard requirement of electrical protection,

controls and machine safety. As discussed in Section 4.3.3, controller is a hardware that

decides on the status of the machine with respect to the pre-programmed logic in the memory.

The controller which synchronised with the SCADA system will monitor the parameters within

the network and provides the user with an alarm if there is any abnormality occurring within

the tolerance value. Any condition which does not meet the safety requirement shall interrupt

the system and alerted the operator to further make a decision. This includes the electrical

parameters such as Instantaneous Voltage and Instantaneous Current, which were measured

using multi-function meters device, via a current transformer installed within the switchgear

panel. Even though the multi-function meter is capable to provide other electrical parameters

such as frequency, power, power factors, metering and power harmonics measurement, due to

the limitation on the analogue output up to two connections, only voltage and current data is

transferred to the controller. There is a need to import the Total Harmonic Distortion (THD)

value to the controller, to find a relationship that could lead to harmonic failure within the CSU

machine operational state. On the other hand, there is also influence from the environment,
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such as ambient temperature and humidity, which can influence the failure of the harmonic

filters. Having all these internal and external parameters within the software in the loop, it

shall map the parameters that cause the ineffectiveness of the machine power system. To

overcome the limitation on the current infrastructure, two steps prior to the data collection

progress has been implemented as follows:

4.5.2 Installation of New Relative Humidity & Temperature Room Sensor

The existing panel in the electrical house as per Figure 4.13 is installed with a Siemens QFA

317 Room sensors for relative humidity and temperature real-time measurement. The sensor

is named as panel temperature and is used to measure both humidity percentage and absolute

temperature of the electrical panel which contains the harmonic filter circuit and the REGEN

drives. The same Siemens QFA 317 sensor is also installed near to the e-House entrance as

per Figure 4.14 which is named as E-House temperature and humidity. All these four sensors

are connected to the spare analogue input module to provide real-time data to the controller

via the ControlNet connection. A tag name is assigned for each sensor and is being updated

in the PLC-SCADA data acquisition system. During installation, additional cabling, wiring

and termination between the sensor and the analogue input modules were installed during the

maintenance window given by the company.

4.5.3 Upgrading the Analogue Output for the Multi-function Meter

The existing panel in GH103 is accommodated with the SOCOMEC A41 Multi-function Meter

which provides the measurement data to the PLC. Due to the limitation on the analogue output

module from the multifunction meter device, only voltage and current output were hardwired

to the PLC input module. Since the primary purpose of this research is to investigate the

frequent failure of the harmonic filter, it is necessary to consider installing another analogue

output module (4825 0094) to cater for additional 2 output parameters to be hardwired to the

PLC.

4.5.4 Network Scheduling

Network scheduling is essential to register/provide information to the ControlNet system that

there are additional or changes to the module in the network. Each device on the ControlNet
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network is assigned with a unique address. In this project, the Network scheduling is required

to configure the replacement of Analogue Input Module from the Digital Input Module.

To configure these devices in the ControlNet networks, it uses the RSNetWorx™ for Con-

trolNet application program. The fastest way to configure the ControlNet network is to let

the RSNetWorx for ControlNet software browse the online network for ControlNet devices

and automatically add them into your configuration; and then, let the Scan list Configuration

Tool automatically configure connections to the target devices. Alternatively, the following

steps could also be taken:

1. Browse for the existing online network

2. Configure the ControlNet Network and save them.

3. Start the Scanlist Configuration Tool

4. Define a connection target and save the schedule

5. Diagnose and troubleshoot the online network

6. Schedule network diagnostics

As a result, network scheduling activity has been successful. The newly installed sensors

have been powered up and tested. The result shows that the sensors are providing the actual

value to PLC Data Acquisition.

4.5.5 Data Logger Configuration

As noted earlier, data collection is an important process for research. It includes various

activities which should be considered by the researcher prior to the actual implementation

of the research instruments. The data collection strategy consists of offline historical data

and online real-time data. Initially, the application needs to have access to historical data

for machine learning attributes while existing data is for prediction purposes. However, it

has been noted that the existing historical data store in the SCADA system does not have

sufficient information needed to run the event modeller. The existing system only stores

critical data, while most of the required 24 output variables and 96 input variables are not in

the list. Therefore, a continuous PLC Data Logger for the CSU machines has been set up to

capture new data. Total of 120 data has been imported to the server using Messaging (MSG)
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operand. A modification on the PLC logic has been established to configure this. The data

is sampled each day for the period of 14 months from June 2018 till August 2019. Each day,

the sampling frequency is for every second, which logged approximately 11,923,476 data. The

data was provided in the form of .DAT files before it is converted into an excel sheet by using

FactoryTalk View File Viewer software.

4.6 Summary

This chapter provided an overview of the CSU machine, which will be used as a case study

to solve the mystery of the escalating pattern of harmonic failure. The outcomes of the PQ

assessment have also been discussed in this chapter to demonstrate that there was a gap in

the research study. The chapter reviewed the existing system configuration and proposed a

data collection set up to collect all system parameters that will be used as proof of concept

for the development of the EMDA in the following chapters.
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Chapter 5

Event Modeller on Software in the

Loop

5.1 Overview

There is a need to propose a Real-Time Software in the Loop (SIL) framework that identifies

the inputs which have a significant impact on the efficiency and effectiveness of a power

generator. The motivation here is to investigate whether there are other unknown factors

that may have an influence on the efficiency and effectiveness of this power generator. Based

on the principle of system engineering and advent of big data analytics, an effort is made to

investigate the potential unknowns and if possible, calibrate the knowns.

This chapter aims to present a real-time data simulation of CSU machine using event

modeller technique. This technique will suggest a homogenised correlation relationship that

represents the known and unknown parameters in three different environments which are pre-

disturbance environment, k-disturbance environment and post-disturbance environment. A

synthetic data is generated to have the same nature and properties as the real CSU machine.

In this SIL architecture, eight TD’s and eight ED’s were selected to evaluate the correlation

between them. During the k-disturbance environment, five ED’s is replaced with a disturbance

dataset, to observe the reaction to the causal relationship. To further examine the accuracy of

the outcome results, two types of TD’s which include Static TD and Dynamic TD is selected,

to decide on a suitable approach for industrial data in Chapter 6. Thus, suggesting the

applicability and suitability of this technique in a typical power system setting.
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This chapter is divided into five sections. Section 5.2 explains the system implementation.

Section 5.3 discusses the synthetic dataset arrangement followed by results and discussions in

Section 5.4. Finally, Section 5.5 provides a summary of the chapter.

5.2 System Development Implementation

The essence of successful software development depends on how well the strategies are imple-

mented. Software Development Life Cycle (SDLC) strategy has been proven to be successful

and ease the software development task [266]. This includes the sequence of system require-

ments, design, development, integration and testing stage. Development of this real-time SIL

has adopted this strategy to ensure the system development processes are systematic, well

defined and trackable.

5.2.1 Software in the Loop Requirement

The purpose of a real-time simulation is to measure the suitability and applicability of the

event modeller technique in the power system environment. To ensure the system incorporates

the industrial case study which has been discussed in the previous chapter, the requirement

specification has been set based on the following:

1. 8 Event Data (ED’s). This synthetic event data is simulated using Normal Distribution

which represents the CSU Machine Output Data which includes Voltage, Humidity,

Harmonics, Slewing Movement, Luffing Movement, Travel Movement, Temperature and

Wind Speed.

2. 8 Triggered Data (TD’s). This synthetic triggered data is simulated using Normal Dis-

tribution which represents the CSU Machine Input data which includes Busy Slew, Busy

Luff, Busy Travel, Busy Bucket Elevator, Slewing Motor Run Bit, Hydraulic Motor Run

Bit, Travel Motor Run Bit and Bucket Motor Run Bit.

3. Threshold Setting. For the purpose of examining the Trigger Threshold, an arbitrary

5% threshold setting was set, that could later be adjusted.

4. Event Modeller Limit. This setting reduces the complexity of an input-output relation-

ship by its correlation confidence level. An arbitrary 80% was set, that could later be
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adjusted.

5.2.2 Software in the Loop Design

Figure 5.1: Overview of System Development

Figure 5.1 illustrates the overview of the system software development. The SIL is designed

to acquire data from different sources determined by the user. Event data such as temperature

and voltage is converted into a digital numeric value that can be manipulated by a controller.

As such, triggered data that have a causal relationship with this temperature and voltage value

is integrated into a data acquisition platform. This platform received other configuration

setting such as limit and disturbance setup, to ensure the software development operates

within the user specification. On the other hand, the Event Modeller algorithm discussed in

Section 3.5 is coded within this software development using National Instrument LabVIEW

Professional Development System version 17 (32-bit).

This algorithm is designed to operate in real-time. The Event-Driven Incidence Matrix

(EDIM) sorts the rows for inputs and the columns for process outputs. Incidence matrix

elements can take a value of 0 and 1. The value is 1 when both or neither of the input/output

event data is triggered; otherwise, it is 0. This operation is similar to a logical Exclusive-NOR

functionality [21]. Each change to the output in a given time span can be expressed as an

event and the positive value of the inputs as triggers, thus output can be defined as Event

Data (ED). Both Input t and t-1 can be considered as Trigger Data (TD). Equation 5.1 and

Equation 5.2 shows the relationship between each event triggered by input at t and input at

t-1 with respect to changes in output.

if(Input(t) − Input(t−1)) ≥ θ
T rigger−−−−−→ TDt (5.1)
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if(Output(t) −Output(t−1)) ≥ Ψ Event−−−−→ EDt (5.2)

Snippets of the Event Modeller are shown in Figure 5.2. As defined in Table 3.1, Triggered

Data (TD) is defined as “any input variable whose value transition registered an event”. In

contrast, Event Data (ED) is defined as “the series of data that represent the state of the

system at a given time”. In this example, the relationship between a simulated Slew TD

(TD1) with respect to simulated Voltage ED (ED1) is examined. There are two types of TDs;

Static TD and Dynamic TD. Static TD registered the original TD signal from the source

while Dynamic TD multiply the changes of TD with a threshold setting defined by the system

engineer. Both types of TDs were used in this experiment to investigate which source of data

to be selected. This will ensure the event modeller algorithm provides an accurate sensitivity

index or weight output. On the other hand, the weight of the simulated Voltage ED are

calculated with a suitable range of pre-defined values determine by the system expert. The

outcome of both ED1 and TD1 are correlated to each other using an Exclusive-NOR logic,

followed by averaging step to update the sensitivity index of this causal-relationship in real-

time. This is the example of the first iteration while the system is updated every 1000ms and

presented in real-time. To evaluate the system robustness, two types of simulated voltage were

introduced; normal dataset and disturbance dataset. The causal-relationship of each input-

output pair is stored and updated in the layout display either in absolute value or waveform

chart. Alternatively, the system was designed that the output can be print or transfer to other

file or software.

5.2.3 System Integration

In order to develop a complex product or large engineering system, it is common practice

to decompose the design problem into smaller sub-problems for easier handling [267]. The

same strategy has been deployed for this system integration as we used a separate Virtual

Instrument (VIs) for each subprocess. This system development borrowed the Flexible Data

Input Layer Architecture (FDILA) [236] to combine all real-time data with discrete event

simulation. This technique enables system managers to define data set-points within the

Real-time Model Matching Mechanism (R3M) without requiring proprietary firmware system.

Figure 5.3 illustrates the overview of system integration architecture for the developed
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Figure 5.3: Overview of System Integration Architecture

Event Modeller SIL. The SubVI component represents the individual sensor or process data

from the engineering layer. This real-time data is registered in a Data Acquisition component

synchronously and later link with the R3M configuration. The system operates within Lab-

VIEW software. The communication of the individual components runs via shared variable

node, to pass and share data among other components. Snippets of the system integration are

shown in Figure 5.4. All data is integrated into a single platform with a standard timestamp.

For the purpose of synchronisation, a delay of 500 milliseconds has been set up. This is to

avoid race conditions which potentially overlaps or overwrites data when a system attempts

to perform two or more operations at the same time.

5.2.4 System Testing

System testing is deployed to check the behaviour of a complete and fully integrated software

product based on software requirement specification. The main objective of this testing is to

evaluate the system’s compliance with the specified requirements, which has been discussed in

Section 5.2. A test plan is produced to examine the functionality of the developed application

related to the requirement specification. Table B.2 in Appendix B depicts the outcome of the
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Figure 5.4: Snippets of System Integration VI - Block Diagram

test plan.

5.3 Methodology

Having discussed the system development implementation in the previous section, let’s move

on to the methodology and dataset arrangement that will be used in this experiment. The

industrial system is a complex system. It has various types of data such as boolean, integer

and doubles that represent different parameters, which includes electrical variables, machine

positioning and environment measures. This requires data sampling from the machine before
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it runs on the developed SIL system. The experimental methodology and the arrangement of

the dataset will be discussed as follows.

5.3.1 Experimental Methodology

This experiment is intended to test the applicability of the event modeller technique built-in

real-time applications. To evaluate this, 16 input/output system parameters of a CSU Machine

were sampled from the Allen Bradley PLC-SCADA system using the FactoryTalk view. Once

it is proven to be suitable, it will be extended to 120 parameters, which will be discussed

further in Chapter 6. Data collection was conducted over a single day shift of a machine

operation period, collecting approximately 43,200 lines of 12-hour data samples. The sampling

frequency follows [268] by applying the right bandwidth, time constant and settling time. The

requirement of the industrial specification has been discussed in Section 5.2.1. Having this

data in hand, synthetic data was constructed to have the same nature and properties as the

real CSU machine. The synthetic data used in this work are based on the multivariate normal

distribution, which is a generalisation of the one-dimensional (univariate) normal distribution

to higher dimensions. The dataset is then imported to the SIL system development, running

the Event Modeller algorithm in National Instrument LabVIEW software settings (near real-

time) as explained in Section 5.2.2. The overview of the experimental methodology is shown

in Figure 5.5. Details of the dataset arrangement will be discussed in the following section.

Figure 5.5: Overview of Experimental Methodology

5.3.2 Dataset Arrangement

The dataset arrangement for this SIL is divided into three categories which are Event Dataset,

Triggered Dataset and Disturbance Dataset. Details of each dataset will be discussed in the
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following subsections.

5.3.2.1 Event Dataset

Event Dataset (ED) is defined as a series of data that represent the state of the system

at a given time [126]. Eight simulations ED’s incorporating voltage, humidity, harmonics,

machine positioning (slewing, luffing and travelling), temperature and wind speed is selected

to represent the actual system parameter of a CSU machine. This simulation data is generated

by considering three main factors which comprise of sensor data, operational pattern and

environment influence. Data from the same sensor will not change much over the range, and

it is close to its previous data. A model for a sensor comprises of the mathematical relationship

between the input variable data, the prediction data and the threshold setting [269].

Taking this into consideration, the electrical parameter of a CSU machine is generated

according to the assessment result in Table 4.4. The positioning data is generated based on

the actual operational pattern of a CSU machine in 3-axis, operating at 100 % capacity. The

environmental data is generated based on the geography of the installed machine. It considers

Malaysia’s hot and humid climate throughout the year and the possibility of strong winds as

the CSU machine is installed by the seaside. With further advice from the system expert,

details of the ED is outlined in the following Table 5.1.

Table 5.1: Event Data Simulation Parameters

No Description Normal
Min Max

ED1 Simulated Voltage (V) 409 415
ED2 Simulated Humidity (%) 39 45
ED3 Simulated Harmonic (%) 0.4 1.2
ED4 Simulated Slew (◦) 78 95
ED5 Simulated Luffing (◦) 5 10
ED6 Simulated Travel (m) 98 101
ED7 Simulated Temperature (◦C) 16 26
ED8 Simulated Wind Speed (m/s) 0 8

5.3.2.2 Trigger Dataset

In Discrete Event System, any input variable whose value transition is registered as an event

is defined as a Trigger Data (TD) [126]. Eight TD’s simulatios embracing the machine status
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and motor run feedback is selected to represent the actual system parameter for four main

movements. This consists of slewing, luffing, travelling and bucket operation, which have a

direct correlation to the ED’s described in the previous section. System expert has consulted

the machine pattern; thus the generation of this TD dataset is summarised in Table 5.2.

Table 5.2: Triggered Data Simulation Parameters

No Description Normal
Min Max

TD1 Busy Slewing Operation 0 1
TD2 Busy Luffing Operation 0 1
TD3 Busy Travel Operation 0 1
TD4 Busy Bucket Elevator Operation 0 1
TD5 Slewing Motor Run Bit 0 1
TD6 Hydraulic Motor Run Bit 0 1
TD7 Travel Motor Run Bit 0 1
TD8 Bucket Motor Run Bit 0 1

5.3.2.3 Disturbance Dataset

The purpose of this simulation is to test the applicability of the Event Modeller algorithm in

real-time handling data, thus observing the reaction of the system to the abnormal events.

Five ED’s signal, representing the internal and environment parameter, has been chosen. This

includes voltage, humidity, harmonic, temperature and wind speed. The dataset is simulated

based on random fluctuation with 5% disturbance limit from the normal steady-state using

the normal distribution. Table 5.3 presents the Event Data Disturbance setting.

Table 5.3: Event Data Disturbance Parameters

No Description Disturbance
Min Max

ED1 Simulated Voltage (V) 392 432
ED2 Simulated Humidity (%) 32 52
ED3 Simulated Harmonic (%) 0 3
ED4 Simulated Slew (◦) N/A N/A
ED5 Simulated Luffing (◦) N/A N/A
ED6 Simulated Travel (m) N/A N/A
ED7 Simulated Temperature (◦C) 16 32
ED8 Simulated Wind Speed (m/s) 4 16
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5.4 Results and Discussion

The simulation results from simulated data reveal the causal relationship that exists between

the input-output parameter by suggesting an equation that represents the system state. It

will also discuss the reaction of the event modeller output when a k-disturbance signal is

introduced and how it re-bounced when the system is back to normal. A comparison between

Static TD and Dynamic TD performance is discussed to determine the best option for further

development. In this experiment, 5 ED’s synthetic data, which represent the internal and

environment parameter as per discussion in the previous section, has been chosen. The data

runs in 3 stages with 5 minutes time interval, accumulating up to 15 minutes sampling time.

Summary of each stage is explained in Table 5.4.

Table 5.4: k-Disturbance Signal Setting

Description Stage Description Duration

Pre-Disturbance Warm-up
Stage

Normal Range
Dataset 5 Minutes

k-Disturbance Fluctuation
of k-events

Disturbance
Range Dataset 5 Minutes

Post-Disturbance Reaction to
k-Disturbance

Normal Range
Dataset 5 Minutes

5.4.1 Pre-Disturbance Stage

The pre-disturbance refers to the warm-up stage, which is the machine’s normal steady state.

In this experiment, Static TD has been chosen while both ED and TD Dataset are uploaded in

the developed application and runs for 5 minutes. These data is then set to trend synchronously

while the Event Modeller output is monitored. As the Event Modeller limit is set at 0.8 (80%

Confidence), a blue shaded zone depicted in Figure 5.6 represent a group of high correlation

system parameters that have a significant impact on the system state in real-time. After the

5 minutes period, Equation 5.3 reveals the system state during the period.

ρ0.8 = (ED1, ED8, ED4, ED5, ED7, ED6, ED3)× (TD2, TD6, TD5, TD3)+

(ED2)× (TD2, TD6)
(5.3)
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ρ0.82 = (ED1)× (TD2, TD6) + (ED8, ED4, ED5, ED7, ED6, ED3)× (TD2) (5.4)

To reduce the complexity of the equation, the Event Modeller Limit is amended to 0.82

(82% confidence) which is now expressed in Equation 5.4. This suggests that the Simulated

Voltage (ED1) has a high correlation with Busy Luffing Operation (TD2) and Hydraulic Motor

(TD6). Technically, the Luffing system requires the Hydraulic system for system operation,

configuring the logic of the process. Other parameters such as Wind Speed (ED8), Slew angle

(ED4) Luffing angle (ED5), Temperature (ED7), Travel movement (ED6) and Harmonic (ED3)

also have high correlation with Busy Luffing operation (TD2) which suggest the main activity

of the machine is in luffing operation rather than other operation.

5.4.2 k-Disturbance Stage

The k-disturbance refers to the fluctuation of the k-event Data, in such generating disturbance

to the system. In this example, voltage disturbance dataset has been chosen and runs for the

next 5 minutes. The data trending is performed on all measured parameters, while the reaction

of the Event Modeller output is continuously observed. Figure 5.7 presents the outcome of

the voltage disturbance after 5 minutes. A new equation which represents the system state is

expressed in Equation 5.5. To reduce dimensionality, the input-output relationship has been

increased to 82% confidence level, and the outcome expressed in Equation 5.6.

ρ0.8 = (ED8, ED5, ED4, ED6, ED7)× (TD2, TD6, TD5)+

(ED3, ED2)× (TD2, TD6) + (ED3)× (TD3)
(5.5)

ρ0.82 = (ED8, ED5, ED4, ED6, ED7)× (TD2, TD6) + (ED3, ED2)× (TD2) (5.6)

What is interesting in this data is that the sequence of the ED’s has changed drastically.

The position of Simulated Voltage (ED1) in the causal relationship matrices moved from the

first column to the last column. This can be observed from the red marked displayed in Figure

5.7. For e.g., TD2, the sensitivity index drops from 0.83450 to 0.76154, a reduction of 8.742%.

This indicates that the introduced voltage disturbance has a significant impact on the system

state.
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5.4.3 Post-Disturbance Stage

The post-disturbance refers to the reaction of the abnormal system back to normal steady

state. It is important to see how the sensitivity index settles down when the disturbance

has been removed from the system. Figure 5.8 illustrates the outcome of the Event Modeller

Output when Voltage disturbance has been removed after 5 minutes. The equations with 80%

and 82% confidence level are expressed in Equation 5.7 and Equation 5.8 consecutively.

ρ0.8 = (ED8, ED5, ED4, ED6, ED7)× (TD2, TD6, TD5)+

(ED3, ED2)× (TD2, TD6) + (ED3)× (TD5, TD3)
(5.7)

ρ0.82 = (ED8, ED5, ED4, ED6, ED7, ED3, ED2)× (TD2) (5.8)

From these results, it is apparent that the sequence of the ED’s doesn’t change from

k-disturbance to post-disturbance, but a significant positive correlation is observed for the

disturbed ED. For e.g., TD2, the sensitivity index recovered from 0.76154 to 0.78132, an

increase of 2.597%, which indicates a positive reaction from the disturbance system in a short

period of time.

5.4.4 Overall Results

The experiment in the previous sections has been repeated for Dynamic TD while the per-

formance between Static TD and Dynamic TD is evaluated to decide on the best option for

the real industry data in the next chapter. Table 5.5 compares the results obtained from

all ten experiments. To present the findings, the performance is measured from the score of

the sensitivity index from two main perspectives, which includes the overall maximum and

minimum weight, and the average score for each stage.
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Table 5.5: CSU Real-time Data Simulation Results Based on Disturbance

Description Voltage Humidity Harmonic
Static Dynamic Static Dynamic Static Dynamic

Overall Maximum Weight 0.83877 0.99966 0.83646 0.99965 0.83702 0.99975
Overall Minimum Weight 0.50000 0.62878 0.50000 0.63719 0.50000 0.63609
k-Disturbance Weight - Pre 0.83450 0.98900 0.82877 0.97900 0.81817 0.97919
k-Disturbance Weight - During 0.76154 0.80654 0.77812 0.83042 0.76374 0.81377
k-Disturbance Weight - Post 0.78132 0.86671 0.80119 0.87890 0.78976 0.86503
% change from Pre to During 8.743% 18.44% 6.111% 15.18% 6.653% 16.89%
% change from During to Post 2.597% 7.460% 2.965% 5.838% 3.407% 6.299%

Description Temperature Wind Speed
Static Dynamic Static Dynamic

Overall Maximum Weight 0.83604 1.00000 0.83408 1.00000
Overall Minimum Weight 0.50000 0.63128 0.50000 0.63252
k-Disturbance Weight - Pre 0.83063 1.00000 0.84240 1.00000
k-Disturbance Weight - During 0.79774 0.89764 0.78482 0.81037
k-Disturbance Weight - Post 0.80875 0.93103 0.80350 0.86546
% change from Pre to During 3.960% 10.24% 6.835% 18.96%
% change from During to Post 1.380% 3.719% 2.380% 6.798%

It is interesting to note that all ten cases of this study have a common finding. The

transition of average sensitivity index (weight) from Pre-Disturbance to k-Disturbance have the

same reduction trend with an average of 8.2% reduction for Static TD and 15.94% reduction

for Dynamic TD. Alternatively, when the k-Disturbance recovers, there is also a trend of

increased weight with an average of 3.218% increment for Static TD and 6.023% increment

for Dynamic TD. This finding confirms the interrelation between the triggered data and the

k-disturbance event data, where different TD types has different performance. The Dynamic

TD has a higher percentage of changes compared to Static TD.

From the other perspective, it has been observed that the minimum weight for Static TD

is fixed at 0.5000 while Dynamic TD has different minimum weight scores for each experiment.

A possible explanation for this might be that the Dynamic TD captured the changes of input

sensitivity rather than a direct Boolean signal from the input itself.
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5.5 Summary

This chapter presented a real-time data simulation of Continuous Ship Unloader machine

using event modeller technique, to identify the system state of the machine in three different

environments which are pre-disturbance environment, k-disturbance environment and post-

disturbance environment. The system development implementation and testing were explained

followed by the generation of a synthetic data which represents eight TD’s and eight ED’s of a

CSU machine. Two types of TD’s including Static TD and Dynamic TD were studied to find

the best method for providing accurate sensitivity index or weights. To assess the performance

of the developed software in handling system disturbance in real-time, five out of eight ED’s

has been introduced with synthetic disturbance data while the results of the sensitivity indices

were compared. Results have shown that the weight pattern and sequence had been affected

when the disturbance signal is introduced, and it recovers when the disturbance signal is

removed. This pattern will help system engineers to build a cause-effect relationship of events

that represent the current system state conditions. In the next chapter, the system will be

integrated with the actual plant data along with some training algorithms to assist system

engineer in predicting any of this occurrence.
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Event Modeller on Industrial Data

6.1 Overview

Industrial control systems are becoming more complicated, which makes it very challenging to

identify the root cause of a failure when abnormality or failure occurs within the system pa-

rameter. Integrated control system such as the one we have in CSU machines requires careful

monitoring to ensure the issue of a frequent harmonic failure occurring within the machine is

identified and resolved. Analysis of harmonic parameters discussed in Chapter 4 shows that

the PQ system is stable. Hence, it is still unclear what actually caused this repeated failure.

Applying EDMA technique has the potential to resolve this mystery. SIL system developed

in Chapter 5 is able to formulate a multi-variable cause-effect input-output relationship rep-

resenting the system state. A positive outcome from the findings motivates us to enhance

with predictive analytics technique while expanding the complexity of the variables. This

chapter presents a novel and dynamic platforms that connect the developed Event Modeller

technique with a machine learning system, exploring the integration of this dynamic platform

with Key Performance Indicator (KPI), in recognising the system operation pattern for predic-

tion purposes. This whole data analytics technique expects to predict the homogenised system

parameter that could present the current state of the system in real-time based on learning

knowledge experienced in the past. Chapter 6 is divided into five sections. Section 6.2 ex-

plained the system development implementation. Section 6.3 outlines the data arrangement

followed by results and discussions in Section 6.4. Finally, section 6.5 provides a summary of

this chapter.
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6.2 System Development Implementation

Event Modeller was tested in the search for homogenised system parameters, as shown in

the previous chapter. Based on the findings of the SIL experiment, it is necessary to further

explore the outcome of this technique in complex embedded systems through the use of real-

time industrial data. Industrial data are genuine data. This takes into account uncontrollable

factors such as noise, vibration, temperature and unforeseen interruption or malfunction during

system operation [270]. Running this data along with the developed SIL system will leverage

the information provided by the machine while gaining a new unknown parameter that could

predict the machine’s failure. Figure 6.1 below provides an outline of the proposed system

development.

Figure 6.1: Overview of System Development

In comparison to the system development in Chapter 5, a KPI translation is introduced

parallel to the event modelling algorithm, which gathers all data together, for exporting to the

machine learning technique for predictive modelling purposes. The following sections describe

the system development of a standard approach incorporating supervisory control and the

DAQ method with predictive modelling. Again the SLDC strategy is adopted to ensure that

the execution of this software development is well coordinated.
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6.2.1 New Software-in-the-Loop Requirements

As explained in Section 6.1, the aim of this system development is to present dynamic platforms

that link the developed Event Modeller technique to the machine learning system, taking into

account the performance indicator of the machine. Such information promotes the systematic

translation of engineering data into the knowledge management system [271], which could

support machine learning analysis. The SIL requirement of the previous chapter is updated

to include real industry data as follows:

1. Importing Data. This system is capable of importing real-time / historical data to

different file types (.csv,.xlsx,.txt, etc.).

2. 24 Event Data (ED’s). Such data are obtained every second for a period of 14 months.

Table 6.1 displays the list of CSU Machine EDs by its cluster.

3. 96 Triggered data (TD’s). Such data are obtained every second for a period of 14 months.

The data was divided into four clusters with 24 TDs for each cluster. Table 6.3 displays

the list of CSU Machine TDs by its cluster.

4. ED Benchmark Settings. The user has the option of selecting a benchmark setting for

all EDs based on a system expert.

5. Threshold Setting. For the purpose of the Trigger Threshold, an arbitrary 5% was

established, which could be adjusted later.

6. Event Modeller Limit. This setting reduces the complexity of the input-output relation-

ship by its confidence level of correlation. An arbitrary of 95% was set, which could be

adjusted later.

7. Exporting Data. This system is capable of exporting the output of the event modeller

results to different file types (.csv,.xlsx,.txt, etc.). This data will be used in the machine

learning algorithm.

6.2.2 Software in the Loop Design

The extended version of this SIL is designed to capture data from the machine in real time.

However, due to a company policy that does not allow data to be live, data is collected using

133



Event Modeller on Industrial Data: Chapter 6 System Development Implementation

Figure 6.2: Snippets of Event Modeller VI- Block Diagram (Enhancement)

Figure 6.3: Control System Architecture

a data logger for a period of fourteen months from June 2018 to August 2019. Description of

the data logger set up can be found in Section 4.5. The event modeller snippets are shown in

Figure 6.2. The correlation between Main Incomer Status (TD1) and Main Incomer Voltage

(ED1) is explained in this example. Both parameters are obtained from the data acquisition

in the form of an extension file.csv. Setting the threshold and setting the benchmark for these

parameters were first needed to determined before running the application. The first TD1 and

ED1 batch were multiplied simultaneously by threshold and benchmark-setting. Then, this

result was compared to the second batch of TD1 and ED1 to set the index score of 0 (if the

result is within the range) or 1 (if the result is out of range). The results of both ED1 and
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Figure 6.4: Snippets of System Integration VI - Block Diagram (Enhancement)

TD1 are then compared using an Exclusive-NOR logic, followed by an average step to attain

the sensitivity index of this causal-relationship in real time.

6.2.3 System Integration

System integration is described as the process of linking systems, devices and programmes

together in a common data sharing and exchange architecture [272]. The control system

architecture for this project is shown in Figure 6.3. In this system development, field data

such as sensors, actuators, limit switches and motors are connected to the programmable

logic control (PLC) via input/output modules. In this example, the Allen Bradley controllers
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used the Control-Net and Ethernet connections to communicate with each other and update

the status of an application server in real-time. The application server stores all information

assigned by the engineer, such as date, time, input data, output data, alarms and trends. As

the intention is to collect data in real-time, an improvement has been made to the existing

system architecture to incorporate all relevant data into the application server. The data were

then retrieved using the Factory Talk File Viewer (FTFV) software, before it runs using the

Real-time Model Matching Mechanism (R3M) introduced by [236]. R3M has built a bridge

between historical data and a real-time simulation that operates based on the actual events.

Figure 6.4 shows the snippet of system integration on the R3M platform. In this example, all

EDs from industrial data were compiled into data acquisitions for trending purposes.

6.2.4 System Testing

System testing is deployed to check the behaviour of a complete and fully integrated software

product based on software requirement specification. The main focus of this testing is to

evaluate the system’s compliance with the specified requirements which has been discussed in

6.2. A test plan is produced to examine the functionality of the developed application related

to the requirement specification. Table B.2 in Appendix B depicts the outcome of the test

plan.

6.3 Methodology

Having discussed the implementation of the system development in the previous section, let

us move on to the methodology and dataset arrangement that will be used in this R3M

application as follows.

6.3.1 Experimental Methodology

The CSU machine that has been chosen for the case study was having escalating trends of

harmonic failure. As the control system within the machine is a complex system, it has a

large number of variables that could be linked to this event. The dynamic causal relationship

between these variables is considered to be the root cause of the failure. To access these

variables, raw data (EDs, TDs), translated data (KPIs) and documents (daily reports) are used
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Figure 6.5: Event Modeller Data Analytics Technique

to build a predictive model that could represent the system state according to the pattern.

Having the proposed Event Modeller Data Analytics (EMDA) technique in Chapter 3, the

intention is to test the applicability of this technique in analysing the mystery of this repetitive

harmonic failure. The following Figure 6.5 is the simplified version of the EMDA technique

in Figure 3.2, which will be used in this Chapter. Later, two main experiments will be

introduced; (1) Machine Failure Analysis with Key Performance Indicators and (2) Machine

Failure Analysis with Predictive Model, with each experiment strategy will be discussed further

in Section 6.4.1 and Section 6.4.2 consecutively.

6.3.2 Data Collection

In this experiment, the industrial dataset of the CSU machine was collected from the Allen

Bradley PLC-SCADA system using the FactoryTalk view. The data was collected and stored

in the data logger from June 2018 to August 2019 for 14 months. The collection of this data,

which has been discussed in Section 4.5 were customised to suited the practical application of

the CSU machine. Hence, to research the association between the different sensors and their

triggering point, with a greater focus on events that could potentially cause the system failure.

Since the data was collected offline, it is necessary to label it with meaningful information, to

validate the data when it is re-run using the proposed method. Information such as plant and

equipment status, weather conditions, maintenance work and breakdowns could be extracted

from the system operator’s daily log sheets. Table B.3 in Appendix B outlined the system

operator log sheets for October 2018. The log sheet reports the operating activities such as
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Figure 6.6: Overall Data Tabulation for CSU Machine Activity

dates of operation, log sheet number, CSU status, total unloading, abnormality and weather.

6.3.3 Dataset Arrangement

The complete data tabulation for the CSU machine is shown in Figure 6.6. True dataset and

False dataset represent the two truth values of logic and Boolean algebra which associated

with the occurrence of the event within the 12-hours shift operation. In contrast, the missing

dataset represents the failure to retrieve the data from the system. There are 914 datasets

with each dataset containing 120 sensors/seconds. This is equal to 43,200 lines of 12-hour data

samples. To help with pattern recognition, the data was divided into three main categories

known as in-service, abnormality and weather. In-service refers to the state of the machine

that operates at its full capacity. The analysis of the data shows that this state represents

45.95% of the population. The chart also shows that only 56 of the 914 datasets reported

abnormalities of the CSU machine during this period. This suggests that only 6.13% of
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Figure 6.7: Monthly Data Tabulation for CSU Machine Activity

the sample size represents the events of machine failure. On the other hand, 8.09% of the

population represents machine operation in adverse weather conditions, while the remaining

3.72% of the population are missing datasets that have not been included in this experiment.

The data set is tabulated according to the month for further analysis of the data sampling.

Figure 6.7 outlined the machine activity from June 2018 to August 2019. This chart is quite

revealing in several ways. First, the pattern of weather is during Malaysia’s rainy seasons. The

graph shows that the number of weather events was steadily increasing from September 2018

to December 2018 and a few months before rising again in April 2019. This is supported by

Malaysia’s weather and climate data assessed in [273], which shows a high amount of rainfall

during this season. It is interesting to note that the occurrences of abnormality during the

rainy seasons are also at the highest frequency. The data presented here seem to support

the assumption that, whenever weather conditions are adverse, the possibility of machine

abnormality is higher. This causes a delay in the in-service operation time, requiring more
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time to transport the coal to the boiler.

6.3.4 Event Dataset

Table 6.1: Event Data Benchmark Configuration & Average Value for CSU Machine

No Description Benchmark Average Value
Set Limit UL LL Avg Max Min

ED1 Main Incomer Voltage (V) 395 5 390 400 395.94 427.46 237.66
ED2 Main Incomer Current (A) 300 300 600 0 275.23 394.68 146.51
ED3 Panel Humidity (%) 20 10 10 30 19.66 25.18 13.02
ED4 Main Incoming THD (%) 2 0.3 2.3 1.8 2.00 2.00 2.00
ED5 Panel Temperature (degC) 30 5 35 25 30.41 34.91 26.06
ED6 E-House Temperature (degC) 20 5 25 15 21.16 33.21 16.09
ED7 Main Slewing Angle (deg) 80 60 20 140 113.47 159.93 67.81
ED8 Travel Position (m) 150 50 200 100 168.31 197.05 133.06
ED9 Foot Slew Angle (deg) 180 180 360 0 199.79 253.24 176.17
ED10 Luffing Angle (deg) 5 15 20 -10 1.84 7.15 -2.97
ED11 Process Flow (Tan/hr) 500 500 1000 0 497.55 930.56 1.59
ED12 Wind Speed (m/s) 6 4 10 2 3.94 5.40 2.47
ED13 Rotary Drive Speed (r/min) 25 15 40 10 27.38 41.71 12.84
ED14 Portal Drive Speed (r/min) 25 15 40 10 29.25 41.82 13.07
ED15 Bucket Drive Speed (r/min) 25 15 40 10 21.43 32.09 10.74
ED16 Travel Drive Speed (r/min) 0 15 15 -15 -0.13 -0.02 -0.28
ED17 Bucket Elevator Current (A) 300 300 600 0 212.34 344.95 81.92
ED18 Portal Conveyor Current (A) 15 15 30 0 8.77 14.20 2.73
ED19 Travel Current (A) 0 200 300 -200 2.58 4.00 1.47
ED20 Boom Conveyor Current (A) 40 40 80 0 36.13 55.05 17.41
ED21 HPP2 Pump 2 Current (A) 40 20 60 20 39.64 51.87 26.68
ED22 HPP2 Pump 1 Current (A) 100 50 150 50 113.47 159.93 67.81
ED23 Rotary Feeding Current (A) 0 10 10 -10 0.00 0.00 0.00
ED24 E-House Humidity (%) 35 10 45 25 33.72 41.86 17.07

Total of 24 ED’s have been selected for this study. This includes electrical switch gear

parameters such as Main Incomer Voltage (V), Main Incomer Current (A) and Total Harmonic

Distortion (THD), which were identified as the main variables in this study. Any extreme

events that may harm the system, such as excessive voltage, current or harmonic, will be

detected and captured in the event modeller algorithm. Environmental variables such as

wind speed, humidity & temperature are also included in the ED list. This is to test the

hypothesis that temperature, humidity, and wind speed variations in the vicinity of the plant

may also affect the machine’s efficiency. Other machine process variables, such as machine

positioning, process flow, speed drives and motor running current, are included in the ED
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Table 6.2: Event Data Upper Limit & Lower Limit for CSU Machine

No Description Upper Limit Lower Limit
Avg Max Min Avg Max Min

ED1 Main Incomer Voltage (V) 397.18 427.61 244.61 393.78 427.33 224.70
ED2 Main Incomer Current (A) 973.19 1034.95 938.20 39.36 76.33 5.19
ED3 Panel Humidity (%) 40.74 59.26 20.33 9.91 11.73 6.09
ED4 Main Incoming THD (%) 2.20 2.20 2.20 1.80 1.80 1.80
ED5 Panel Temperature (degC) 37.26 41.95 35.22 21.94 30.90 18.10
ED6 E-House Temperature (degC) 27.49 37.50 17.66 16.66 22.91 14.43
ED7 Main Slewing Angle (deg) 174.12 177.85 148.05 23.95 121.53 3.43
ED8 Travel Position (m) 208.31 215.85 188.59 130.55 161.32 96.65
ED9 Foot Slew Angle (deg) 359.99 360.00 359.97 0.01 0.05 0.00
ED10 Luffing Angle (deg) 26.55 32.58 20.58 -11.28 -7.80 -15.35
ED11 Process Flow (Tan/hr) 1183.75 1618.00 2.00 0.25 1.00 0.00
ED12 Wind Speed (m/s) 9.86 14.75 6.57 0.16 1.23 0.00
ED13 Rotary Drive Speed (r/min) 50.16 50.23 50.10 -0.04 0.08 -0.13
ED14 Portal Drive Speed (r/min) 50.05 50.10 50.03 -0.16 -0.13 -0.26
ED15 Bucket Drive Speed (r/min) 47.20 48.77 46.78 -5.69 0.03 -10.32
ED16 Travel Drive Speed (r/min) 49.76 49.80 49.69 -50.08 -50.03 -50.13
ED17 Bucket Elevator Current (A) 1072.85 1191.39 772.54 0.00 0.00 0.00
ED18 Portal Conveyor Current (A) 83.51 86.17 78.13 -3.30 -1.69 -5.36
ED19 Travel Current (A) 336.77 343.54 279.51 -323.65 -227.33 -347.49
ED20 Boom Conveyor Current (A) 212.31 212.31 212.31 0.17 2.06 0.00
ED21 HPP2 Pump 2 Current (A) 107.23 159.28 79.50 10.15 40.95 0.00
ED22 HPP2 Pump 1 Current (A) 174.12 177.85 148.05 23.95 121.53 3.43
ED23 Rotary Feeding Current (A) 17.24 41.74 0.00 -18.93 -17.77 -20.17
ED24 E-House Humidity (%) 56.32 73.92 31.79 22.02 29.23 13.76

list to validate machine operations. The objective of the event modeller is to capture the

cause-effect relationship between the ED’s and its TD’s beyond its operational benchmark.

The benchmark ideally satisfies the following criteria: (a) it is based on real-world raw sensor

data from different types of sensor deployments; (b) it contains (natural or artificially injected)

faulty data points reflecting various problems in the deployment, including missing data points;

and (c) all data points are annotated with the ground truth, i.e., whether or not the data point

is accurate, and, if defective, the type of fault [274]. System engineers are therefore required

to identify the upper and lower limits for each ED’s, in order to eliminate all ED’s operating

within the normal range. To determine this set of points, a sample of data selected randomly

from a group of efficient machine data sets, measuring the average, upper and lower limit of

each ED. Table 6.1 and Table 6.2 illustrates the ED’s benchmark and limits for CSU machine.
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6.3.5 Assumption on Total Harmonic Distortion Data

One of the important event dataset explained in the previous section is ED4 known as Main

incoming Total Harmonic Distortion (THD). THD is a measure that reveals how its voltage

or current distorts the harmonics in the signal. The parameter is expressed in percentage and

is typically determined by taking the root sum of the squares from the fundamental’s first five

or six harmonics. For example, the formula for calculating the THD in this CSU machine is

shown in the following equation with Vn is in RMS voltage.

THD (%) = 100%×

√
V 2

3 + V 2
5 + V 2

7 + ...+ V 2
n

V1
(6.1)

In the case of a CSU machine, a panel-mounted multi-function meter is used to measure

all energy data, including THD data. The instrument used Equation 6.1 to calculate the THD

value and display the measurement through the panel. The initial plan was to import this

THD data to the main PLC controller, thus integrating it with other EDs for event modeller

analysis purposes. However, some major setbacks that do not allow the data to be available

in the data acquisition as discussed in Chapter 4.

Two methods have been used to import this data. The first method is to expand the

analogue output module from two to four. While the voltage and current analogue values

remain available for data acquisition, the newly introduced THD data does not meet the ED

requirement by not having the analogue reading as shown on the panel. The data acquisition

only received the binary data which represent the alarm status of THD setpoint. Therefore,

the second method using the Modbus communication protocol is introduced.

This method requires a brand new Modbus protocol adapter, to be installed at site with

some configuration. Due to the limitation of the maintenance window, the installation of this

device has been postponed. Whilst it is installed successfully, the device does not respond to

the system. Therefore, an alternative plan has been taken by replacing the ED4 data with a

simulated version. Considering the PQ assessment results in Table 4.4 which does not have

any evidence of harmonic, the simulated version of the data has been modelled using Equation

6.2, where hn is the magnitude of the n order harmonic, fn is the n order harmonic frequency

[275].
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Va = sin(2πf1t+ θa) + [
25∑

n=3,5,7...

hnsin(2πfnt+ θn)], 1 < n (6.2)

6.3.6 Triggered Dataset

Table 6.3: Triggered Data Parameters

No Cluster 1 Cluster 2 Cluster 3 Cluster 4 Min Max
TD1 Main Incomer Status Rotary Drive Enable Inactive Luff Idle Luff 0 1
TD2 Maintenance Feeder Portal Drive Enable Inactive Foot Slew Idle Foot Slew 0 1
TD3 REGEN 1 Enable Bucket Drive Enable Inactive Slew Idle Slew 0 1
TD4 REGEN 2 Enable Travel Drive Enable Inactive Boom Idle Boom 0 1
TD5 REGEN 3 Enable Rotary Feed State Inactive Rotary Idle Rotary 0 1
TD6 Boom Motor Portal State Inactive Buck Idle Buck 0 1
TD7 Boom Brake Motor Slew Remote LCS Inactive Portal Idle Portal 0 1
TD8 Rotary Motors Boom Remote LCS Inactive Travel Idle Travel 0 1
TD9 Bucket Motors Rotary Remote LCS Inactive Mag Separator Idle Mag Separator 0 1
TD10 Bucket Brake Motors Buck Remote LCS Inactive HPPI Idle HPPI 0 1
TD11 Portal Motor Portal Remote LCS Inactive HPPII Idle HPPII 0 1
TD12 Travel Motors Travel Remote LCS Failure Luff Busy Luff 0 1
TD13 Travel Brake Motors Slew Local LCS Failure Foot Slew Busy Foot Slew 0 1
TD14 Mag Separator Motor Boom Local LCS Failure Slew Busy Slew 0 1
TD15 HPPI Motor Rotary Local LCS Failure Boom Busy Boom 0 1
TD16 HPPII Motor 1 Buck Local LCS Failure Rotary Busy Rotary 0 1
TD17 HPPII Motor 2 Portal Local LCS Failure Buck Busy Buck 0 1
TD18 Cable Reel Motor Travel Local LCS Failure Portal Busy Portal 0 1
TD19 Water Hose Reel Motor Slew Disable LCS Failure Travel Busy Travel 0 1
TD20 Rail Clamp Motor 1 Boom Disable LCS Failure Mag Separator Busy Mag Separator 0 1
TD21 Rail Clamp Motor 2 Rotary Disable LCS Failure HPPI Busy HPPI 0 1
TD22 Diverter Chute Motor 1 Buck Disable LCS Failure HPPII Busy HPPII 0 1
TD23 Diverter Chute Motor 2 Portal Disable LCS Selected BC1A Busy BC1A 0 1
TD24 Water Spray Motor Travel Disable LCS Selected BC1B Busy BC1B 0 1

The event modeller algorithm looks at the causal effect of the ED’s to the TD’s. In this

study, 96 TD’s were selected and divided into four clusters. These clusters represent different

types of trigger points. As the main objective of this experiment is to carefully observe the

high correlation between input and output, dividing into clusters will help system engineers

to develop a unique pattern that represents the state of the system. Cluster details are as

described, where Cluster 1 represents the status of the machines and the status of the motor.

This cluster validates the electrical component of the running machines. Cluster 2, on the other

hand, validates the status of drives and Local Control Station (LCS). This cluster observes

the correlation between the modes of operation with the ED’s. Meanwhile, the inactive versus

failure status for each process are included in Cluster 3. This cluster incorporates the fault

or inactive information. Finally, Cluster 4 validates the Idle vs. Busy status to complete the

list. Table 6.3 summarised the Trigger Data parameters according to the clusters.
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6.3.7 Data Discretisation

Data discretisation refers to the process by which continuous data properties, features or

variables are transformed or partitioned into a finite set of intervals with minimal information

loss. As plant data is a raw big data from the SCADA system, it is necessary to discrete the

data into a smaller range for analysis purposes. In this project, we have divided the data into

hourly format and system engineer will be able to select the data based on the following Table

6.4.

Table 6.4: Data Discretisation Strategy

No Hour Row
Number No Hour Row

Number
1 00:00:00 0 13 12:00:00 43202
2 01:00:00 3602 14 13:00:00 46802
3 02:00:00 7202 15 14:00:00 50402
4 03:00:00 10802 16 15:00:00 54002
5 04:00:00 14402 17 16:00:00 57602
6 05:00:00 18002 18 17:00:00 61202
7 06:00:00 21602 19 18:00:00 64802
8 07:00:00 25202 20 19:00:00 68402
9 08:00:00 28802 21 20:00:00 72002
10 09:00:00 32402 22 21:00:00 75602
11 10:00:00 36002 23 22:00:00 79202
12 11:00:00 39602 24 23:00:00 82802

6.3.8 Key Performance Indicator Parameter

The CSU machine is operated 24 hours a day whenever the shipment arrives at the jetty. In

practice, coal is normally discharged from the vessel within 72 hours. If the execution breaches

the maximum time, there will be a high demurrage cost and that must be avoided. Usually,

much effort has been implemented to avoid this penalty, such as performance evaluation [276],

which uses plant data to record operating activities and resources while preventing downtime.

However, this effort is not made in real-time and requires manpower to monitor the plant.

Recently, performance modelling using DES in real-time predictive control has shown promis-

ing results. DES model is capable of capturing state variable changes at a discreet time in a

highly complex environment [236, 277, 278]. The translation of plant data into management

performance metrics uses a combination of DES model and real-time DAQ system.
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In this section, the translation of plant data into management performance metrics is

introduced. It helps engineers to make a quick decision when the performance of the KPI

status has reached certain limits. Each performance factor is made up of several measurable

indicators. Information for the calculation of KPIs is retrieved from field sensors, actuators,

monitors, readers, counters, human inputs and other sources. Measurement indicators are

updated in real-time. Figure 6.8 shows the KPI status of the developed CSU machine. The

display updates the exact time for available, busy, idle and fault for each main component and

previews the KPI and machine utilisation using the performance dashboard.

Table 6.5: Key Performance Indicator Parameters

No Description Unit Min Max
KPI 1 Availability (A) % 0 100
KPI 2 Instantaneous Utilisation (IU) % 0 100
KPI 3 Schedule Utilisation (SU) % 0 100
KPI 4 Performance (P) % 0 100
KPI 5 Green House Gases Ratio (GHG) % 0 100
KPI 6 Energy Consumption Ratio (EC) % 0 100

Table 6.5 outlined the six KPIs to be used for this experiment. To further understand

these six parameters, the CSU system status definition, including the KPI formula used in this

calculation, is shown in Table 6.6. Energy consumption is calculated based on the individual

motor rating. By multiplying the individual energy consumption with the emission factor, all

carbon footprint and environmental impact KPIs can also be calculated. The Energy Efficiency

KPI status display of the developed CSU machine is shown in Figure 6.9. The display updates

the single-line diagram of the CSU machine and previews the KPI energy efficiency using the

performance dashboard. Snippets of the KPI formula can be found in Appendix A.(Figure

1-3)

6.3.9 Predictive Model Dataset

As explained in Chapter 3, predictive modelling is a branch of advanced analytics that used

historical data or business processes to predict unknown future events. Supervised machine

learning is used to train this model for classification purposes. In order to align the proposed

EMDA technique with the system development, the event modeller input-output sensitivity

index (weight) was labelled based on the pattern. The KPIs are integrated with the weight via
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Table 6.6: Description of Machine Status & Formula for KPI

Machine Status

Description Details
Incomer Availability Time Total time accumulates when main incomer is energised.
Availability Time Total Time accumulates when machine is healthy but not running.
Busy Time Total Time accumulates when machine is healthy and running
Fault Time Total Time accumulates when machine experience fault during running.
Inactive Time Total Time accumulates when machine is in on disable by operator.
Idle Time Availability Time - Busy Time
Operating Time Busy Time + Idle Time + Fault Time + Inactive Time.

Formula for Machine KPI

Description Formula
Machine Availability (Available Time/Incomer Available Time)
Machine Instantaneous (Busy Time/Incomer Available Time)
Machine Schedule Utilisation (Busy Time/Available Time)
Machine Performance (Process Flow/Incomer Availability Time)
Total Coal unloaded (Flow Rate/3600)

Formula for Energy Efficiency KPI

Description Formula
Busy Energy Consumption Busy Time/(3600 × kWRating × Number of Motors)
Idle Energy Consumption Idle Time/(3600 × kWRating × Number of Motors × 0.25)
Total Energy Consumption (Busy Energy Consumption + Idle Energy Consumption)
Carbon Dioxide Gases (CO2) (Total Energy Consumption × 0.448581)
Methane Gases (CH4) (Total Energy Consumption × 0.000412)
Nitrous oxide Gases (NO2) (Total Energy Consumption × 0.002339)
Carbon Dioxide Equivalent (Total Energy Consumption × 0.451331)

the look-up table. The table is then exported to a machine learning tool to test the accuracy

of the classification. In order to prepare the predictive model dataset, all available data are

divided into three main categories known as in-service, abnormality and weather. This 880

dataset is tabulated according to the logic pattern shown in Table 6.7. The next section

describes the outcome of the predictive model dataset that uses Cluster 1.

6.3.9.1 Pattern 1 - Standby, No Abnormality and Good Weather

A standby machine with no abnormalities and no weather conditions indicates that the ma-

chine is always available, is not overused, is well maintained and has good strategic planning.

Based on Table 6.7, this pattern shows the highest number of datasets in the population at

48.75%. Figure 6.10 shows the 4-quadrant result for Pattern 1 dated 12th June 2018 for a
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Table 6.7: Predictive Model Pattern Logic

Pattern Description Logic Number of DatasetIn-Service Abnormality Weather
Pattern 1 - Standby, No Abnormality and Good Weather 0 0 0 429
Pattern 2 - Standby, No Abnormality and Bad Weather 0 0 1 12
Pattern 3 - Standby, Downtime and Good Weather 0 1 0 15
Pattern 4 - Standby, Downtime and Bad Weather 0 1 1 4
Pattern 5 - Operating, No Abnormality and Good Weather 1 0 0 330
Pattern 6 - Operating, No Abnormality and Bad Weather 1 0 1 53
Pattern 7 - Operating, Downtime and Good Weather 1 1 0 32
Pattern 8 - Operating, Downtime and Bad Weather 1 1 1 5

period of 4-hours. From the chart, the ROC pattern remains unchanged from the initial ex-

periment. The KPI dashboard remains consistent with zero reading, which shows that the

machine is not operated during sampling time.

6.3.9.2 Pattern 2 - Standby, No Abnormality and Bad Weather

Bad weather refers to the rain, the storm, the wind and the combination of these three

elements. Since the CSU machine is operated near to the sea, there is always a risk of adverse

weather conditions, especially during the monsoon season. Having said that, it is essential

to capture this pattern in the predictive model dataset. In theory, while the machine is in

standby mode, there will be no operation during bad weather unless it is in between shipments.

For example, when the first vessel unloading is completed, the second vessel has to wait for

some inspection and documentation before it is allowed to be dock. During this period, the

system is set to be on standby. There was 12 dataset available for this pattern. Figure 6.11

shows the 4-quadrant result for Pattern 2 dated 25th July 2018 for the period of 1-hour. In

this experiment, the 1-hour sampling time was chosen to respond to bad weather events. From

the chart, the ROC pattern remains unchanged from the initial experiment. This indicates

that no operation activity carried out during this period. This is supported by information

on the KPI dashboard.

6.3.9.3 Pattern 3 - Standby, Downtime and Good Weather

Machine failure could happen at any time, with or without operation. As the CSU machine

runs at the jetty according to the shipment’s arrival, there are occasions when the machine

failure occurs during a non-operating cycle. Although the weather is reported to be normal,

the dynamic and the interaction within the machine vicinity will lead to a machine failure.
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For example, the electrical room of the CSU machine is equipped with an air conditioner to

ensure that the room is maintained at a certain temperature. During operation, the choke and

electrical drives produce an excessive amount of heat, making the electrical room extremely

warm. As a result, an additional air conditioner was switched on to combat the excessive

heat. However, if the CSU machine is on standby, the room will be extremely cold and humid

if the additional air conditioner is switched on continuously. With high humidity, sensitive

electrical devices such as choke and harmonic filters could also fail. There were 15 datasets

available that match this pattern. Figure 6.12 shows the 4-quadrant result of Pattern 3 dated

4thJanuary 2019. The pattern of the ROC remains unchanged from the chart, even though

it runs for 19 hours. The KPI dashboard does not indicate any reading that proves that the

machine is not being operated during sampling time.

6.3.9.4 Pattern 4 - Standby, Downtime and Bad Weather

The coincidence of failure and bad weather at the same time is a bit tricky if it happens in

standby mode. However, if the same scenario occurs at the same time in Pattern 2 and Pattern

3, it will lead to a combination factor. Having this combination factor pattern dataset will

help system engineers to train supervisory learning with accuracy. Figure 6.13 presents the

4-quadrant result for Pattern 4 dated 28thJune 2018 for the 1-hour period. From the chart, the

pattern of the ROC does not change much in comparison to the initial state. Again, because

the machine is in standby mode, the KPI dashboard remains empty. Only 4 population

datasets are available based on Table 6.7.

6.3.9.5 Pattern 5 - Operating, No Abnormality and Good Weather

A CSU machine with continuous and smooth operation indicates that the machine has achieved

high availability, reliability and maintenance. This could be revealed by the translation of the

Latent Knowledge (KPI) from the sensors and actuators established in the system development

process. Having this system state pattern will supervise the machine learning process to train

the model to predict the future state of the system. Figure 6.14 shows the 4-quadrant result for

Pattern 5 dated 17thJuly 2018. It is apparent from the ROC that the pattern of the system

state has changed slightly. The input-output relationship has been adapted to the system

state, leaving the high correlation relationship to be assessed by the system engineer. The KPI
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dashboard demonstrates that the system is running at its best performance. Performance is

rated at 100 %, while Availability and Utilisation are rated at 91.19 % and 68.02 % respectively.

This validates the operation of the CSU machine without any interruption and under good

weather conditions.

6.3.9.6 Pattern 6 - Operating, No Abnormality and Bad Weather

Moving to the machine operation, which encounters some bad weather while running. The

main finding here is whether bad weather influences the system state model. Figure 6.15

presents the 4-quadrant result for Pattern 6 dated 12th December 2018 for the 1-hour period.

In this example, the ROC in quadrant 4 reveals that some changes have been made to the

system state. It is a change in the shape of the ROC that matters. The activity of the

operation is affected by the high correlation variables group. It is clearly stated that the series

of triggered data {TD11, TD6, TD7, TD8, TD9 and TD10} are heavily influenced by the

Portal Conveyor Current (ED18). There is no evidence of weather conditions affecting the

operation of the machine. However, the KPIs indicate that the performance was 33.29% and

that the availability was 74.08%. This suggests that the operation of the machine is suspended

under bad weather conditions.

6.3.9.7 Pattern 7 - Operating, Downtime and Good Weather

In good weather, the CSU machine operates at full capacity to ensure that the coal is unloaded

within the timeframe. In normal circumstances, 72 hours are allocated for each vessel to unload

coal. However, a queue or interruption due to machine failure, unavailable spare parts or back

to back shipment will force the machine to operate on a non-stop basis. Consequently, it will

also contribute to downtime. Figure 6.16 shows the 4-quadrant result for Pattern 7 dated 31th

January 2019 for the 1-hour period. In this example, the pattern of the ROC has changed

considerably. One of the main findings is that the process flow (ED11) is no longer correlated

with other TDs. This indicates that the machine is being stopped. On the other hand, the

Boom and Boom Brake motors are also not correlated with other EDs. This supports the

previous statement that when the Boom Conveyor stops, which means that the coal was not

transported to the central chute. The chart also reveals that the travel and travel brake

motor joins the small cluster at the bottom. This indicates that the operator uses the travel
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movement to park the CSU machine at its initial position. Last but not least, the portal

conveyor current has a significant correlation with other motors, just like Pattern 6, which

was discussed earlier. The reason for this is that the portal conveyor current is linear with

the coal flow from the central chute. In principle, when the coal is dropped from the central

chute to the portal conveyor, the loading current of the motor is dependent on the amount of

coal. In addition to the effect of the dropping, the portal conveyor current will be fluctuating

which were detected by the event modeller. On the other hand, the KPIs indicate that the

performance was 31.93 % with the availability of 68.55 %. The instantaneous utilisation and

Schedule Utilisation were at the lower percentage with 32.93 % and 48.00 % consecutively.

6.3.9.8 Pattern 8 - Operating, Downtime and Bad Weather

For the final pattern, which is the worst-case scenario for all patterns, the scenario is very

unlikely to happen. Only 5 datasets are available from the population as shown in Table

6.7. Figure 6.17 shows the 4-quadrant result for Pattern 8 dated 26thOctober 2018 for the

1-hour period. In this example, the CSU machine operates at its steady-state before a fault is

triggered. The ROC pattern in quadrant 4 shows the outcome of the fault. The chart shows

that the Main Incomer Status only responds to the ED series. This indicates that the machine

was completely shut down. The outcome from the motor status was only linked with the HPP

Pumps (ED21 and ED22) and Main Slew (ED7).

6.4 Results and Discussion

Having discussed the dataset structure in the previous section, this segment would concen-

trate on experimental work, followed by results and discussion. Two major experiments were

conducted using the system development implementation in Section 6.2. The first experiment

is to evaluate which parameter influences machine failures within the CSU machine data set.

The ultimate goal is to observe how Event Modeler and the translated KPIs are correlated

with these parameters. The second experiment is to predict the pattern to which the generated

predictive model dataset belongs. The intention is to validate the predictive model dataset

using machine learning tools by comparing the classification accuracy of the three leading

classifier models.
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6.4.1 Experiment 1: Machine Failure Analysis with Key Performance In-

dicators

Harmonic filter failure can be influenced by various factors, such as faulty device, operator

handling, and environmental factors in which the machine operates. It has also occasionally

been affected by the combination of these factors. Based on the expert point of view of the

CSU machine, the harmonic problem is associated with the occurrence of REGEN fault. In

order to access the REGEN fault events, the abnormal dataset from Figure 6.7 was selected.

The frequency of the REGEN failure was compared with other types of fault, as presented in

Figure 6.18. The bar chart reveals that the highest number of REGEN faults was reported

in October 2018, followed by August 2018, September 2018 and January 2019. Although the

highest number of REGEN failures was recorded in October 2018, no report indicated that

the REGEN drives had been replaced. However, the January 2019 reports indicated that the

maintenance team had replaced the REGEN during this month due to a fault. The January

dataset was therefore chosen to further explain the relationship of the variables using the

EMDA technique.

6.4.1.1 Experiment Strategy

Building a solution capable of translating engineering data automatically into high-level man-

agement information is the principal motivation for this experiment. The KPIs shall be cal-

culated based on the operation of the machine during the selected period. The method used

in Chapter 5 is borrowed to run a fault dataset with a time interval of 5 minutes. The first 5

minutes are the events before the fault occurs, followed by the fault, and end with the last 5

minutes that accumulate up to 15 minutes of sampling time. The reason why this method was

adopted is to prove that the event modeller could instantly solve a complex system without

having to run the system for a longer period. It is easy to sample data in a simulation environ-

ment, as the user can decide when the fault may occur, but this is not the case with industrial

data. The dataset was therefore analysed to determine which data was almost equivalent to

the setting. The experiment strategy is summarised in Figure 6.19. The results are presented

in two phases. First, the event modeller was used as a tool to reduce the dimensionality of

the data being observed. Second, the relationship between the observed data and the KPIs

has been compared. The results will be explained as follows.
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Figure 6.19: Experiment Strategy for KPIs Analysis

6.4.1.2 Relationship between the observed data against Event Modeller

In this example, a homogenous dataset representing Pattern 7 of the predictive model dataset

population was sampled for 16 minutes. The dataset of 30th January 2019 was sampled between

12:47 pm and 13:03 pm. The dataset arrangement in Section 6.3 indicated that there were 96

TDs to be grouped against 24 EDs in the form of matrices to show which system parameters

were highly correlated. It is noteworthy that the 96 X 24 matrices are too complex for a

correlation analysis; therefore, the 96 TD was divided into 4 clusters, as shown in Table 6.3.

For each TD cluster, 24 X 24 matrices were analysed using the event modelling technique.

The sensitivity index of each input-output relationship has been measured and updated every

second. The ROC pattern was observed in real-time and captured every minute. As a result,

four-quadrant windows representing four key states were presented: Initial, Pre-Fault, Fault

and Post Fault for each TD cluster. This analysis intends to examine how TDs influence the

pattern of the ROC. It is necessary to clarify what happens during this 16-minute time stamp
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before presenting the chart. Based on the report, the machine is running at its optimum level

before it is fully phased out after 10 minutes. The reason why machine trips is unknown,

which left the proposed method to be concluded further.

Figure 6.20 to Figure 6.23 shows the pattern of the ROC system state for all clusters. An

important finding was that the first four EDs were the same for all clusters. They comprised

of E-House Humidity (ED24), Portal Conveyor Current (ED18), Wind Speed (ED 12) and

Portal Speed Drive (ED14). This indicates that one of these EDs would have been the cause

of failure. The following observation was based on the ROC pattern. Similar findings were

found in Cluster 2 and Cluster 3 patterns. Surprisingly, between the four quadrants, this

pattern has not changed much. The only obvious is that it is the TDs are influenced by E-

House Humidity (ED24). This suggests that the relationship between the TDs and the EDs

for this quadrant is consistent. In other words, the fault may not be related to the TDs in

those clusters. Moving to the ROC patterns for Cluster 1 and Cluster 4, major changes were

observed after the fault in this quadrant. This suggested that the TDs could have originated

from these clusters. Taking this into account, the highly correlated variables for both Cluster

1 and Cluster 4 were further examined. Equation 6.3 indicates the possible root cause of

Cluster 1. If we overlap both relationships, the new equation for Cluster 1 is expressed in

Equation 6.4:

ρ0.95 = (ED18)× (TD6, TD7, TD11, TD8, TD9, TD10)+

(ED24)× (TD8, TD9, TD10, TD24, TD21, TD2, TD22, TD23, TD20, TD13, TD12)
(6.3)

ρ0.95 = (ED18 + ED24)× (TD8, TD9, TD10) (6.4)

On the other hand, the following equation 6.5 indicates the possible root cause of Cluster

4. If we overlap both relationships, the new equation for Cluster 4 is expressed in Equation

6.6.

ρ0.95 = (ED18)× (TD15, TD18, TD16, TD17, TD20)+

(ED24)× (TD16, TD17, TD14, TD13, TD19, TD12)
(6.5)
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ρ0.95 = (ED18 + ED24)× (TD16, TD17) (6.6)

Combining Equation 6.4 with Equation 6.6, the sensitivity index is expressed in Table

6.8. With that, Event Modeller has reduced the dimensional to a smaller scale that will help

system engineer decide which relationship is liable to this fault. The following section will be

discussed on the relationship between the observed data and the KPIs to validate the findings

of the Event Modeller.

Table 6.8: Summary of Sensitivity Index

Description TD8 TD9 TD10 TD16 TD17
ED18 0.97919 0.97138 0.96878 0.98337 0.96881
ED24 0.95838 0.96982 0.996982 0.95842 0.97089

6.4.1.3 Relationship between the observed data against Key Performance Indi-

cators

The KPIs are the translated index of the machine operation as indicated at the beginning of

the chapter. It provides operational information for the decision-making of both the machine

and the system operator. Four main KPIs have been adapted in this experiment known as

Availability (A), Instantaneous Utilisation (IU), Schedule Utilisation (SU) and Performance

(P). Having these four KPIs in line with CSU machine data, the possible root cause of frequent

harmonic failure could be determined. The following steps have been taken to analyse the

data: (1) Select fault dataset from the Predictive Model Dataset. (2) Identify fault observed

data location. (3) Distinguish observed data according to Environment Variables, Electrical

Variables and Motor Variables. (4) Plot Environment Variables data against KPIs. (5) Plot

Electrical Variables data against KPIs. (6) Plot Motor Variables data against KPIs.

The easiest way to identify fault events is by exploring the main incomer trip data. Theo-

retically, the entire electrical system will be tripped when there is a REGEN fault. Although

it may conflict with other events in which the operator may trip the main incomer on purpose,

the system could automatically distinguish between the actual fault and the simulated fault

using the translated KPIs data. For example, when a fault occurred during the operation, the

data of the KPIs will hold the value in percentage. This verifies that the fault that occurred
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is genuine. If the machine is stopped or not operated, the value is either zero or hold to a

specific value. In this example, the same dataset used in the previous experiment was chosen.

This is to compare the relationship between the data observed using both techniques. The

dataset dated 30th January 2019 was therefore sampled between 12:47 pm and 13:03 pm. The

target data was then divided into three and plotted against the KPIs as follows:

Table 6.9: Summary of Electrical Variables

Description ED1 ED2 ED4
Min 427.33 V 9.66 A 1.84 %
Max 427.47 V 242.93 A 2.19 %
Average 427.44 V 73.13 A 2.00 %

Figure 6.24 shows the electrical observed data against the KPIs when electrical faults

occurred. This graph is quite revealing in several ways. First, the main fault has been

observed. The chart reveals that the main fault occurred at 09:50. This is the turning point of

all events. Next, the four KPIs are observed. Performance was initiated at 100% and remains

for 1 minute. It was then exponentially reduced to 16% when the main fault occurred. This

indicates that the unloading of coal has stopped immediately after 1 minute. On the other

hand, both Instantaneous Utilisation and Schedule Utilisation started at 58% and gradually

decreased to 35% at 04:24. At this point, Schedule Utilisation bounces back to 39% but

Instantaneous Utilisation remains reduced to 30% until the main fault event occurs. The

availability started at 95% and remained until 04:24 before it gradually decreased when the

main fault occurred. These trends have shown that there is a relationship between the main

fault and the KPIs. Table 6.10 summarised the KPI results.

Table 6.10: Summary of KPIs

Description A IU SU P
Min 64.37 % 25.01 % 34.82 % 11.52 %
Max 91.67 % 58.33 % 58.33 % 100.00%
Average 76.43 % 32.48 % 39.59 % 26.72 %

Moving to electrical variables, the main input voltage (ED1) remains at 427V for the

entire time. Although the fault occurred, the main input voltage does not respond to this. This

validates that the fault is not caused by power disturbances from the supply, such as transient,

interruption, under-voltage or over-voltage. The Main Incomer Current (ED2) pattern was
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then observed. Before the fault, ED2 shows the current drawing of the electrical distribution.

The pattern is based on the loads of the motor during machine operation. However, when the

fault occurred, trends show that ED2 is responding to the event. An instantaneous drop was

discovered during this period. ED2 does not fall to zero because the energy was still drawn

from the maintenance feeder for essential loads. The main incoming THD (ED4) has also

been observed. As explained in Section 6.3.5, ED4 has been generated assuming that there

will be no harmonic distortion during these events. The ED4 pattern remains at an average of

2.0% throughout the sampling time, indicating that the THD remains at IEEE 519 Standards.

Table 6.9 summarised the electrical variables.

Table 6.11: Summary of Motor Variables

Description ED17 ED18 ED19 ED20 ED21
Min 0.00 A -2.96 A -133.97 A 0.00 A 0.05 A
Max 119.31 A 25.67 A 97.87 A 54.41 A 52.05 A
Average 5.41 A 0.69 A 2.49 A 5.03 A 30.60 A

Meanwhile, to further explain the relationship between the motor variables and the KPIs,

Figure 6.25 shows the current drawing of five main processes in the CSU machine. These

include Bucket Elevator Current (ED17), Portal Conveyor Current (ED18), Travel Current

(ED19), Boom Conveyor Current (ED20) and Hydraulic Pack Power (ED21). In order to

validate the ED2 from the previous graph, this chart reveals that ED2 has a linear relation-

ship with all motor variables within this graph. For example, when ED17 was drawn at the

beginning of the sampling and all other motor loads were added during that period the ED2

measurement reached its peak value. Some attention is given to the small circle in the chart.

It is clear that there was some instability happening at 01:48, which could be linked to the

fault. ED18 had an impulsive signal and remained zero after that event. On the other hand,

ED19 has also revealed some dramatic changes. Just after ED18 had an impulsive signal,

ED19 experienced some negative distortion for 12 seconds, followed by an interruption for 48

seconds and a further positive distortion for 60 seconds completely before it stopped . Another

attention has to be made at ED17. In the beginning, ED17 had drawn some fluctuation cur-

rent and had spiked for a few seconds before it stopping at 00:40. The trend shows that ED17

is struggling to recover, but ends up stopping when the main fault has occurred. Otherwise, all

other motor variables are operating in their normal state. Table 6.11 summarised the motor
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variables.

Figure 6.26 displays the environment data observed against the KPIs when the same elec-

trical faults have occurred. Five environmental data were reported, including Panel Humidity

(ED3), Panel Temperature (ED5), E-House Temperature (ED6), Wind Speed (ED12) and

E-House Humidity (ED24). Attention must be given to the humidity and temperature of the

electrical room where the electrical distribution panel is located. The pattern has shown an

instant increase of ED24 at 02:36. The humidity builds up and reaches its highest peak at

58% and slowly decreased with two spikes before the fault occurred. On the other hand, ED3

has also been increased but not as much as ED24. ED5 has an average temperature of 33.13

degrees Celsius, while ED5 has an average temperature of 17.82 degrees Celsius. Eventually,

ED12 fluctuates within the normal range. Table 6.12 summarised the environment variables.

Table 6.12: Summary of Environment Variables

Description ED3 ED5 ED6 ED12 ED24
Min 10.35 % 31.41 degC 17.12 degC 2.22 m/s 30.64 %
Max 18.52 % 35.54 degC 18.16 degC 9.19 m/s 58.06 %
Average 14.95 % 33.13 degC 17.82 degC 6.74 m/s 39.21 %

6.4.1.4 Discussion

The main outcome of the experiment is to show how the proposed technique can be used as

a tool to reduce the dimensions of a highly complex system. In this case study, 96 TDs were

analysed against 24 EDs in real-time to help system engineers visualise any changes to the

system state. The EMDA implementation will group high correlation system parameters in

the form of matrices and place them in mutually exclusive blocks. Having a huge matrix,

however, will make things difficult. The matrix needs to be presented as a square for clear

visibility. Thus, the 96 TDs were divided into 4 clusters, where each cluster has a relationship

with 24 EDs. The example accessed a 16-minute dataset that belongs to a fault population.

The result for each cluster was shown in a four-quadrant to show the pattern change. In this

example, there is a major change in the pattern observed in Cluster 1 and Cluster 4. Further

analysis on the two clusters suggested a new formula representing the state of the system.

After the fault event, the new formula for Cluster 1 and Cluster 4 is expressed in Equation

6.4 and Equation 6.6 respectively. As a result of these equations, the main culprit of the fault
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was identified. The ED variables were reduced from 24 EDs to 2 EDs (a decrease of 91.76%)

while the TDs variable was reduced from 96TDs to 5TDs (a decrease of 94.79%). As listed in

Table 6.8, the possible root causes of the fault are the combination of:

1. Portal Conveyor Current (ED18) with Rotary Feeding Table Motors (TD8), Bucket

Elevator Motors (TD9), Bucket Elevator Brake Motors (TD10), Busy Rotary Table

(TD16) and Busy Bucket Elevator (TD17) or

2. E-House Humidity (ED24) with Rotary Feeding Table Motors (TD8), Bucket Elevator

Motors (TD9), Bucket Elevator Brake Motors (TD10), Busy Rotary Table (TD16) and

Busy Bucket Elevator (TD17)

Further analysis with the KPIs will validate the existence of unknown events that could

be linked to harmonic problem. In normal circumstances, electrical variables such as voltage,

current and THD should have a linear relationship with the KPIs. As the KPIs responded to

the fault, the electrical variables should also respond. However, the voltage and the harmonic

measurement remain constant after the fault has occurred, as shown in Figure 6.3. Although

current measurements have responded to this fault, trends show that the current value is not

zero. It indicates that there was still a current drawing for the essential loads. Therefore, this

eliminates the possibility of machine failure due to electrical variables.

Moving to the motor variables, as explained in the result, ED17, ED18 and ED19 showed

some undiscovered events that could lead to fault. When comparing the performance trend

to ED17, the performance measurement falls in line with the activity of the bucket elevator.

Although the trends for ED17 fluctuate before it stops, this could be explained from the

perspective of uneven coal inside the bucket. On the other hand, ED18 has experienced an

impulsive signal that leads to an immediate stop. However, looking at the timing of this event,

it took about 9 minutes for the fault to happen. The same goes for ED19, which experienced

negative and positive distortions right after ED18. This can be claimed as a result of an event.

However, when it comes to the type of operation, ED19 is a travel motor that operates in two

directions. Although some distorted measurements were made, this could be explained by the

number of motors that were operating. There were 10 motors in service working at different

efficiency levels. Having said that, the motor variables is also excluded from being the root

cause of the fault.
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Turning to environment variables, the trends in Figure 6.26 have shown some indications

that the humidity could be related to the fault. The rise in humidity up to 58.06% shows that

the state of the system has been compromised. Although high humidity patterns started 7

minutes before the fault, the measurement continuously retained above 40 % after the fault.

This type of phenomena takes a fixed amount of time to reach the fault level. To explain

this phenomenon, we take an example of preheating an oven. When a person decides to bake

a cake, the oven needs to be heated to the right temperature before putting the cake inside

the oven. Although it takes a few seconds to turn the oven on, it may take a few minutes to

get to the right temperature. This phenomenon is referred to a fixed time delay deterministic

event. However, if the person warms up the oven, but forgets to close the oven door, it may

take longer to get to the right temperature. This phenomenon is referred to a deterministic

sequence of different input events. The heat produced in the oven was cooled by the amount

of cold air present in the surroundings, which would delay the process of preheating the oven.

When we relate this to our case study, the power electronic component such as choke,

rectifier, REGEN and control drives produce an excessive amount of heat during operation.

To ensure that the heat is kept at certain limits, two units of air conditioners were designed

to combat this heat. However, after considering the amount of heat generated in the room

along with the hot and humid climate of Malaysia throughout the year, experts have reviewed

and decided to install two additional air conditioners to cater for this amount of heat. As

a result, when CSU machine is fully operational, the four-unit air conditioners are sufficient

to cool down the electrical room. However, when the machine stops at intervals, the air

conditioners are found oversized to the power electronic component. As a consequence, the

humidity increases; the component becomes wet, resulting in machine failure. The humidity in

the electrical switchgear room must be maintained at an elevated temperature relative to the

ambient inside the room. Condensation is usually considered a problem only if the humidity

in the switchgear room is 65% or greater [279]. Although the humidity in this example does

not reach 65%, considering the machine has been running for a decade, the efficiency of the

machine may decrease as humidity may be the contribution factor. This finding suggests that

there is a relationship between the humidity and the fault.

The relationship between the observed data and the Event Modeller and the KPIs appears

to be consistent. The findings of the two analyses suggested that there is a new unknown
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parameter, which shows a reasonable correlation with the machine’s performance. The un-

known parameter is that the humidity of the operating environment has a significant impact

on the occurrence of harmonic failure. This proved the hypothesis set in the underpinning

research endeavour presented in this thesis. By controlling the operating environment’s hu-

midity, the event-based machine learning (EMDA) discussed in the following section could

precisely classify the system state issue.

6.4.2 Experiment 2: Machine Failure Analysis with Predictive Model

Reviewing the purpose of this study, the objective is to deploy machine learning platforms

that could predict the variables causing machine failure in real-time. As discussed earlier,

machine failure may be due to a variety of reasons, such as climate change, device failure,

system interruptions, or operator handling. Therefore, in order to decide on future events,

a supervised learning model was used to analyse the relationship between these factors, thus

predicting which pattern the system state represents in real-time. In supervised learning,

training sets are labelled with the information of the system state determined by the predictive

model dataset. In this experiment, three machine learning classifier models were chosen,

namely, Decision Tree (DT), Multilayer Perceptron Neural Network (MLPNN) and Naive

Bayes (NB), which will be discussed further in the following section.

6.4.2.1 Experiment Strategy

Building a solution that is capable of classifying pattern based on the predictive model is

another key motivation of this thesis. The proposed EDMA technique are designed to provide

information of the system state in real-time, which help system engineer to be alert with the

future fault or unnoticed events which could harm the system. EMDA is a unique technique

which is looking at the coincidence of the events with its triggered data. In order to ensure that

machine learning is provided with sufficient machine information, the predictive model dataset

in Section 6.3.9 has been taken and labelled according to the pattern. The data sampling for

each pattern was then taken and stored in a new data set to run machine learning models. The

same procedure has been used to validate this by using the raw dataset population in Section

6.3.2. The reason why we sampled the same population is to compare the accuracy of the

classification for both methods. The experiment strategy is summarised in Figure 6.27. The
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Figure 6.27: Experiment Strategy for Predictive Modelling Analysis

implementation of this experiment is achieved by using MATLAB R2019a Neural Network

Toolbox [43] and by experimentally setting the parameters. Classification results for both

experiments will be discussed in the following section.

6.4.2.2 Classification Results

The details of the experiment are given in Table 6.13. A total of 2400 data were obtained

from the original raw dataset and predictive model dataset and divided into training data

and testing data. The results of three different classifications were presented in Table 6.14.

It has been observed that the majority of the classification accuracy for Decision Tree and

MLPNN Classifiers has been 100%. This shows that the responses of the original dataset

and the EMDA dataset are consistent. However, the results using the Naïve Bayes classifier

show that the original data set is slightly less accurate but still showing a good indicator of

high accuracy. Surprisingly, the EMDA dataset has achieved better accuracy than the original

dataset. This has shown that EMDA is performing well, which makes it a good technique for

machine learning tools.

179



Event Modeller on Industrial Data: Chapter 6 Results and Discussion

Table 6.13: Experiment Details for CSU Machine with 15% Holdouts

Description Data Variables Predictors Train Test
Original 2400 124 8 2040 360
EMDA 2400 580 8 2040 360

Table 6.14: Classification Result for CSU Machine with 15% Holdouts

Description DT MLPNN Naïve Bayes
Original EMDA Original EMDA Original EMDA

Sample 1 100.00 % 100.00 % 100.00 % 100.00 % 97.50 % 100.00 %
Sample 2 100.00 % 100.00 % 100.00 % 100.00 % 93.67 % 100.00 %
Sample 3 100.00 % 100.00 % 100.00 % 100.00 % 99.17 % 100.00 %
Sample 4 100.00 % 100.00 % 100.00 % 100.00 % 96.67 % 100.00 %
Sample 5 100.00 % 100.00 % 100.00 % 100.00 % 94.72 % 99.72 %
Sample 6 100.00 % 99.72 % 100.00 % 99.72 % 97.50 % 98.61 %
Sample 7 100.00 % 100.00 % 100.00 % 100.00 % 96.67 % 100.00 %
Sample 8 100.00 % 100.00 % 100.00 % 100.00 % 95.27 % 100.00 %
Sample 9 100.00 % 100.00 % 100.00 % 100.00 % 97.22 % 100.00 %
Sample 10 100.00 % 100.00 % 100.00 % 100.00 % 96.94 % 100.00 %

Hold-out is when you split your dataset into a ’train’ and ’test’ set. The training set is

what the model is trained on, and the test set is used to see how well the model performs

on unseen data. In the previous experiment, 85 % of the data was used for training, and the

remaining 15 % of the data was used for testing. The experiment was repeated with a 30 %

holdout to observe the consistency of the outcome. The details of the experiment are shown

in Table 6.15. The comparison of results for the three classifiers is summarised in Table 6.16.

Experimental results have shown that both the EMDA and the original data show good

accuracy. This suggests that the model has been classified according to the predictive model

pattern. Although the results of this analysis sound convincing, they are not as good as we

thought. Getting 100% accuracy is questionable but justifiable. Since this is a supervised

learning, the labelling of data may not be as accurate as it is. The reason for this is that the

labelling is based on a series of events. For example, when a fault occurs, some event must

be triggered before it happens. As a result, not only the fault time stamp was labelled as

an interruption, but the whole sequence of events. This leads to an incorrect time span of

the data. The same applies to weather conditions such as rain and strong winds. Adverse

weather conditions happen during a period of time. As a result, the whole period will be

labelled as weather issues. In addition, the data in the study represents the operation of a
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machine. There are variables that haven’t changed as much as they do. For example, the

voltage stays at 427.33V most of the time. When we train them in machine learning, there

was no significant difference between the 8 patterns as they remained in the same state. The

linearity of these data makes the classifier able to accurately predict most of the time. To

overcome and comprehend these situations, further experiments can be carried out using other

strategies, such as cross-validation or other methods of sampling industrial data in real-time.

Table 6.15: Experiment Details for CSU Machine with 30% Holdouts

Description Data Variables Predictors Train Test
Original 2400 124 8 1680 720
EMDA 2400 580 8 1680 720

Table 6.16: Classification Result for CSU Machine with 30% Holdouts

Description DT MLPNN Naïve Bayes
Original EMDA Original EMDA Original EMDA

Sample 1 100.00 % 100.00 % 100.00 % 100.00 % 97.80 % 100.00 %
Sample 2 100.00 % 100.00 % 100.00 % 100.00 % 97.36 % 100.00 %
Sample 3 100.00 % 100.00 % 100.00 % 100.00 % 98.19 % 100.00 %
Sample 4 100.00 % 100.00 % 100.00 % 100.00 % 98.19 % 100.00 %
Sample 5 100.00 % 100.00 % 100.00 % 100.00 % 96.52 % 99.72 %
Sample 6 100.00 % 99.86 % 100.00 % 99.86 % 97.78 % 98.75 %
Sample 7 100.00 % 100.00 % 100.00 % 100.00 % 96.80 % 100.00 %
Sample 8 100.00 % 100.00 % 100.00 % 100.00 % 95.55 % 100.00 %
Sample 9 100.00 % 100.00 % 100.00 % 100.00 % 97.22 % 99.72 %
Sample 10 100.00 % 100.00 % 100.00 % 100.00 % 97.77 % 100.00 %

6.4.2.3 Computational Effort Results

Putting aside the batch labelling issue and static sensory data discussed in the previous section,

the classification results for both EMDA and original data shows that all three ML classifiers

achieved high accuracy. A major difference between these three ML classifiers resides in its

computational effort. To ensure the setup run under the same experiment conditions, the

analysis were running on a Personal Computer with Intel®Core™ i7-7820HQ CPU 2.90GHz

and 16.00 GB memory RAM. In this experiment, the computational effort was measured using

its time span and CPU utilisation. Table 6.17 presents the average time span for all experiment.

The results reveal that MLPNN took the least computational time compares to DT and NB.
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Table 6.17: Time Span Computational Effort Results

Description DT MLPNN Naïve Bayes
Original EMDA Original EMDA Original EMDA

Sample 1 5.38 s 4.71 s 3.85 s 4.00 s 7.77 s 8.04 s
Sample 2 5.03 s 4.58 s 3.73 s 3.83 s 7.52 s 7.89 s
Sample 3 5.02 s 4.54 s 3.94 s 3.96 s 7.73 s 8.02 s
Sample 4 5.59 s 4.69 s 3.86 s 3.95 s 7.76 s 8.17 s
Sample 5 5.22 s 4.92 s 3.79 s 4.01 s 7.80 s 8.26 s
Sample 6 5.12 s 6.08 s 3.80 s 4.18 s 7.54 s 8.01 s
Sample 7 5.29 s 4.53 s 3.85 s 3.96 s 7.56 s 8.07 s
Sample 8 5.23 s 4.87 s 3.90 s 3.92 s 7.66 s 7.37 s
Sample 9 5.15 s 4.43 s 3.64 s 3.55 s 7.85 s 7.22 s
Sample 10 4.93 s 4.39 s 3.44 s 3.53 s 7.59 s 7.99 s
Average 5.20 s 4.78 s 3.78 s 3.89 s 7.68 s 7.90 s

Table 6.18: CPU Utilisation Computational Effort Results

Description DT MLPNN Naïve Bayes
Original EMDA Original EMDA Original EMDA

Sample 1 67 % 67 % 41 % 40 % 78 % 84 %
Sample 2 66 % 59 % 40 % 37 % 62 % 71 %
Sample 3 68 % 63 % 39 % 35 % 59 % 69 %
Sample 4 70 % 66 % 36 % 34 % 69 % 78 %
Sample 5 66 % 61 % 38 % 36 % 74 % 75 %
Sample 6 66 % 69 % 35 % 41 % 69 % 75 %
Sample 7 69 % 65 % 40 % 40 % 71 % 80 %
Sample 8 69 % 64 % 41 % 37 % 76 % 81 %
Sample 9 69 % 60 % 35 % 34 % 77 % 80 %
Sample 10 74 % 61 % 39 % 35 % 74 % 77 %
Average 68 % 64 % 38 % 37 % 71 % 77 %

MLPNN spent an average of 3.78 seconds for original data and 3.89 seconds for EMDA data.

Although it sounds original data classify faster by less than 0.1 seconds, knowing that EMDA

data have high complexity compared to the original data, it is an achievement for MLPNN in

classifying EMDA data. On the other hand, EMDA data in DT have a different perspective.

It is notable that EMDA classified faster by 0.4 seconds compares to its original data. These

findings may explain the relatively good structure of DT in branching the possible outcomes,

which has an important implication for future work. Meanwhile, NB took the longest time,

which almost doubles the time span for MLPNN.

Table 6.18 reveals the average CPU utilisation for all experiment. A similar outcome with

the time span, MLPNN have the cheapest computational effort by only using 38% of the

182



Event Modeller on Industrial Data: Chapter 6 Summary

CPU utilisation in classifying the model. On the contrary, DT and NB need almost double of

the MLPNN effort. Comparing the original data to EMDA data, DT computes less effort in

EMDA data compared to original data. This is consistent with the time span results discussed

earlier, which shows that EMDA data are relevant to DT. Alternatively, while MLPNN has

almost similar effort for both original and EMDA data, NB works best with its original data.

In conclusion, the results of this study indicate that MLPNN is the best classifier that

works with original and EMDA data. With its low computational effort and reduced time

span, MLPNN has shown a positive implication for the proposed EMDA technique. DT, on

the other hand, are still relevant due to its success in handling EMDA data and acceptable

time span, but needs to further research in optimising the CPU utilisation. Unfortunately,

NB remains the least preference classifier due to its expensive computational effort.

6.5 Summary

Chapter 6 demonstrate the use of event based technique in solving the repetitive harmonic

failure in one of the power plants in Malaysia. The aim of this work was to analyse the machine

failure using the coincidence matrices of an input-output relationship with the latent knowledge

(KPI) translated into the system. To find the root cause of this failure, the novel technique,

which is namely EMDA, was examined on the real industry data. The system development

implementation were developed using LabVIEW application, accessing 914 raw datasets with

each dataset containing 120 sensors/seconds. To label the predictive model dataset, EMDA

were used to convert the raw dataset into sensitivity index and KPIs before it was trained using

3 machine learning model known as Decision Tree, Multi-Layer Perceptron Neural Network and

Naïve Bayes. The accuracy of the classifications and the computational effort were compared.

Meanwhile, further analysis of the CSU machine against the REGEN failure was established.

The observed data were compared with the KPIs and the Event Modeller ROC pattern. The

results obtained suggests that humidity have a significant impact on the occurrence of harmonic

failure. This proved the hypothesis underpinning this research which is "A fault in a power

system distribution will be influenced not only by internal events, but also by external events

such as environment and climatic change". In terms of computational effort, the MLPNN

classifier has found to perform better compared to DT and NB, which conclude the findings.
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Conclusion

7.1 Overview

Chapter 7 summarises the entire works carried out in this research. The aim of this chapter is

to highlight the research outcomes and findings. Building on the findings, research limitations

and proposals for future work are presented. This chapter comprises of five sections. Section

7.2 summarises all chapters of the thesis. Section 7.3 presents the contributions of the research,

which will be of benefit to real-time industrial application. Limitations of the study are

discussed in section 7.4. Finally, based on the limitation and findings, this thesis proposes

future work in Section 7.5.

7.2 Summary of Dissertation

This thesis started with introducing the subject, defining the problem statement and estab-

lishing the research question in the domain problem: Power Quality (PQ). Managing PQ in

machines using industrial data is very challenging. Industrial data are multi-dimensional data

in nature and deterministic. The problem with analysing this data is that the machine events

behave differently and requires expensive computational effort. The current practice embrace

signal processing technique, which use various combinations of feature extraction, feature se-

lection and classifier to locate or predict the PQ problem. However, this technique is solely

based on the time domain and frequency domain of an electrical signal. It does not consider

the external parameter, which has a significant influence on the PQ problem. For example, PQ
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engineer used government meteorological websites or other weather data websites to obtain

site temperature and humidity level separately from the target data. These websites provide

offline data, and future data is based on prediction, which does not represent the accurate

measurement at site. Since there was no research investigating the relationship between the

PQ data with other external data in real-time, a novel machine learning architecture frame-

work namely, Event Modeller Data Analytics was proposed in this research, to visualised the

PQ system inputs and machine Key Performance Indicator (KPI) occurrences with predictive

data analytic approach in real-time. As stated in Chapter 1, the research question for this

study is defined as follows:

Table 7.1: Research Question

No Research Question

RQ 1

What are the internal and environmental events within the power system
distribution that affect harmonic filter performance? By internal events,
we mean the dynamic and the interaction within plant machinery, and
by environment event we mean the fluctuation in temperature, humidity,
and pollution in the vicinity of the plant.

RQ 2

Is the bath tub theory of harmonic filters performance a reliable mechanism
for predicting its performance at the three periods: (1) an “early failure”
(burn-in) period, where the hazard function decreases over time, or
(2) a “random failure” (useful life) period, where the hazard function
is constant over time, or (3) a “wear-out” period, where the hazard
function increases over time.

Chapter 2 has provided the literature review on the research areas. The domain PQ

disturbance problems with its various techniques and methods to solve the problem have been

discussed therein. The relevance of input variable selection and sensitivity analysis within this

context have been associated with this research, to challenge the ways of feature extraction

from the modern complex systems and its infrastructure to achieve time-critical reduction and

low computational effort. The methods used in this research were identified beforehand based

on the review from the literature.

Event modeller data analytics has been introduced in Chapter 3. This technique used

event-based learning to connect the embedded system with its Key Performance Indicator

(KPI) with machine learning tools for prediction purpose. It used a dynamic platform to

produce a real-time critical accurate knowledge that represents the system state at a minimum

cost and then further trained to make a prediction based on the pattern.
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Chapter 4 discussed the main issue faced by our industrial partner in Malaysia. It was

pointed out that the CSU machines, being responsible for transporting the coal from the

vessel to the supercritical boiler of a power plant, is experiencing a major frequent harmonic

filters failures. The exciting part is, results of the PQ assessment reported in this Section

4.4 have shown that all PQ parameters are within the tolerance value as per IEEE 519, 1992

standard and International Standard IEC 61000-3-4. The majority of the measured harmonic

distortion at the PCC is relatively small, achieving below 2 % for voltage distortion and

demand distortions. These findings suggest that the problem have other causes, potentially

associated with other variables within the vicinity of the operating machines. Thus, the Event

Modeller Data Analytic technique introduced in Chapter 3 was used to demonstrate this

problem in Chapter 6. In order to collect accurate data from the industry whilst maintaining

the client policy, an offline data collection setup has been made to access and capture real-time

data from the machine. This chapter also explained the modification made to incorporate a

limitation on the existing infrastructure to include additional external variables that may have

an impact on the research.

Chapter 5 has introduced event modeller technique in the form of software in the loop ar-

chitecture using synthetic data. This chapter has presented a real-time data simulation of Con-

tinuous Ship Unloader machine using three different environments which are pre-disturbance

environment, k-disturbance environment and post-disturbance environment. The results have

shown common findings during the transition between pre-disturbance to disturbance period,

having the same average reduction trends of 8.2 % for Static TD and 15.94 % for Dynamic TD.

Alternatively, it also shows a common finding during the recovery period from disturbance to

post-disturbance with average increment trends of 3.218 % for Static TD and 6.023 % for

Dynamic TD. With these outcomes, Dynamic TD has been chosen to be the proper method

to capture the changes of input sensitivity which was used to demonstrate the problem in

Chapter 6.

Chapter 6 comprises of the main experiment and findings of this research. The main fo-

cus of the chapter was to identify the root cause of the CSU machine abnormalities, which

links to a harmonic failure problem. Dynamic platforms that integrate the developed Event

Modeller technique with its Key Performance Indicator (KPI) had been examined. With this

information, data analytics is developed to predict the homogenised system parameter that
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represents the current state of the system in real-time. This chapter comprised of a set of an

initial experiment to construct the predictive model dataset. The dataset is classified into 8

patterns, in which each pattern represent the truth table of the status of machine operation,

abnormality state and weather conditions. To validate, each pattern is tested using the indus-

trial data, to formulate the equivalent system state relationship that represents this pattern.

Within the system development capacity, the event modeller clustered the high correlation

parameter together, which help system engineer to identify which group of parameters have

high influence at the current time. With the help of data analytics, the KPI parameters are

used as predictors to determine which pattern is it belongs to. The accuracy of the prediction

is good which prove that the proposed technique could be used in any complex data in the

future. With regards to evaluating the external parameter that has the influence to the system

parameter, which leads to CSU machine failure, the work in Chapter 6 has been introduced

with the three modelling strategies in the experiments.

7.3 Contribution

The contribution of this research is two-fold. Firstly, this research offers software in the loop

framework that connects a real-time embedded system data with data analytics. Secondly, it

contributes knowledge to system engineers in formulating complex systems into an event-based

environment.

7.3.1 Contribution as a System Engineering Tools

The outcomes of this research have contributed to some practical tools for system engineer-

ing in terms of the methods and strategies used in this research. The event modeller data

analytics technique, which runs in real-time combines the cause-effect relationship between

the input variables and performance measure to developed a pattern. With the help of var-

ious machine learning algorithms, these tools could potentially predict linear and nonlinear

problems in real-time, enhancing quick decision making for system engineering problems. The

first notable contribution in this field is that the Event Modeller Data Analytics technique is

robust, workable with the dynamic and autonomous environment while being able to with-

stand real industry data which is non-linear and highly influenced with various factors. The
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experiments in Chapter 5 are tested with highly volatile and random values upon the system

is disturbed. The results show that this technique is capable to react to this system state

instantly and substantially leads to better solutions in improving the system’s performance.

The second notable contribution is that this proposed technique could visualise the group of

highly correlated variables in the form of occurrence matrices in real-time, proposing a math-

ematics equation that represents the current state of the system. The results demonstrated

in Chapter 6, which used high complexity industrial data have to substantiate grouped the

high correlation parameter together in a significantly reduced time, formulating a non-linear

equation with its accurate weighting. The applicability of combining the event modeller with

an analytic data system is the third notable contribution in this research. This platform which

was trained using various machine learning tools is able to predict the future events accurately,

making these tools relevant to machine learning and system engineering environment.

7.3.2 Contribution in Power Quality Disturbance

Discovery of system state pattern could draw interest from a power system perspective in

diagnosing PQ disturbances. From the clustering arrangement suggested by event modeller

technique, the pattern of the abnormalities which considers external parameter can be studied

by power system engineer to predict PQ problems. The main objective of this research was

to explore which external variables have a significant correlation with the event of harmonic

failure. The environment variable such as temperature, humidity and wind speed were included

in the system analysis, weighting the correlation relationship of these variables with system

operation variables, to formulate new knowledge information. The end result of Event Modeller

technique was in the form of a cluster of the input-output relationship. The clusters were

studied for the significance of this input-output relationship to see the association between

them in real-time. In normal operation conditions, the resultant cluster found by Event

Modeller has the same agreement with the actual events provided by the daily operation

report. This has proven the significance of the findings. With the information from the

key performance indicator translated within the system operation, these calculated variables

validate the input-output relationship for data analytics purposes. The outcome of the results

has shown good accuracy, which makes EMDA technique relevant not only in solving PQ

disturbance problem but also across other industrial controls and monitoring problems.
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7.4 Limitation

This research produced a reliable system modelling for measuring non-linear industrial data.

However, like any other research, a number of limitations existed in conducting the research.

There are four limitations identified in this research. Please note that the scope and objectives

of the research are within acceptable tolerance limits.

7.4.1 Total Harmonic Data

This research used primary data which were retrieved from the control system within the CSU

machine. One main issue is that the Total Harmonic Distortion (THD) data is not available

within the control system architecture. As explained in Chapter 4, various efforts have been

made to capture the THD data from the Multi-function meter. However, none of the initiatives

made a positive outcome. The initial plan was to add a new analogue output module to import

the THD data in line with the existing Voltage and Current data. Based on the datasheet,

the device is capable of providing up to 4 analogue output. As a result, binary data which

represent the alarm status of THD setpoint is imported rather than the analogue value of

the THD. Then, another method was adopted using a Modbus communication protocol. As

the CSU machine operates throughout the year, there is a limitation on the maintenance

window to perform the job. After a number of delays in installing the device, the Modbus

communication does not respond to the data acquisition, which makes the THD data not

available for this research. The implication of this missing data affects the main objectives

of the study. After further review with the system expert, a sample of THD data has been

taken offline. Hence, the THD data was simulated based on the sample data and International

Standard IEEE 519, assuming the machines are operated within the tolerance limits.

7.4.2 Data Benchmarking

The scenario of events in the actual system varies according to the system characteristic and

its system deterministic. An event could happen instantaneously, or it may have some delay

before it reached to the target output. For example, the scenario of a room temperature does

not change immediately when the heater or air conditioner was switched on. In comparison,

a dark room will be immediately bright when the switch was turned on. Both of the scenarios
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have made changes to the system state at a different pace. In order to detect this, a data

benchmarking is required. In this research, data benchmarking was used to set the limits of

typical operation characteristics. If an event occurred outside this limit, the event modeller

registered it as a triggered event. As explained in Chapter 6, data benchmarking decision

has been made based on the historical data and system expert point of view. A sample data

has been selected randomly from the entire data population. The average and limits of the

sampled data have been analysed and reviewed by the system expert to decide on this setting.

However, these limits may and may not cover the actual scenario of events. The implication

of this benchmark-setting may affect the performance of grouping the high correlated system

parameter together. Consequently, the outcome of the results may not reflects the actual

system state.

7.4.3 Data Quality

The data used in this research were gathered during the data collection period. As explained

in Chapter 4, due to company policy which does not allow data to be available on the cloud,

a data logger has been configured to store the target system parameter in the server. When

the data is packet into a DAT file, the author took approximately 6 hours to convert a single

file with no interruption; otherwise, it has to start all over again. Data screening found 3.72%

of the data population was missing. The implication is that this missing data may represent

some of the abnormality datasets which is the purpose of the study.

Besides that, there were also missing data points within the dataset. A further investigation

found that whenever the main incomer trips, the entire control system were interrupted. Thus,

there were no data stored on the server for system modelling. The implication is that the data

were skipped for the duration of the interruption, which will make a significant impact on the

quality of the data. In addition, some data were found to be frozen for a period of time. In

this scenario, it holds the last value, which compromises the integrity of the data.

7.4.4 Reports

As the data collection has been made for the period of 15 months, additional supporting data

is required for cross-reference with the actual data to interpret what is happening. Therefore,

a daily report has been accessed to determine the operational activity for each day. Nvivo
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software has been used to organise, store and sort the daily report in a single platform and

further analysed using Microsoft excel for tabulation purpose. Nevertheless, there are evidence

of unreported events or delay in reporting, which make the analysis very challenging. Based

on the feedback from the system operator, the daily report is made at the end of their daily

shift which sometimes is distorted from the original events.

7.5 Future Works

While the results are encouraging, note that this thesis is only a small step towards building

an automatic industrial continuous intelligent system. The performance on system modelling

can still be improved from three aspects: the variety of the industrial dataset, the method on

how to retrieve the data and the selection of machine learning tools to predict the data.

7.5.1 Wide Variety of Industrial Dataset

In this study, a Software in the Loop application has been implemented to formulate and

predict the occurrence of PQ disturbance problem in real-time. While the outcome of the

study reveals that there was influence from the environment, which leads to a frequent har-

monic filter failure, there are a wide variety of industrial data that can be explored. For

example, implementing the Event Modeller Data Analytics (EMDA) in smart grid system will

be beneficial to the power system engineer. As the smart grid system facilities are available

in real-time, integrating the EMDA technique with the smart grid will not only monitor the

system grid parameter, it could also observe the relationship to natural disaster events such

as tsunami, earthquake, flood, and hurricane. As long as the relevant system parameter is

included within the smart grid platform, the proposed technique will visualise and predict the

occurrence of any of these events continuously.

7.5.2 Real-time Cloud Services

In this research, the CSU machine data were retrieved offline using a data logger. The reason

is because of our industrial partner company policy, which does not allow the data to be made

available live. While re-running the historical data as it runs in real-time offers good results,

the real-time cloud services such as Google Cloud, Microsoft Azure and Amazon web services
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Conclusion: Chapter 7 Future Works

could provide an excellent platform to analyse the data online. Private clouds services are also

available for sensitive data. The main advantage of using this approach is that it offers is a

substantial reduction in computing time, and in most instances, this approach is cost-effective

and scalable, especially for a multinational company owning various plant at different parts

of the world. In that instance, all information on the running plant is shared in a dashboard

which is accessible to the relevant party.

7.5.3 Other Machine Learning Algorithm

For proof of concept, the works in Chapter 6 embraced Neural Network, Naïve Bayes and

Decision Tree algorithm for predictive modelling purposes. While the results on the perfor-

mance are encouraging, they are by no means sufficient. There are various machine learning

algorithms to be investigated in the future such as Linear Regression, Logistic Regression,

k-nearest neighbours, Random Forest and Support Vector Machines, which promises better

prediction accuracy.
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Appendix A

Figure A.1: Snippets of CSU Machine KPI
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Figure A.2: Snippets of CSU Machine KPI
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Figure A.3: Snippets of Energy Efficiency KPI
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Table B.2: Test Plan for Event Modeller Development

Test
ID

Functionality
Description

Test
Input
Data

Expected Output Actual Output Status

1
Run with
Default
Setting

N/A

Program run simul-
taneous data from
subVI with invalid
output values.

The output value
indicates binary ’1’
for all values.

Fail

2 Run with TD
Type = Boolean

Toggle
Switch

TD Status bit is
display Green LED

TD Status bit is
display Green LED Pass

3 Run with TD
Type = Analogue

Toggle
Switch

TD Status bit did
Not appears

TD Status bit
did Not appears Pass

4
Run with
Threhold
Setting - 0.05

0.05
UL and LL
denotes as 1.05
and 0.95

UL and LL
denotes as 1.05
and 0.95

Pass

5
Run with
Threhold
Setting - 0.10

0.10
UL and LL
denotes as 1.10
and 0.90

UL and LL
denotes as 1.15
and 0.90

Pass

6
Run with
Threhold
Setting - 0.15

0.15
UL and LL
denotes as 1.15
and 0.85

UL and LL
denotes as 1.15
and 0.85

Pass

7
Run with Event
Modeller Limit
- 0.90

0.90
The pattern shows
correlation with
90% confidence

The pattern shows
correlation with
90% confidence

Pass

8
Run with Event
Modeller Limit
- 0.80

0.80
The pattern shows
correlation with
80% confidence

The pattern shows
correlation with
80% confidence

Pass

9
Run with Event
Modeller Limit
- 0.70

0.70
The pattern shows
correlation with
70% confidence

The pattern shows
correlation with
70% confidence

Pass

10

Run with
Voltage
Disturbance
button ON

Toggle
Button

Program run simul-
taneous data from
subVI with Voltage
Disturbance

The output wave
-form for Voltage
is fluctuating

Pass

11

Run with
Humidity
Disturbance
button ON

Toggle
Button

Program run simul-
taneous data from
subVI with Humid-
ity Disturbance.

The output wave
-form for Humidity
is fluctuating

Pass

12
User select all
required
Settings

N/A

Program run simul-
taneous data from
subVI with good
output values.

The output shows
good correlation
matrix

Pass
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Table B.3: Summary of System Operator Daily Log Sheet for CSU Machine

Date No Shift CUL Status Ship Name Total Unloaded Abnormality Weather Abnormality Remarks Weather Remarks
01-Oct-18 6324 Day Missing Missing Missing Missing Missing Missing Missing
01-Oct-18 6325 Night Healthy N/A N/A No Yes N/A Raining - 02:05AM - 03:55 AM
02-Oct-18 6326 Day Healthy N/A N/A No No N/A N/A
02-Oct-18 6327 Night Healthy N/A N/A No No N/A N/A
03-Oct-18 6328 Day Healthy N/A N/A No No N/A N/A
03-Oct-18 6329 Night Healthy N/A N/A No No N/A N/A
04-Oct-18 6330 Day Healthy N/A N/A No No N/A N/A
04-Oct-18 6331 Night Healthy N/A N/A No No N/A N/A
05-Oct-18 6332 Day In-Service MV POS LOGISTIC 2 600 MT No No N/A N/A
05-Oct-18 6333 Night In-Service MV POS LOGISTIC 2 11618 MT No No N/A N/A
06-Oct-18 6334 Day In-Service MV POS LOGISTIC 2 18300 MT No No N/A N/A
06-Oct-18 6335 Night In-Service MV POS LOGISTIC 2 29854 MT No No N/A N/A
07-Oct-18 6336 Day In-Service MV POS LOGISTIC 2 37065 MT No No N/A N/A
07-Oct-18 6337 Night In-Service MV POS LOGISTIC 2 37065 MT No No N/A N/A
08-Oct-18 6338 Day In-Service MV POS LOGISTIC 2 46300 MT No No N/A N/A
08-Oct-18 6339 Night In-Service MV POS LOGISTIC 2 46500 MT No Yes N/A Raining - 01:00AM - 06:40AM
09-Oct-18 6340 Day In-Service MV POS LOGISTIC 2 60081 MT No No N/A N/A
09-Oct-18 6341 Night In-Service MV POS LOGISTIC 2 60081 MT No No N/A N/A
10-Oct-18 6342 Day In-Service MV POS LOGISTIC 2 60091 MT No No N/A N/A
10-Oct-18 6343 Night In-Service MV POS LOGISTIC 2 66000 MT No Yes N/A Raining - 19:01PM - 06:40AM
11-Oct-18 6344 Day In-Service MV POS LOGISTIC 2 68903 MT No No N/A N/A
11-Oct-18 6345 Night In-Service MV POS LOGISTIC 2 68903 MT No Yes N/A Raining - 19:01PM - 01:09AM
12-Oct-18 6346 Day In-Service MV POS LOGISTIC 2 69543 MT No Yes N/A Raining - 16:24PM - 17:55PM
12-Oct-18 6347 Night In-Service MV POS LOGISTIC 2 72090 MT No Yes N/A Raining - 05:39AM
13-Oct-18 6348 Day In-Service MV POS LOGISTIC 2 73100 MT Yes Yes Reset regent fault at CUL 2 Raining - 07:00AM
13-Oct-18 6349 Night In-Service MV POS LOGISTIC 2 76901 MT No Yes N/A Raining - 06:00AM
14-Oct-18 6350 Day In-Service MV TASIK SAKURA 5500 MT No No N/A N/A
14-Oct-18 6352 Night In-Service MV TASIK SAKURA 8969 MT No No N/A N/A
15-Oct-18 6353 Day In-Service MV TASIK SAKURA 12700 MT No Yes N/A Raining - 07:01AM
15-Oct-18 6354 Night In-Service MV TASIK SAKURA 17964 MT No Yes Reset regent fault at CUL 1 Raining - 03:29AM
16-Oct-18 6355 Day In-Service MV TASIK SAKURA 20501 MT No Yes N/A Raining - 07:01AM
16-Oct-18 6356 Night In-Service MV TASIK SAKURA 26446 MT No No N/A N/A
17-Oct-18 6357 Day Missing Missing Missing Missing Missing Missing Missing
17-Oct-18 6358 Night In-Service MV TASIK SAKURA 35600 MT Yes Yes *CUL 2 regen fault alarm Raining - 20:51 PM
18-Oct-18 6359 Day In-Service MV TASIK SAKURA 44300 MT No No N/A N/A
18-Oct-18 6360 Night In-Service MV TASIK SAKURA 54300 MT No No N/A N/A
19-Oct-18 6361 Day In-Service MV TASIK SAKURA 62689 MT No No N/A N/A
19-Oct-18 6362 Night In-Service MV TASIK SAKURA 62689 MT Yes No Alarm foreign body protection actuated (03:45AM) - CUL 2 N/A N/A
20-Oct-18 6363 Day In-Service MV TASIK SAKURA 76500 MT No No N/A N/A
20-Oct-18 6364 Night Healthy N/A N/A No No N/A N/A
21-Oct-18 6365 Day Healthy N/A N/A No No N/A N/A
21-Oct-18 6366 Night Healthy N/A N/A No No N/A N/A
22-Oct-18 6367 Day Healthy N/A N/A No No N/A N/A
22-Oct-18 6368 Night In-Service MV OCEAN OCEANUS 3295 MT No Yes N/A Raining - 02:40AM, 04:28AM
23-Oct-18 6369 Day Missing Missing Missing Missing Missing Missing Missing
23-Oct-18 6370 Night In-Service MV OCEAN OCEANUS 34672 MT No No N/A N/A
24-Oct-18 6371 Day In-Service MV OCEAN OCEANUS 47151 MT No No N/A N/A
24-Oct-18 6372 Night In-Service MV OCEAN OCEANUS 65457 MT Yes No CUL 2 HPP2 hose leak. N/A
25-Oct-18 6373 Day Healthy MV OCEAN OCEANUS 78238 MT No No N/A N/A
25-Oct-18 6374 Night Healthy N/A N/A No No N/A N/A
26-Oct-18 6375 Day In-Service MV INCEPTION 3880 MT No No N/A N/A
26-Oct-18 6377 Night In-Service MV INCEPTION 12700 MT Yes Yes CUL rotary feeding table underspeed Raining - 19:01PM, 22:40PM
27-Oct-18 6378 Day In-Service MV INCEPTION 29100 MT Yes No CUL 2 bucket touching with foreign body. dismantle foreign body to repair N/A
27-Oct-18 6379 Night In-Service MV INCEPTION 36537 MT No Yes N/A Raining - 19:20 PM
28-Oct-18 6380 Day In-Service MV INCEPTION 50500 MT Yes No Reset regent fault at CUL 2 N/A
28-Oct-18 6381 Night In-Service MV INCEPTION 64039 MT No No N/A N/A
29-Oct-18 6382 Day In-Service MV INCEPTION 77714 MT Yes No Reset regent fault at CUL 2 N/A
29-Oct-18 6384 Night Healthy N/A N/A No No N/A N/A
30-Oct-18 6385 Day Healthy N/A N/A No No Reset regent fault at CUL 1 N/A
30-Oct-18 6386 Night Healthy N/A N/A No No N/A N/A
31-Oct-18 6387 Day Healthy N/A N/A Yes No Reset regent fault at CUL 2 N/A
31-Oct-18 6388 Night Healthy N/A N/A No No N/A N/A
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Table B.4: Conversion factor for Coal Combustion

Fuel Unit kg CO2e kg CO2 kg CH4 kg N2O
Coal (industrial) tonnes 2,437.49 2,414.19 6.66 16.64

kWh (Net CV) 0.34149 0.33823 0.00093 0.00233
kWh (Gross CV) 0.32442 0.32132 0.00089 0.00221

Coal (electricity generation) tonnes 2,244.63 2,231.40 0.64 12.59
kWh (Net CV) 0.32490 0.32298 0.00009 0.00182
kWh (Gross CV) 0.30865 0.30683 0.00009 0.00173

Coal (domestic) tonnes 2,861.96 2,632.92 191.93 37.11
kWh (Net CV) 0.36008 0.33127 0.02415 0.00467
kWh (Gross CV) 0.34208 0.31470 0.02294 0.00444

Coking coal tonnes 3,126.81 3,069.93 40.12 16.77
kWh (Net CV) 0.37224 0.36547 0.00478 0.00200
kWh (Gross CV) 0.35363 0.34719 0.00454 0.00190

Petroleum coke tonnes 3,385.40 3,375.14 2.94 7.32
kWh (Net CV) 0.35875 0.35766 0.00031 0.00078
kWh (Gross CV) 0.34081 0.33978 0.00030 0.00074

Coal ( home produced coal only) tonnes 2,244.63 2,231.40 0.64 12.59
kWh (Net CV) 0.33861 0.33661 0.00010 0.00190
kWh (Gross CV) 0.32168 0.31978 0.00009 0.00180

Table B.5: 96 Input Variable List

No Description No Description No Description No Description
TD1 Main Incomer Status TD25 Rotary Drive Enable TD49 Inactive Luff TD73 Idle Luff
TD2 Maintenance Feeder TD26 Portal Drive Enable TD50 Inactive Foot Slew TD74 Idle Foot Slew
TD3 REGEN 1 Enable TD27 Bucket Drive Enable TD51 Inactive Slew TD75 Idle Slew
TD4 REGEN 2 Enable TD28 Travel Drive Enable TD52 Inactive Boom TD76 Idle Boom
TD5 REGEN 3 Enable TD29 Rotary Feed State TD53 Inactive Rotary TD77 Idle Rotary
TD6 Boom Motor TD30 Portal State TD54 Inactive Buck TD78 Idle Buck
TD7 Boom Brake Motor TD31 Slew Remote LCS TD55 Inactive Portal TD79 Idle Portal
TD8 Rotary Motors TD32 Boom Remote LCS TD56 Inactive Travel TD80 Idle Travel
TD9 Buck Motors TD33 Rotary Remote LCS TD57 Inactive Mag Separator TD81 Idle Mag Separator
TD10 Buck Brake Motors TD34 Buck Remote LCS TD58 Inactive HPPI TD82 Idle HPPI
TD11 Portal Motor TD35 Portal Remote LCS TD59 Inactive HPPII TD83 Idle HPPII
TD12 Travel Motors TD36 Travel Remote LCS TD60 Failure Luff TD84 Busy Luff
TD13 Travel Brake Motors TD37 Slew Local LCS TD61 Failure Foot Slew TD85 Busy Foot Slew
TD14 Mag Separator Motor TD38 Boom Local LCS TD62 Failure Slew TD86 Busy Slew
TD15 HPPI Motor TD39 Rotary Local LCS TD63 Failure Boom TD87 Busy Boom
TD16 HPPII Motor 1 TD40 Buck Local LCS TD64 Failure Rotary TD88 Busy Rotary
TD17 HPPII Motor 2 TD41 Portal Local LCS TD65 Failure Buck TD89 Busy Buck
TD18 Cable Reel Motor TD42 Travel Local LCS TD66 Failure Portal TD90 Busy Portal
TD19 Water Hose Reel Motor TD43 Slew Disable LCS TD67 Failure Travel TD91 Busy Travel
TD20 Rail Clamp Motor 1 TD44 Boom Disable LCS TD68 Failure Mag Separator TD92 Busy Mag Separator
TD21 Rail Clamp Motor 2 TD45 Rotary Disable LCS TD69 Failure HPPI TD93 Busy HPPI
TD22 Diverter Chute Motor 1 TD46 Buck Disable LCS TD70 Failure HPPII TD94 Busy HPPII
TD23 Diverter Chute Motor 2 TD47 Portal Disable LCS TD71 Selected BC1A TD95 Busy BC1A
TD24 Water Spray Motor TD48 Travel Disable LCS TD72 Selected BC1B TD96 Busy BC1B
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Table B.6: 24 Output Variable List

No Description Unit
ED1 Main Incomer Voltage V
ED2 Main Incomer Current A
ED3 Panel Humidity %
ED4 Main Incoming THD %
ED5 Panel Temperature degC
ED6 E-House Temperature degC
ED7 Main Slewing Angle deg
ED8 Travel Position m
ED9 Foot Slew Angle deg
ED10 Luffing Angle deg
ED11 Process Flow Tan/hr
ED12 Wind Speed m/s
ED13 Rotary Drive Speed r/min
ED14 Portal Drive Speed r/min
ED15 Bucket Drive Speed r/min
ED16 Travel Drive Speed r/min
ED17 Bucket Elevator Current A
ED18 Portal Conveyor Current A
ED19 Travel Current A
ED20 Boom Conveyor Current A
ED21 HPP2 Pump 2 Current A
ED22 HPP2 Pump 1 Current A
ED23 Rotary Feeding Current A
ED24 E-House Humidity %
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