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Abstract 

     The maximum power point tracking (MPPT) technique is considered a crucial part in 

photovoltaic (PV) system design for maximising the output power of a PV array and improving 

the stability and reliability of the PV system. This research focuses on developing common 

MPPT techniques, including: perturb and observe (P&O), fuzzy logic control (FLC), an 

adaptive neural-fuzzy inference system (ANFIS) and an artificial neural network (ANN) for a 

grid-connected PV system, with the best of them being identified.  

     Whilst several techniques have been designed, the P&O algorithm is widely used for MPPT 

due to its low cost and simple implementation. However, the main drawbacks of this method 

are a slow tracking speed, high oscillation and a drift problem associated with changing 

irradiance rapidly. Hence, a modified P&O-MPPT based on the Pythagorean theorem and a 

constant voltage algorithm is proposed to address those issues by developing variable step size 

and early step decision for the conventional P&O algorithm, respectively. Unlikely, these 

modifications do not avoid the drift problem nor eliminate the oscillation completely.   

     The FLC is a commonly deployed technique that achieves vastly improved performance for 

the MPPT technique in terms of response speed and low fluctuation. However, the key issues 

of the conventional FLC-MPPT are the drift problem and complex implementation, when 

compared with the P&O-MPPT. Hence, the MPPT technique based on the FLC and P&O 

algorithm is proposed to address these challenges. This technique incorporates the advantages 

of the P&O-MPPT to account for slow and fast changes in solar irradiance as well as reduced 

processing time for FLC-MPPT to address complex engineering problems when the number of 

rules of membership functions are fewer. As a result, the proposed technique achieves average 

tracking efficiencies of around 99.6% under the EN50530 standard test.   

     The ANFIS technique and the ANN technique are used to predict the maximum power point 

of a PV array, using experimental training data, instead of the rules of membership functions. 

To improve the accuracy of those techniques, a curve fitting technique and the Particle Swarm 

Optimisation algorithm are utilised, respectively. These optimisations are classified into two 

strategies: adjusting the tuning of the ANFIS model as well as determining the right topology 

and the initial weights of the ANN model. As a result, the training errors of those models are 

minimised. Hence, the ANFIS technique achieves average tracking efficiencies of greater than 

99.3% under a semi-cloudy day test, while the ANN technique delivers average tracking 

efficiencies of more than 99.67% and 99.30% on sunny and cloudy day tests, respectively.   
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Chapter 1 

Introduction 

     In this chapter, the background, motivations, aim and objectives of this thesis are 

introduced.  Section 1.1 covers the background of photovoltaic (PV) energy, while Section 1.2 

discusses the motivations of this research. In Section 1.3, the aim and objectives are explained. 

Section 1.4 presents the contributions of this thesis, which is followed by its structure in Section 

1.5. Finally, the publications stemming from this research are provided in Section 1.6.   

1.1 Background 

     In recent years, the global demand for energy has increased dramatically due to population 

growth. In addition, the phenomenon of global warming has intensified owing to the CO2 

emissions from fossil fuels. Nowadays, the major global production of electrical energy is met 

from  fossil fuels, constituting about 80% [1]. This percentage is expected to generate about 

40.4 Gt CO2 by 2030 [2]. To solve the issue of lack of energy in future years and to minimise 

the side effects of burning fossil fuels, many studies have called for the use of renewable 

energies. Hence, developing renewable energies have been become a worthy research topic in 

the last decade. The Renewable Energy Instruction of the European Union has set a goal of 

energy generation over 32% of total production from renewable energies by 2030, with the 

added aim of this reaching 100% by 2050 [3].  

     Solar PV systems, wind turbines and hydropower are the main renewable energy resources, 

coming from sunlight, wind and fast running water, respectively. [4]. A solar PV system is 

considered to be one of the most attractive renewable energy resources due to its provision of 

sustainable, clean and safe energy [5]–[7]. In addition, it can be installed almost anywhere with 

different capacities and the operating cost of this resource is low [8], [9]. On top of that, several 

studies refer that the surface of earth receiving power radiation from the sun about 1.8*1011 
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MW, which is considered much more than the total global demand for electrical power [10]. 

In recent years, the worldwide installed capacity of a PV system has risen sharply, as show in 

Figure 1.1 [11]–[13]. This is because various countries, such as China and India, have 

connected large PV plants with a utility grid. Moreover, some countries, for example, the USA 

and UK, have encouraged their citizens to install grid-connected PV systems on the rooves of 

their houses. Furthermore, the average installed cost of this PV system has dropped 

dramatically.     

      The leader of installed PV systems for several years during the latter part of 20th century 

was the USA. In 1996, Its total PV generation reached more than 77 MW. After this 

date, Japan took this position until 2004 and in that year, the installed capacity of PV systems 

in Japan become 1132 MW.  Then, Germany turned into the world's leader of generated PV 

electricity during next 10 years, achieving PV production of about 40 GW in 2016. In 

2015, China astonished other countries when it took this position from Germany and in 2017, 

it became the first country to generated 100 GW from PV systems alone [14]. By the end of 

2018, the global installation of PV systems exceeded 500 GW.   

 

Figure 1.1. The global growth of PV power installation capacity in GW [11-13] 
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     The generation of this PV installation contributed about 3% of global electrical energy 

consumption. In Italy, Greece, Germany, and Chile, the PV sources  supplied about 8% of their 

annual domestic consumption, where that in Honduras was the largest contributor at 

about 14%. In Australia and USA, PV production reached 7% and 4% of their electrical energy 

consumption, respectively, while the PV production in China and India closed to 2.55% [15]. 

According to the International Energy Agency (IEA), global energy production from PV 

resources will reach 16% of global electricity by the 2050s [16].   

 1.2 Motivations  

     In general, there are two types of a PV system: grid-connected and stand-alone PV systems. 

This work focuses on the first type, which has been widely installed around the word due to its 

lower cost [3,8]. The grid-connected PV system refers to PV generation that is connected to 

the grid. The system consists of a PV array, power conversion system and grid connection 

equipment. Unlike the stand-alone PV system, it generally does not contain a storage unit 

(battery) as this is still very expensive. Hence, the power generation from this system feeds 

directly to the consumer when the weather conditions surrounding the PV array is right. Despite 

the impressive global growth of the grid-connected PV system capacity in recent years owing 

to the advantages and properties of the PV system, as mentioned in Section 1.1, the efficiency, 

stability and reliability remain major factors when seeking to introduce this resource to the 

market [17]–[19]. 

        The output power from a PV system mostly depends on irradiance and temperature, i.e. 

weather conditions, as shown in Figure 1.2, which illustrates the current-voltage (I-V) 

characteristic of a PV array. This indicates that the PV power generation increases when the 

input irradiance increases, conversely, it decreases at a high operating temperature [20] [21]. 

On this chart, there is a unique point, which represents the maximum power point (MPP), and 

the location of this point shifts according to the climate conditions. To track this point 

continuously, the PV controller has been designed, the tracking efficiency of which is 

calculated based on the ratio of the theoretical maximum power and the actual maximum power 

of a PV module.    

      The oscillation of the PV output power owing to the variation of weather conditions is 

considered a major challenge for the PV system when it is connected with a grid [3]. In 

particular, the stability of the power system can be affected when weather conditions are highly 

variable, especially for a large-scale PV plant. Hence, designing a control system for hybrid 
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power generation is essential for adjusting the PV power when it is connected with the utility 

grid [22]. 

     A failure in the equipment of a PV system may happen similar to any other electrical device 

due accidental events. The most common such failure for the PV system is when there are 

rapidly changing in weather conditions, resulting in a large change in the DC voltage of a PV 

array.  In this case, the PV power conversion system may be damaged and/or the lifespan of 

the PV array can degrade quickly due to a hot-spot on the PV array [23]. To address these 

issues, control systems have been designed to enhance the average tracking efficiency, improve 

the stability and manage the power flow of a PV generation under different weather conditions 

[24]. Whilst several techniques have been used to design this control system, maximum power 

point tracking (MPPT) based on artificial intelligent techniques is considered the most efficient 

for a nonlinear system, such as the PV system.            

  

(a) (b) 

Figure 1.2. I–V characteristic of a PV array under: a) various values of irradiance at a 

temperature of 25 °C; b) various values of temperature at an irradiance of 1000 W/m2 

1.3 Aim and Objectives   

     Higher tracking efficiency, optimal output power and reliable operation load are important 

features for consumers and investors, if they are to be attracted to installing PV systems [25]–

[27]. The most effective way to improve the average tracking efficiency, enhance the stability 

and increase the reliability of PV system generation is to employ the MPPT technique with a 

PV power conversion system [28]–[31]. Basically, The MPPT technique is a power control 

system that feeds an appropriate duty cycle (D) to the PV power conversion system (DC-DC 

converter) based on the output and/or input of the PV module to capture maximum power 
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production continuously, thereby achieving maximum power and delivering stable voltage 

under varying weather conditions. In general, there are several issues that are key when aiming 

to design the best MPPT technique for a PV system, including cost, efficiency, loss of energy, 

tracking time, level of oscillation, accurate tracking MPP and type of implementation [32] [33]. 

Taking these into account, many types of MPPT methods have been developed for PV systems, 

which can be divided into two types: classical methods, and artificial intelligence methods. The 

main aim of this research is to propose common MPPT techniques based on an artificial 

intelligence for a grid-connected PV system and then, to select the best of them.  

The main objectives of this thesis are as follows: 

1. The modelling of a grid-connected PV system designed using a MALAB environment 

to assess the functionality of a PV module. This PV system consists of a PV array, DC–

DC boost converter with MPPT controller, DC-AC inverter and a utility grid; 

2. The MPPT technique is tested and examined to demonstrate its greater effectiveness 

for the PV system when compared with the performance of one without a MPPT 

controller;  

3. Various MPPT methods are compared based on their common features to help MPPT 

designers select the most suitable method for a PV operating system for their 

applications; 

4. A micro-grid PV system being installed at Brunel University London, Uxbridge, UK, 

to collect a large and real training dataset of a PV array, which is an essential part in 

the designing of several MPPT methods; 

5. The EN 50530 standard test and experimental measurement tests are used to calculate 

the average tracking efficiency of the proposed MPPT methods under various 

atmospheric conditions and to assess their performance during different states.   

1.4 Thesis Contributions 

     The major contributions of this research are as follows: 

1. A modified Perturb and Observe (P&O)-MPPT controller based on a Pythagorean 

theorem and Constant Voltage technique is presented to solve the main issues of a 

conventional P&O-MPPT by developing variable step size and early step decision for 

the conventional P&O algorithm.  
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2. A novel MPPT technique based on fuzzy logic control (FLC) and the P&O algorithm 

is proposed to incorporate the advantages of the P&O-MPPT to account for slow and 

fast changes in solar irradiance and reduced processing time for the FLC-MPPT to 

address complex engineering problems when the number of membership functions are 

fewer. 

3. An Adaptive Neural-Fuzzy Inference System (ANFIS) based on a large experimental 

training data is designed to avoid the ANFIS model from experiencing a high training 

error. These data were collected throughout the whole of 2018 from experimental tests 

of a PV array installed at Brunel University London, Uxbridge, United Kingdom, and 

then analysed using a fitting curve technique to optimise the tuning of the ANFIS 

model. 

4. A feedforward Artificial Neural Network ANN technique using experimental data is 

developed for predicting a maximum power point of PV arrays. In order to improve the 

ANN model accuracy, the particle swarm optimisation algorithm is utilised to find the 

best topology and to calculate the optimum initial weights of the ANN model. Hence, 

the dilemma between computational time and the best-fitting regression of the ANN 

model is addressed, as well as the mean squared error being minimised. 

1.5 Thesis Organisation 

This thesis consists of seven chapters and it is organised as follows.  

� Chapter 1 presents the general statement of this research. It covers the background of PV 

technology, followed by research motivations, aims and objectives and thesis contributions. 

Finally, a list of publications from the work in this thesis is provided. 

� Chapter 2 introduces a brief review of historical PV energy, followed by types of PV cells 

and the main challenges of PV technology. Then, the principle work of the MPPT technique 

and literature survey of common MPPT methods are provided. Finally, these are compared 

and classified based on their popular features.  

� Chapter 3 covers the modelling, structure, controller of the PV system. It proposes the 

modelling of a PV cell, followed by a structure for a PV array. Then, topologies of PV 

systems are introduced, and the DC-DC boost converter is presented. The control scheme 

of PV system is covered, followed by the principle work along with the schematic diagrams 

of the conventional P&O and modified P&O algorithms. A MATLAB-SIMULINK model 
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for a grid-connected PV system is designed. Finally, the simulation results are provided and 

discussed. 

� Chapter 4 designs a novel maximum power point tracking technique based on fuzzy logic 

control for a grid-connected PV system. A literature review on the modified FLC technique 

for a PV-MPPT system is presented and fuzzy logic control is explained. The advantages 

and disadvantages of the FLC-MPPT are discussed, followed by the designed membership 

functions of this novel FLC controller based on a modified P&O algorithm. The P&O-

MPPT, FLC-MPPT and proposed method are simulated, being then compared, according to 

their common features. Finally, the EN 50530 standard test is used to calculate the efficiency 

of the proposed method under varying weather conditions. 

� Chapter 5 proposes an efficient maximum power point tracking technique based on the 

ANFIS method using a real large photovoltaic system dataset. Related works of used 

ANFIS-MPPT for PV systems are presented. The principle work of the ANFIS technique is 

introduced, following by a schematic diagram of the ANFIS-MPPT controller. The 

methodologies of the collected and optimised data as well as the tuning of the proposed 

ANFIS model are explained. The P&O-MPPT, FLC-MPPT and the proposed ANFIS 

method are simulated, being then compared, according to their popular features. Finally, a 

real measurement test of a semi-cloudy day is used to calculate the average efficiency of the 

proposed method under varying climatic conditions.  

� Chapter 6 utilities an optimised feedforward Artificial Neural Network technique based on 

particle swarm optimisation using experimental data for predicting the maximum power 

point of a photovoltaic array. A state-of-the-art ANN-MPPT for PV systems is advanced. 

The principles of the feedforward ANN technique and PSO algorithm are covered, 

following by a schematic diagram of ANN-MPPT controller being presented. The training 

of the proposed ANN model is designed, followed by the results being provided. Then, 

experimental data of sunny and cloudy days are used to determine the average efficiency of 

this proposed method under varying atmospheric conditions. Finally, comparative analysis 

regarding the main properties of the proposed methods in this thesis is presented.  

� Chapter 7 contains the conclusions of this research, with proposed directions for future 

work.  
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Chapter 2  

Photovoltaic Energy  

     This chapter presents the history, types and challenges of PV energy. Despite the conversion 

efficiency of PV technology having been enhanced recently, it still faces several issues in 

relation to its application system, such as mismatching of the maximum power point and loss 

of stability and reliability. The most effective method to address those problems is to employ 

an MPPT controller. The chapter is organised as follows: Section 2.1 briefly reviews the history 

of PV energy; Section 2.2 presents the various types of PV cells; Section 2.3 covers the main 

challenges of PV technology; the most common methods of MPPT techniques are covered in 

Section 2.4; an overview of the various MPPT methods based on their common features is 

provided in Section 2.5; and finally, Section 2.6 contains the chapter summary.  

2.1 History of Photovoltaic Energy 

     In 1839, Becquerel noticed the phenomenon of the photon-voltage effect when he was 

studying the effect of light on electrolytic cells [34]. Later, in 1877, Adams and Day also 

noticed this phenomenon on solid Selenium. Subsequently, in 1883, Fritz proposed the first PV 

cell with very low conversion efficiency of about 1%. However, researchers took a long time 

to design the modern PV module, which was produced in 1954 at Bell Laboratories [35]. The 

conversion efficiency of this module was about 6-10% [36]. Using PV energy was limited to 

the aerospace and military industries due to its high cost. In the 1960s, several types of PV 

module were developed based on compound semiconductors such as, polycrystalline Si (pc-

Si) and thin-film [20]. Those types had an enhanced efficiency of about 15%, high production 

capacity and structural integration. As a result, the capital installing cost for large-scale PV 

system generation had been reduced. These properties of the new PV system as well as the oil 

crisis, which happened in the 1970s, encouraged investment in this energy resource [37]. 
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Accordingly, several universities were installed with PV system, such as Delaware University 

and built University in the United States. The conversion efficiency of this PV module was 

17% [35]. The 1980s was the first time when a large-scale PV plant of more than MW in an 

industrial purpose was installed, with a conversion efficiency of about 20%.  Whilst the first 

PV system for domestic purposes was produced in the 1990s due to the recommendation of 

programmes investing in PV resources. By this time, the conversion efficiency of a PV cell had 

increased up to 30% [38]. In 2000, researchers designed a new PV cell based on two junctions 

with conversion efficiency of more than 33%. Ten years later, they further developed this new 

PV cell based on multi-junctions, with a conversion efficiency greater than 42%. In 2012, 

researchers at the National Renewable Energy Laboratory (NREL) managed to get this multi-

junction PV cell to reach a conversion efficiency of greater than 44% [39], [40]. 

     Several kinds of PV cells have been developed recently, such as monocrystalline, thin-film 

pc-silicon, thin-film amorphous, thin-film chalcogenide, and the concentrated PV cell [41]. 

They are used for various applications, such as a water-pump systems, high-way signals, 

lighting streets, roadside emergency telephones, surveillance cameras, stand-alone PV systems 

and grid-connected PV systems [42]. Figure 2.1 presents the major historical developments of 

PV technology regarding its conversion efficiency based on several research endeavours [36-

40].  

 

Figure 2.1. The historical development of PV energy [36-40]  

1%

10%

15%
17%

20%

30%

33%

42%

44.50%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1877 1954 1960 1970 1980 1990 2000 2010 2012

E
ff

ic
ie

n
cy

Year



Chapter 2- Photovoltaic Energy  

 

11 

 

     Moreover, the price of this technology has decreased dramatically, as shown in Figure 2.2 

[43], where it can be seen that the average cost of a solar PV cell has decreased from $76.67/W 

in 1977 to $0.74/W in 2013. 

 

 

Figure 2.2.  Historical decrease in the price of a PV cell [43] 
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2.2 Types of Photovoltaic cells  

     In general, there are three main commercial technologies for manufacturing PV cells, 

including monocrystalline silicon, polycrystalline silicon and amorphous silicon, as shown in 

Figure 2.3 [5],[7],[9].   

2.2.1 Monocrystalline silicon  

     Monocrystalline silicon technology is considered the highest efficiency PV cell, with a 

conversion efficiency of about 17 to 22%. This PV cell is made from extremely pure silicon 

and its manufacture requires a separate single cylindrical crystal of silicon to produce 

monocrystalline silicon using a floating zone technology. This technology is highly intensive 

and expensive, which makes this type of PV cell most costly when compared with other PV 

technologies. Therefore, this type is suitable for a higher producing consumption situation. 

2.2.2 Polycrystalline silicon  

     As inferred above, polycrystalline silicon technology delivers a cheaper PV cell than that of 

monocrystalline silicon. However, its conversion efficiency is lower, at only about 12 to 16%. 

It is made from an ingot of melted and recrystallised silicon. The manufacturing process of this 

type of PV cell requires cutting this ingot into very thin wafers according to the grain 

boundaries and then, being assembled. The gaps among this grain boundaries are what cause a 

lower conversion efficiency. However, given this manufacturing process’s lower cost, it is 

more suitable for a lower producing consumption situation.  

2.2.3 Amorphous silicon  

     Amorphous silicon technology has the lowest cost and lowest conversion efficiency of 

around 6 to 10%. It is made from a thin wafer of silicon and the manufacturing process of this 

type of PV cell is divided into two steps. Firstly, it is deposited on a carrier material based on 

a several stage process to produce an amorphous silicon film and secondly, it is sandwiched 

between glass plates to manufacture a sample PV module. The main disadvantages of this PV 

cell are that it requires a large installing surface, it has the lowest lifespan and it has the lowest 

conversion efficiency when compared with the other technologies. Hence, it is more 

appropriate for a small power consumption situation. 
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Figure 2.3. Types of PV technologies 

2.3 Challenges of Photovoltaic Technology 

2.3.1 Efficiency of the PV Cell 

     The output power of a PV cell changes according to the weather conditions surrounding the 

PV cell [44], [45].  Basically, the generating power of the PV array increases as the irradiance 

increases owing to high numbers of photon-voltage hitting the electron-hole of the cell, thus 

resulting in increased PV output current. Conversely, this decreases at a high operating 

temperature, because the open circuit voltage of PV cell will drop as temperature increases due 

to the extension of the band gap of the PV semiconductor. During this time, the movement of 

PV electrons becomes less valent when input irradiation is absorbed, resulting in a decreasing 

loss of energy. However, there is unique operation point for the PV cell, which is called the 

maximum power point (MPP) and this point shifts according to the weather conditions.    

2.3.2 Stability of PV generation 

     The fluctuation of PV output power due to passing clouds is considered a major issue for 

designing a grid-connected PV system  [3], [46]. Several issues can affect the operation of the 

PV system, such as a voltage rise and voltage oscillation. That is, the stability and reliability of 

PV power generation can be severely affected when atmospheric conditions are highly variant, 

especially regarding large-scale PV generation. This issue is not very common in conventional 

power systems, so controlling the flow of energy throughout a hybrid power system to adjust 

the PV generation for the utility grid is essential. 
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2.3.3 Partial shading condition 

     In normal conditions, a PV array exhibits a single unique maximum power point (MPP) in 

relation to the input solar irradiance and temperature operation [47]. However, the PV array 

will generate several MPPs when there is a shading, which can be caused by trees or dust, i.e. 

on part of the PV array. This is because each PV module will produce its  MPP [48] and as a 

result, several PV power values will be generated in same time. Hence, the global PV power 

generation will be decreasing. In this case, a hotspot on the PV module may occur owing to a 

large change in PV voltage when the operation point shafts rapidly, thus leading to damage in 

the PV system.      

2.3.4 Mismatch of PV load 

      The voltage operation of a PV array also depends upon the value of the load [49], [50]. 

When the output power generation of a PV array is lower or higher than the power load, the 

PV voltage operation will drop or rise to a new operating point and consequently, the efficiency 

of PV generation will drop. In addition, the equipment of a grid-connected PV system may be 

damaged in case of a large-scale PV plant when it disconnects due to the fault. 

2.3.5 Lifespan of an installed PV module     

     Most PV manufacturing companies assert that the lifespan of PV module is typically 20-

years with its production being at least 80% of the rated power [51]. However, several studies 

have indicated that the weather operating conditions of an installed PV system play an 

important role in degrading its lifespan by about 0.2% per year [52]. This is due to large 

changes in PV voltage that accrue when the weather conditions change rapidly.     

2.4 Maximum Power Point Tracking Techniques 

     The maximum power point tracking (MPPT) technique is an essential part of the PV system 

design for tracking the MPP of a PV array, which enhances the stability and reliability of the 

PV system when it is connected to a grid [53]–[55]. In addition, it addresses the problem of a 

partial shading condition and the challenge of a matching of PV load. Consequently, it 

contributes to conserving the lifespan of an installed PV Module. In general, tracking 

efficiency, cost, energy loss and type of implementation are the key issues when aiming to 

design a MPPT method for a PV system [56]. Taking these into account, several common types 

of MPPT techniques have been proposed for PV systems, which can be divided into two types: 
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conventional techniques, such as constant voltage (CV) [57], fraction open circuit voltage 

(FOCV) [33], Perturb and Observe (P&O) [58] and incremental conductance (IC) [59]; and 

artificial intelligence techniques (AI), for example, fuzzy logic controller (FLC) [60], artificial 

neural network (ANN) [61], adaptive neuro-fuzzy inference system (ANFIS) [16] and particle 

swarm optimisation (PSO) [47].  

     The CV method is the simplest MPPT algorithm for a PV system, because it does not require 

an input sensor to determine the MPP [57]. This algorithm assumes that the PV panel 

variations, such as irradiance and temperature of weather conditions, are insignificant, and that 

the constant reference voltage (Vref.) is adequate for achieving performance close to the MPP, 

as given in Eq. (2.1): 

����. = � × �
�                                                   (2.1) 

where, Voc is the open circuit voltage of a PV array and k is a constant value between 0.71 and 

0.78, which is adjusted according to the characteristics and the weather conditions for an 

installed PV array. Hence, the operating point of the PV array is assumed to be near to the MPP 

by regulating the PV voltage to match with a fixed reference voltage. However, it is necessary 

to collect climatic installing data to establish the fixed voltage reference, as this may change 

from one location to another. The main advantage of this technique is that it has a high speed 

for reaching the steady state case, particularly in low and diffused radiation conditions [62]. 

However, it only calculates the MPP approximately. 

      Another simple method for the MPPT controller is FOCV control. This method tracks the 

MPP of the PV module based on a linear proportional relationship between the operating 

voltage of the installed PV module at MPP and its open circuit voltage, which is calculated 

according to the datasheet of this installed PV module, as shown in Eq. (2.1). The constant (k) 

in Eq. (2.1) is changed and adjusted continuously according to the weather conditions of the 

installed PV array. This method is more accurate in finding the MPP under varying weather 

conditions than the CV method. However, it also only calculates the MPP approximately.  

    The P&O-MPPT can be used to determine the MPP accurately. The principle work of this 

algorithm is calculating the PV power by using the sensed values of the voltage and current of 

the PV module. These are then compared with the previous power and voltage, with the 

direction of the algorithm to adjust the duty cycle of the power converter accordingly. It is a 

widely used method for PV-MPPT due to its simple implementation and low cost [63]. 

However, it faces many issues, such as a slow tracking speed, high fluctuation around the MPP, 
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and a drift issue associated with fast changing irradiation [64]. As a result, the PV array achieves 

a low tracking efficiency, especially on cloudy days [23]. The IC-MPPT was designed to 

overcome the limitations of the P&O algorithm by using the incremental conductance of the 

PV array. The principle work of this algorithm depends on researching the optimised operating 

point based on the fact of derivative power-voltage characterises of the PV array (	����	�, as given 

in Eqs. (2.2) and (2.3): 

��
�� > 0																				�� !		" 		#��																															�2.2� 
��
�� < 0																		&�'ℎ!	" 		#��																															�2.3� 

If  
��
�� has a positive value, the optimised operation point is on the left of the MPP, otherwise, it 

is on the right. The major advantage of this algorithm is that it has a high ability to reach the 

MPP point under a rapid change of environmental conditions [59]. However, instability and 

measurement noise are big problems facing the operating work of the PV system due to the use 

of a derivative operation in this algorithm [65], [66]. In addition, these are classified as complex 

and costly control circuits when compared with the P&O method. Hence, several modulations 

based on the power-voltage curve of a PV array have been proposed to address the issues of the 

classical MPPT methods by an adaptive algorithm or variable step size for those conventional 

methods, such as in [67]–[74]. Whilst those modifications enhance the performance of the 

classical MPPT methods, they are considered as being insufficient solutions, because these 

modifications do not eliminate the issues of classical MPPT methods completely. In addition, 

they do not achieve a high efficiency under a rapid change in weather conditions. Consequently, 

AI methods based on MPPT have been introduced to address these problems. These methods 

do not require complex mathematics and accurate parameters when managing the system [75].  

     In particular, the FLC-MPPT is one of the most powerful controllers for a PV system owing 

to its faster tracking speed and lesser oscillation around the MPP point, when compared with 

classical MPPT methods [76]. Furthermore, it does not require training data, unlike the ANFIS 

and ANN methods, because it deals with imprecise and noisy input information based on a 

mathematical model, thus resulting in its operating for different types of PV array with the same 

MPPT proposal. However, its implementation is complex by comparison with the classical 

MPPT methods. In addition, it suffers from the drift issue associated with a change in the solar 

irradiation and operating temperature [77]. This is because it heavily depends on the good 
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knowledge of a PV system to design an optimal MPPT controller, which results in incorrect 

fuzzy rules and inaccurate membership functions of the FLC system. To address those issues, 

many modifications have been presented for an adaptive and optimised defined membership 

function of the traditional FLC-MPPT using several optimisation methods. for example, a 

genetic algorithm, the PSO algorithm or the M5P model tree, as evidenced in [78]–[85]. Whilst 

these proposals avoid the drift problem during changing irradiance, their hardware 

implementations become more complex.  

      Recently, an MPPT with ANN technique was used to solve the issue of conventional FLC-

MPPT, which provides a heuristic output function using numerical quantifying data and 

therefore, it does not require good knowledge of the PV parameters to design an optimised 

MPPT controller [76]. Hence, the ANN-MPPT method has a faster tracking speed for transient 

state and lesser oscillation around the MPP point at steady state conditions when compared with 

FLC-MPPT. In addition, it is more accurate for addressing the MPP in rapidly changing 

atmospheric conditions. As a result, it achieves higher efficiency than the conventional FLC-

MPPT method. However, slow training and black box work as well as the training strategy of 

the ANN model are key weaknesses of the ANN system [86]. To solve these limitations, several 

modifications have been proposed to enhance the performance of the ANN model using various 

types of  optimisation strategies, such as in [61], [75], [87]–[92]. The methodologies of these 

strategies can be divided into three cases: selecting the effective training data, finding the best 

topology of an ANN model and calculating the parameters of the ANN algorithm. However, the 

training error of this technique is a high value. 

       The ANFIS method offers the most powerful intelligence technique for PV systems, 

because it is integrated into the ANN and FLC system. It is an adapted neural network technique 

based on s fuzzy inference system. The MPPT technique based on ANFIS also has a faster 

response, less oscillation and is more accurate for addressing the MPP under different weather 

conditions. However, getting accurate training data and optimised tuning of the ANFIS model 

are big challenges when designing an efficient ANFIS-MPPT controller [93]. Several proposals 

have been made recently using theoretical and experimental training data [16], [54], [94]–[101]. 

Whilst the proposed ANFIS-MPPT controllers based on the experimental training data achieve 

higher performance when compared with the proposed ANFIS-MPPT controllers based on the 

theoretical training data, the rules of the ANFIS model have not been optimised, thus resulting 

in a high training error. 
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     The last MPPT method for PV application is the PSO algorithm. The principle idea of this 

algorithm is that it tries to find an optimised duty cycle, where each value has a degree of 

possibility for a candidate solution. Hence, it does not require training data or prior data to 

design the MPPT controller based on the PSO algorithm. This method is more efficient when 

the PV array is under partial shaded conditions. However, it has a long tracking time, medium 

oscillation and highly complex implementation when compared with the other intelligent 

MPPT methods. To address these issues, the dynamic of the PSO algorithm has been enhanced 

recently by addressing its optimal parameters [47],[54],[80]. However, this method does not 

work properly under a rapid change in weather conditions, because it requires a longer time to 

find the optimised duty cycle.  

    In those previous studies, the researchers had developed various MPPT controllers for PV 

systems based on different techniques and then, several optimisations were proposed to 

enhance them. However, most of those proposals did not address the complex implementation 

challenge when they tried to improve their performance further. In this thesis, common MPPT 

methods, including: the P&O algorithm, FLC technique, ANFIS model and an ANN technique 

are proposed to increase the tracking efficiency, improve the stability and enhance the 

reliability of a grid-connected PV system, particularly under a rapid change in whether 

conditions, without adding a step control unit. Figure 2.4 classifies the main commonly used 

types of MPPT methods for PV systems.    

2.5 Overview of the various MPPT methods 

     To summarise, the most common MPPT methods, Table 2.1 reports a comparative overview 

of the main properties of the conventional CV, FOCV, P&O, IC, FLC, ANN, ANFIS and PSO-

MPPT techniques used in PV systems. The properties include type of implantation, level of cost, 

required training data and prior training after their implementation stage. Moreover, do they 

have a fast or slow tracking speed for a transient state and high or low oscillation around the 

MPP at steady state conditions? Finally, can they calculate the MPP accurately or 

approximately under different weather conditions? As a result, are they achieving a high or low 

efficiency under various state conditions? Regarding to this comparison, the MPPT methods 

based on AI techniques have more complexity, cost more and are difficult to implement. 

However, they have higher tracking efficiency, faster tracking speed and less oscillation than 

the classical MPPT methods.  
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2.6- Summary 

     In this Chapter, a general overview of PV energy based on MPPT techniques has been 

presented. A brief historical view about the developing PV technology has been provided. The 

types of PV cells and the main challenges of PV technology have been presented. A literature 

review of the most popular MPPT method for a PV system has been presented. The advantages 

and disadvantages of each MPPT method have been provided. The conventional CV, FOCV, 

P&O, IC FLC, ANN, ANFIS and PSO-MPPT methods have been compared regarding their 

popular features. Basically, whilst AI techniques based on MPPT have more complexity, cost 

more and are more difficult to implement, they have higher tracking efficiency, faster tracking 

speed and less oscillation than the conventional MPPT methods.   
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Table 2.1. An overview of the main features of the most popular MPPT methods.  

  
 
 
 
 
 
 
 
 
 
 

MPPT 

Method  

implementation  Cost  Required 

data 

Prior 

training 

Tracking 

speed 

Oscillation  Calculating 

MPP 

Tracking 

Efficiency 

CV Simple Inexpensive Yes  Yes  Fast   Low  Approximate Low 

FOCV Simple Inexpensive  Yes  Yes  Fast  Low  Approximate  Low 

P&O Simple  Inexpensive No  No  Slow  High  Accurate  Low  

IC Complex Inexpensive No  No  Slow  Medium  Accurate Low  

FLC Complex Expensive  No  Yes  Fast  Medium  Accurate Medium  

ANN Complex Expensive Yes  Yes   Fast Low  Accurate High  

ANFIS Complex Expensive Yes  Yes   Fast Low  Accurate High  

PSO Complex Expensive No No  Slow  Medium  Accurate High 
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Figure 2.4. Common types of MPPT methods for PV systems
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Chapter 3  

Modelling and Control of PV Systems   

     This Chapter presents the modelling, structure and controller of a PV system. A grid-

connected PV system is designed based on an MPPT controller to provide proof of the efficacy 

of the principle work and features of the MPPT method. The Chapter is organised as follows. 

Section 3.1 proposes the modelling of a PV cell and Section 3.2 explains the structure of a PV 

system. The DC-DC boost converter and the control scheme of the PV System are covered in 

Sections 3.3 and 3.4, respectively. The conventional P&O and modified P&O algorithms are 

discussed in Sections 3.5 and 3.6, respectively. In Section 3.7, the simulation results of a 

MATLAB-SIMULINK model for a grid-connected PV system are provided. Finally, Section 

3.8 contains the chapter summary.  

3.1 Modelling of a PV Cell  

     The fundamental element of photovoltaic system is the solar PV cell, the structure of which 

is illustrated in Figure 3.1.  

 

Figure 3.1. The structure of a PV cell 
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     It is a semiconductor with added boron and phosphorus atoms to form a p-n junction with 

two layers using a high-temperature. These two layers consist of positive and negative ions, 

which pertain to the P-holes and N-electrons, respectively. Then, a top electrode and bottom 

electrode are added for an electric current flow. Finally, it is covered in glass with an anti-

reflective coating. The principle work of this cell is that it converts the lighting into electrical 

energy based on the photo-voltage effect phenomenon [102]. In a typical solar cell, the 

resistances are not included, but they are implanted and connected with the PV diode in a 

practical case, as shown in Figure 3.2. 

  

Figure 3. 2. The equivalent circuit of a PV cell 

 

     This is due to factors of the magnitude of resistance of the PV semiconductor and non-

optimum PN junction diode, resulting in the implementing of series and shunt resistance, 

respectively. Kirchhoff’s law, as given in Eq. (3.1), can find the current generator from the solar 

cell [103], [104]:     

*�� = *� − *� − *,-																																																									�3.1� 
where, IL is the current generator which is given in Eq. (3.2) as: 

*� = /0*1231 + �5�� − �162�78																																	�3.2� 
where, G is the solar irradiation, T is the ambient temperature of the climate conditions, ISC is 

the short circuit current of the PV cell, ka is the temperature coefficient, TSTC is the temperature 

operation of the PV cell under standard test conditions (STC), and Id  is the current of the PV 

diode, which is given by Shockley’s Eq. (3.3):     

*� = *9 :exp >	?��	@�� A − 1	B 																																											 �3.3� 
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where, *
 is the saturation current of the PV diode, �� is the voltage across the PV diode, q is 

the electrical charge (1.69×10-19 C), k is the Boltzmann constant (1.38×10-23 J/K), and n is the 

PV diode factor. Now, the universal equation that describes the current-voltage (I-V) 

characteristic chart of the PV cell is given by Eq. (3.4):     

*�� = *� − *9 C	exp D	E��FGH	I	JK�LM6 N − 1	O − C�FGH	I	JKJPQ O       (3.4) 

where, *�� is the PV output current, and VPV is the PV output voltage. To simulate the current–

voltage characteristics (I-V) in a MATLAB environment, Eqs. (3.1) - (3.4) are used. The 

parameters of the PV module used in this research are shown in Table 3.1[49]. This PV module 

is connected as 66 parallel strings and 5 series panels to present the wanted PV array.  As shown 

in Figure 3.3, there are unique points on the power-voltage (P-V) curve of the PV array, which 

are recognised as the maximum power points (MPPs) and the location of those points shifts 

according to the irradiation and temperature of the climate conditions: the maximum available 

power of the PV array increases as solar irradiation increases, conversely a PV generator better 

for low temperature operation than increased one [105].  

Table 3.1. Parameters of the Simulink PV module  

Characteristics Value  

Cell number 96 

Open circuit voltage 64.2 V 

Maximum power voltage 54.7 V 

Short circuit current 5.96 A 

Maximum power current 5.58 A 

Maximum power point 305 W 

Diode ideality factor  0.944 

Temperature Coefficient (Isc) +0.061%/0C 

Temperature Coefficient (Voc) -0.272 V/0C 
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(a) (b) 

 

Figure 3.3. P–V curve of a PV array under: a) various values of irradiance at a temperature of 

25 C°; b) various values of temperature at an irradiance of 1000 W/m2  

3.2 Structure of a PV System 

3.2.1 The Configuration of a PV Array 

     The fundamental element of a photovoltaic system is a solar cell. Several solar PV cells are 

connected in parallel and series to obtain the desired current and voltage for a solar 

panel(module), Then, many solar panels are connected in series and/or parallel to give different 

configurations of a PV array, as shown in Figure 3.4 [106]. 

 

 Figure 3.4. The configuration of a PV array [106] 
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3.2.2 Topologies of PV systems   

     To improve the stability, reliability and quality of the output of PV generation, a power 

conversion system is employed [107]. There are two types for PV power conversion system: 

single and double stage. These types of PV power conversion system are classified into four 

topologies: centralised approach, string approach, multi-string approach, and AC-module 

approach, as shown in Figure 3.5 [108].  Whilst the single stage-power conversion system is 

lower in cost due to its fewer part count, it suffers from several drawbacks, such as hot-spots 

during various weather and partial shading conditions of the PV  array, increased probability 

of leakage current through the parasitic capacitance between the PV array and the ground 

system, high harmonic injunction and voltage rise when it connects with the grid  and reduced 

safety [60], [109], [110].  

     These issues occur in grid-connected PV system due to a large change in the DC voltage of 

the PV array, especially when the weather conditions surrounding the PV array are changing 

rapidly. To address them, the first stage is used to boost the MPP voltage and track the 

maximum power, whilst the second, converts this DC power into high quality AC power. 

Hence, a DC-DC converter and DC-AC inverter have been designed and connected with 

generating PV arrays for interfacing with the grid, as explained in the topology of the multi-

string approach  [111]. 

 

Figure 3.5. Topologies of  PV systems [108] 
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3.3 DC-DC Boost Converter  

     Whilst several DC-DC converters have been designed, such as boost, buck and chuk 

converters, the boost converter is widely used for the PV generated system due to its high 

efficiency [112]. This is because the DC-DC boost converter provides and regulates a higher 

output voltage than the input voltage with a low output current. In this case, the loss power will 

be low according to a loss power equation. As shown in Figure 3.6, the heart of the DC-DC 

boost converter is a transistor, which regulates the amplified processing by a controller. The 

Metal Oxide Semiconductor Field Effect Transistor (MOSFET), Bipolar Junction Transistor 

(BJT) and Insulated Gate Bipolar Transistor (IGBT) are common transistors used in a DC-DC 

converter. However, the MOSFET transistor is usually used for designing the DC-DC boost 

converter due to its ability to work under a heavy load and higher frequency condition [113]. 

[114], whilst also having lower power losses. 

     The principle work of this converter is divided into two states, as shown in Figure 3.7. First, 

when the MOSFET is switched ON, the current flows through an inductor (L) in a reverse 

direction and the inductor stores the energy by generating a magnetic field. The current change 

in the inductor IL during time period (t) is given by Eq. (3.5): 

∆*�
∆! = �	

R 																																																																										�3.5� 
where, Vi is the input voltage. At the end of the ON-state, the changing value of IL increases 

and thus, is given by Eq. (3.6): 

∆*�
L =
1
RT �		�!

U6

9
= V�

R 	�																																						�3.6� 

In state two, when the MOSFET transistor is switched OFF, the energy stored and main source 

will be in series, which leads to a higher output voltage. The inductor voltage in this state is 

given by Eq. (3.7): 

�X − �	 = R �*��! 																																																													�3.7� 
where, Vo is the output voltage. The inductor current is changing linearly as long as the 

MOSFET switch remains opened. The rating change of the IL when the MOSFET is switched 

OFF is given by Eq. (3.8):    

∆*�
�� = T ��	 − �X��!
R

6

U6
= ��	 − �X��1 − V�	

R 											�3.8� 
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To support the steady-state mode of the DC-DC convertor, the total rating value of the inductor 

current must be equal to zero, as given in Eq. (3.9).  

∆*�
L + ∆*�	
�� 	= 0																																																													�3.9�                
Now, substituting Eq. (3.6) and Eq. (3.8) into Eq. (3.9) gives:      

�		V	�
R + ��	 − �X��1 − V�	�

R = 0																																		�3.10� 
This can be written as Eq. (3.11):  

−�	V = ��	 − �X��1 − V�																																																		�3.11� 
Now, the voltage gain of the circuit is given as in Eq. (3.12): 

/L = �

�	 =

1
�1 − V�																																																												�3.12� 

Eq. (3.13) is used to determine the value of the inductor: 

    	
R = �			V\]^

∆��	 , 																																																																						�3.13� 

where, ∆��	 is the ripple input current factor,  , is the switching frequency and V\]^ is the duty 

cycle of the MPPT controller at the maximum power output of the PV source. While the input 

capacitor (_`� and the output capacitor (_a�	are calculated based on Eqs. (3.14) and Eq. (3.15), 

respectively:    

_` = V\]^
			8R∆�		 ,a 																																																														�3.14� 

_a = V\]^
			c∆�X	 , 																																																																	�3.15� 

where,  ∆�	 and ∆�
 are the ripple input and output voltage factors, respectively, whilst R is the 

output resistance. Finally, the diode boost converter is selected regarding to its reverse rating 

current. This value should allow the input current to flow from the PV array to the load at the 

OFF-state. Hence, the forward current diode of the DC-DC converter should be equalled to the 

maximum current load of PV system. Figure 3.8. presents the waveform of a DC-DC boost 

converter under different states. As can be seen, the current of the inductor starts to increase 

from minimum to maximum value at the ON-state, otherwise, it begins to decrease from 

maximum to minimum value at the OFF-state. 
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Figure 3.6. The circuit diagram of a DC-DC boost converter 

 

 

 
 

Figure 3.7. The state conditions of a DC-DC boost converter 
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Figure 3.8. The waveform of a DC-DC boost converter [115] 

3.4 Control Scheme of a PV System  

     As shown in Figure 3.3, there is a unique point on the P-V curve of a PV array recognised 

as the MPP, with its location shifting according to weather conditions. To track the MPP 

continuously, the MPPT technique is employed with the PV power conversion system and 

connected between the PV array and the load or grid. The principle work of this technique is 

that it feeds the appropriate duty cycle (D) based on the output of the PV array in the form of 

the current and voltage and/or the inputs of solar irradiance and temperature to adjust the 

operation work of a PV power conversion system, thus resulting in high tracking power. This 

duty cycle is converted to a signal by pulse width modulation (PWM), as shown in Figure 3.9. 

      The PWM circuit compares the duty cycle signal with a sawtooth counter signal to generate 

the PWM pulse. If the sawtooth signal is less than the duty cycle signal, the output PWM signal 

is in the ON-state (Ton), otherwise it is in the OFF-state (Toff), as shown in Figure 3.10. This 

process is repeating so as to adjust the operating work of the PV array under varying weather 

conditions. The optimal duty cycle depends on the location of the operational MPP on the P-V 

curve. When the operating point is to the right, then the D will be increasing until it reaches to 

the MPP, otherwise it will be decreasing. To implement the MPPT algorithms, a 

microcontroller system is used. As mentioned in Chapter one, this power controller has several 
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advantages for a PV system, including: enhancing the efficiency of the PV array; improving 

the stability of PV generation; and increasing the reliability of the PV system [3] [116]. Whilst 

several techniques have been developed, the Perturb and Observe (P&O) algorithm is widely 

used for MPPT due to its low cost and simple implementation. However, the main drawbacks 

of this method are a long converging time, high oscillation around the maximum power point, 

and a drift problem associated with rapidly changing irradiance. In this chapter, a conventional 

P&O and modified P&O-MPPTs are proposed to model the PV system.  

 

 

 

 

Figure 3.9. The control scheme of the PV system 

 

Figure 3.10. The waveform of an MPPT controller 
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3.5 P&O Algorithm 

     The P&O algorithm is widely used for PV-MPPT techniques due to its low cost and simple 

implementation. As shown in Figure 3.11, the principle work of this method depends on 

calculating the PV power by using the sensed values of the voltage and current PV array. Then, 

these are compared with the previous power to address the direction of the P&O algorithm and 

subsequently, updating the duty cycle (D) of the DC-DC converter, according to Eq. (3.16): 

V�� + 1� = V��� ± ∆V																																																	�3.16� 
where, D(k+1) and D(k) are the next and previous perturbations of D, respectively and ∆D is 

the incremental step size of the reference D. Basically, the operating point of the P&O 

algorithm moves in the same direction when the voltage and power of the PV array increase 

due to increasing D; otherwise it moves in the opposite direction. The process is continued until 

it reaches to the MPP and then, oscillates around it. The total properties of the P&O direction 

are explained in Table 3.2. In general, there are three major issues facing P&O-MPPT 

operation: long converged time, high oscillation around the MPP and a drift problem associated 

with rapidly changing irradiance.  

     These issues are explained as follows. Clearly, a large ∆D leads to a fast steady-state and 

large fluctuation after reaching the MPP. Conversely, a small ∆D results to a slow steady state 

and smooth fluctuations. According to this conception, the size of ∆D is crucial for adjusting 

the system operation. Another drawback is the loss of the right direction of the MPPT tracker 

when weather conditions alter rapidly. This phenomenon can happen, as shown in Figure 3.12, 

when point A (low point), which represents the MPP at a low solar irradiance level is oscillated 

between B and B` and then, moves to point C or D (high point) due to rapidly increasing 

irradiance. As a result, the right direction of algorithm moves far away from the new MPP, 

according to the principle properties direction of the conventional P&O algorithm, as shown in 

Table 1. In other hands, this phenomenon happens in case of the increasing irradiance only 

[117].  

Table 3.2 The probabilities of direction for a P&O algorithm 

∆P ∆V Direction of Perturbation 

+ + + 

+ - - 

- + - 

- - + 
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Figure 3.11. The flowchart of the conventional P&O algorithm [62] 

 

            To address those drawbacks, several modifications have been presented as state of the 

art. Among them, Yang and Zhao [118] suggested a variable step size (VSS) based on the 

power-voltage curve to adapt the P&O-MPPT tracker. Whilst this proposal reduces the 

oscillation around the MPP point and increases the speed of the MPPT tracker when the weather 

conditions change rapidly, the drift problem was not discussed. Similarly, Xiao and Dunford 

[68] adapted the conventional P&O-MPPT tracking based on the power-duty cycle curve in the 

form of a high robot  to track the MPP. However, the drift problem is not eliminated completely 

when the solar irradiance changes suddenly. Sera et al. [119] added a new step for the P&O-

MPPT algorithm based on the historical change in PV power (∆P) to detect this deviation early, 

but this modification seems to be a non-optimal solution, because this threshold changes 

according to the weather conditions. Similarly, Killi and Samanta [69] added the historical 

change in the PV current (∆I) as a step decision between the decision of positive historical 

change in power (∆P) and positive historical change in voltage (∆V). Whilst this modification 
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avoids the system drift problem, the proposal is not valid for the other side of the P&O 

algorithm, i.e. when the ∆P and ∆V exhibit negative historical changes. To solve the drift 

problem completely, Kollimalla et al. [120] designed the P&O-MPPT algorithm consisting of 

three stages to track all the properties for the diversion problem. However, the implementation 

of this is highly complex.  

 

Figure 3.12. P-V curve for a rapid irradiance change from A (low point) to D or C (high point), 

thus illustrating the drift problem 

3.6 Modified P&O-MPPT   

     The proposed modification is divided into two parts. The first involves developing a novel 

and simple VSS, which can improve tracking faster and reduce the oscillation around the MPP. 

This VSS is calculated according to Pythagorean theorem which proves that the square of the 

side opposite the right angle is equal to the sum of squares other two sides, as given in Eq. 

(3.17): 

5a + �a = ea																																																													�3.17� 
where, c is the length of the hypotenuse and a and b are the lengths of the triangle's other two 

sides. This triangle is equal to the movement of ∆P and ∆V in P-V curve, as shown in Figure 

3.13. This theorem is adopted to represent the VSS for P&O algorithm, as given in Eq. (3.18): 
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ΔDM = M.iΔ�Ma + Δ�Ma                                     (3.18) 

where, ∆Pk is the historical change in PV power, ∆Vk is the historical change in PV voltage and 

M is a constant step size, which is adjusted according to the parameters of the PV system. The 

general tracking equation is now written as Eq. (3.19): 

V	MH` = V	M ±#.iΔ�Ma + Δ�Ma                         (3.19) 

     This VSS is automatically tuned according to the operating point to enable a fast-tracking 

ability. If the operational point is far from the MPP, the historical change in PV power and 

voltage are large, but they become smaller when the operational point of PV system is at the 

MPP, as shown in Figure 3.13. Consequently, the proposed system increases the speed of the 

MPPT tracker when the weather conditions change rapidly and reduces the oscillation around 

the MPP at steady-state conditions. 

 

Figure 3.13. P-V curve of the PV module illustrating the VSS 

 

     The second part of this modification is adopted a new step decision for the conventional 

P&O algorithm to address the drift problem early. Basically, the drift problem happens when 

the solar irradiance on the PV array increases rapidly by at least 10 W/m2/s [117]. The input of 

solar irradiance is divided into two types: slow change and fast change, as shown in Eqs. (3.20) 

and (3.21): 
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∆/ < 10 j
ka 														l�"�	eℎ5@'�																								�3.20� 

∆/ > 10 j
ka 															 5l!	eℎ5@'�																								�3.21� 

where, ∆G is the historical change in the solar irradiance. The standard test condition of solar 

irradiance GSTC is 1000 W/m2. Now, the following is obtained: 

∆/
/ < 0.01																									l�"�	eℎ5@'�																�3.22� 
∆/
/ > 0.01																								 5l!	eℎ5@'�																	�3.23� 

As proven in [71], the normalised change in power is equal to the normalised change in solar 

irradiance, as shown in Eq. (3.24): 

∆�
� = ∆/

/ 																																																																					�3.24� 
Substituting Eqs. (3.22) and (3.23) into Eq. (3.24) gives: 

∆�
� < 0.01																				l�"�	eℎ5@'�																						�3.25� 
∆�
� > 0.01																				 5l!	eℎ5@'�																						�3.26� 

where, ∆P is the historical change in PV power and P is its previous iteration. If the value of P 

changes due to the changing irradiance, the value of ∆P also changes in the same direction. 

Consequently, the value of ∆P/P is almost constant during different environmental conditions. 

In addition, this value is positive when the operation point is on the drift issue state, otherwise 

it has a negative value. A constant value (C = 0.01) is added in the start of the program to 

address the drift problem early, as shown in Figure 3.14, which illustrates the flow chart of the 

proposed algorithm. If ∆P/P is less than C, it will recognise that the solar irradiance on the PV 

array is changing slowly and the P&O algorithm should be processed at this operating point, 

otherwise a constant voltage (CV) algorithm processes it. 

     The CV-MPPT assumes that the irradiance level and temperature operation variations on 

the PV array are insignificant, and the constant reference voltage approximates to the real MPP 

voltage [57]. The MPP voltage is calculated at nearly 78% of the open voltage (Voc) under 

varying weather conditions [121]. Hence, the �l�! is applied as 0.76 Voc to enable the proposed 

algorithm to ascertain the side of operating point after the solar irradiance changes rapidly. If 

the PV voltage is higher than �l�!, the operation point is on the right of the MPP, resulting in 
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decreasing the D reference, otherwise, the D reference is increasing and when operation point 

is close to MPP, the C becomes very tiny. Consequently, the control unit switches into the 

conventional P&O algorithm to establish the exact optimal MPP. 

 

Figure 3.14. The flowchart of the modified P&O-MPPT method 

3.7 Simulation Results   

     To test the performance of the MPPT method, a MATLAB-SIMULINK model for a grid-

connected PV system was developed. This grid-connected PV system consists of a PV array, 

DC–DC boost converter with MPPT controller, DC-AC inverter and utility grid, as shown in 

Figure 3.15. The parameters of the PV array used in this simulation are 321 V open-circuit 

voltage, 273.5 V maximum power voltage, 393.3 A short-circuit current and 368.3 A maximum 

power current. Whilst the parameters of the DC-DC boost converter are a 5mH inductor, 100 

µF input capacitor and 24000 µF output capacitor, which are calculated according to Eqs. 

(3.13), (3.14) and (3.15), respectively. The reverse current diode of the DC-DC converter is 

chosen at 400 A to allow for maximum output current of the PV array to flow from to the load 

at the OFF-state. The switching frequency of MOSTFET is selected at 5 kHz, with the updating 
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time of the MPPT controller being every 500µs. The type of PV module used in this simulation 

is SunPower SPR-305-WHT and the main parameters of this are provided in Table 3.1. The 

DC-DC converter amplifies the PV voltage to 500 V DC, which is then converted to 260 V AC 

with the unity power factor in the DC-AC inverter. In the utility grid, this AC voltage relates 

to a 10 kV-medium voltage distribution network by a 260 V/15 kV-100 kVA transformer.  

     The simulations were configured under exactly the same parameters as for conventional 

P&O and modified P&O-MPPTs as well as without the MPPT state. The simulation was 

divided into two scenarios. First, the PV system with and without P&O-MPPT controller was 

simulated. As shown in Figure 3.16, the solar irradiance of weather conditions was kept at a 

constant value of 1,000 W/m2. As shown in Figure 3.17, the output power of the PV system 

with the MPPT controller was higher than without MPPT controller, at about 100 kW and 80 

kW, respectively. This is because the MPPT controller tracks the MPP of the PV array 

accurately. 

     In the second scenario, the modified P&O and conventional P&O algorithms were 

simulated. The input of solar irradiance used in this simulation decreased rapidly from 1,000 

to 400 W/m2 from 0.5 to 1 s, and then increased rapidly from 400 to 1,000 W/m2 from 1.5 to 2 

s, as shown in Figure 3.18. The temperature operation was kept at a constant value of 25 °C. 

As shown in Figure 3.19, the tracking power of the conventional P&O-MPPT method 

ascertains the right direction of the input solar irradiance when it decreases. However, it loses 

it when the irradiance increases rapidly. However, the modified P&O-MPPT method avoids 

the drift problem under different changes (increasing and decreasing of the input of solar 

irradiance). As a result, it takes a shorter time to address the drift problem than with the 

conventional P&O method. 

      In addition, the PV voltage of the proposed method has a smooth oscillation around the 

MPP at steady-state conditions compared to the conventional P&O-MPPT due to its VSS, as 

shown in the zoomed in part of Figure 3.19(b). Consequently, the disputed power is higher in 

the conventional P&O-MPPT than with the modified P&O-MPPT. The resulting output power 

of the conventional P&O-MPPT and the proposed method at steady-state conditions are 

100.722 kW and 100.724 kW, respectively, as shown in the zoomed in part of Figure 3.19(a). 

According to the simulation results, the modified P&O-MPPT method quickly tracks the MPP 

during weather condition changes and reduces the oscillation around the MPP under steady-

state conditions. In addition, the output PV power is higher compared to the conventional P&O-

MPPT. However, it does not avoid the drift problem completely when the weather conditions 
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vary rapidly. This is because the threshold of the early step decision, which is designed to 

address the drift problem, changes in regard to weather conditions.  

     To prove the effectiveness of the MPPT controller on the grid-connected PV system, the 

output of the DC-DC converter was simulated before and after the weather conditions changed. 

As shown in the zoomed in area in Figure 3.20 (a), the output voltage of the DC-DC boost 

converter for the conventional P&O-MPPT and modified P&O-MPPT methods are stable 

during the rapid decrease in weather conditions. However, it drifts away to the right of the MPP 

for the conventional P&O-MPPT controller when the weather conditions suddenly change, 

while the modified P&O-MPPT technique is almost stable, as shown in the zoomed in area in 

Figure 3.20(b). However, the grid-connected PV systems based on the conventional P&O and 

modified P&O algorithms deliver fluctuating DC voltage during rapidly changing weather 

conditions, because they do not avoid the drift problem completely.   

3.8 Summary 

     In this chapter, the modelling and control of a PV system have been presented. To sum up, 

the modelling of a PV cell has been proposed, the main structure of a PV system has been 

explained and its control scheme described. The conventional P&O-MPPT and the modified 

P&O-MPPT have been discussed, with the simulation results being provided and compared. 

Generally, using the MPPT with a PV system is important for enhancing the tracking 

efficiency, stability, reliability and quality of the output system under different climatic 

conditions.  The modified P&O-MPPT based on Pythagorean theorem and CV-MPPT has been 

shown to addresses the main issues of the conventional P&O algorithm. However, this 

modification does not avoid the drift problem or eliminate oscillation completely. 

 

Figure 3.15. The general diagram of a grid-connected PV system 
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Figure 3. 16. The input irradiance under constant conditions 

 

 

Figure 3.17. The output power of a PV array without MPPT versus with MPPT 

 

 

Figure 3.18. The input of input solar irradiance with varying conditions 
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(a) 

 

(b) 

 

(c) 

Figure 3.19. PV array output for the modified VS conventional P&O method under a 

theoretically rapid change in solar irradiance: (a) power, (b) voltage, and (c) duty cycle 
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(a) 

 

(b) 

Figure 3.20. The DC voltage of a grid-connected PV system using (a) the conventional P&O-

MPPT and (b) modified P&O-MP
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Chapter 4 

Proposed MPPT Based on Fuzzy Logic Control  

     Fuzzy logic control (FLC) is common technique that achieves vastly improved performance 

for MPPT technique in terms of response speed and low fluctuation about the maximum power 

point. However, major issues of the conventional FLC-MPPT are a drift problem associated 

with changing irradiance and complex implementation when compared with the P&O-MPPT. 

In this Chapter, a proposed MPPT technique based on FLC and P&O algorithm is presented. 

The proposed method incorporates the advantages of the P&O-MPPT to account for slow and 

fast changes in solar irradiance and the reduced processing time for the FLC-MPPT to address 

complex engineering problems when the membership functions are few. To evaluate the 

performance, the P&O-MPPT, FLC-MPPT and the proposed method are simulated by a 

MATLAB-SIMULINK model for a grid-connected PV system. The EN50530 standard test is 

used to calculate the average tracking efficiency of the proposed method under varying weather 

conditions.  

 4.1 Introduction  

     As mentioned in Chapter 2, the P&O-MPPT is a popular method for PV-MPPT owing to its 

low cost and simple implementation. However, it poses many challenges, such as a lower 

converging speed, high oscillation around a maximum power point MPP, and a drift problem 

associated with rapidly changing irradiance [63]. Several modifications have been introduced 

based on a Power–Voltage (P-V) curve, but they are considered as insufficient solutions for 

addressing all of these problems. Consequently, artificial intelligence techniques based on 

MPPT have been proposed to solve the significant problems of the classical MPPT methods 

[122]. In addition, these techniques do not need accurate parameters or complex mathematics 

when managing the system [55]. In particular, the FLC-MPPT technique is one of the most 
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powerful controllers for a PV system due to its high converging speed and low fluctuation 

around the MPP [76], [123]. Moreover, it does not require training data, thus resulting in its 

working for various types of PV module with the same MPPT design. However, the main 

disadvantages are the aforementioned drift problem associated with changing irradiance and 

complex implementation when compared with the classical MPPT methods[124], [125].  

     Several types of modifications have been proposed to address those issues. Among them, 

Soufi et al. [80] used a particle swarm optimisation (PSO) algorithm to adjust the duty cycle of 

the boost convertor in the right direction for conventional FLC-MPPT when the input solar 

irradiance changes rapidly. In [81], Guenounou et al. designed a gain controller based on the 

FLC approach for online adapting of the step size of conventional FLC-MPPT.  In [126], Alajmi 

et al. developed a novel FLC-MPPT based on a hill climbing algorithm for a stand-alone PV 

system. Harrag and Messalti in [127] presented an improved maximum power point tracking 

technique using the Fuzzy-IC algorithm for a PV array and fuel cells. Kottas et al. [128] 

improved the conventional FLC-MPPT method by adding fuzzy cognitive networks. Whilst 

these proposals reduce the oscillations around the MPP and avoid the drift problem during 

changing irradiance, their hardware implementation becomes more complex due to an additional 

step control unit. 

      Hence, Obeidi et al. [82] used a genetic algorithm (GA) algorithm to optimise the designed 

membership functions of the conventional FLC-MPPT controller for which the fuzzy base had 

already been created. Similarity, Gupta and Garg [79] presented maximum power point tracking 

based on an asymmetrical fuzzy functions process to minimise the longer processing time of 

conventional FLC-MPPT. With the same idea, S. ali Blaifi et al. [83] presented maximum power 

point tracking by modelling the fuzzy logic algorithm using an M5P model tree. In [84], 

Subiyanto et al. used a Hopfield NN to tune the designed membership functions of FL-MPPT 

automatically, instead of adopting the trial-and-error approach. Similarity, Nabipour et al. [85] 

designed improved maximum power point tracking based on an indirect fuzzy for PV systems. 

The results in [79], [82]–[85] report that the optimised fuzzy controller achieved improved 

performances, fast responses with less oscillations as well as avoiding the drift problem. 

However, the implementation of all these methods is more complex than for the classical MPPT 

techniques. 

      In this Chapter, a proposed FLC-MPPT technique based on a modified P&O algorithm is 

designed. The proposed design takes into account two key issues. First, whilst the conventional 
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P&O-MPPT is a suitable method for the PV system under a slow change of irradiance, it faces 

significant challenges under a fast one. The second issue is that the complex engineering 

problems of a fuzzy system become diminished when the designed membership functions are 

few. The general diagram of a grid-connected PV system based on the FLC-MPPT is presented 

in Figure 4.1. The fuzzy rules of the proposed method are obtained from a modified P&O-MPPT 

algorithm. The proposed technique accurately tracks the maximum power point and avoids the 

drift problem under different states. Moreover, our simplified FLC-MPPT method, when 

applied to a grid-connected PV system, achieved efficiencies greater than 99.6% under the 

EN50530 standard test. The rest of this Chapter is organised as follows. Section 4.2 analyses 

the fuzzy logic control system. Section 4.3 discusses the principle work of the conventional 

FLC-MPPT method. In Section 4.4, the proposed method is presented, whilst the simulated 

results are provided and discussed in Section 4.5. The EN50530 standard test results for 

comparative analyses are provided in Section 4.6. Finally, Section 4.7 covers the summary of 

this Chapter.  

 

Figure 4.1. The general diagram of a grid-connected PV system based on the FLC-MPPT. 

4.2 Fuzzy Logic Control   

      Fuzzy logic control is considered an important technique in industrial engineering 

application because it has a high ability to work with nonlinear system [129]. It deals with 

imprecise and noisy input information based on a mathematical model in order to imitate 

human-like decisions in control implementation [130]. This technique supports two types of 

fuzzy software system; Mamdani and Sugeno. In this Chapter, fuzzy Mamdani system is used 

because it has a higher ability to adapt a fuzzy rule application based on a human expert 

knowledge [131]. The main structure of FLC includes three stages: fuzzification, fuzzy rules 
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and defuzzification [132]. A general block diagram of the FLC technique is shown in Figure 

4.2. 

 

Figure 4.2. General diagram of fuzzy logic system. 

4.2.1 Fuzzification 

     In fuzzification stage, the input variables are converted into linguistic variables based on 

many defined membership functions (MFs) such as a triangular, trapezoidal, Gaussian, bell-

shaped, sigmoidal or (S-curve) with subset degree between 0 to 1, as shown in Figure 4.3. Each 

type has advantages and disadvantages. However, the trapezoidal MFs and triangular MFs are 

commonly used because they have a high dynamic variation in short processing time [133]. 

The quantity of those MFs is also an important aspect of the design as it determines the speed 

and accuracy of the FLC system [134].  

     If the system has more membership functions. The implementation problem becomes over 

complex, resulting in an accurate system but with an excessive processing time. In contrast, if 

the system has few membership functions, then it is too simple and whilst there is a faster 

processing system time and there is a high acceptable diversity of outcomes. As well as, 

selecting a discourse range of those MFs is an important feature to optimise this technique. The 

discourse range of the MFs is determined regarding to a limited operating work of application 

system.  

 

Figure 4.3. Various types of defined membership functions (a) monotonic (b) trapezoidal (d) 

triangular (c) Gaussian.  
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4.2.2 Fuzzy Rules 

      In fuzzy rule stage, these linguistics variables get manipulated, according to rules based on 

the “if–then” concept that are guided by the desired behaviour of the system. The operator who 

has familiar with the application system designs those fuzzy rules. After the fuzzy rules 

generate, The AND or OR fuzzy operators are used to adjust the subset degree of MFs. While 

the clipping technique is utilised to regulate the rule base with the accurate value of the rule 

antecedent.  

4.2.3 Defuzzification 

      The last stage of the FLC is the reverse of fuzzification process which it converts the 

linguistic variables into numerical variables using the output of MFs. There are three 

defuzzification technique; Mean of maximum method, Height method and Centre of gravity 

method (COG). However, the latter method is the most common used because its defuzzified 

value is very smooth when compared with other methods [135]. The centroid defuzzification 

algorithm is applied to perform those functions based on the centred gravity of the defined 

membership functions. The output of this method is determined as shown in Eq. (4.1) 

_m/ = ∑ j		_	L	
∑ j	L	

																																																										�4.1� 

where 	Wi  is the firing strength of the ith rule and Ci is the centre value of the output membership 

functions. 

4.3 Conventional FLC-MPPT  

     Nowadays, FLC based on an MPPT technique has become a popular method for PV systems 

[124]. Usually, the conventional FLC- MPPT has two inputs and one output, as shown in Eqs. 

(4.2) and (4.3) [136]:  

���� = ∆�
∆� = ��M� − ��Mo`�

��M� − ��Mo`� 																																					 �4.2� 

∆e = e�p�		 − e�po`�																																																				�4.3� 
where e(k) is the change of slop P-V curve, and ∆e is the change in its value of slop P-V curve. 

The output is the change of duty cycle ∆D, which adjusts the performance of DC-DC converter 

as through Eq. (4.4) [55]:   
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V�� + 1� = V��� + ∆V																																													�4.4� 
where D(k+1) and D(k) are the next and previous iteration for the duty cycle respectively, and 

∆D its incremental increase, which is the output of the fuzzy controller. The work of the 

conventional FLC-MPPT is to examine the first input, if this value is greater than zero the 

incremental change of the duty cycle increases until the MPP is reached, whereas if it is less 

than zero then the opposite occurs until the optimal value is reached. The second input is then 

used to reduce the oscillation in the duty cycle effectively. The quantity of membership 

functions of the conventional FLC-MPPT method is divided into five values: negative big 

(NB), negative small (NS), Z, Zero (ZZ), positive small (PS), and positive big (PB), as shown 

in Figure 4.4. For example, if the value of the error is NB and changing error also negative big 

PB, the predefined rules assign the next variable duty cycle as ZZ, with process continuing until 

the optimal MPP is reached. All the rules of the conventional FLC-MPPT algorithm as well as 

its 3D surface are provided in Table 4.1 and Figure 4.5, respectively.  

     In general, FLC-MPPT is considered one of the most efficient controllers for a PV system 

due to its smooth fluctuation, and high accuracy in reaching the MPP. In addition, as mentioned 

earlier, it does not require training data and thus works on different types of PV module the 

same MPPT design. In other words, it needs a comprehensive study about the PV system 

operation to design an accurate controller. Moreover, implementation of this method is complex 

compared with the classical MPPT methods.  

     The main challenge of this method is the drift phenomenon which happens when weather 

conditions change, which Figure 4.6 explains it. If Point A (low point), which represents the 

MPP at a low solar irradiance level is moving to B (high point) due to a rapid increase in solar 

irradiance, the right direction of the fuzzy tracker is moving far away from the new MPP, 

according to the rule base of the conventional FLC-MPPT algorithm, as show in Table 4.1. To 

solve this issue. Many modifications have been proposed, such as an adaptive and optimised 

membership function of the conventional FLC-MPPT algorithm. However, in this case the 

implementation becomes much more complex.     
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(a) 

 

(b) 

 

(c) 

Figure 4.4. The defined membership functions of a conventional FLC-MPPT: (a) input1	�q�; (b) 

input 2	�∆q�; and (c) output (∆D). 
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Table 4.1. The fuzzy rules that are used in the conventional FLC-MPPT.  

∆e E 

NB NS ZZ PS PB 

NB ZZ ZZ NB NB NB 

NS ZZ ZZ NS NS NS 

ZZ NS ZZ ZZ ZZ PS 

PS PS PS PS ZZ ZZ 

PB PB PB PB ZZ ZZ 

 

 

Figure 4.5. A 3D surface between input1 (e) and input2 (∆e) verse output (∆D). 

 

 

Figure 4.6. P-V curve for a rapid irradiance change from A (low point) to B (high point), thus 

illustrating the drift problem in the FL-MPPT algorithm.     
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4.4 Proposed Method  

     The proposed method is designed to incorporate the advantages of the FLC-MPPT method 

and P&O-MPPT algorithm, whilst eliminating their drawbacks. As mentioned in Chapter 3, 

the P&O algorithm is a suitable method for a PV-MPPT system when solar irradiance changes 

slowly from 1 to 10 W/m2/s. However, this method is flawed when the changing irradiance is 

quicker than this. Therefore, the normalised change in the applying solar irradiance regarding 

to the normalised change in the output power of PV array is classified into two major types: 

fast change and slow change presented in Chapter 3. This concept is given by Eqs (4.5) and 

(4.6): 

∆/
/ = ∆�

� ≥ 0.01																		 5l!	eℎ5@'�																			�4.5� 

∆/
/ = ∆�

� < 0.01																		l�"�	eℎ5@'�																			�4.6� 

where ∆P is the historical change in PV power and P is the previous iteration for PV power. If 

the value of � is changed due to a solar irradiance change, the value of ∆� also changes in the 

same direction. Consequently, the value of 
∆�
�  is almost constant during varying weather 

conditions. In addition, this value is positive when the operation point is on the drift issue, as 

mentioned in Chapter 3. The value is used in the fuzzy rules to detect the drift problem early. 

Defining the input and output of membership functions is considered an important step in the 

fuzzy logic design [137] and those for the proposed system are selected as following Eqs (4.7) 

and (4.8):  

  

∆�
∆� = ��M� − ��Mo`�

��M� − ��Mo`� 																																																									�4.7� 

∆�
� = ��M� − ��Mo`�

��Mo`� 																																																									�4.8� 

where Eq. (4.7) represents the historical change in PV power relative to the historical change in 

PV voltage, whilst Eq. (4.8) pertains to the historical change in PV power relative to the 

previous iteration for it and the output of proposed fuzzy system is determined as in Eq. (4.4).  

The principle work of this proposal is to examine the first input. If this value is greater than zero 

the incremental change of the duty cycle increases until the MPP is reached, whilst if it is less 
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than zero the opposite occurs also until the optimal value is reached. While the second input is 

then used to address the drift problem. The variable inputs and output are divided into four 

fuzzy subsets: positive big (PB), positive small (PS), negative big (NB), and negative small 

(NS), as shown in Figure 4.7.  The variable second input (∆P/P) is adjusted according to Eqs. 

(4.5) and (4.6). The fuzzy rules of the proposed system are based on the P&O-MPPT algorithm, 

with there being a total of 16. If the value of (∆P/∆V) is NB and (∆P/P) is also NB, then so too 

is the duty cycle is NB. The process is continued until the optimal MPP is reached. To avoid 

the drift problem associated with positive fast change in solar irradiance, the fuzzy rules are 

changed in a reverse direction when (∆P/P) > 0.01, which is equal to the PB in the second 

input. All the fuzzy rules of the proposed MPPT method, as well as its 3D surface are provided 

in Table 4.2, and Figure 4.8, respectively.  

     The output of proposed system is the variable duty cycle ∆D, which is added to the previous 

iteration for the duty cycle, as show in Eq. (4.4). As a result, the step size of the duty cycle is 

large when the operational point is far from the MPP, and it automatically becomes tiny, when 

the operational point closes in on it. Consequently, the proposed system increases the speed of 

MPPT tracking when the weather conditions change rapidly. In addition, it reduces the 

oscillation around the MPP for steady-state conditions. Moreover, what is proposed is more 

accurate for addressing the new MPP when the irradiance changes owing to the adaptive rules 

of the fuzzy system according to weather conditions. Furthermore, the proposed system 

provides a lesser complex implementation, minimum processing time and more delivery when 

compared with the conventional FLC-MPPT method, because of its lesser number of fuzzy 

rules.  

Table 4.2. The fuzzy rules that are used in the proposed method. 

 

∆P/P 

∆P/∆V 

NB NS PS PB 

NB NB NS PS PB 

NS NB NS PS PB 

PS NB NS PS PB 

PB PB PS NS NB 
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(a) 

 

(b) 

 

(c) 

Figure 4.7. The designed membership functions of the proposal: (a) input1
∆s
∆t; (b) input 2

∆s
s ; and 

(c) output ∆D. 
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Figure 4.8. A 3D surface between input1 (dp/dv) and input2 (dp/p) verse output (∆D). 

4.5 Simulation Results  

     To test the performance of the proposed FLC method, a MATLAB-SIMULINK model for 

the PV system has been developed. The PV system used in this simulation consists of a PV 

array, DC–DC boost converter with the MPPT controller, DC-AC inverter and utility grid. The 

parameters of this PV system are calculated and given in Chapter 3. The simulation was divided 

into two scenarios. First, the proposed method and conventional P&O were simulated. The 

input solar irradiance on the PV array was rapidly increased from 400 to 1000 W/m2 from 1 to 

2 s, as shown in Figure 4.9. This reference signal is dissimilar to that presented in Chapter 3, 

which was rapidly decreased and then, increased. This is because the drift problem was found 

to happen most clearly when the weather conditions surrounding the PV array increase rapidly. 

This is the main problem raised and addressed in this Chapter. 

     As shown in Figure 4.10(a), the power tracking of the proposed FLC method addresses the 

right direction of the input irradiance, whilst that of the conventional P&O algorithm was lost 

when the solar irradiance changed rapidly. As a result, the latter method takes a longer time 

than the proposed one to address the phenomenon of the drift problem, as shown in Figure 

4.10(b). In addition, the duty cycle of the proposed method is more accurate in finding the new 

MPP after solar irradiance changes, and it has a smooth oscillation around this value for steady-
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state conditions when compared with the conventional P&O-MPPT, as shown in the zoomed 

area in Figure 4.10(c). Consequently, the output power of conventional P&O-MPPT method 

and the proposed FLC method at the steady-state condition, after they reach to the MPP, are 

100.722 kW and 100.724 kW, respectively, as shown in the zoomed area in Figure 4.10(a) 

      In the second scenario, the proposed method and the conventional FLC-MPPT algorithm 

were simulated under the same weather conditions as previously. The simulation results again 

proved that the proposed method avoids the system experiencing the drift problem. In addition, 

it gives a fast response to finding the new MPP during a high change in solar irradiance, 

whereas the FLC-MPPT continues to suffer from the drift problem, as shown in Figure 4.11.  

However, this problem was more effective on the conventional P&O-MPPT than the 

conventional FLC-MPPT, as shown in Figures 4.10(b) and 4.11(b).  

     Whilst the fluctuations of the MPPT tracker around the MPP steady-state conditions are 

higher in the proposed method when compared with the conventional FLC-MPPT, as shown 

in the zoomed area in Figure 4.11(c), the output PV power of the conventional FLC-MPPT is 

lower due to it having more membership functions, thus resulting in a longer computation time. 

Consequently, the lost power is a higher in the conventional FLC-MPPT than the proposed 

MPPT method. As a result, the outputs under the steady state condition being 100.723 kW and 

100.724 kW, respectively, as shown in the zoomed area in Figure 4.11(a).   

        To validate the accuracy of the proposed MPPT tracker for the grid-connected PV system, 

DC voltage, injected current and grid voltage, before and after the weather conditions change, 

were simulated. As shown in the zoomed area in Figure 4.12(a), the output voltage of the DC-

DC boost converter is stable even during rapid weather conditions change as the one cycle at 

1.1 s.  Hence, the injected current and the grid voltage of the grid-connected PV system is stable 

at all times, as shown in Figures. 4.12(b) and 4.12(c), respectively. As a result, the proposed 

method is more effective for working with the grid-connected PV system under varying 

weather conditions. 

      To assess further the proposed MPPT technique, Table 4.3 compares its properties with the 

conventional P&O-MPPT and FLC-MPPT. As can be seen, the proposed MPPT method has a 

medium oscillation around the MPP point under the steady state condition, a smaller number 

of fuzzy rule subsets, simple implementation and the highest output power. Moreover, 

according to the simulated results, the proposed technique accurately tracks the MPP and avoids 

the drift problem.  
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     Notably, whilst the power improvement of the PV system based on the proposed method is 

only 1W and 2 W under steady state conditions more than with the conventional FLC-MPPT 

and conventional P&O-MPPT methods, respectively, it will capture a substantial amount energy 

over the lifespan of the PV system (25 years), as shown in Table 4.4. In addition, this value will 

be higher given the lower drift correction power of the conventional FLC-MPPT and P&O-

MPPT methods under a rapid change of weather conditions.  

Table 4.3. A comparison of the properties of the proposed method, conventional P&O and 

conventional FLC. 

MPPT  Number of 

fuzzy rules 

Oscillation  Implementation Output 

power (kW) 

Proposed method 16 Medium Simple 100.724 

Conventional FLC 25 Low Complex 100.723 

Conventional P&O - High Simple 100.722 

 

Table 4.4. A comparison of the output energies of the proposed method, conventional P&O and 
conventional FLC. 

MPPT  Power (Kw)  

 

Energy (kWh) over 

25 years  

The value of the 

capturing energy 

Proposed method 100.724 543909600 10800 

Conventional FLC 100.723 543904200 5400 

Conventional P&O 100.722 543898800 0 

 

Figure 4.9. The input solar irradiance based on a rapid changing condition 
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(a) 

 

(b) 

 

(c) 

Figure 4.10. PV array system for the proposed method versus conventional P&O under rapidly 

changing weather conditions: (a) power, (b) voltage, and (c) duty cycle. 
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(a) 

 

(b) 

 

(c) 

Figure 4.11. PV array system for the proposed method versus conventional FL under rapidly 

changing weather conditions: (a) power, (b) voltage, and (c) duty cycle. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.12. Grid-connected PV system using the proposed MPPT method: (a) the DC voltage, 

(b) the grid voltage and (c) the injected current to the grid. 
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 4.6 The EN 50530 Standard Test of MPPT Efficiency  

     To assess the proposed FLC method, EN50530 standard test of MPPT efficiency [138] was 

used. Basically, it involves supplying triangular waveforms of irradiance sequentially with 

different ramp gradients. The first sequence is a slow change of irradiance and then, this is 

gradually increased. In this work, three triangular sequences were applied, slow, fast and very 

rapid change in solar irradiance about 10, 40 and 80 W/m2/s, respectively, as shown in Figure 

4.13. The comparison between the proposed method and the conventional P&O method is 

shown in Figure 4.14(a).  

     Clearly, the tracking power of the latter avoids the drift problem during a slow change in 

the solar irradiance (∆/ < 10	j/ka/l�	 due to the large and fixed step size of the duty cycle, 

as show in first sequence, as shown in the zoomed in part of Figure 4.14(a). However, the 

tracking power of the conventional P&O method drifts away from the right direction when the 

irradiance increases at a fast pace in second sequence (∆/ > 10	j/ka/l�, as show the second 

sequence, because the MPPT tracking is unable to address this rapid change in weather 

conditions. In third sequence, the problem becomes worse, when the irradiance is increased 

very rapidly (∆/ ≫ 10	j/ka/l�, as shown in the zooming in of the third sequence. In case 

of decreasing irradiance, the tracking power addresses the right direction under different 

sequences, as shown in the other side of the first sequence.  

      The comparison between the proposed method and the conventional FLC method is shown 

in Figure 4.14(b). Whilst the latter method suffers from the drift problem under fast changes in 

weather conditions (increasing and decreasing the input solar irradiance), as shown in the 

zoomed in part of Figure 4.14(b)., the problem is minimal when compared to the conventional 

P&O method. This is because the MPPT tacking of the conventional FLC method can address 

the problem early. However, the problem became a much worse when the irradiance changes 

very rapidly. In contrast, the proposed method avoids the drift problem for all three ramp 

gradients, as shown in Figures 4.14(a) and (b).  

     To calculate the average tracking efficiency of the MPPT controller, the MPPT efficiency 

formula is used, as given in Eq. (4.9) [138]:     

w.#����5x5&'��	% = z�
{|		�!��!
z �}~� 	�!��! 																												�4.9� 
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where Pout is the output power of the PV array and Pmax is its theoretical maximum power. The 

actual power is calculated using the sensors of the current and voltage of the PV array and then 

multiplied. The theoretical maximum power is calculated using the general equations of PV 

array, as given in Eqs (3.1) -(3.4). The tracking time (t) is calculated according to the ability of 

the power tracking to reach the MPP under same weather condition for the actual power and 

the theoretical power of the PV array. Then, various tracking times are used to calculate the 

average tracking efficiency of the MPPT method.  

     Whilst the MPPT efficiency of the proposed method for 400 W/m2 appears to be the lower 

in the beginning of the signal test, it achieves an average tracking efficiency of 99.6% under 

all the varying weather condition scenarios, whereas those for the conventional FLC-MPPT 

and P&O-MPPT methods are 96.4 %, and 93.5%, respectively, as shown in Figure 4.15 and 

Table 4.5.   

 

Table 4.5. A Comparative study regarding the average efficiency for the proposed method and 

the conventional FLC and P&O-MPPT techniques. 

MPPT method Average efficiencies 

Proposed method 99.6% 

Conventional FLC 96.4% 

Conventional P&O 93.5% 

 

 

Figure 4.13. Triangular waveforms of irradiance for the EN50530 standard test of MPPT 

efficiency. 
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(a) 

 

(b) 

Figure 4.14. The PV power for the EN50530 standard test of MPPT efficiency, (a) MPPT power 

tracking for P&O versus the proposed method, (b) MPPT power tracking for FLC versus the 

proposed method. 

  

 

 



Chapter 4- Proposed MPPT based on Fuzzy Logic Control  

 

63 

 

 

(a) 

 

(b) 

Figure 4.15. The average efficiency of power tracking under the EN50530 standard test for: (a) 

P&O-MPPT versus the proposed method; and (b) FL-MPPT versus the proposed method.  

4.7 Summary       

     A proposed maximum power point tracking technique based on fuzzy logic control for a 

grid-connected PV system has been presented, which has the ability to track the MPP when 

there are big fluctuations of irradiation. The advantages and disadvantages of the FLC-MPPT 

has been discussed. The designed membership functions of FLC the controller where tuned 

based on modified a P&O algorithm to incorporate the advantages of the P&O-MPPT and the 

FLC-MPPT as well as to eliminate their drawbacks. The P&O-MPPT, FLC-MPPT and 

proposed method were simulated, being then compared, according to their common features. 

The EN50530 standard test was used to calculate the efficiency of the proposed method under 
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varying weather conditions. The simulation results have revealed that the proposed technique 

exhibits a higher output power, and no divergence from the MPP during varying weather 

conditions regardless of the speed of change. That is, the proposed concept has been shown to 

be highly effective for working with a grid-connected PV system, achieving efficiencies of 

around 99.6%. Finally, this modification has been shown to be simple to implement.  
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Chapter 5  

Design of an Efficient MPPT based on ANFIS  

      In this Chapter, an efficient maximum power point tracking technique based on ANFIS 

using a real photovoltaic system data is designed. Those real data are collected throughout the 

whole 2018 from experimental tests of a photovoltaic array installed at Brunel University, 

London, United Kingdom. Normally, data from experimental tests include errors and therefore 

are analysed using a curve fitting technique to optimize the tuning of ANFIS model. A real 

measurement test of semi-cloudy day is used to calculate the average efficiency of the proposed 

method under varying climate conditions.  

5.1 Related Works 

     As mentioned in Chapter 2, the MPPT controller based on artificial intelligence techniques 

for a PV system has been widely used in recent years. This is because it can solve the significant 

issues associated with the classical MPPT methods. Moreover, these techniques do not need 

complex mathematics or accurate parameters when managing the system. In particular, the 

ANFIS-MPPT is one of the most powerful controllers for a PV system due to experiencing less 

fluctuation around the optimized MPP point, fast tracking speed and low computation time. 

However, the main disadvantages are the lack of accurate training data and tuning of the ANFIS 

model. Hence, several types of ANFIS-MPPTs have been designed using different types of 

training data. Among them, in [94], Lasheen and Abdel-salam developed an MPPT technique 

based on adaptive ANFIS and Hill Climbing (HC) techniques to increase the generated energy 

from a PV system. This proposed technique is a combination of two stages to adjust the 

property duty cycle of a boost converter for MPP tracking.  

     In the first stage, the duty cycle is estimated, whilst in the second, the exact duty cycle 

corresponding to the optimized MPP point is determined. In order to construct the training of 
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the ANFIS system, the ranges of the ambient temperature and solar irradiance are determined, 

according to the latitude and longitude of the site of the PV system. With same ideal, Farzaneh 

et al. [54] presented an intelligent MPPT for PV system using hybrid ANFIS and Particle 

Swarm Optimization (PSO) technique to reduce the converging time of the MPPT algorithm 

under partially shaded conditions. The solar irradiation and temperature operation are selected 

as the input, whilst the optimal duty cycle (Dm) is the output, which is optimized using the 

PSO algorithm. The data of the ANFIS system are collected from different scenarios of the PV 

operating system under varying partial shading. Whilst these proposals increase the efficiency 

of the PV system, their implementations become over complex due to an additional step unit. 

      Hence, Muthuramalingam and Manoharan  [95] present a comparative study among P&O-

ANFIS, PSO-ANFIS and ANN-MPPTs for a stand-alone PV system under partial shade 

conditions. The training data of the ANN method are collected from a single operating test of 

the PV array, while the P&O-ANFIS and PSO-ANFIS are derived from the operational PV 

system, with the P&O and PSO, respectively. In [101], Abido et al. designed an efficient 

ANFIS-MPPT method based on a large training dataset for PV systems. The inputs of the 

proposed ANFIS technique consist of the irradiance and temperature conditions, whilst the 

output is the optimized PV voltage at the MPP point (Vm). The large training dataset is 

collected from Simulink operation tests of a PV module under a wide range of weather 

conditions to avoid the system having a high training error. 

      In [139], Kharb et al. modelled an intelligent MPPT controller based on ANFIS to solve 

the complexity of the tracking mechanism and non-linear nature of a PV system. The 

temperature and irradiance of the weather conditions are used as inputs of the training data of 

proposed method, while the output is the value of maximum power from the PV array at a 

specific temperature operation and irradiance level (Pm). In [140], Abu-Rub et al. designed an 

intelligent MPPT technique based ANFIS for a solar PV system to reduce converge tracking 

time under a fast change in weather conditions. The key point of this proposal is that the 

maximum power of the PV module is adjusted under specific conditions. The proposed ANFIS-

MPPT is trained by the solar irradiation level and temperature operation of the Simulink 

operation of a PV module under varying weather conditions and the output is the maximum 

power. In [141], Abu-Rub et al. designed an intelligent MPPT controller based on ANFIS to 

generate the maximum power of a PV system in the standalone operation. The maximum power 

generation of the load is ensured by an adaptive ANFIS-MPPT with a quasi-Z-source inverter.  
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     The inputs of the proposed ANFIS method consist of the solar irradiance and temperature, 

while the output gives the optimism voltage at the MPP point of each of the weather conditions. 

The training data are collected based on a simulation test of a single PV module under various 

environmental conditions. In [98], Bin-halabi et al. proposed and implemented an intelligent 

MPPT method using an ANFIS model to enhance the performance of a PV system. The main 

contribution of this work is eliminating the need for inputting irradiance sensor. The PV 

voltage, PV current, and temperature operation are selected as the input, whilst the optimal PV 

voltage at the MPP is the output of the ANFIS model. The data of the ANFIS system are 

collected from Simulink operation tests of a PV system under varying climate conditions. 

     In [142], Murdianto et al. designed an intelligent MPPT based on ANFIS for a PV system 

to generate maximum output power. This work involves utilizing the maximum power for 

energy storage using a SEPIC converter. The solar irradiance and temperature operation are 

selected as the input, with the optimal PV current at the MPP (Im) being the output of the 

ANFIS model. The data of ANFIS system are collected from the curve characteristics the PV 

array under varying weather conditions. In [96], Aldair et al. designed and implemented an 

ANFIS-MPPT technique using an FPGA board for standalone photovoltaic systems to 

demonstrate the usefulness of ANFIS. The solar irradiance and temperature operation are 

selected as the inputs of the ANFIS model, whilst the optimal current is the output. 

      The training data are used to define the input membership function of the proposed method 

by assuming that the PV array is located in the south of Iraq.  In [143], an intelligent approach 

to optimizing the efficiency of a PV system by the ANFIS-MPPT technique is presented. The 

system consists of a PV array, MPPT controller, DC/DC converter and a DC motor pump. The 

PV current and PV power are selected as the input, with the duty cycle being the output of the 

proposed MPPT method. The data of ANFIS system are collected from several experiments 

performed on a PV array under various values of solar irradiance and a constant temperature 

at 25°C.  

      In [144], an intelligent MPPT controller was proposed for a PV system using an ANFIS 

model to track the MPP point under varying weather conditions. The inputs of the proposed 

ANFIS method consist of the current and voltage of a PV module, whilst the output gives the 

propertied duty cycle for a power conversion system. The proposed ANFIS method generates 

change in the duty cycle based on a historical change of PV power and derivate in this value. 

In [30], Ounnas et al.  design an efficient MPPT technique based ANFIS for PV systems to 
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determine the MPP point under different weather conditions. The solar irradiance and 

temperature operation are selected as the inputs of the ANFIS model, whilst the optimal voltage 

at the MPP is the output. The data of ANFIS model is collected from the power–voltage curve 

of PV array under different weather conditions.  

     The results in previous report that the conventional ANFIS-MPPT based on theoretical data 

increased tracking speed and reduced oscillations. However, they are not achieving a higher 

efficiency when compared with hybrid methods because of a shortage of accurate training data. 

Consequently, Khosrojerdi et al. [97] proposed an intelligent MPPT technique based on ANFIS 

for standalone PV systems using a large real data. The solar irradiation and temperature 

operation are selected as the input of the ANFIS model, whilst the optimal voltage at the MPP 

and duty cycle are the outputs. The training data of the proposed ANFIS system are collected 

from experimental testing of a PV array installed in Ottawa, Canada. With the same idea, 

Chaouachi et al. [89] presented a novel methodology for maximum power point tracking of a 

grid-connected photovoltaic system using an experimental data of a PV system installed in 

Tokyo, Japan. The operating temperature and irradiance level are used as input training data of 

the proposed ANFIS method, and the output is the reference voltage.  

     Although those proposed method in [97] and [89] trained using the real data, they are not 

optimized. Hence, the MPPT tacker are achieving lower efficiency compared with a hybrid 

algorithm under different weather conditions. In this Chapter, an experimental training data is 

collected during one year from experimental tests of a PV array installed at Brunel University 

London, Uxbridge, United Kingdom, as shown in Figure 5.1. Then, they are analysed and 

optimized using Curve Fitting technique to design an efficient maximum power point tracking 

technique for photovoltaic system. The installed PV modules characteristics are given in Table 

5.1.  

     The rest of this Chapter is organized as follows. Section 5.2 discusses the MPPT using the 

ANFIS algorithms. The stand-alone PV system based on the ANFIS-MPPT controller is 

presented in Section 5.3. The methodology of collected the training data is explained in Section 

5.4. While Section 5.5 presents the curve fitting technique. In Section 5.6, the tuning and 

optimising of proposed ANFIS model are given, whilst the results are provided and discussed 

in Section 5.7. Real measurement test results of one day are provided in Section 5.8, with Section 

5.9 containing the summary of this Chapter. 
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Figure 5.1. The studied PV array installed at Brunel University London, UK. 

 

Table 5.1. PV module characteristics. 

Parameters  Value  

Cell number 48 

Dimensions   1.318×994×46 mm 

Nominal power  185W 

Open circuit voltage  30.2 V 

Maximum power voltage  24 V 

short circuit current 8.54 A 

Maximum power current 7.71 A 

Temperature Coefficient (Pmax)  -0.485%/0C 

Temperature Coefficient (Isc)  +0.053%/0C 

Temperature Coefficient (Voc) -104 mV/0C 

Type of PV cell Monocrystalline 

Type of PV module Sharp NU-S5E3E 185 

Conversion Efficiency  14.1% 
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5.2 ANFIS Technique 

ANFIS technique is considered a hybrid method based on the architecture of a neural network 

and fuzzy logic inference [145]. It is adapted neural network technique based on fuzzy inference 

system. The principle work of this technique is depended on three concepts:  

1. Rule base selects fuzzy rules. 

2. Data base identifies the membership functions using the fuzzy rules. 

3. Reasoning mechanism inferences the rules with deriving output. 

To address and optimise the signal system, a hybrid-learning rule combining back-propagation, 

gradient-descent and a least-squares are used [146]. The ANFIS structure consists of five layers: 

fuzzification, rules, normalization, consequent, and addition, as shown in Figure 5.2. In the first 

layer, every node of the training data is an adaptive node, with the node function using Eqs. 

(5.1) and (5.2) to generate the defined membership functions:  

�`,	 = ��	���														 "&		� = 	1,2																						�5.1� 

�`,	 = ��	oa���												 "&		� = 	3,4																					�5.2� 

where, µ is the defined membership functions and A1, i  is the defined membership value for the 

inputs x and y. The subscripted 1 and i is the layer number and node number of the training data, 

respectively. The defined membership functions can be any shaped function, such as triangular, 

trapezoidal or Gaussian. The best membership functions which achieve a less training error. In 

layer 2, every node is a fixed node based on one the valid fuzzy rule. The output value is given 

by Eq. (5.3): 

�a,	 = �	 = ��		�����		���					� = 	1,2              (5.3) 

In layer 3, every node is fixe based on the normalization of each valid fussy rule, using Eq. 

(5.4): 

��,` = �	 = �	
�` + �a

																																														 �5.4� 

In layer 4, every node is adapted and calculated based on the rule consequent, as given in Eq. 

(5.6): 

��,` = �	 	 = �	��				� + ?				� + &	�                    (5.6) 
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where, pi, qi and ri are consequent parameters, which require being optimized in the training 

operation. In layer 5, all input nodes are summed together to get the final output signal, as given 

in Eq. (5.7): 

��,` = ∑ �	 	 = ∑ �����
∑ ���	                                        (5.7) 

where 	�	 is the minimum number of membership functions and 	 	 		is the centre value of the 

output membership function. The training procedure of ANFIS model is depended on a number 

of epochs. In each epoch, the output nodes are determined in layer 4 while the consequent 

parameters are determined in layer 5. A back propagation (BP) algorithm or hybrid algorithm 

are used to learn the process of the ANFIS model.    

 

Figure 5.2. A block diagram of the ANFIS model [145]. 

5.3 ANFIS-MPPT Controller  

     The traditional ANFIS-MPPT method usually has two inputs and one output, as shown in 

Figure 5.3. The operating temperature (Tx) and irradiance level (Gx) are usually used as inputs 

to the training data of the ANFIS method, and the output is the reference power (Pref.). Under 

the same weather conditions, the actual PV power (Pact.) is calculated using the sensed voltage 

and current of the PV operation. These two power readings are compared, and the error (e) is 

given to a Proportional Integral (PI) controller to generate the signal of a DC-DC convertor by 

a PWM generator, to adjust the operating MPP point of the PV module. The signal control (s) 

of the PI controller is given by Eq. (5.8): 

V = ����]�|. − ����.� + ��
1 ��]�|. − ����.�                       (5.8) 
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where, KP and KI represent the proportional and integral gain of the PI controller, respectively. 

In general, the MPPT technique based on ANFIS has been designed to solve the limitations of 

an intelligent system. In addition, it can adjust its parameters to give a faster response and less 

oscillation under different weather conditions due to less time being consumed in the 

defuzzification stage. However, getting accurate training data and tuning ANFIS model are big 

challenges when designing an efficient ANFIS-MPPT. In this Chapter, the proposed ANFIS 

model is designed using real data collected from experimental PV tests installed at Brunel 

University London, Uxbridge, United Kingdom. 

 

Figure 5.3. The diagram of a PV system using an ANFIS-MPPT. 

5.4 Methodology of Collected Data 

      A micro-grid PV system is installed at Brunel University London, Uxbridge, UK, to collect 

real training data, as show in Figure 5.4. The PV array consists of five PV modules connected 

in series. This PV array is connected to the micro-grid through dedicated Sunny Boy Inverter. 

The main reason to use this DC-AC inverter is that it conforms the regulations concerning small-

scale PV generation. In addition, it has inbuilt communication system, anti–islanding unit and 

voltage protection. To measure and collect the electrical parameters of the PV system, Sunny 

Boy Controller Pulse is connected to the inverter by RS485 transmission protocols. In addition, 

a weather station comprising of a Pyrometer, Hydrometer, and Anemometer and wind vane is 

installed and connected to the Sunny Boy Controller Pulse via RS232 cable for studying and 

analysing the dependence of weather parameters. Although four parameters of weather 

conditions (irradiation, temperature, wind speed and humidity) are measured, the solar 
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irradiation and ambiance temperature are selected to design PV-MPPT systems because they 

are the most effective on PV systems than other parameters according to the general equation 

of PV cell. The ranges of the ambient temperature and solar irradiance are determined according 

to the latitude and longitude of Uxbridge, London, UK, which are 51.531 and -0.474, 

respectively. 

      A supervisory control and data acquisition system (SCADA) was used to monitor and 

control the system, linked to the university local area network (LAN) using TCP/IP and SBC 

Net Port system commination. The Sunny Boy controller read data every 5 minutes periodically 

in daytime and switched off at night. It then turns on every 15 minutes to exam the weather 

conditions otherwise it returns to power-save mode. The data were recorded on PC and stored 

as a Microsoft Excel Sheet. To avoid failure in the commination system, an external modem 

was installed with the system to send an alarm signal to the system’s operator if any such 

problems occurred. Throughout whole the year 2018, about 48,500 data readings were collected 

and recorded comprising the irradiance level and temperature operation of the atmospheric 

station, with the output being the measured power of the photovoltaic array at the maximum 

power point. 

 

Figure 5.4. The general diagram of a collected data system. 
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5.5 Curve Fitting Technique  

     It is very common in engineering practice to obtain and record real data from device systems. 

Engineers use these data to understand underlying properties and solve issues of the system. 

However, it is not easy or even possible to determine the relationship that describes the 

behaviour of the system using the real data. Regression analysis of data is a statistical procedure 

and can be used to identify the relationships among different points. Whilst there are varying 

methods of the regression analysis, a curve fitting technique is considered as one of the best 

methods which is utilised in this work [147].  

     This technique is attempted to find a mathematical function that can describe the 

measurements of real data as accurate as possible. It is not necessary that the function obtained 

will pass through all the real data points. However, the smallest possible error of fitting curve 

should be gotten which defined as Eq. (5.9):  

� = ∑ &	aL	�` = ∑ 3�	 − �5`�	 + 59�7aL	�`                  (5.9) 

where &	 is the residual vector of each data point,  �	 the value of the straight line evaluated at 

�	 point, 5		and 59	are the coefficients of curve fitting and n is the numbers of data. Hence, for 

exemplify, the equations of curve fitting coefficients for five points are writing as Eqs. (5.10-

14):  

5`�` + 59 = �`																																																													�5.10�	
5`�a + 59 = �a																																																												�5.11�	
5`�� + 59 = ��																																																													�5.12� 
5`�� + 59 = ��																																																												�5.13�                                                       
5`�� + 59 = ��																																																												�5.14� 

Now, those above five equations are writing in a more compact method using matrix notation, 

as defined in Eq. (5.15): 

�� = �																																																																									�5.15� 
where,  
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Now, the residual matrix notation is written as Eq. (5.16):  

& = � − ��																																																																						�5.16� 
Substituting Eq. (5.16) into Eq. (5.9), the following is obtained: 

� = �&	a
L

	�`
= &6& = �6� − 2�6�� + �6�6��							�5.17� 

where, &6 is the transposed residual matrix notation. To minimize the value of  �, the derivation 

process is used. This gives in Eq. (5.18): 

��
�� = 0 = −2�6� + 2�6��                                        (5.18) 

Now, the coefficients of fitting curve (b) is defined as Eq. (5.19): 

� = ��6��o`�6�                                                        (5.19) 

     In this application, y-axis is the PV power and x-axis are irradiance and temperature of 

weather conditions. About 48,500 data sets for one year are used.  In addition, the second order 

polynomial of last squares is utilised to get a best fit as shown in Eqs. (5.20) and (5.21).  

� = 3.416 × 10o��a + 0.0011	� + 0.00115												�5.20� 
� = −1.858 × 10o��a + 0.015	� + 0.00649											�5.21� 

To draw those fitting curves, MATLAB code is generated based on Eqs. (5.20) and (5.21).  As 

noticed from Figure 5.5, the power generation of the PV array increases as solar irradiance 

increases, conversely it is better for low temperature operation than raised one. In addition, the 

PV generated power almost depends on the irradiance as linearity. In contrast, the operating 

temperature is less effective on PV power generation as well as non-optimized linearity. Those 

conceptions will be used in Section 5.6 to adjust the defined membership function of proposed 

ANFIS model.          
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(a) 

 

(b) 

Figure 5.5. The fitting curve of (a) PV power - irradiance level, (b) PV power - temperature 

operation.  

 

5.6 Tuning of Proposed ANFIS Network 

      Using a MATLAB/Simulink model, an efficient ANFIS-MPPT method based on the large 

and real data of a PV system is designed to avoid the system from having a high training error. 

Those data are collected throughout the whole 2018 from experimental tests of a photovoltaic 

array installed at Brunel University London, Uxbridge, United Kingdom, as described in 

Section 5.4.  The inputs of the proposed ANFIS technique consists of the irradiance level and 

temperature operation of weather conditions, which are collected by a weather station, and the 

reference power is measured from the PV installed array, as the output of the ANFIS system. 
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The estimation accurate PV power depends on the training dataset; therefore, it is very important 

to select the training data with wide variations of the solar irradiance and the operating 

temperature [87]. Hence, the measured data for 40 days selected 10 days from each season 

whose have different variation of weather conditions are used. The ANFIS model based on those 

data achieves a better performance when compared with the ANFIS model based on total 

collected data due to its very short training time, lower number of epochs (50) and lower target 

error (0.08) while the training parameters of the latter model is a very long time, more number 

of  epochs (980) and higher target error (0.14), as shown in Table 5.2.  

     To select the best membership function of the ANFIS model, different types of membership 

functions are tested. The linear type for the output membership functions and the triangular type 

for the input membership functions (trimf) achieve less tolerance of Mean Square Error (MSE) 

about 0.0706, as shown in Table 5.3 and Figure 5.6. In addition, triangular membership 

functions have a simple formula and high computational efficiency [96]. As proved in Section 

5.4, the PV generated power almost depends on the irradiance as linearity. In contrast, the 

operating temperature is less effective on PV power generation as well as non-optimized 

linearity.  

     According to those conceptions, the numbers of input membership functions (mf) of solar 

irradiance are selected more than the numbers of input membership functions of operating 

temperature to able the ANFIS model predicting an accurate power generation of the installed 

PV array under varying conditions. In addition, the variable second input is adjusted according 

to the fitting curve of operating temperature by shafting the MF of the second input.  Hence, 

they avoid the state of non-optimized linearity in this second input. Those membership functions 

for each input are learned by the ANFIS model based on 15 fuzzy rules derived from 8 input 

defined membership functions as shown in Figure 5.7. 

      The quantity of membership functions of the input applying irradiance is divided into five 

values: very low, low, medium, high and very high, while the quantity of membership functions 

of the surrounding temperature is divided into three values: low, medium, and high. The fuzzy 

inference system is trained based on the hybrid optimization method by combining the back 

propagation gradient techniques and the least squares. The surface of training data indicates that 

the reference power of installed PV array increases smoothly, with an increase in the radiation 

level and with a decrease in the temperature operation, as shown in Figure 5.8.  
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Table 5.2. Simulation ANFIS model based on optimized data VS total data. 

Model Training time  Number of 

epochs  

Error (%) 

Optimized data  Very short 50 8 

Total data  Too long 980 14 

 

Table 5.3. Mean Square Error (MSE) for different input membership functions. 

Purpose Function Error 

Triangular mf. Trimf 0.0706 

Trapezoidal mf. Trapmf 0.1085 

Generalized bell curve mf. Gbellmf 0.0787 

Gaussian curve mf. Gaussmf 0.0766 

Two-sided Gaussian curve mf. gauss2mf 0.0894 

PI-shaped curve mf. Pimf 0.1215 

Difference of two sigmoid mf. Dsigmf 0.0808 

Product of two sigmoid mf. Psigmf 0.0819 

 

Figure 5.6. Training data error versus epochs for the ANFIS model. 
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(a) 

 

(b) 

Figure 5.7. The defined membership function for (a) irradiance, and (b) temperature. 

 

Figure 5.8. A 3D surface between inputs irradiance and temperature verse PV power. 
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5.7 Results and Discussion   

     In this chapter, a MATLAB-Simulink model for a stand-alone PV system based on ANFIS-

MPPT controller is simulated instead of a grid-connected PV system because the training data 

of ANFIS model are collected from a micro-grid PV system. This PV system consists of a PV 

array, DC–DC boost converter with an MPPT controller and resistive load. The main 

parameters of PV model are given in Table. 5.1. The PV array consists of five PV modules 

connected in series. The parameters of the DC-DC converter are 0.5mH, 65µF and 850µF 

which are determined using Eqs. (3.13), (3.14) and (3.15). While the resistive load, switching 

frequency, current diode and updating time are selected at 15Ω, 5kHz, 10A and 500µs, 

respectively. To assess the performance, the optimal ANFIS-MPPT, conventional P&O-MPPT, 

conventional FLC-MPPT and conventional ANFIS-MPPT methods are simulated under similar 

conditions. 

     The simulation was divided into two scenarios; fixed input solar irradiation and variation 

input solar irradiation. The input irradiation and temperature of the first scenario is fixed at 

1000 W/m2 and 25°C, respectively. As shown in in the zoomed area in Figure 5. 9 (a), the 

converging time of the power tracker for the optimal ANFIS-MPPT method is the lowest when 

compared to the conventional ANFIS-MPPT, conventional FLC-MPPT and conventional 

P&O-MPPT methods, being about 0.07 s, 0.08, 0.11 s and 0.13 s, respectively.   

     Moreover, it has the lowest fluctuation around the MPP point for steady-state, thus resulting 

in less computation time, as shown in the zoom in of Figures. 5.9 (b) and (c). Furthermore, it 

is more accurate for addressing the optimised MPP point when compared with the conventional 

ANFIS-MPPT, conventional FLC-MPPTs, as shown in the zoomed area in Figure 5.9 (b), due 

to the large and accurate training dataset. As a result, the PV voltage at the MPP point for the 

optimal ANFIS-MPPT is in the middle of the optimized voltage of the conventional P&O-

MPPT, while the PV voltage at the MPP point for the conventional ANFIS-MPPT and 

conventional FLC-MPPTs are to the right and left of the optimized voltage of P&O-MPPT 

with low and medium oscillations, respectively. However, the fluctuation problem is the 

highest in the conventional P&O-MPPT owing to the continuous perturbation of the P&O 

tracker for reaching the optimized MPP point, as explained in Chapter 4. 

      Therefore, the lost power in the optimal ANFIS-MPPT is less than for the conventional 

FLC-MPPT and conventional P&O-MPPTs. As a result, the output power of the optimal 

ANFIS-MPPT, conventional ANFIS-MPPT, conventional FLC-MPPT and conventional P&O-
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MPPTs, after they have reach the optimised MPP point, are about 924.50 W,923.75 W, 923.25 

W and 922.5 W, respectively, as shown in the zoomed area in Figure 5.9(a). 

      In the second scenario, the input irradiation level is rapidly increased from 200 to 1000 

W/m2 at 1 to 2 s, and the temperature operation is kept at 25 °C. As shown in Figure 5.10(a), 

the power tracker of the optimal ANFIS-MPPT addresses the right direction of the input solar 

irradiance when it changed rapidly owing to its large training and optimized tuning of the 

proposed model, whilst the tracking power of conventional ANFIS-MPPT, conventional FLC-

MPPT and conventional P&O-MPPTs do not address the right direction when the input 

irradiation changed suddenly. Notably, the conventional P&O-MPPT was the mostly effected 

by the drift problem and the conventional ANFIS-MPPT was the least effective by this issue. 

      As a result, they take a longer time than MPPT based on the optimal ANFIS to address the 

drift issue phenomenon, as shown in Figure 5.10. In addition, it is a more robust in addressing 

the right direction during a rapid change in solar irradiance. On another words, this issue was 

more effective on the conventional P&O-MPPT then the conventional FLC-MPPT. To assess 

the optimal ANFIS-MPPT further, Table 5.4 compares its properties with the conventional 

ANFIS-MPPT, conventional FLC-MPPT and conventional P&O-MPPTs. As can be seen, the 

optimal ANFIS-MPPT has the lowest converging time, the least oscillation around the MPP 

point and the highest output power. Moreover, it is the most accurate in tracking the MPP point 

and avoiding the drift phenomenon.  

  

Table 5.4. A comparison of the properties of the ANFIC, P&O and FLC-MPPT. 

MPPT  Converging 

time (s) 

Oscillation  Drift 

problem 

Output power 

(W) 

Optimal ANFIS 0.07 Low  Avoidance 924.50 

Conventional ANFIS 0.08 Low   Suffering 923.75 

Conventional FLC 0.11 Medium Suffering 923.25 

Conventional P&O 0.13 High Suffering 922.50 
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(a) 

 

(b) 

 

(C) 

Figure 5.9. PV array system for the ANFIS method versus P&O and FLC methods under a 

fixed irradiation condition: (a) power, (b) voltage, and (c) duty cycle. 
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(a) 

 

(b) 

 

(C) 

Figure 5.10. PV array system for the optimal ANFIS versus conventional ANFIS, conventional 

P&O and conventional FLC methods under a rapid change in weather conditions: (a) power, 

(b) voltage, and (c) duty cycle. 
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5.8 Real Measurement Test  

 To assess the proposed method, the four previous techniques have been compared based on 

real measurement of the input solar irradiance and temperature for one day on 10th June 2018 

(05.00 – 20.00), as shown in Figures 5.11 (a) and (b). Those data were collected as mentioned 

and explained in Section 5.3. Notably, the EN50530 test was used to calculate the average 

tracking efficiency of the FLC-MPPT method, while experimental testing was utilised to 

calculate the average tracking efficiency of the ANFIS-MPPT method. This is because, the 

EN50530 test was designed to calculate the tracking efficiency of MPPT methods under a rapid 

change in weather conditions, when a drift problem can occur, which is the major issue of the 

FLC-MPPT method presented in chapter 4. While the experimental test is proposed to calculate 

the tracking efficiency of MPPT methods under varying weather conditions, in this state, the 

inaccurate tracker justifies clearly, which is the major issue of the ANFIS-MPPT method 

explained in this chapter.  

      The comparison between an optimal ANFIS-MPPT and conventional P&O-MPPT is 

shown in Figure 5.13(a). Clearly, the power tracker of the latter method addresses the right 

direction during a slow change in the weather conditions owing to the large and constant step 

size of the incremental duty cycle. However, the power of the conventional P&O-MPPT drifts 

away from the correct direction when the solar irradiation and ambient temperature increases 

rapidly, because it is not able to cope with the rapid change in the input irradiation, as 

mentioned and explained in Chapter 4. That is, the issue becomes worse when the solar 

irradiation is changed suddenly. However, the tracking power of the P&O-MPPT addresses the 

right direction under the different case of decreasing irradiation, as shown in the zoomed area 

in Figure 5.12(a). 

      The comparison between the optimal ANFIS-MPPT and a conventional FLC-MPPT is 

shown in Figure 5.12(b). Whilst the latter method suffers from the drift problem under rapid 

changes in weather conditions (increasing and decreasing the weather conditions), as shown in 

the zoomed area in Figure 5.12(b), the problem can be seen as being minimal when compared 

to the conventional P&O-MPPT. As mentioned in Chapter 4, this is because the MPPT tracking 

of the conventional FLC enables it to address the problem early. The comparison between the 

optimal ANFIS-MPPT and a conventional ANFIS-MPPT is shown in Figure 5.12 (c). Although 

the latter method almost avoids the deviation under different weather conditions, it is not 

accurate to address the MPP. In contrast, the tracking power of ANFIS-MPPT based on the 
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large and real training data avoids the problem under different weather conditions. To calculate 

the tracking efficiency of the MPPT controller, the average MPPT efficiency formula is used, 

as given in Eq. (4.9), explained in Chapter 4. Whilst the efficiency of ANFIS-MPPT method 

for a beginning day appears to be the lowest, it achieves an average efficiency of 99.3% under 

all the different climate conditions, whereas those for the conventional ANFIS, conventional 

FLC and conventional P&O-MPPTs are 97.9%, 96.8 %, and 92.6%, respectively, as shown in 

the zoomed area in Figures 5.13 (a), (b) and (c), as well as Table 5.5.    

Table 5.5. Comparative study regarding the average efficiency for the optimal ANFIS, 

conventional ANFIS, conventional FLC and P&O-MPPT techniques. 

MPPT method Average efficiencies 

Optimal ANFIS 99.3% 

Conventional ANFIS 97.9% 

Conventional FLC 96.8% 

Conventional P&O 92.6% 

 

(a) 

 

(b) 

Figure 5.11. Real measurement test of one day of: (a) irradiance, and (b) temperature. 
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(a) 

 

(b) 

 

(c) 

Figure 5.12. MPPT power for: (a) P&O versus the optimal ANFIS, (b) FLC versus the optimal 

ANFIS and (c) conventional ANFIS versus the optimal ANFIS. 
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(a)       

 

(b) 

 

(c) 

Figure 5.13. The average efficiency of the generated power of PV array under the real 
measurement test for: (a) P&O versus optimal ANFIS; and (b) FLC versus optimal ANFIS and 

(c) conventional ANFIS versus optimal ANFIS. 
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5.9 Summary   

     An efficient maximum power point tracking technique based on ANFIS using a real 

photovoltaic system data has been designed in this Chapter. The large training dataset was 

collected during one year from the experimental testing of a PV array installed at Brunel 

University, London, UK, and then, they are analysed and optimised using a fitting curve 

technique to avoid the system from having a high training error. The solar irradiation and 

ambient temperature are selected as the input, whilst the maximum available power from the 

PV array is the output of what is termed the ANFIS model. Under the same weather conditions, 

actual PV power is measured using a sensed voltage and the current of a PV Simulink 

operation. These two power outputs are compared, and the error is given to PI controller to 

generate the signal of a DC-DC converter by the PWM generator, to adjust the operating MPP 

point of the PV array.  

     To sum up, a literature review on ANFIS-MPPT for a PV system has been presented. The 

methodologies of collected and optimized data and the tuning of proposed ANFIS model were 

explained. The P&O-MPPT, FLC-MPPT and the proposed ANFIS method were simulated, 

being then compared, regarding their popular features. The real test outcomes for semi-cloudy 

day were used to calculate the efficiency of the proposed technique under varying weather 

conditions. The results have demonstrated that the proposed method exhibits higher generated 

power, and no deviation from the optimized MPP point during different climate conditions than 

the alternative ones proposed, achieving efficiencies of greater than 99.3%. Finally, the 

implementation of this proposal can be considered simpler then hybrid methods.   
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Chapter 6 

An optimised Neural Network for Predicting the MPP   

     In this Chapter, a feedforward Artificial Neural Network (ANN) technique using 

experimental data is designed for predicting the maximum power point of a photovoltaic array. 

An ANN model training strategy is challenging due to the variations in the training and the 

operation conditions of a photovoltaic system. In order to improve ANN model accuracy, the 

Particle Swarm Optimisation (PSO) algorithm is utilised to find the best topology and to 

calculate the optimum initial weights of the ANN model. Hence, the dilemma between 

computational time and the best-fitting regression of the ANN model is addressed, as well as 

the mean squared error being minimised. Experimental data of a sunny and cloudy day are 

utilised to determine the average tracking efficiency of this proposed method under varying 

atmospheric conditions.  

6.1 State of the Art  

          The ANN approach is the leading technique used in PV-MPPT applications, because it 

is able to predict the MPP of PV arrays accurately under various weather conditions [148]. 

Unfortunately, as aforementioned, the ANN model training strategy is challenging in relation 

to designing the optimised ANN-MPPT controller for PV systems due to the variations in the 

training data and operation conditions. In order to improve model accuracy, several researchers 

have proposed various optimisations, among them Hiyama et al. [87] presented a novel 

methodology based on a regression analysis method to select effective data for training an 

ANN-MPPT model. The data set was collected from experimental tests of a PV array installed 

at Kumamoto University, Kumamoto, Japan, for one year and then, the measured data for two 

days with a widely varying weather conditions were selected. This proposal gives accurate 

predictions when compared with an ANN-MPPT based on the total data. Afin and Akkaya  [88] 
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used a genetic algorithm (GA) to select automatically the effective data among all those 

collected, resulting in a smaller mean squared error of the ANN training network. Simulation 

and experimental results confirmed that this proposed conception is effective for working with 

PV systems.   

     In [89], Chaouachi et al. classified the real data of a PV system installed in Tokyo, Japan, 

into three multi-layers based on a fuzzy rules-based before they fed them into an ANN for 

offline training. The results of this proposed method reveal that it achieves the highest 

efficiency when compared to the conventional ANN and P&O algorithms under different 

climatic conditions. With the same idea, Fathabadi [149] used the Lambert W function with a 

feed foreword ANN technique to calculate the characteristics of silicon and plastic PV cells. 

The major contribution of this method is that it enhances the performance of the ANN model 

in predicting the PV curve.          

In [150]. Akkaya et al. used the GA to optimise the size of the hidden layer of an ANN 

model using an evolutionary hybrid algorithm, which resulted in minimising the mean squared 

error of the ANN training. The experimental results prove that the proposed method is efficient 

for controlling PV systems under varying atmospheric conditions. Similarly, Af et al. [151] 

used the GA to find the optimal numbers of neuron nodes for a multi-layer neural network. The 

results demonstrated that the proposed technique is valid in that comparison between the 

practical and simulation results showed good agreement. In the same vein, Zhang and Bai [152] 

adapted the GA to find the optimal number of a radial basis function ANN for modelling PV 

arrays. The results proved that the proposed method can accurately predict optimised PV power 

under various conditions. Hamdi et al. [153] the authors used a particle swarm optimisation 

(PSO) algorithm instead of the GA one to find the main parameters of the radial basic function 

of an ANN network using a novel adaptive strategy. The results provided evidence that the 

proposed method enhances the efficiency of MPPT tracking.  

 However, the selecting the effective training data and determining the topology of ANN 

model whose report in previous proposals are considered basic criteria to enhance their 

performance. Hence, Duman et al. [61] used a hybrid PSO gravitational search algorithm 

(GSA) to calculate a suitable activation function of ANN layers, resulting in the achievement 

of an accurate power prediction. Unfortunately, this modification is classified as a complex 

method. There are novel optimisations based on the Grey Wolf and Bee Colony algorithm that 

have been proposed in recent years, which have been used to enhance the performance of AI 

techniques such as  [154]–[156]. In this work, PSO is utilised to improve the accuracy of ANN 
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model due to its sampling technique and fast optimisation delivery. The rest of this Chapter is 

organised as follows: Sections 6.2 presents a schematic diagram of PV system based on 

optimised ANN-MPPT controller. Sections 6.3 and Section 6.4 cover the principles the 

feedforward ANN technique and PSO algorithm, respectively. Section 6.5 explains the training 

of proposed ANN model. In Section 6.6, the results are provided. Experimental measurement 

test results for sunny and cloudy days are provided and discussed in Section 6.7, whilst Section 

6.8 presents the comparative study based on the properties of the proposed methods in this 

thesis. Finally, Section 6.9 contains the summary of this Chapter. 

6.2 Optimised ANN-MPPT Method       

     In this Chapter, a feedforward ANN technique is employed to predict the maximum power 

point (MPP) of a PV array using a large real training dataset, as shown in Figure 6.1. Those data 

are collected from experimental tests on a PV array installed at Brunel University London, 

Uxbridge, United Kingdom, as mentioned in Chapter 5. To optimise the training strategy of the 

ANN model, the PSO algorithm is utilised. This strategy is divided into two parts: determining 

the right topology and then, optimising the initial weights of the feedforward ANN model. That 

is, the issue between the computational time and the best-fitting regression of the distribution of 

the ANN nodes is solved in the first part, while the global minimum training error of the ANN 

model is addressed in the second. Consequently, the predicting function of the proposed ANN 

method is improved under various weather conditions. The irradiance (Gx) and temperature 

(Tx) of the atmospheric conditions are used as the inputs of the proposed ANN model, whilst 

the predicting power (Pref.) is the output. 

 

Figure 6.1. General diagram of a stand-alone PV system using an ANN-MPPT method. 
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     This regulates the D of a DC-DC boost converter after being compared with the PV’s actual 

power (Pact.) using a proportional-integral (PI) controller. The D is converted into the signal 

(s) of the DC-DC converter using a pulse-width modulation generator (PMW) to regulate the 

operating MPP of the PV array. As mentioned in chapter 5, the signal control (s) of the PI 

controller is given by Eq. (5.8).  

6.3 ANN Algorithm 

      An ANN technique is a distributed processing technique, which is able to save experimental 

knowledge of application systems [157]. It does not require a good knowledge when modelling 

an application system, but it does need accurate data to predict output functions as close to 

reality. This algorithm converts the training data to a non-linear mapping between inputs and 

output nodes. ANN topology is classified in to two types: feedforward and feedback networks. 

The first type is the most commonly deployed due to its usage of less memory in the 

implementation stage [158]. Furthermore, it has proven to be highly powerful when working 

with non-linear systems, such as a PV array. The feedforward ANN is also classified into three 

kinds includes single layer, multilayer and radial basis function nets. The multilayer 

feedforward ANN is the most popular type because it has a high ability to determine the 

weighting of hidden layer [159].   

     In general, the multilayer feedforward ANN has three layers, input, hidden and output, as 

shown in Figure 6.2. Moreover, the neurons of each layer are connected through the weights 

of the other neurons and bias terms in the antecedent layers. This distributed processing system 

is defined mathematically by Eq. (6.1):     

� = ��	��� + ��																																																							�6.1�
L

	�`
 

where, xj is the input training node, �	�	 are the connection weights associated with the input, 

hidden and layer nodes, �� is the bias of the hidden and the output layer nodes and n is the 

number of input signals. A sigmoid activation function is frequently utilised to determine the 

hidden layer input and target the hidden layer output. To learn the process of a feedforward 

ANN system, the back propagation (BP) algorithm is used. It is a complex gradient algorithm 

deployed for enhancing the performance of the ANN by changing the weights of each node and 

the bias terms until the output value at the output layer predicts the actual outputs as closely as 
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possible, thus resulting in a reduction in the training error. The mean squared error (MSE) is 

usually chosen as the cost function, which is given by Eq. (6.2):  

#�� = 1
@�������� − ������a

\

��`

L

	�`
																														 �6.2� 

where, n is the number of input data, m is the number of output signals, Yj(i) is the real output, 

and Tj(i) is the target output.  There are two main issues when designing a feedforward ANN: 

finding the best topology of its structure (the number of hidden layers and units in these); and 

optimising the initial weights of the training nodes.  

 

Figure 6.2. Block diagram of an ANN system.  

6.3.1 Hidden Layer Size 

     Calculating the optimum number of hidden layers and units in each is an important task for 

the feedforward ANN design, as this addresses the issue between the computational time and 

best fitting regression of the distribution of the ANN nodes [150]–[153], [160]. If the ANN 

model has too many units in the hidden layers, the computational time becomes too long, thus 

resulting in an over fitting regression. In contrast, if the ANN model has too few units in hidden 

layers, then it will have low computational time when there is a linear fitting regression. The 

most common method for finding the hidden layer size is a trial and error technique. However, 

this technique is inadequate as it requires a very long time. 
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6.3.2 Initial Training Weights 

     As aforementioned, the BP algorithm is used to learn the process of the feedforward ANN 

model based on searching an error surface. This processing search is changing as gradient 

descent regarding to the incremental change in the weight �∆j�	,	As explained in Eq. (6.3);   

 ��	� �!� = w��	� �! − 1� + �	∆��	� �!�																																											 (6.3) 

where ��	� �!� and ��	� �! − 1� are the current and previous assumed training weights, 

respectively, w is the learning rate and � is the momentum coefficient. Each iteration in the BP 

algorithm has two steps: a forward step to produce an updating solution; and a backward step 

to compute and modify the MSE to new weights based on Eqs. (6.2) and (6.3). This procedure 

continues until the optimal training weights of the ANN model are determined. Many studies 

have pointed out that this method will be failed to find the optimised training weights, because 

it mostly depends on the size of 	∆j [160]–[162]. If ∆j is large, this can lead to accelerate 

training and large fluctuating research on the error surface, thus resulting in a non-converged 

optimising solution. Conversely, if ∆j is small, this can lead to slower training and smooth 

fluctuating research on the error surface, which could mean that the training process is stopped 

before the global minimum error is found. Regarding this concept, the assumed initial weights 

play a crucial role in designing an accurate ANN model.     

6.4 PSO Algorithm 

     The PSO algorithm is considered a high-quality search tool in engineering 

applications[163]. The principle idea of this algorithm is that it tries to find an optimised area, 

where each space has a degree of possibility for a candidate solution [164]. The movement of 

the PSO algorithm is inspired from the behaviour of birds flocking, which depends on the 

individual and neighbouring experiences of the PSO optimiser during each particle step. The 

procedure of the PSO algorithm is divided into four steps, as shown in Figure 6.3. In the first, 

the PSO optimiser starts the search within a random particle value. This particle value is 

selected based on the degree of possibility of solution spaces regarding several varying 

optimisations. In the second step, it compares the previous and next best fitness values (Pbi) 

and (Pli), respectively, to search for optimised solutions in the same space. In the third step, the 

best and global best positions (Gbi) are compared to select the global fitness value. During this 

step, these positions are adapted and recorded for the next step mathematically, as defined by 

Eqs. (6.4) and (6.5): 
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�	MH` = � × �	M + &̀ × e` × ���	 − �	M� + &a × ea × �/�	 − �	M�								�6.4� 
�	MH` = �	M + �	M 																																																																																													�6.5� 

where, Xi is the current position of each particle, Vi is the speed of the search space, i is the 

optimisation vector, k is the number of iterations. w represents the inertia weight factor of the 

speed, c1 is the cognitive coefficient of the single particles, c2 is the social coefficient of all the 

particles and r1 and r2 are the random velocity values of the search space in the range 0 to 1. In 

the fourth step, the best particle in terms of the fitness evaluation is determined and saved to 

enhance the particle movement steps in each iteration. Those steps continue to work until a 

stopping condition is achieved or the number of iterations has ended. The stopping condition 

and the number of iterations are proposed based on the required accuracy of the system and 

control processing time. 

 

Figure 6.3. The Flowchart of a PSO algorithm. 
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6.5 Training of ANN Model  

     Using a MATLAB-Simulink model, an intelligent ANN-MPPT technique based on a large 

and real data set of a PV system is proposed. These data are collected from the PV system 

installed at Brunel University London, as explained in Chapter 5. The inputs of the ANN method 

consist of the G level and T operation of climatic conditions, while the maximum power 

measurement of the PV installed array at the MPP is the output. As mentioned earlier, the 

accurate prediction of PV power using the ANN technique mostly depends on the training 

strategy of ANN network. This starts with selecting the topology of the ANN model and then, 

optimising its initial weight values. To address this strategy, two algorithms are developed in 

the form of a hybrid PSO-ANN technique. The parameters of the PSO optimiser are set as 

having the following values: c1 = 1.49618, c2 = 1.49618, w = 0.7298, k = 50 and the swarm size 

=20. In addition, the transfer function is utilised as object function of the PSO algorithm. A 

schematic diagram of the training methodology of the PSO-ANN algorithm is presented in 

Figure 6.4.  

 

Figure 6.4. Schematic diagram of the training methodology. 

6.5.1 PSO-ANN algorithm - selected as the best topology of an ANN network  

     In the first part of this modification, the PSO algorithm is employed with the ANN model 

to find the best topology of the feedforward ANN network. Hence, a hybrid algorithm is used 

to test progressively increase the number of neurons in hidden layer without requiring the user 

to preselect the number, which may be inaccurate. The main steps of this are provided in Table 

6.1. The lower and upper boundaries of the neuron numbers in this algorithm are 10 to 20. In 
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this work, one hidden layer with two inputs and one output of the neural network is achieved 

with minimum training error, while the optimised number of neurons in it is 18 neurons. This 

topology will be used in the second modification to find the optimal initial weights of the ANN 

model.   

Table 6.1. The main steps of the first proposed algorithm to find the optimised topology of the 

ANN. 

Step Command  

1 Load data; 

2 Set the number of the hidden layer;   

3 Set the main parameters of the PSO algorithm  

4 Initialise the random number for the neurons of the hidden layer;   

5 Generate (for loop) to calculate the MSE for each particle using “netff”, 

“train” and “net” commands and Eq. (6.2); 

6 Update the MSE value for each particle; 

7 Compare the Pli with the Pbi of the PSO algorithm for each particle; 

8 Compare the Pbi with the Gpi of the PSO algorithm for each particle; 

9 Update the velocity and position values of the PSO algorithm by Eqs. (6.4) 

and (6.5); 

10 If the maximum iterations are reached or the stopping condition is achieved, 

print the result (the number of neurons of the hidden layer), otherwise return 

to step 5. 

 

6.5.2 PSO-ANN algorithm - determining the initial weights of the ANN model 

    Once the topology of ANN network has been selected, a hybrid algorithm based on the PSO 

and ANN method is designed to find the optimised initial weights of the ANN model. These 

are determined to improve the output prediction of the model when the assumed initial weight 

values are correcting. To this end, the PSO algorithm is utilised with the ANN technique. The 

main steps of the hybrid algorithm are described in Table 6.2. The lower and upper boundaries 

of the weight values in this algorithm are - 0.9 to 0.9. As a result of running this hybrid 

algorithm the optimised initial weights are obtained. The search history of the algorithm is 

presented in Figure 6.5.  Then, the optimal initial weights are used to train the ANN model 

using the “nntool” command of MATLAB. Next, the optimised initial weights are replaced 
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with the standard training weights in a field of the initial weights of the “nntool” box. 

Consequently, the performance of the ANN model based on the optimised training strategy 

using the real data achieves better prediction than with a conventional ANN. This is because of 

its MSE and lesser number of epochs, about 0.00068 and 17 respectively, while those of the 

non-optimal ANN are about 0.0079 and 68, respectively, as shown in Figure 6.6. Table 6.3 

presents the rudimentary statistical analysis of the proposed algorithm. Notably, this proposal 

is simpler to design, because it does not need an extra unit in the implementation stage to 

improve its accuracy.  

 

Table 6.2. The major steps of the second proposed algorithm to find the initial weights of the 

ANN. 

Step Command  

1 Load data; 

2 Set the testing and training samples,   

3 Select the number of neurons in the hidden layer regarding to the first 

modification; 

4 Set the number of initial weights of the ANN;  

5 Set the main parameters of the PSO algorithm;   

6 Generate (for loop) to calculate the random weights of the ANN using “netff”  

7 Generate (for loop) to determine the optimised initial weights after training 

the ANN using the “neural_model” “findfitness”, “train” and “net” commends.   

8 Calculate the MSE value based on Eq. (6.2) for each particle; 

9 Update the MSE value for each particle;  

10 Compare the Pli with the Pbi of the PSO algorithm for each particle; 

11 Compare the Pbi with the Gpi of the PSO algorithm for each particle; 

12 Update the velocity and position values of the PSO algorithm by Eqs. (6.4) 

and (6.5); 

13 If the maximum iterations are reached or the stopping condition is achieved, 

print the result (the optimal initial weights of the ANN), otherwise return to 

step 7. 
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Figure 6.5. The search history of the PSO-ANN algorithm.  

 

 

(a) 

 

(b) 

Figure 6.6. The best validation performance of (a) the conventional ANN and (b) the optimised 
ANN. 
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Table 6.3. The rudimentary statistical analysis of the proposed algorithm.   

Training 

no. 

ANN  

Topology  

The number of 

weights and biases  

Average +Standard 

deviation of MSE 

1 2:10:1 41 0.00795±1.2×10-3 

2 2:12:1 49 0.00781±1.8×10-4 

3 2:20:1 81 0.00678±1.4×10-4 

4 2:17:1 67 0.000769±3.22×10-5 

5 2:18:1 73 0.000689±1.03×10-5 

6.6 Results and Discussion  

     To assess the performance, a MATLAB/Simulink model for the studied PV system is 

designed for three popular methods, namely, conventional P&O, FLC and ANN-MPPT as well 

as the proposed ANN-MPPT method. This PV system consists of a PV array, DC-DC boost 

converter with the MPPT controller and resistive load, whilst the array consists of five PV 

modules connected in series. The parameters of this PV system are determined and given in 

Chapter 5. The solar irradiance, which used in this simulation, is rapidly decreased from 1000 

to 200 W/m2 at 1 to 2 s and then, it is increased from 200 to 1000 W/m2 at 3 to 4 s, as shown 

in Figure 6.7, whilst the temperature is kept constant at 25 °C.  

     As presented in Figure 6.8(a), the predictive power of the proposed ANN method addresses 

the right direction of input solar irradiance during varying atmospheric conditions owing to its 

optimised training strategy. In addition, it is a more robust in delivering the optimal MPP under 

increasing and decreasing radiation. Whereas the conventional methods for the ANN, FLC and 

P&O techniques drifts away from the right direction when the input irradiance rapidly changed, 

as presented in Figure 6.8(b). Notably, although this phenomenon is very effective on the 

conventional P&O-MPPT method by comparison with the conventional ANN and FLC-

MPPTs, it almost avoids the problem when the input irradiance decreases rapidly. 

      Another advantage of this proposed controller is that its converging time to reach the 

tracking power from the transient state into steady state conditions is the fastest when compared 

with the conventional ANN, FLC and P&O-MPPT methods, being about 0.06s, 0.08 s, 0.11 s 

and 0.13 s, respectively, as shown in the zoomed in part of Figure 6.8(a). Moreover, the 

fluctuation around the MPP for the steady-state conditions of the proposed ANN method is the 

lowest by comparison with the other methods, thus resulting in less consumption time, as 

shown in the zoomed in part of Figures. 6.8(a) and (c). Furthermore, it is more precise at 
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predicting the MPP under steady-state conditions, because the optimal MPP duty cycle of the 

proposed method is more centred than those of the conventional methods.  

     Whilst the MPP duty cycle of the conventional ANN and FLC-MPPT methods are to the 

left and right of the optimal MPP duty cycle of the conventional P&O-MPPT method, 

respectively. Consequently, the dissipated power in the proposed ANN-MPPT method is the 

lowest when compared with the conventional ANN, FLC and P&O-MPPT methods. Hence, 

the tracking power of the proposed ANN-MPPT method along with those of the conventional 

ANN, FLC and P&O-MPPT methods, after they have reached the MPP, is about 924.60, 

924.00 W, 923.25 W and 922.50 W, respectively, as shown in the zoomed in part of Figure 

6.8(a). Table 6.4 reports a comparative study covering the main properties of the conventional 

ANN, FLC and P&O-MPPT methods as well as the optimised ANN-MPPT. Regarding this 

Table, the converging time and tracking power of the proposed method are the fastest and 

highest, when compared with the conventional ANN, FLC and P&O methods. In addition, the 

fluctuation around the MPP is the least of all the methods. Moreover, the predicting power of 

the optimised ANN avoids the drift problem under instability conditions.   

Table 6.4. A comparative study covering the main properties of the conventional ANN, FLC and 

P&O-MPPT method as well as the optimised ANN-MPPT. 

MPPT  Tracking 

time (s) 

Oscillation  Power (W) Drift 

Problem 

Optimised ANN  0.06 Low  924.60 Avoidance  

Conventional ANN 0.08 Low  924.00 Suffering 

Conventional FLC 0.11 Medium  923.25 Suffering 

Conventional P&O 0.13 High 922.50 Suffering 

 

Figure 6.7. The irradiance level of weather conditions. 
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(a) 

 

(b) 

 

(c) 

Figure 6.8. PV array system for the proposed method versus the P&O, FLC and ANN methods 

under theoretical climate conditions: (a) power, (b) voltage, and (c) duty cycle. 
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6.7 Experimental Measurement Tests   

     To assess the prediction of the proposed ANN method under different climatic conditions, 

experimental measurement tests of a sunny and a cloudy day on 5th July 2018 (06.00 - 19.00) 

and 30th July 2018 (06.00 -19.00), respectively, have been used. The irradiance and temperature 

of those days are presented in Figures. 6.9(a) and (b). Then, these are applied to the studied PV 

system with the conventional P&O, ANN and FLC-MPPTs as well as the optimised ANN 

method, as shown in Figures 6.10 and 6.11. 

      In the first case, the predictive power of the conventional P&O method finds the right 

direction of the input weather conditions on the sunny day; however, it drifts away from the 

right prediction on the cloudy day, as presented in the zoomed in parts of Figures. 6.10(a). The 

issue becomes worse regarding the power of the conventional P&O method, when the solar G 

of the cloudy day is rapidly changed, as shown in Figure 6.11(a). In the second case, when 

comparing the proposed ANN method with the conventional FLC one, the predicting power of 

the latter method suffers from the deviation on both the sunny and cloudy days, as shown in 

the zoomed in part of Figures. 6.10(b) and 6.11(b). However, the problem can be seen as having 

a minimum effect when compared with the conventional P&O method.  

     In the third case, whilst the drift problem seems to have very little effect on the power 

prediction of the conventional ANN method on both days, it is inaccurate to track the MPP, as 

shown in the zoomed in part of Figures. 6.10(c) and 6.11(c). Notably, the prediction function 

of the conventional ANN on the cloudy day has a higher deviation when compared with that 

on the sunny day. In contrast, the power prediction of the proposed ANN method is as close to 

the reality during both sunny and cloudy days due to its optimised training strategy. 

     To determine the tracking efficiency of the MPPT methods, the average MPPT efficiency 

formula based on tracking time is usually used, as given in Eq. (4.9). However, a sample time 

has been used in this chapter instead of the tracking time. This is because the average MPPT 

efficiency formula based on the sample time can present the comparative results of several 

MPPT methods clearly, especially in the case of various experimental tests. The actual and 

theoretical output power of MPPT method are divided into 12 samples for each hour to 

calculate the prediction efficiency of the MPPT methods under varying atmospheric conditions. 

As presented in Figures. 6.12(a), and (b), as well as Table 6.5, the hourly average efficiency of 

the proposed method achieved the highest efficiency on both sunny and cloudy days by 

comparison with the conventional ANN, FLC and P&O-MPPT techniques. 
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Table 6.5. Comparative study regarding the hourly average efficiency for the proposed method 
and the conventional ANN, FLC and P&O-MPPT techniques. 

Atmospheric Average efficiencies 

Proposed 

method  

Conventional 

ANN 

Conventional 

FLC 

Conventional 

P&O 

Sunny day 99.68% 99.17% 98.90% 98.18% 

Cloudy day 99.30% 97.43% 94.69% 88.21% 

 

 

(a) 

 

(b) 

Figure 6.9. Experimental measurement tests for a sunny and a cloudy day of: (a) irradiation; 

and (b) temperature. 
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(a) 

 

(b) 

 

(c) 

Figure 6.10. MPPT predicting power on a sunny day using the proposed method versus: (a) the 

conventional P&O method; (b) conventional FLC method; and (c) the conventional ANN 

method. 
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(a) 

 

(b) 

 

(c) 

Figure 6.11. MPPT power prediction on a cloudy day using the proposed method versus: (a) the 

conventional P&O method, (b) conventional FLC method; and (c) the conventional ANN 

method. 
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(a) 

 

 

(b) 

Figure 6.12. The average efficiency of the predicting power for the conventional P&O, FLC and 

ANN as well as the proposed method on a (a) sunny day and (b) cloudy day. 

6.8 Overview of the Proposed Methods 

     According to the results of the proposed methods in this research, the better MPPT 

controller for PV applications is the optimised training ANN technique using the particle 

swarm optimisation when compared with the optimal tuning ANFIS technique based on the 
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curve fitting technique, if the installed PV system data is available. This is because it achieves 

a higher tracking efficiency about 99.67 % and 99.30 % under the sunny and cloudy day, 

respectively, while the optimal tuning ANFIS technique achieves about 99.30 % under semi-

cloudy day, as well as the tracking time being minimised about 0.01s. This is because of its 

training error is 0.00068, while the optimal ANFIS is 0.0706. 

     On other hands, the novel MPPT technique based on the FLC and P&O algorithm is an 

appropriate method to enhance the PV electrical generation when the very well knowledge of 

the PV systems is familiar for MPPT designers to design the fuzzy rules of proposed FLC-

MPPT owing to its ability to track the MPP when there are big fluctuations of irradiation. 

Furthermore, it is the lowest complex implementation and least part units when compared with 

the other intelligent MPPT controllers. Consequently, it achieves the highest tracking efficiency 

under the EN 50530 standard test around 99.6 %. While the modified P&O-MPPT method has 

been designed for low-cost PV systems because it is a lower complex modification. As well 

as, it does not eliminate the oscillation nor avoid the drift problem completely.  

6.9 Summary  

     An optimised feedforward artificial neural network technique based on the Particle Swarm 

Optimisation algorithm using real data has been utilised for modelling a current-voltage 

characteristic and predicting the maximum power point of photovoltaic arrays. This 

optimisation was divided into two parts: selecting the best topology and then, optimising the 

initial weights of the feedforward ANN model. Accordingly, the problem between the 

computational time and best-fitting regression of the distribution of ANN nodes was solved in 

the first part, whilst the mean squared error of the ANN model was reduced in the second 

optimisation. Consequently, the predicting power of the ANN-MPPT controller has been 

improved under various weather conditions when compared with the conventional ANN, FLC, 

and P&O methods. 

     In addition, the converging speed of the proposed method has been enhanced under a 

transient state. As a result, hourly efficiencies of more than 99.67% and 99.30% on sunny and 

cloudy days, respectively, have been achieved. Moreover, this controller also improves the 

stability and reliability of the PV generation when it connects to a grid. Furthermore, the 

optimisation has been demonstrated to be simple to design. To sum up, a state of the art of the 

ANN-MPPT for PV systems is advanced. the principles the feedforward ANN technique and 

PSO algorithm are covered, following by a schematic diagram of ANN-MPPT controller. The 
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training of proposed ANN model is designed, following by its results. Then, experimental data 

of a sunny and cloudy day are used to determine the average tracking efficiency of this proposed 

method under varying atmospheric conditions. Finally, an overview of results of proposed 

methods in this research is presented.  
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Chapter 7  

Conclusions and Future Work  

7.1 Conclusions  

     The efficiency, stability and reliability of a photovoltaic energy are considered major factors 

for establishing this energy resource on the market. In this research, common maximum power 

point tracking techniques, including perturb and observe, fuzzy logic control, adaptive neural-

fuzzy inference system and artificial neural network have been proposed for a grid-connected 

PV system to maximise the output power of a PV array. The aim has also been improving the 

stability and reliability of a PV power conversion, especially in the context of a rapid change in 

atmospheric conditions. The following is an overview of the scope, main contributions and 

conclusions of the study. 

• A comprehensive review of various PV-MPPT methods, including the CV, FOCV, 

P&O, IC, FLC, ANN, ANFIS and PSO techniques, based on their main features, has 

been presented. In addition, the advantages and disadvantages of each MPPT method 

has been described and discussed to help researchers understand and thus, be able to 

choose a suitable MPPT technique for tackling their specific issues. Regarding the 

outcome of this evaluation, the MPPT controllers using artificial intelligence 

techniques have more complexity, cost more and are difficult to implement. However, 

they have higher tracking efficiency, faster tracking speed and less oscillation than the 

classical MPPT methods.  

• The modelling and control of the PV system have been developed by using MATLAB-

SIMULINK to test the performance of the various MPPT controllers. The primary 

results have proven that employing an MPPT controller with the PV system increases 

the output PV power, reduces the converging time and minimises MPP fluctuations. 
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Hence, the average tracking efficiency of the PV system is improved as well as the 

stability and reliability of the PV generation being enhanced when it connects to the 

grid.  

• Four common types of MPPT controllers, including the P&O, FLC, ANFIS and ANN 

methods for PV electrical generation, have been developed based on simple 

optimisation strategies to enhance a PV system further under different atmospheric 

conditions. The main features of each method were discussed to facilitate MPPT 

designers’ understanding and thus, be able to select a suitable technique for their 

application area of interest. Then, the proposed methods were developed to improve 

their performance, especially under a rapid change in climatic conditions.  

• Whilst several techniques have been designed, the Perturb and Observe algorithm is 

widely used for MPPT due to its low cost and simple implementation. However, the 

main drawbacks of this method are a long converging time, large oscillation around the 

maximum power point, and the drift problem associated with rapidly changing 

irradiance. Hence, the modified P&O-MPPT based on Pythagorean theorem and 

constant voltage algorithm was proposed to address the main issues of the conventional 

P&O algorithm. However, grid-connected PV systems based on the conventional P&O 

and modified P&O algorithms deliver fluctuating DC voltage during rapidly changing 

weather conditions. This is because they do not avoid the drift problem and eliminate 

the oscillation about the MPP completely. 

•  A novel maximum power point tracking technique based on fuzzy logic control for a 

grid-connected PV system has been presented, which has the ability to track the MPP 

when there are big fluctuations of irradiation. This proposed method incorporates the 

advantages of the P&O-MPPT to account for slow and fast changes in solar irradiance. 

There are reduced processing times for the FLC-MPPT for addressing complex 

engineering problems when the membership functions are few. The simulation results 

have revealed that the proposed technique exhibits higher output power, and no 

divergence from the MPP during varying weather conditions regardless of the speed of 

such change. That is, the proposed concept has been shown to be highly effective for 

working with a grid-connected PV system, achieving efficiencies of around 99.6% under 

The EN 50530 standard test.   
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• An efficient maximum power point tracking technique based on the Adaptive Neural-

Fuzzy Inference System (ANFIS) using a real photovoltaic dataset has been designed. 

A curve fitting technique was used to analysis the input experimental data and optimise 

the tuning of ANFIS model, thus resulting in avoiding the system from experiencing a 

high training error. The results have demonstrated that this proposed method exhibits 

higher generated power, and no deviation from the optimised MPP point during different 

climate conditions, than the alternative ones, achieving efficiencies of greater than 

99.3% under a semi-cloudy day test. 

• An optimised feedforward Artificial Neural Network (ANN) technique using real data 

has been utilised for modelling current-voltage characteristics and predicting the 

maximum power point of the photovoltaic array. In order to improve the ANN model’s 

accuracy, the particle swarm optimisation (PSO) algorithm was deployed. Accordingly, 

the predicting power of the ANN-MPPT controller has been enhance under varying 

weather conditions. In addition, the converging speed of the proposed method has been 

enhanced under a transient state. As a result, hourly efficiencies of more than 99.67% 

and 99.30% on a sunny and cloudy day, respectively, have been achieved.  

• The optimised training ANN technique based on the PSO algorithm is a preferable 

method for designing a PV-MPPT controller compared with the optimal tuning ANFIS 

method based on the curve fitting technique. This is because it achieves a higher 

tracking efficiency and faster tracking speed under the experimental measurement tests.  

• The proposed MPPT technique based on the FLC and P&O algorithm is the most 

suitable method for enhancing PV electrical generation due to its ability to track the 

MPP when there are big fluctuations of irradiation. Hence, it achieves the highest 

tracking efficiency under the EN 50530 standard test. While the modified P&O-MPPT 

method has been designed for low-cost PV systems system.  

7.2 Future Work 

     In this research, various MPPT controllers have been developed to improve the average 

tracking efficiency, increase the stability and enhance the reliability of a grid-connected PV 

system, especially under a rapid change in weather conditions. However, there are other 

challenges that need further solutions, if investing in this type of energy resource is to become 

more attractive, some suggestions being as follows.  
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Partial Shading Condition 

     Enhanced tracking efficiency of a PV system under rapidly changing atmospheric 

conditions has been demonstrated in this current work. It would prove beneficial to improve 

the PV system performance under a partial shading condition. This condition happens when 

there is a shading, which can be caused by tree shadow or dust, i.e. on part of the PV array. In 

this case, the PV array will generate several MPPs. Hence, the total generating efficiency of 

the installed PV array decreases. To solve this issue, an MPPT controller based on the PSO 

algorithm could be used. 

Fault Ride Through  

     A fault situation is considered one of the major challenges facing large-scale PV systems 

when connected to the grid. This issue can cause a dynamic stability problem with voltage rise. 

However, disconnection of faulty units could cause the system to malfunction. To address this 

issue, advanced active control and advanced reactive control would need to be employed.  

Frequency Response State 

     The problem of frequency response happens when the power generation unit or load demand 

change rapidly, leading to a large frequency deviation. Whilst this issue is very common for 

classical power grid due to increased power load, it is considered a huge challenge in the case 

of a grid-connected PV system, because its power generation changes rapidly. To solve this 

issue, three approaches put forward are: employing an MPPT controller, installing a storage 

unit and adding a dump load. 

Economic Dispatch Challenge 

     Economic dispatch is a major feature for power generation units when they are connected 

with a utility grid. The principle idea of this challenge is to deliver optimal generation from 

each unit in the power plant for a given demand at the lowest possible cost. In classical 

generation, the economic dispatch challenge is determined according to the relationship 

between the burning of fossil fuel and the optimal power generation of a traditional plant. While 

the economic dispatch challenge of a PV system is calculated based on the factor of the capital 

cost and the optimal power generation of a solar power plant. This issue has three categories 

of problems that need to be addressed: generation dispatch, reserve strategy, and instability.  
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Appendix A 

Experimental Data Sample 

Table A.1 The data sample which collected from experimental PV test. 

Irradiance (w/m2) Temperature (0C) PV power (kW) 

1036.8 32.281 0.8339 

1026.3 32.13 0.8323 

1018.3 32.988 0.8313 

 311.888  9.43 0.2429 

353.938 9.655 0.2919 

238.531 10.223 0.2212 

229.232 10.354 0.2296 

163.084 10.293 0.1659 

160.208 10.176 0.1673 

173.966 10.075 0.1925 

175.505 9.989 0.1883 

238.531 9.963 0.2016 

296.242 10.113 0.2079 

256.338 10.363 0.1799 

187.154 10.646 0.1071 

129.188 10.79 0.1281 

96.193 10.747 0.0966 

127.498 10.669 0.1302 

271.126 5.793 0.1855 

284.768 6.186 0.2226 

239.939 6.335 0.2037 

272.399 6.539 0.2457 

251.211 6.528 0.2345 

325.693 6.641 0.2317 

336.763 6.801 0.2268 

330.971 7.048 0.2023 

345.591 7.213 0.2086 

273.216 7.326 0.1891 

245.628 7.298 0.2373 

156.717 6.647 0.1778 

179.805 6.756 0.1953 

160.652 6.91 0.1736 

187.698 7.071 0.2044 

295.686 7.27 0.3094 

425.362 7.597 0.3976 

313.197 9.268 0.2716 

464.033 9.498 0.3787 

461.343 9.67 0.3738 

396.163 9.969 0.3087 

148.614 10.149 0.1239 
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177.127 8.306 0.1806 

93.156 8.142 0.0798 

40.345 8.011 0.0469 

45.949 7.91 0.0595 

64.555 7.784 0.0784 

95.185 7.574 0.1141 

245.388 7.396 0.2261 

298.315 7.405 0.2583 

283.351 7.687 0.2443 

138.354 7.987 0.1372 

114.061 8.181 0.1232 

92.274 8.19 0.0952 

124.953 8.181 0.1337 

112.197 8.165 0.1141 

265.595 7.67 0.2002 

253.948 7.787 0.2114 

265.398 7.856 0.1995 

293.531 7.942 0.2065 

286.715 7.978 0.1925 

339.458 8.198 0.2695 

270.712 8.279 0.2163 

357.453 8.205 0.2709 

356.986 8.258 0.2814 

371.313 8.519 0.2793 

368.285 8.77 0.2947 

383.169 8.873 0.2821 

368.531 8.89 0.2443 

377.697 8.876 0.2527 

471.276 9.359 0.3668 

415.941 9.519 0.3255 
393.354 9.602 0.3143 
287.902 9.52 0.2324 
333.992 9.426 0.2674 
230.119 9.452 0.2107 
184.704 9.228 0.1967 
229.369 8.962 0.2212 
260.087 8.864 0.2282 
139.176 9.112 0.1435 
114.102 8.681 0.1267 
293.297 7.67 0.2835 
305.536 7.774 0.2884 
232.905 7.88 0.2261 
201.298 7.977 0.1897 
184.888 8.033 0.1904 
186.927 7.983 0.1953 
302.878 7.966 0.2772 
227.109 7.695 0.2254 
379.48 7.78 0.3409 
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Appendix B 

Data sheet of Sharp NU-S5E3E 185 PV module 
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Appendix C 

PSO-ANN Algorithm (S-Function) 

 

clear all 
close all 
  
  
%DATA 
load data; 
  
%B=regress(Y,X); % B_matlab=Y*(X^-1) 
N_par=1; 
%PSO 
N=20; % we need to justify for 20 particles.  
MaxValue=50; 
MinValue=1; 
V=zeros(N,1); 
Xp=round(MinValue+(MaxValue-MinValue)*rand(N,N_par)); 
  
%Second Part 
  
PI=Inf(N,1); 
PbestValue=Inf; 
LbestValue=Inf; 
V=zeros(N,N_par); 
Xp_particleBest=zeros(N,N_par); 
  
c1 = 1.49618; 
c2 = 1.49618; 
w = 0.7298; 
Nit=50; 
for ii=1:Nit 
    % for loop to the PI calculate per each Particle 
    for i=1:N 
        net=newff(input',P',Xp(i)); 
        net=train(net,input',P'); 
        D=net(input'); 
        XB=mse(D-P'); 
        PI_l(i,1)=XB; 
        %update the position value and the PI value per each 
particle 
        if PI_l(i,1)<PI(i,1) 
            PI(i,1)=PI_l(i,1); 
            Xp_particleBest(i,:)=Xp(i,:); 
        end 
    end 
    %update the L-best position value 
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    [LbestValuen,LbestIndexRow]=min(PI); %min_fitness, 
min_fitness_index 
    if LbestValuen<LbestValue 
        LbestValue=LbestValuen; 
        L_best=repmat(Xp(LbestIndexRow,:),N,1); 
    end 
    %update the G-best position value 
    [PbestValuen,PbestIndexRow]=min(PI); %min_fitness, 
min_fitness_index 
    if PbestValuen<PbestValue 
        PbestValue=PbestValuen; 
        G_best=repmat(Xp(PbestIndexRow,:),N,1); 
    end 
     
    %PSO equation 
    V=w*V+c1*rand(1)*(Xp_particleBest-Xp)+c2*rand(1)*(G_best-
Xp); %update speed 
    Xp=round(Xp+V); %update position 
    PI_plot(ii)=mean(PI) 
end 
  
plot(PI_plot) 
  
min(PI) 
G_best(1,:) 
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Appendix D 

Modified P&O Algorithm (S-Function) 

 

function D = P&O (Param, Enabled, V, I) 
  
 
% D output = Duty cycle of the boost converter  
% 
% Enabled input = 1 to enable the MPPT controller 
% V input = PV array terminal voltage (V) 
% I input = PV array current (A) 
% 
% Param input: 
Dinit = Param(1);  %Initial value for D output 
Dmax = Param(2);   %Maximum value for D 
Dmin = Param(3);   %Minimum value for D 
deltaD = Param(4); %Increment value used to increase/decrease  
 
% ( increasing D = decreasing Vref ) 
%   
  
persistent Vold Pold Dold; 
  
dataType = 'double'; 
  
if isempty(Vold) 
    Vold=0; 
    Pold=0; 
    Dold=Dinit; 
end 
P= V*I; 
dV= V - Vold; 
dP= P - Pold; 
  
if dP/P > 0.01 
        if V < 244 
            D = Dold - deltaD; 
        else 
            D = Dold + deltaD; 
        end 
else 
       if dP < 0 
        if dV < 0 
            D = Dold - deltaD; 
        else 
            D = Dold + deltaD; 
        end 
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    else 
        if dV < 0 
            D = Dold + deltaD; 
        else 
            D = Dold - deltaD; 
        end     
    end 
end 
  
if D >= Dmax | D<= Dmin 
    D=Dold; 
end 
  
Dold=D; 
Vold=V; 
Pold=P; 
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Appendix E 

The Simulink model of a grid-connected PV system 

 

 
 

 

Figure E.1. The Simulink model of a grid-connected PV system based on MATLAB simulation. 
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Appendix F 

The graphical rules of a FLC model 

 

 

Figure F.1. The graphical rules of a FLC model. 
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Appendix G 

The linguistic rules of an ANFIS model 

 

 

Figure G.1. The linguistic rules of an ANFIS model. 
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Appendix H 

Neural Network Training Regression 

 

Figure H.1. The training regression of an ANN model 

 

 

 


