Brain Magnetic Reasonance Imaging
Segmentation using Convolutional Auto
Encoder Network for PET Attenuation Correction

Abstract—MR images segmentation is one of the most robust
MR based attenuation correction methods which have been
adopted in clinical routine for PET quantification. However, the
segmentation of brain into different tissue classes is a challenging
process due to the similarity between bone and air signal intensity
values. The aim of this work is to study the feasibility of deep
learning to improve the brain segmentation with the application
of data augmentation. A deep convolutional auto encoder network
was applied to segment the brain into three tissue classes: air,
soft tissue, and bone. Geometric and intensity augmentation
were applied to increase the training datasets and overcome the
domain shift limitation.

The dice similarity coefficients of air, soft tissue, and bone
tissues are 0. 96 + 0.01, 0.86 + 0.02, and 0.63 + 0.06 respec-
tively. Despite the small datasets used in this work, the results
are promising and outperformed other machine learning based
segmentation methods. The results achieved showed the feasibility
of deep learning with data augmentation to perform accurate and
robust MR images segmentation.

I. INTRODUCTION

Positron emission tomography (PET) is a well-known imag-
ing modality that provides direct imaging of molecular in-
formation. However, the process of PET acquisition leads to
an inhomogeneous bias which affects the image resolution.
Thus, this attenuation should be properly corrected before PET
reconstruction. The attenuation maps are routinely obtained
from computed tomography (CT) images since there is a
direct transformation between CT intensity and attenuation
coefficients [1].

On the other hand, magnetic resonance (MR) imaging is
considered nowadays the leading imaging modality for struc-
tural brain analysis thanks to its excellent soft tissue contrast,
high spatial resolution, anatomical and functional information,
and lack of ionizing radiation. Additionally, MR images have
been extensively used for diagnosis, treatment planning, and
follow-up of a variety of neurological conditions such as brain
tumor [2], Alzheimer disease [3], multiple sclerosis [4], brain
stroke [5], and other neurodegenerative diseases.

Hybrid PET/MR imaging is an emerging modality which
have been recently commercialized and adopted in clinical
domain. This type of scanners provides quantitative anatomical
and functional information [6]. However, the main challenge
is that there is no direct correlation between MR signal
intensity and attenuation coefficients which opens doors for
researchers to explore new research questions and propose
new complicated methods to correct PET attenuation using
MR images without the need to use CT images.
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Fig. 1. Example of training datasets: T1-w and T2-w MR images with their
corresponding CT image.

Different methods have been applied to address the PET
attenuation correction problem using MR imaging which can
be categorized into: segmentation based methods, atlas based
methods and emission based methods [7]. Although atlas based
method outperforms other methods, it is still not considered
robust enough to be adopted in clinical domain [8]. Segmen-
tation based is the most robust and simple method which have
been applied in commercial scanners [7].

Deep learning networks have been recently applied on
different computer vision applications after the successful ap-
plication of convolutional neural network on ImageNet dataset
[9]. Deep learning has been also employed in various medical
applications using different imaging modalities [10]. Different
deep network architectures have been proposed for medical
images segmentation such as Fully convolutional network [11],
Segnet [12], and U-Net [13].

Deep networks are performing greatly with the assumption
that the training and testing datasets follow the same data
distribution. However, this is very challenging with medical
datasets due to the variation of commercial scanners and the
availability of different imaging modalities and protocols. This
variation is called domain shift [14]. Figure 1 shows the visual
comparison between the two MR protocols where T1 weighted
(T1-w) MR image looks darker than T2-weighted (T2-w) in
most tissue classes.

In this work, 2D deep learning network was applied to per-
form brain MR images segmentation into three tissue classes
using deep convolutional auto encoder architecture. The ap-
plied deep network followed the SegNet architecture. Two data
augmentation techniques which are geometric augmentation
and intensity augmentation were proposed to increase the size
of training datasets and overcome the domain shift limitation.



The combination of two different MR protocols: T1-w and T2-
w is considered the intensity augmentation. Despite the small
available datasets, the obtained results are promising compared
to other MR based attenuation correction methods [15], [16],
[17]. The structure of the paper is as follows: section 2 presents
briefly the related work. Section 3 illustrates the proposed
methodology. Section 4 represents the obtained results and
evaluation. The discussion is presented in section 5 and finally
the conclusion is covered in section 6.

II. RELATED WORK

Deep learning has been proposed for several MR based
attenuation correction [18], [19], [20]. However, few works
have applied deep learning on brain MR images segmentation
for PET attenuation correction.

Liu et al. [15] applied the deep convolutional encoder
decoder network using T1-w MR images. This work required a
co-registration between CT and MR images before the training
process and the generation of ground truth. They used a
dataset with 40 patients and achieved dice coefficients mean
values of 0.97, 0.936, and 0.803 for air, soft tissue and, bone
respectively.

Jang et al. [17] used UTE and out of phase MR images
which were acquired using dual echo ramped hybrid encoding
to segment the brain into three classes: air, soft tissue, and
bone. UTE sequences used as an input to train a pretrained
deep network with T1-w MR images. Transfer learning was
applied to adopt the knowledge learnt from other MR to
UTE sequences. The obtained segmented MR images were
processed using conditional random field technique to refine
the segmentation results. The dataset of the pre-trained model
consisted of 30 patients in addition to 14 new patients which
used to train the pretrained model. The achieved dice coef-
ficient is 0.76, 0.96, and 0.88 for air, soft tissue, and bone
respectively.

Arabi et al. [16] proposed a deep learning generative adver-
sarial network with two components: synthesis network and
segmentation network to generate pseudo CT images. The
synthesis part generated pseudo CT images from T1-w MR
images and the segmentation network segmented the obtained
pseudo CT images into four tissue classes which are bone,
air, soft tissue, and background. This study used a dataset
consisted of 50 patients and recorded a cortical bone dice
coefficient value of 0.77.

III. PROPOSED METHODOLOGY
A. Data acquisition

Brain MR and PET/CT images were acquired as part of the
clinical workup of patients. The dataset consists of 15 patients
of Tl-w MR images and 14 patients of T2 weighted MR
images. The age range of the patients is 64.6 + 11.7 years. The
patients data showed clinical indication of dementia (70%),
epilepsy (25%) and brain tumors (5%). Firstly, the patients
underwent an MRI scan on a 3T Siemens MAGNETOM Skyra
scanner with a 64 channel head coil. The MR images scans

used for this study are 3D T1- weighted magnetization pre-
pared rapid gradient-echo, MP-RAGE (TE/TR/TI, 2.3 ms/1900
ms/ 970 ms, flip angle 8 ; NEX = 1, voxel size 0.8x0.8x0.8
mm3) and 3D T2-weighted turbo spin-echo, TSE (TE/TR,
100 ms/6200 ms,NEX = 2; voxel size 0.4x0.4x4 mm3).
Afterward, the patients underwent an 18F-FDG PET/CT scan
on the Siemens Biograph mCT scanner for 20 min after
injection of 210.2 £+ 13.9 MBq 18F-FDG.

B. Data preprocessing

Each MR volume of both T1-weighted and T2-weighted
images was converted into 2D slices. 25 volumes have 149
slices and only 4 volumes have 112 slices. The dimension of
each slice is 512 X 512. The background was removed by
cropping each slice into 256 X 256 image. Then, each image
was normalized using local contrast normalization technique.
The same processing steps applied to CT volumes. The total
number of 2D images for the whole dataset is 2982 slices.
Among them, only 2328 were used after discarding some of
the first and last slices of each volume as they have small
pixels that correspond to the brain tissue and majority of the
image is background.

C. Ground truth generation

CT images were used as ground truth for the supervised
training process. MR images were firstly co-registered with CT
images to determine a common coordinate system that enables
the pixel-based comparison of images. Each MR slice was
co-registered with its corresponding CT slice by applying the
rigid Euler transformation followed by the non-rigid B-spline
transformation using Elastix tool [21]. Afterward, simple pixel
intensity-based thresholding was applied to create the CT
ground truth. The CT image was segmented into three tissue
classes which are air, bone, and soft tissue. Hounsfield values
greater than 600 HU were classified as bone, less than -500
HU were classified as air, and others were labeled soft tissue.

D. Deep network model

1) Segmentation Network Architecture: The deep segmen-
tation network followed the convolutional auto encoder (CAE)
architecture which connects an encoder with a decoder. The
encoder extracts high level features from raw images and the
decoder deconvolves the extracted features and reproduces
the original format of the input data. This type of models
preserves the same representation of the data but with more
meaningful features. SegNet is one common deep CAE model
that has been applied successfully to segment the brain MR
images [15], [17]. SegNet’s encoder consists of 13 convolu-
tional layers with its corresponding batch normalization layers,
maxpooling layers, and rectified-linear unit (ReLU) activation
function. Each convolutional layer consists of multiple 3X3
filters that extract the high level brain features throughout
the network layers. The decoder is the mirror of the encoder
with upsampling layers instead of down sampling. The final
layer of the decoder is a multiclass softmax classifier that
produces class probabilities for each pixel. An illustration of
the proposed network is shown in Figure 2.
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Fig. 2. An illustration of the SegNet architecture

2) Network Training: The deep network was trained from
scratch using 12 Tl-weighted MR datasets and 11 T2-
weighted MR datasets. In the testing phase, 3 patients from
T1-weighted datasets and 3 patients from T2-weighted datasets
were selected for testing and prediction. A grid search strategy
was followed to fine tune the network parameters. The network
weights were initialized using he normal scheme and updated
using Adam optimizer with a fixed learning rate 0.001 where
beta 1 and beta 2 were set to 0.9 and 0.999 respectively. At
each step, the network read 10 mini batches and calculated
the multiclass cross-entropy loss for 50 epochs. In order to
create randomization, the training data were shuffled after each
epoch.

E. Computing Environment

The proposed framework was implemented using both
MATLAB and Python programming languages. MATLAB
was used for data preprocessing while Keras and TensorFlow
libraries were used for deep network implementation. The
network was trained using Tesla V100 GPU with 16 GB RAM
which is part of a GPU cluster.

IV. EXPERIMENTAL RESULTS AND EVALUATION

The network was firstly trained and tested with T1-weighted
MR images using 2 fold cross validation to ensure the model
performance and select the optimal number of training epochs
in order to avoid the overfitting. Afterward, the best hyper
parameters were used to train the network without validation
dataset.

The second experiment was performed by training and
testing the network with T2-weighted MR images with the
application of 2 fold cross validation.

The third experiment was conducted by combining both
T1-weighted and T2-weighted MR images to train and test
the network. The difference between the two MR protocols is
the contrast and brightness of different tissue classes. This
intensity values variation is considered as a type of data
augmentation by using different MR protocols which in terms
increases the size of training datasets while applying domain
adaptation. The resultant trained model will be able to segment
both T1-weighted and T2-weighted MR images.

Fig. 3. Example of segmented T1-weighted slices (above) with their corre-
sponding CT slices as ground truth (bottom).

Fig. 4. Example of segmented T2-weighted slices (above) with their corre-
sponding CT slices as ground truth (bottom).

The segmentation results of both T1 and T2 weighted im-
ages are illustrated in Figure 3 and 4 with their corresponding
ground truth. The evaluation metrics are recorded in Table I.

Additionally, data augmentation was applied to both MR
protocols datasets to increase the size of the training datasets
and generalize the network. The applied geometric augmen-
tation techniques are rotation by 90°, translation by 20°, and
reflection. Table II shows the mean dice similarity coefficient
while applying data augmentation for training datasets. Data
augmentation was not applied to testing datasets. Tables III,

TABLE I
DICE SIMILARITY COEFFICIENT OF THE CONDUCTED EXPERIMENTS WITH
DIFFERENT MR PROTOCOLS

MR images protocol Bone Soft tissue Air
Tl-w 0.49 £ 0.05 || 0.82 £ 0.02 || 0.95 + 0.01
T2-w 0.54 £+ 0.01 0.83 £ 0.02 || 0.95 + 0.01
T1-w + T2-w 0.63 £ 0.05 || 0.86 £ 0.01 0.96 + 0.01




TABLE II
DICE SIMILARITY COEFFICIENT OF THE CONDUCTED EXPERIMENTS WITH
GEOMETRIC DATA AUGMENTATION

MR images protocol Bone Soft tissue Air
T1l-w 0.56 + 0.04 || 0.83 £ 0.02 || 0.95 £ 0.01
T2-w 0.58 +0.02 || 0.85 £ 0.02 || 0.95 &+ 0.00
T1-w + T2-w 0.63 + 0.06 || 0.86 £ 0.02 || 0.96 £+ 0.01
TABLE III

EVALUATION METRICS OF AIR TISSUE CLASS IN THE TESTING DATASET

Air Precision Recall Dice/F1-score Jaccard
Patient T1-w 01 0.95 0.97 0.96 0.93
Patient T1-w 02 0.95 0.98 0.97 0.93
Patient T1-w 03 0.92 0.98 0.95 091
Patient T2-w 04 0.96 0.98 0.97 0.94
Patient T2-w 05 0.95 0.98 0.97 0.93
Patient T2-w 06 0.94 0.98 0.96 0.92

TABLE IV

EVALUATION METRICS OF SOFT TISSUE CLASS IN THE TESTING DATASET

Soft tissue Precision Recall Dice/F1-score Jaccard
Patient T1-w 01 0.88 0.86 0.87 0.77
Patient T1-w 02 0.87 0.82 0.85 0.73
Patient T1-w 03 0.89 0.82 0.85 0.74
Patient T2-w 04 0.91 0.87 0.89 0.80
Patient T2-w 05 0.88 0.84 0.86 0.76
Patient T2-w 06 0.90 0.83 0.87 0.77

TABLE V
EVALUATION METRICS OF BONE TISSUE CLASS IN THE TESTING
DATASET
Bone Precision Recall Dice/F1-score Jaccard
Patient T1-w 01 0.74 0.65 0.69 0.53
Patient T1-w 02 0.66 0.60 0.63 0.46
Patient T1-w 03 0.66 0.55 0.60 0.43
Patient T2-w 04 0.60 0.61 0.60 043
Patient T2-w 05 0.69 0.60 0.64 0.47
Patient T2-w 06 0.61 0.64 0.62 0.45

IV, V illustrate the segmentation evaluation metrics after the
application of data augmentation.

V. DISCUSSION

The results showed promising segmentation results by com-
paring the baseline results (T1-w model) with other models
which trained with T2-w images and combination of T1-w
and T2-w images. Although the same model and the same
training parameters were applied to train both T1-w and T2-w
images, the intensity values of T2-w images generated a more
accurate model. Additionally, the combination of T1-w and
T2-w images for training and testing the model increased the
segmentation accuracy as well as it increased the size of the
training datasets.

Data augmentation is a technique which can be applied to
overcome the limitations of small datasets and domain shift
issues. The obtained results with data augmentation showed an
improvement of segmentation accuracy. A clear point to notice
is that the improvement of segmentation accuracy includes
both bone and soft tissue classes; however, the air class seg-
mentation was not improved. Moreover, the application of data
augmentation with combined T1-w and T2-w images did not
improve the segmentation performance. One reason of that is
the need to generate more variations of data since this training
datasets contain a mixture of two MR protocols with different
intensity values. Advanced types of data augmentation should
be applied to these datasets to improve the segmentation.

By comparing the evaluation metrics between the different
tissue classes, it is clear that the air tissue class achieved higher
segmentation accuracy followed by the soft tissue and finally
the bone tissue. The challenging segmentation of bone tissue
originates from the imbalance tissue classes as such the total
number of air and soft tissue pixels per each slice are much
higher than the bone pixels.

Compared to other T1-w MR based attenuation correction
literatures, this work used the smallest training and testing
datasets; however, the results achieved are very promising as
they can be improved by using more datasets. Moreover, the
training datasets should include different cases of anatomical
abnormalities in order to study the performance of the model
with different diseases.

The training time varies from each experiment since the
total number of training datasets is different. The approximate
required training time of T1-w and T2-w weighted with data
augmentation is only one hour and half. The labeling of a
single slice took only 0.006 seconds.

VI. CONCLUSION

In this study, an MR based attenuation correction method
using deep learning has been applied to segment the brain
images into three tissue classes: air, soft tissue and bone.
The proposed method showed that training with different MR
protocols and data augmentation techniques improved the seg-
mentation accuracy and hence improved the PET attenuation
correction and quantification.
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