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Clustering is a promising tool for grouping the sequence of similar time-points aimed to
identify the attention blocks in spatiotemporal event-related potentials (ERPs) analysis.
It is most likely to elicit the appropriate time window for ERP of interest if a suitable
clustering method is applied to spatiotemporal ERP. However, how to reliably estimate
a proper time window from entire individual subjects’ data is still challenging. In this
study, we developed a novel multiset consensus clustering method in which several
clustering results of multiple subjects were combined to retrieve the best fitted clustering
for all the subjects within a group. Then, the obtained clustering was processed by
a newly proposed time-window detection method to determine the most suitable
time window for identifying the ERP of interest in each condition/group. Applying the
proposed method to the simulated ERP data and real data indicated that the brain
responses from the individual subjects can be collected to determine a reliable time
window for different conditions/groups. Our results revealed more precise time windows
to identify N2 and P3 components in the simulated data compared to the state-of-the-
art methods. Additionally, our proposed method achieved more robust performance
and outperformed statistical analysis results in the real data for N300 and prospective
positivity components. To conclude, the proposed method successfully estimates the
time window for ERP of interest by processing the individual data, offering new venues
for spatiotemporal ERP processing.

Keywords: multi-set consensus clustering, time window, event-related potentials, microstates analysis, cognitive
neuroscience

INTRODUCTION

The event-related potentials (ERPs) carry important information about the cognitive process
evoked by the brain response in milliseconds of the temporal domain. Almost all the ERP
components are influenced by the attention corresponding to the latencies from the individual
and a group of subjects (Luck and Kappenman, 2012). The latencies of ERP components can be
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considered as a stable brain electric field configuration
(topography map) in milliseconds associated with the specific
psychological process (i.e., attention module) (Lehmann,
1990). Moreover, measuring the ERP of interest undertakes a
fundamental role in identifying and interpreting the cognitive
process in the experiment. The most common approach to
measure the magnitude and timing of the ERP of interest is
to investigate the amplitude and the latency of peak voltage
in the experimentally defined time window. Thereby, an
important issue in the analysis of ERPs is how to define
or select time windows. This influences both identifying
components and performing statistical analyses. Hence, if the
time window is not appropriately defined, the comparison
between different conditions/groups can lead to unreliable and
wrong psychological interpretations (Luck and Gaspelin, 2017).

The traditional ERP approach is to obtain the mean of
measured potentials over a fixed and/or experimenter defined
time window. The assumption is that the brain electric field
configuration is stable for different conditions/groups, although
this assumption is not empirically verified. Apart from widely
used conventional ERP techniques such as latency peak and mean
amplitude, numerous studies have used moving time-window
technique and high-resolution time-bin analysis (e.g., each 5 ms)
for measuring the peak (Van Overwalle et al., 2009; Mu and
Han, 2010; Wills et al., 2014). Although moving time-window or
point-by-point analysis in spatiotemporal ERP can provide more
fine-grained temporal characterization and significant statistical
results (Rotshtein et al., 2010), they can dramatically increase
the probability of reporting errors (Luck and Gaspelin, 2017).
In the above reviewed methods, the variety of responses, which
dynamically influence the duration of time windows in different
conditions/groups, are neglected.

Another group of researchers investigated the brain response
states by analyzing the topographical changes (Lehmann, 1989,
1990; Lehmann et al., 1994; Micah et al., 2009) to determine
the components of interest. The underlying assumption is that
the electric field configuration does not change randomly as
a function of time, despite exhibiting stability for tens to
hundreds of milliseconds involving intervals of topographic
instability (Lehmann et al., 1987; Murray et al., 2008). The
clustering of spatiotemporal electroencephalogram (EEG)/ERP
was used to capture template maps (i.e., topographies found by
the clustering) which identifies the recorded signal (Lehmann,
1989, 1990). Hypothetically, the brain state (i.e., the brain
electric field configuration) does not change during a specific
response time (Lehmann, 1990; Pascual-Marqui et al., 1995;
Lehmann et al., 2009). Consequently, the spatial correlation of
corresponding topographies of the time-points in the cluster map
is close to 1 (Pourtois et al., 2008). Two clustering algorithms
in EEG/ERP research, namely, modified k-means (Pascual-
Marqui et al., 1995) and agglomerate hierarchical clustering
(AAHC; Tibshirani and Walther, 2005; Murray et al., 2008)
were predominantly used in EEG/ERP researches. Two global
measurements together, namely, global field power (GFP) and
the global map dissimilarity (GMD), and the global explained
variance (GEV) of the template maps (the most important
cluster maps), for quantifying the template maps, were applied.

Furthermore, the topographical analysis for spatiotemporal ERPs
using clustering methods has been explored in several studies
(Murray et al., 2008; Micah et al., 2009; Koenig et al., 2014). So
far in the aforementioned microstates analysis studies (Michel
and Koenig, 2018), determination of template cluster maps
with higher explained variance and post hoc determination of
microstates by fitting those maps to the data (topography maps)
were used. As a result, the time-points are clustered based on
their similarity in the electrode field configuration. Alternative
methods, for cluster or factor analysis, such as optimized k-means
with genetic algorithm and principal component analysis (PCA)
(Williams et al., 2015), topographic pattern analysis, and PCA
in high-density ERP (Pourtois et al., 2008) were utilized to
determine the most dominant spatial components from the
map series. Although independent component analysis and
PCA are standard methods and are used for decomposition of
the EEG/ERP with cluster analysis, the determination of the
event of the interest is subjective instead of being the objective
exploration of ERP.

Importantly, finding the suitable time window for measuring
the ERP of interest using microstates analysis has also been
studied in the numerous literature (Tzovara et al., 2012; Cacioppo
et al., 2014; Koenig et al., 2014; Khanna et al., 2015; Mahe
et al., 2015). The time window has been determined by testing
time-point by time-point, the topographical ANOVA analysis,
and microstate classes on momentary grand-mean maps (Koenig
et al., 2011). Some recent studies, for example, have explored
the most suitable time window from the most fitted microstate
maps via the clustering of spatiotemporal ERP by comparing
the ERPs of individual subjects with the obtained ERPs of
clustering from grand average data (Bailey et al., 2019; Berchio
et al., 2019; Ruggeri et al., 2019). Although obtaining global
optimal cluster maps by clustering both group (grand average)
and individual datasets assigning time-points to template maps
is a straightforward solution (Michel and Koenig, 2018), it is
challenging to set of template maps from grand average ERP,
which reliably represent individual subjects brain responses.

Consensus clustering, as a reliable and stable clustering
method, has been successfully used for processing biological data
(Monti et al., 2003; Abu-Jamous et al., 2013, 2015a; Liu et al.,
2015; Mahini et al., 2017), human brain functional magnetic
resonance imaging and EEG data processing (Liu et al., 2017a,b;
Song et al., 2019), and multidataset consensus clustering (Filkov
and Skiena, 2004; Hoshida et al., 2007; Abu-Jamous et al., 2015b;
Liu et al., 2015). However, there has been little discussion about
the role of multidataset consensus clustering on individual data
from spatiotemporal ERP aimed to identify the ERP components.
This is critical because of the difference between the subjects
regarding the response time and delay and difference in the
quality of recorded data. Therefore, a robust method is required
for processing information about the subjects.

The rationale of the current study is to investigate three major
points; first, in the ERP experiment, several ERP components
are inevitably generated; however, a few of them are targeted,
which are more probably elicited if the ERP experiment is
run again (Kappenman and Luck, 2012b). Those targeted ERP
components are more probably elicited among multiple subjects.
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The proposed method isolates reliable time windows for ERP
of interest for each condition/group. Second, essentially, even
after the well-done preprocessing of the collected data, there are
still some remaining interferences and some overlapped brain
activity with the ERP of interest in the time domain. Therefore,
it is practically expected the time window for measuring the
amplitude of the ERP of interest includes information of the
ERP. One strategy is to check whether the consecutive multiple
topographies of time-points are similar or not. If they are similar
enough, they come from the same brain activity of the ERP
in terms of the linear transformation model of EEG. Thus,
such a time window should be determined. Since the time
window contains mostly the ERP of interest, the analysis of
the brain response can be more accurate. This can result in a
better understanding of cognitive processes. Finally, the ERP
signal is elicited from numerous similar responses from the
subjects. Defining the ERP of interest from the clustering of grand
average data neglects the information about individual subjects.
Thereby, the new methodology explores the ERP of interest from
individual subjects using a multisubject consensus clustering.

In this article, we develop a stabilized multiple-subject
consensus clustering (from the multiset consensus clustering
family) approach for reliably clustering spatiotemporal ERP data
in both individual subjects and group levels. This can provide a
novel mechanism to explore the cognitive functions in ERP/EEG
data. Furthermore, we use a newly proposed time-window
determination method to obtain the most suitable time window
for a given ERP of interest. We do expect the new methodology
can retrieve the consistent response among the subjects in a group
to discover a reliable time window for the ERP of interest. To

assess the efficiency and reliability of our method, the proposed
method is applied to simulated and the prospective memory
experiment data (Chen et al., 2015). The proposed method has
been tested to identify two state-of-the-art ERPs, namely, N2
and P3 components in simulated data, and isolating N300 and
prospective positivity components in the real data.

MATERIALS AND METHODS

This section describes first two ERP datasets including conducted
simulated data and real data. Then, our proposed method is
described in detail. Finally, two classes of statistical analysis for
assessing the studied methods are explained.

ERP Studies
Simulated ERP Data
We conducted a simulated ERP data using the BESA dipole
simulator1 for assessing the performance of the studied clustering
methods aimed to identify the predefined ERP components.
Entirely, six components (i.e., P1, N1, P2, N2, P3, and N4) and
two conditions (i.e., “Cond1” and “Cond2”) from a group of 20
subjects were defined. A simulated scalp with 65 electrodes was
used for representing the spatial (i.e., topographic) information.
Each trial was epoched from 100-ms prestimulus to 600-ms
poststimulus at a sampling rate of 429 Hz. The averaged
reference method was used for referencing. The topography
maps of the components and corresponding waveforms are

1https://www.besa.de/products/besa-simulator/besa-simulator-overview/

FIGURE 1 | Illustration of topography maps and waveforms for the defined six components (i.e., P1, N1, P2, N2, P3, and N4) in simulated ERP data.

Frontiers in Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 521595

https://www.besa.de/products/besa-simulator/besa-simulator-overview/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-521595 October 20, 2020 Time: 12:19 # 4

Mahini et al. ERP Multi-Set Consensus Clustering

shown in Figure 1. Among the defined components, we studied
N2 referring to the maximum negative voltage in 201- to
265-ms poststimulus [i.e., it was defined in 175–292 ms via
simulator (Figure 1)]. The time window was calculated using
the signed area measurement method (Sawaki et al., 2012).
Similarly, P3 component refers to the positive response (266–
357 ms) poststimulus (i.e., defined in 240–385 ms according
to Figure 1). Meanwhile, the signal was manipulated using the
MATLAB function awgn (i.e., adding white Gaussian noise) to
add a reasonable noise (i.e., signal-to-noise ratio = 20 dB) on
signal power measured for each simulated dataset as a whole.
Furthermore, random movement of two ERPs (e.g., changing
the original signal by randomly increasing/decreasing maximum
five time-points) was applied to the original signal from the 20
individuals’ data. The electrode sites for measuring statistical
amplitude power differences were defined as P6/PO4 and CPz/Cz
for N2 and P3, respectively.

Real ERP Data
The prospective memory experiment (Chen et al., 2015) data
were used as real ERP data to assess the performance of the
proposed method. Following the prior study, the experiment
data included 20 symptomatically remitted patients, i.e., with
schizophrenia (RS) and 20 healthy control (HC) participants.
Two tasks, namely, prospective memory (PM) and ongoing task,
were investigated. The EEG data were recorded with 32 electrodes
(SynAmps amplifier, NeuroScan) and epoched from 200-ms
prestimulus to 1,000-ms poststimulus. Furthermore, a 30 Hz
(24 dB/octave) digital low-pass filter was applied. Two target
ERP components, N300 and prospective positivity components,
were studied. The N300 referred to the maximum negative
voltage, over the occipital region, hypothetically between 190
and 400 ms, and the prospective positivity represented the
maximum positive voltage, over the parietal region, and between
400 and 1,000 ms.

Proposed Method
The graphical explanation of the proposed method is illustrated
in Figure 2. Besides, Procedure 1 and Procedure 2 are presented
for a better representation of the new methodology. Noteworthy
to mention that we have employed a mechanism to obtain the
optimal number of clusters by, first, running the consensus
clustering many times followed by determining the optimal
number of clusters based on the quality of obtaining time
windows (Mahini et al., 2019). The details of the proposed
method are given as follows:

Procedure 1: Proposed Method
Inputs: ERP data, ERPs of interest (experimental intervals)
Outputs: Time windows
Procedure {

Step 1: Temporal concatenating datasets for each
individual subject;

Step 2: Stabilization and generation;
Step 3: Multilevel consensus clustering

Individual level consensus clustering;
Group level consensus clustering;

FOR each ERP of interest
Step 4. Time-window determination;

End of FOR
} End of Procedure

Dataset for Clustering
The collected multiple data points by a high-dense EEG sensor
array consist of the spatial topographies of brain activities
(i.e., each time-point corresponds to a topography). We have
investigated the spatiotemporal ERP data where the time-
points are clustered based on their topographical similarity.
For each subject, a larger dataset was yielded from temporal
concatenating (Murray et al., 2008; Calhoun et al., 2009) the
associated datasets from all conditions together. For example,
given a subject’s ERP data from 300 time-points, 2 conditions,
and 65 electrodes, the temporal concatenated dataset with a
dimension of 600 × 65 is used for clustering. Therefore,
the samples for clustering individual data are the time-points,
and the features are represented by the topography (i.e., the
electrode field configuration). The goal of clustering is to find the
consecutive time-points sharing similar topographies in which
the neural responses remain stable for periods of time called
time window.

Stabilization and Generation
We utilized the cluster-based similarity partitioning algorithm
method (Karypis and Kumar, 1998; Nguyen and Caruana,
2007) as the consensus function based on pairwise similarity
measurement between partitions. This function was used
for each level of consensus clustering and the stabilization
step of the proposed method. Before the generation step,
two important issues, consensus clustering configuration and
stabilized generation, are necessary to be investigated. Several
clustering methods were considered for selecting the appropriate
configuration of consensus clustering. Hence, k-means (Pascual-
Marqui et al., 1995; Pena et al., 1999) and hierarchical clustering
(Tibshirani and Walther, 2005) with correlation similarity
function, fuzzy c-means (FCM; Bezdek, 1981), self-organizing
maps (SOMs; Kohonen, 1990), diffusion map spectral clustering
(Sipola et al., 2013) consisting k-means with Euclidean similarity,
and modified k-means (Pascual-Marqui et al., 1995), and AAHC
(Murray et al., 2008) using spatial correlation, were used for
the generation purpose. Thereby, for appropriate consensus
clustering configuration, modified k-means was used as a
benchmark [i.e., the accepted clustering method in many studies
(Michel and Koenig, 2018)] to be compared with other studied
clustering methods. The clustering methods with higher mutual
similarities with modified k-means in the majority of clustering
results of individuals data (e.g., ≥50% of the subjects), were
selected using in the generation phase. Rand index (Strehl and
Ghosh, 2003; Meila, 2007) was used to measure the mutual
similarity between the results of each clustering method on
individual data and modified k-means. Rand index can be
calculated using the following equation:

R
(

L, L
′
)
=

N11 + N00
n (n− 1)

/
2

(1)
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FIGURE 2 | Illustration of the steps of the proposed multisubject consensus clustering for processing the ERPs of interest. The scheme of the proposed method on
g groups of subjects is demonstrated. S = subject, T = task.

where n denotes the number of observations and N00 denotes the
number of object pairs in different clusters from both L and L′
clusterings. While N11 denotes the number of object pairs in the
same clusters in L and L′.

Additionally, a stabilization procedure based on consensus
clustering was designed for the clustering generation of
consensus clustering (at the subject level). The stable clustering
refers to the clustering results in which the mutual similarity
between two or more clustering results is closed to 1 in theory.
To measure stability, a mechanism based on the testing similarity
of two clustering results was utilized. If they are highly similar,
the clustering method is robust. The consensus clustering of
grand average ERP data from multiple runs of each stochastic
clustering method (e.g., from 2 to 20 repeats that can be changed
if necessary) was employed to find the appropriate number
of repetitions to get stable clustering. The optimal number of
repetitions should satisfy the following two conditions:

max(|Rr − Rr−1| , |Rr − Rr+1|) ≤ ε (2)

where
Rr = R

(
L∗−r, L∗−(r−1)

)

L∗−r
= arg max

L∈LX̄

Mr∑
r=2

0 (Lr)

and
min(Rr−1, Rr,Rr+1) ≥ τ (3)

where 0 denotes the consensus function, L∗−r denotes the
consensus clustering results from r repetitive results (i.e.,
maximum repeats denotes by Mr) of stochastic clustering
method, which is indicated by Lr , and X̄ denotes the grand
average from the individual datasets. Furthermore, Rr denotes the
mutual similarity between the consensus clustering results from
r and r − 1 repetitions. Thus, a proper number of repetitions is
determined by measuring the mutual similarity among the results
of consensus clustering. In other words, the optimal repetition
option is selected when the mutual similarity between r − 1 and
r, and between r and r + 1 reaches a suitable similarity threshold
(e.g., τ ≥ 90), and the change among mutual similarities tends to
very small values (e.g., ε ≤ 0.03).

Multilevel Consensus Clustering
A two-level consensus clustering was utilized for finding the best
fitted clustering from individual subjects. The proposed two-level
multisubject consensus clustering is explained by the following
notations:

Let S =
{

S1, S2, . . . , Sp
}

denotes a set of subjects from
a group, and X = {x1, x2, . . . , xn} denotes a set of time-
points for individual data, in which each time-point xs ={

e1, e2, . . . , ef
}

, s = 1, 2, . . . , n (f denotes the number of
electrodes) is a vector of features/channels (i.e., it can be
represented in the spatial dimension as a topography map).
Besides, Lj

i = {C
j
1,i, Cj

2,i, . . . , Cj
k,i} represents the clustering

results for jth clustering method j = 1, 2, . . . , m, for ith subject,
i = 1, 2, . . . , p with k number of clusters. Thus, Cj

w,i is defined as
wth cluster, w = 1, 2, . . . , k from jth method for ith subject. The
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result of the first-level clustering for each of individual datasets is
denoted as:

L∗−opt
i = arg max

L∈LX

m∑
j=1

0
(

Li
j

)
(4)

where, L∗−opt
i denotes the consensus clustering results of ith

subject from all possible k-partitions on X. At the second level,
another consensus clustering is used on the first level clustering
results across the subjects (i.e., in the group level), which is
defined as:

L∗∗−opt
= arg max

L∈LS

p∑
i=1

0
(

L∗−opt
i

)
(5)

where, L∗∗−opt denotes the result of consensus clustering
across the subjects.

Taken as a whole, the optimal ensemble clustering across the
subjects can be noted by:

L∗∗−opt
= arg max

L∈LX,S

p∑
i=1

m∑
j=1

0
(

Li
j

)
(6)

To provide a better sense of implementation of the proposed
method, the multisubject consensus clustering was implemented
in MATLAB platform, as demonstrated in Figure 2 and
Procedure 1.

Time Window Determination
The time window determination procedure explores the
measurement time window by analyzing the temporal and spatial
characteristics of the result cluster maps. The inner-similarity
of the candidate cluster map (the maps in the experimental
measurement area) and their overlapping with the defined
experimental time interval, were considered to estimate the
proper time windows. First, the inner-similarity of candidate
maps is calculated aimed to detect those with the consecutive
time-points with a high spatial correlation. The inner-similarity
of a cluster map is the mean of correlation coefficients between
topography maps of each two different time-points. More in
detail, to calculate the inner-similarity of a cluster map, first, the
spatial correlation coefficient (Murray et al., 2008; Micah et al.,
2009) of time-points was calculated. Therefore Corv,u denotes the
correlation coefficient between the topographical maps of u and
v as two time-points in the cluster map. Then, for each row, the
distance matrix can be calculated as:

Dv = d
(
Corv,u, Corv,v

)
, u 6= v (7)

where, D denotes the distance matrix in which each row is
calculated by the distance between each element in the row
and Corv,v (i.e., self-correlation) in correlation matrix (Cor). To
variance-stabilizing transformation of the calculated correlation,
fisher z-transform (Fisher, 1921) was used for each vector Dv (i.e.,
every row of distance matrix) before calculating the mean of the
distance matrix Davg. Finally, an inverse z-transform of Davg was
used for calculating inner-similarity as shown below:

InnSim = 1− Davg (8)

Hypothetically, in the ERP component, the spatial correlation
between the time-points is close to 1 indicating consecutive
time-points that represent a cognitive process. Therefore, among
the candidate cluster maps, the cluster maps with higher
inner similarity than the threshold (e.g., ≥0.90) were selected
for overlap testing. We have selected a realistic choice of
0.9 as a satisfactory threshold for time-window qualification.
Next, among those cluster maps, the cluster map with the
greatest inner-similarity and overlapping was selected as the
best suitable cluster map for representing the time window
[i.e., via the properties (start, end, and duration)]. More
details for implementing the time-window selection method are
presented in Procedure 2.

Procedure 2: Time-Window Determination
Input: Clustering result, ERPs of interest (experimental intervals)
Output: Time windows
Procedure

Step 1. Detecting the candidate cluster maps;
FOR each candidate map

Step 2. Calculating inner-similarity and overlapping;
Step 3. Detecting cluster maps with high
inner-similarity;
Step 4. Selecting higher overlapping within maps;

End of FOR
} End of Procedure

Statistical Analysis
Two classes of p values based statistical measurements were
used to evaluate the performance of the proposed method. First,
two one-sided tests (TOST; Rogers et al., 1993; Harms and
Lakens, 2018) was performed on simulated data to test the
similarity between ground truth and estimated time windows
by measuring the obtained time-window properties (start, end,
and duration). Second, a statistical power analysis was used
by employing repeated measures ANOVA for both simulated
and real data. Further, for testing the robustness of those
methods, the statistical analysis results were calculated on over
50 independent runs of the studied methods. Overall, we tried
to assess the meaningfulness, accuracy, and robustness of the
proposed methodology.

The TOST test was accomplished by setting equivalence
margin [−δ δ] in [−5 5] ms (can vary depending on the dataset
and quality of discriminability). Two composite null hypotheses
tested the assumption of the differences: H01 : (µ1 − µ2) ≤
−δ and H02 : (µ1 − µ2) ≥ δ, where µ1, µ2 are the mean of
each series in the comparison (e.g., the estimated start points
from all the individual subjects in a group and corresponding
ground truth start points). When both null hypotheses can be
statistically rejected, it can be concluded that the observed effect
falls within the equivalence margins and practically equivalent
(Seaman and Serlin, 1998). In other words, the difference
between the mean of the estimated values and the corresponding
ground truth values should not exceed the equivalence margins.
Furthermore, a repeated-measures ANOVA for the simulated
data with the within-subject factor: task (“Cond1” and “Cond2”)
was considered for statistically analyzing N2 component in the

Frontiers in Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 521595

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-521595 October 20, 2020 Time: 12:19 # 7

Mahini et al. ERP Multi-Set Consensus Clustering

electrode sites: P6/PO4 for N2 and CPz/Cz for P3. The test was
applied to the mean amplitude of N2 and P3 in the estimated
time windows separately. Similarly, the statistical power analysis
for real data was carried out via repeated measures ANOVA (i.e.,
mixed 2 × 2) with the addition of a between-subject factor:
group (RS and HC) and the within-subject factor: task (PM
and ongoing). The test was applied to the mean amplitude of
N300 and prospective positivity. The selection of electrodes was
based on prior ERP findings (Chen et al., 2015). Specifically,
the amplitude of N300 over the occipital region (electrodes:
O1/Oz/O2) and prospective positivity over the parietal region
(electrodes: P3/Pz/P4) were measured. Statistical comparisons
were made at p values of p < 0.05 for both data.

RESULTS

To achieve the appropriate clustering result, several important
parameters were adjusted, (i) determination of the optimal
number of clusters: following our previous study (Mahini et al.,
2019), the appropriate number of clusters for simulated and real
data was determined in five and six cluster maps, respectively. (ii)
The configuration of the proposed consensus clustering: among
the studied clustering methods (addressed in “Stabilization
and Generation”), k-means, hierarchical clustering, AAHC, and
modified k-means methods were applied to the simulated
data. Similarly, k-means, FCM, SOMs, diffusion map spectral
clustering, AAHC, and modified k-means methods were selected
for the clustering of real data (Table 1). (iii) Generating stabilized
clustering from stochastic clustering methods: following (section
“Stabilization and Generation”) the optimal repeat for modified
k-means and standard k-means was obtained in five and seven
repeats for the simulated data (Figure 3). Likewise, those
clustering methods met stability in seven repetitions in real data.
Furthermore, a realistic inner-similarity threshold (e.g., ≥0.90)
and a sufficient number of time-points for selecting the candidate
cluster maps, e.g., a minimum of 60 to 100 ms (Grieder et al.,
2016; Koenig and Brandeis, 2016) were determined.

Results of Simulated ERP Data
We applied the proposed consensus clustering in the simulated
data aimed to illustrate all the predefined ERP components.
The clustering in seven cluster maps successfully isolated all

TABLE 1 | The illustration of the clustering method selection by calculating the
similarity of the results with the modified k-means method for individual data.

Data Group KMS HC FCM SOM DSC AAHC

Simulated data G1 19 14 0 0 0 20

Real data RS 19 9 17 17 15 20

HC 19 11 19 19 15 18

The marked methods with bold font are selected where they achieved higher
similarity (rand index) for the majority of individual data (e.g., ≥50% of subjects and
similarity ≥ 0.7). RS, remitted schizophrenia; HC, healthy control; G1, simulated
group; KMS, k-means; HC, hierarchical clustering; FCM, fuzzy c-means; SOM, self-
organizing map; DSC, diffusion maps spectral clustering; and AAHC, atomize and
agglomerate hierarchical clustering.

FIGURE 3 | The illustration of the stability test in 20 runs of studied clustering
methods to the grand average ERP data. Dash lines demonstrate the original
clustering method stability and the continuous lines illustrate the
corresponding stabilized version for each studied clustering method behavior
for the range of repetition (e.g., from 2 to 20). (A) Stabilizing in the simulated
data and (B) stabilizing in the real data.

predefined six components (Figure 4) P1, N1, P2, N2, P3, and N4
correspond with the cluster maps 3, 5, 6, 1, 7, and 2, respectively.
Note that cluster map 4 refers to the brain state before stimulus
onset and does not present any predefined ERP component.

Time Windows and Topographies for ERPs of Interest
Figure 5 illustrates the clustering results and the elicited N2
and P3 components (from one random execution), including the
corresponded topography maps and the spatial correlation of
time-points obtained by the proposed method on the simulated
data. Figure 5A indicates that the N2 component in Cond1 and
Cond2 are elicited by cluster maps 5 (marked blue). Likewise,
Figure 5B illustrates that the P3 component is identified by the
microstate map 1 (marked orange) in both conditions. These
results reveal that a significant main effect of task (p < 0.0001)
was identified in N2 in the duration of microstate maps. Similarly,
a significant main effect of task (p < 0.0001) was detected
in the P3 component. For both components, the measured
amplitudes were greater in Cond2. This reveals that the N2 and
P3 components seem to be distinctly elicited by the proposed
method in the simulated data.

Comparison Between Estimated and Ground Truth
Time Windows
The proposed method was compared with the state-of-the-
art clustering methods, namely, modified k-means and AAHC,
in spatiotemporal ERP clustering. Our time-window selection
method was applied to the clustering results (i.e., proposed
consensus clustering, modified k-means, and AAHC results) to
identify each ERP of interest. The Start, End, and Duration
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FIGURE 4 | The proposed consensus clustering results in the simulated Cond2 data. Red and blue colors indicate positive and negative potential values,
respectively. Each topography map represents a cluster map. P1, N1, P2, N2, P3, and N4 components are presented with cluster maps 3, 5, 6, 1, 7, and 2,
respectively. Note that cluster map 4 does not show any component in the simulated data.

FIGURE 5 | The illustration of the clustering results (shown in the grand average data) for eliciting N2 and P3, including the corresponded topography maps and the
spatial correlation of time-points, obtained by the proposed method on the simulated data. (A) Selected time window identified by cluster map 5 (i.e., blue area from
205 to 264 ms) for N2 in Cond1 (upper panel). The selected time window by cluster map 5 (i.e., orange area from 203 to 264 ms) for N2 in Cond2 (lower panel).
(B) Selected time window with cluster map 1 (i.e., colored area from 264 to 350 ms) for P3 in Cond 1 (upper panel). Selected time window identified by cluster map
1 (i.e., colored area from 268 to 357 ms), the topographic map for P3 in Cond 2 (lower panel). The range of the color bars is equally associated with the plot
sections. Cond1 = condition 1, Cond2 = condition 2.

parameters of estimated time windows were compared with
that of the ground truth time windows (obtained from the
simulation) on the clustering results of individual data for testing
the accuracy. The TOST result (Table 2) for N2 component
from clustering methods illustrates that the null hypothesis was
rejected for the proposed method, modified k-means, and AAHC

for all parameters in both conditions except End in Cond1
for AAHC. Similarly, the null hypothesis was rejected in all
parameters except Duration in both conditions for the proposed
method. It was, however, not rejected in either of the criteria
in P3 for modified k-means and AAHC. Taken as a whole, the
proposed method achieved a more precise estimation of time
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TABLE 2 | Descriptive two one-sided tests (TOST) equivalence tests between ground truth TWs (time windows) and estimated TWs by the proposed consensus
clustering (CC), modified k-means (MKMS), and atomize and agglomerate hierarchical clustering (AAHC) in individual subjects’ data from simulated ERP data.

Comp-Meth Cond Criteria p1 p2 DiffMu (ms) EQ_interval (ms)

N2_CC C1 Start 0.000 0.003 2.2 0.4 4.1

End 0.000 0.003 2.6 1.0 4.1

Duration 0.000 0.000 0.4 −1.6 2.3

C2 Start 0.000 0.001 1.6 −0.4 3.6

End 0.000 0.002 2.3 0.7 4.0

Duration 0.000 0.000 0.7 −1.2 2.6

P3_CC C1 Start 0.000 0.000 1.9 0.5 3.2

End 0.018 0.000 2.8 −4.7 −0.9

Duration 0.380 0.000 4.7 −6.8 −2.6

C2 Start 0.000 0.000 1.8 0.3 3.2

End 0.008 0.000 2.6 −4.4 −0.7

Duration 0.266 0.000 4.3 −6.4 −2.2

N2_MKMS C1 Start 0.000 0.001 2.1 0.3 3.9

End 0.000 0.041 3.5 1.9 5.1

Duration 0.000 0.000 1.4 −0.3 3.1

C2 Start 0.000 0.001 1.4 −0.6 3.4

End 0.000 0.030 3.5 2.0 5.0

Duration 0.000 0.001 2.1 0.5 3.7

P3_MKMS C1 Start 0.000 0.543 5.1 2.8 7.5

End 0.548 0.000 5.1 −7.3 −3.0

Duration 0.997 0.000 10.3 −13.8 −6.7

C2 Start 0.000 0.554 5.1 3.2 7.0

End 0.654 0.000 5.5 −7.8 −3.1

Duration 0.999 0.000 10.6 −14.0 −7.3

N2_AAHC C1 Start 0.000 0.001 1.8 0.0 3.5

End 0.000 0.104 4.1 2.7 5.5

Duration 0.000 0.000 2.3 0.9 3.7

C2 Start 0.000 0.000 1.3 −0.6 3.2

End 0.000 0.039 3.6 2.1 5.1

Duration 0.000 0.001 2.3 0.8 3.9

P3_AAHC C1 Start 0.000 0.162 4.2 2.7 5.7

End 0.244 0.000 4.3 −6.2 −2.4

Duration 0.999 0.000 8.5 −10.6 −6.4

C2 Start 0.000 0.167 4.2 2.6 5.8

End 0.276 0.000 4.4 −6.3 −2.6

Duration 0.999 0.000 8.6 −10.7 −6.6

Bold marked represent nonsignificant results. Comp-Meth, component of interest and the method; Cond, condition; C1, condition 1; C2, condition 2; p1, p value of lower
bound; p2, p value of upper bound; DiffMu, difference of mean of two sets; and EQ_interval, confident equivalence interval.

windows in individual data. Moreover, for a better sense of
comparison between studied clustering methods, the accuracy
of estimated (i.e., based on Start and End parameters) time
windows for the subjects is exhibited in Figures 6, 7. It is
observable that the consensus clustering method outperforms
modified k-means and AAHC in terms of accuracy of estimation,
especially in P3 component.

Results of Real ERP Data
Time Windows and Topographies for ERPs of Interest
The clustering results (randomly selected) from running the
proposed method on real data for N300 and prospective
positivity components, the corresponding topography maps,

and the spatial correlation of time-points are illustrated in
Figure 8. N300 identified by the cluster maps 1 and 2 in
the RS group, is illustrated by the colored area in Figure 8A
for both PM and ongoing tasks. Furthermore, N300 identified
by cluster map 1 in the HC group and two tasks (PM
and ongoing), is illustrated in Figure 8B. Similarly, the
prospective positivity component is isolated by the cluster
maps 6 and 5 in the RS group for PM and ongoing tasks,
respectively (Figure 8C). The identified prospective positivity
by cluster maps 4 and 5 in the HC group for PM and
ongoing tasks are illustrated, respectively (Figure 8D). The
average topographies shown in Figure 8 are obtained from
the selected time windows identified by the cluster maps.
Hence, the statistical power analysis revealed that HC was
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FIGURE 6 | The difference between the estimated time windows from corresponding ground truth time windows (i.e., based on start and end criteria) for individual
data in N2. (A) The estimation results of the proposed method. (B) The estimation results by MKMS method. (C) The estimation results by AAHC method. MKMS,
modified k-means; AAHC, atomize, and agglomerate hierarchical clustering.

characterized by a more negative potential over the occipital-
central electrodes (p < 0.001). Additionally, a silently larger
positive potential was localized over frontal-central electrodes
compared to the RS group in N300. Moreover, a slightly more
negative potential was observed over occipital-central electrodes
(p < 0.001) in the ongoing task from both RS and HC groups
in the N300 component. Our results revealed no significant
difference for prospective positivity regarding group factor;
however, a larger positive potential was localized over central
electrodes (p < 0.0001) in the ongoing task comparing to the
PM task.

Statistical Analysis and Stability Test Results
The mean p value and standard deviation (SD) were obtained
from over 50 independent runs of the studied clustering methods

and statistical analysis on the individual data (Table 3). Rendering
to stability analysis, the proposed method (SD = 0.003) was
more stable compared to modified k-means (SD = 0.006)
for the main effect of group and less stable than AAHC
(SD = 0.002) for N300 component. Interestingly, it was the
most stable method compared to other studied clustering
methods for both the main effect of task (SD = 0.002) and
interaction between group and task (SD = 0.043). Besides, the
statistical power analysis results showed that the main effects
of group and task by the proposed method were significant
(p < 0.002 for both factors). Likewise, the main effect of
group was significant by the modified k-means (p < 0.017)
and AAHC (p < 0.004). The main effect of task, however,
was significant only via AAHC (p < 0.013). Meanwhile, the
interaction between group and task was not significant in
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FIGURE 7 | The difference between the estimated time windows from corresponding ground truth time windows for individual data in P3. (A) The results from the
proposed method. (B) The estimation results by MKMS method. (C) The estimation results by AAHC method.

both modified k-means and AAHC. Similarly, the proposed
method was statistically the most stable for the interaction
between group and task (SD = 0.011) comparing to other
studied clustering methods in prospective positivity (Table 3).
Additionally, the main effect of task was significant (p < 0.0001),
and, more importantly, the interaction between group and task
was also significant (p < 0.007) by the proposed method.
However, the main effect of group was not significant by the
proposed method. The main effect of task was also significant
by modified k-means (p < 0.0001) and AAHC (p < 0.0001),
whereas, the main effect in group, and the interactions between
group and task were not significant by both modified k-means
and AAHC methods.

DISCUSSION

This study proposed a new methodology based on multisubject
consensus clustering on spatiotemporal ERP data for the
suitable time-window determination. To this end, we designed
the stabilized multisubject consensus clustering in two levels
described as follows: (i) subject resolution in which the stabilized
consensus clustering was used to combine the results of various
clusterings on each subject’s data in the group; (ii) group
resolution in which the most suitable clustering for each group
was obtained by consensus clustering of the clustering results
of individual data. From the ERP technique point of view,
the researchers using the ERP technique for the cognitive
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FIGURE 8 | Demonstration of the clustering result (showed in the grand average data), identified time window for ERP of interest, and corresponding topography
map and spatial correlation of the time-points in each group/condition via the proposed method. (A) Identified time window by cluster maps 1 and 2 (i.e., colored
areas) for two tasks (PM and ongoing) for N300 in RS group. (B) Selected time windows identified with map 1 for both conditions in the HC group. (C) The isolated
time windows by cluster maps 6 and 5 for the tasks (PM and ongoing) in RS group. (D) Equally, the time windows identified by cluster maps 4 and 5 for the tasks
(PM and ongoing) in the HC group. The visual comparison between two groups in panels (A,B) for N300 and in panels (C,D) for prospective positivity shows the
difference in the waveforms in the selected time windows. The color bars are equally associated with the plot sections. PM, prospective memory; OA, ongoing task;
Pros.Pos, prospective positivity; RS, remitted schizophrenia; HC, healthy control.

neuroscience research often face up the challenge to determine
a time window for an ERP, since the most popular textbook of
ERP recommends the readers averaging the amplitudes in the

time window as the measurement of the ERP peak amplitude
(Luck, 2014). In terms of previous publications, we found
that the determination of such a time window has mostly
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TABLE 3 | Mean p value and standard deviation (SD) calculations of statistical
power analysis results in over 50 runs of study clustering methods on the
individual data for the real data.

N300 Pros.Pos.

Method Group Task intGrTsk Group Task intGrTsk

Proposed (p value) 0.002 0.002 0.058 0.590 0.000 0.007

SD 0.003 0.002 0.043 0.227 0.000 0.011

MKMS(p value) 0.017 0.101 0.303 0.614 0.000 0.150

SD 0.006 0.075 0.225 0.199 0.000 0.156

AAHC (p value) 0.004 0.013 0.145 0.662 0.000 0.246

SD 0.002 0.009 0.133 0.201 0.000 0.131

IntGrTsk, interaction between group and task; Pros.Pos., prospective positivity.
Bold marked represent significant results.

relied on the visual inspection, which can be subjective and
bring bias to conclusions and difficulty for the readers to
repeat the experiment. Therefore, the main objective of this
work was to provide a reliable clustering-based mechanism
(objective approach) for studying the temporal dynamic and
sensory information about the subjects (i.e., brain responses).
This was accomplished with the multilevel clustering mechanism
and the time-window determination method. The clustering
result from entire subjects entails important information about
group response which is critical for studying the cognitive
processes in ERP.

One issue in processing individual data is, apart from the
need for sufficient trials for obtaining reliable ERP (Boudewyn
et al., 2018) and the variety of brain responses in the trials, the
variability associated with individual subjects’ brain responses,
which is observable when ERPs are used to assess cognitive
functions. The underlying assumption is that the variety in
the trials and subject responses are involved in ERP, although
in the ERP techniques, the assumption is that the ERP is
phase-locked and time-locked. Therefore, each subject grants
value to the statistical test in terms of differences between
conditions or groups, which is through the variance across
subjects assisting in the ability to detect a significant experimental
effect (Kappenman and Luck, 2012a). Yet, in the literature, the
individual responses were mostly addressed by fitting the cluster
maps of individual data to the cluster maps of group average
data (Murray et al., 2008; Koenig et al., 2014; Michel and Koenig,
2018; Berchio et al., 2019; Ruggeri et al., 2019). To cover this
gap, we strived to cluster individual subject data in the first level
and map the entire individual clusterings into a group as the
ultimate clustering.

From the cluster analysis view of point, the various clustering
strategies such as using the single clustering method on the
different types of datasets; repeated clustering with a single
clustering method and combining the results; and the multiple-
clustering methods applied to the individual dataset potentially
affect the clustering quality (Abu-Jamous et al., 2013, 2015b;
Liu et al., 2015; von Wegner et al., 2018). To investigate
this issue and reliably feeding consensus clustering, two data-
driven based mechanisms were appropriated before multilevel
cluster analysis. First, consensus clustering configuration was

performed aim to find the appropriate clustering methods. This
was recognized by calculating the similarity between candidate
clustering methods and modified k-means (benchmark) from
individual data. Second, the stabilized clusterings were carried
out by stabilizing the stochastic clusterings. Taken as a whole,
these two procedures can make an additional sense of obtaining
reliable and stable results instead of using a single clustering
method or the conventional consensus clustering platform.
Noteworthy to mention that clustering selection and stabilization
can result in different configurations for various ERP data.

In accordance with the obtained results, two major differences
were noticed between the proposed method and conventional
clustering methods:

(i) The statistical test in this study revealed that the
proposed method estimates a more precise time windows
for individual subjects in comparison with the other
conventional clustering methods in simulated data for
both ERPs of interest (N2 and P3). The foremost
reason is that our method uses the strength of multiple
clustering methods and data-driven processing individual
subject data to fit the suitable time windows for each
condition/group, despite with using spatial consistency
comparison between ERPs of individual and grand average
data (Habermann et al., 2018; Michel and Koenig, 2018;
Berchio et al., 2019).

(ii) According to the statistical analysis results (Table 3),
the proposed method outperformed other benchmark
methods regarding achieving more stability in the real data.
Over 50 independent runs of the clustering on the same
datasets, the estimation of the proposed method was with
a much smaller variance. This indicates that the estimation
of the ERP time window was much closer to the ground
truth time window of the ERP, in contrast to the other
methods. Such results from the real data also correspond to
the ones from the simulation data, i.e., the estimation of the
time window of an ERP was more accurate by the proposed
method. Therefore, the results of the current study, based
on analyzing the brain dynamics from the stimuli onset
to the brain response, successfully explored the attention
effect on the neural responses from the subjects in real
ERP data.

The drawback of the proposed method, however, is that if the
real ERP component is still embedded in ERP waveforms the
determination of the time window of an ERP component cannot
be precise. Indeed, this also happens in the visual inspection
method to determine the time window of an ERP. Therefore, in
order to determine the time window of an ERP component more
precisely, the EEG preprocessing is very critical. The better the
preprocessing is, the more precise and objective determination
of the time window of an EPR is carried out in terms of the
proposed method.

The results of analyzing the brain dynamic responses revealed
that the brain electrical dynamics in obtained time windows
were comparatively different in time-window properties (start,
end, and duration) for different conditions/groups. Therefore,
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from the clinical point of view, the brain responses from two
groups (RS and HC) to the stimuli onset were investigated
to identify N300 and prospective positivity components. This
can be interpreted as the fact of the variety of brain
response for the subjects in different condition/group. In
N300 component isolation, for example, the difference was
shown in cluster maps 1 (i.e., between RS and HC groups)
in PM tasks. Likewise, the duration differed in cluster maps
1 and 2 in the ongoing task between the groups. Again,
at the source level, a silently larger negative response was
observed in ongoing than PM task in both RS and HC
groups. These results demonstrate that RS patients with
schizophrenia showed a functional recovery of PM cue
detection during the event-based PM task. Consequently, the
electrophysiological data revealed the ability of symptomatically
remitted patients with schizophrenia to distinguish the PM
task from the ongoing task. This was reflected by the
significant main effect of task type among these two groups.
As a result, this finding showed a complementary viewpoint
to the prior studies (Fukumoto et al., 2014; Chen et al.,
2015). Our results can be employed for interpreting the
advantage of the treatment in RS patients in terms of
measuring/identifying the difference in ERPs of interest in
the observations. Therefore, this may indicate a degree of
functional recovery of preparatory attentional processes that
helps the processing of PM task in these subjects (RS patients)
during clinical remission. Thus, providing further evidence for
the recent researches demonstrating symptomatic remission in
schizophrenia is associated with a degree of functional recovery
of attentional processes.

CONCLUSION AND FUTURE WORKS

This work presents a multisubject consensus clustering
technique to explore spatiotemporal ERP by extracting
group-level information from individual responses. Our
proposed methodology has successfully extended the previous
research findings (Murray et al., 2008; Koenig et al., 2014;
Michel and Koenig, 2018) of cluster analysis of EEG/ERP.
Noteworthy to mention that we have proposed the multiset
consensus clustering method in the present study which
can work better for the group-level analysis. Since the
proposed method is not limited to just ERP data, it is very
interesting to apply the proposed method on other brain
imaging modalities for investigating the various types of
brain dynamics. Furthermore, the proposed method can also
be used as an appropriate tool to analyze the single-trial
EEG by considering suitable roles for the trials in higher
resolution (single-trials) in the future. Taken together, this
work emphasizes that, in the time-window determination
from spatiotemporal ERP, the temporal dynamics can be
extremely influenced through the measurement interval. It
is noteworthy that this methodology can be investigated on
different levels (i.e., groups, subjects, trials). The current
study also highlights that the obtained time windows are
sensitive to the responses from the subjects, which can

provide a better sense of understanding in information
processing of the neural responses. In order to show the
effectiveness of the proposed method, we have used the
simulated ERP dataset and the real ERP dataset. Indeed, the
selection of the real ERP dataset does not mean that the
proposed method only works for such an attention-related
ERP experiment. The proposed method has no limitation
on the experiment types of ERPs. Thereby, a toolbox
has been developed under the MATLAB platform, named
ERP_CC.2 Taken as a whole, we can rely on the information
retrieved by the new method, which reflects the attention
mechanism regarding the response to the stimuli in the
real data. We therefore believe that the EEG neuroimaging
method can be studied by the proposed methodology in
various dimensions to accomplish useful results in cognitive
neuroscience studies.
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