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CLASSICAL AND BAYESIAN INFERENCES

IN STEP-STRESS PARTIALLY ACCELERATED LIFE TESTS

FOR INVERSE WEIBULL DISTRIBUTION UNDER TYPE-I CENSORING

F. G. Akgul,
a,1

K. Yu,
b,2

UDC 539.4

and B. Senoglu
c,3

This paper deals with the classical and Bayesian estimations of step-stress partially accelerated life

test model under type-I censoring for the inverse Weibull lifetime distribution. In classical

estimation, the maximum likelihood estimates of the distribution parameters and the acceleration

factor were obtained. In addition, approximate confidence intervals of the parameters were

constructed based on the asymptotic distribution of the maximum likelihood estimators. Under

Bayesian inference, besides the Lindley and Tierney–Kadane approximation posterior expectation

methods, which yielded point estimates of the distribution parameters and the acceleration factors

under square error loss function, we also applied the Gibbs sampling method, in order to construct

credible intervals of these parameters together with their point estimates. Finally, Monte Carlo

simulations were conducted to compare the performances of the above estimation methods.

Keywords: step-stress partially accelerated life test, inverse Weibull distribution, type-I censoring, maximum

likelihood estimation, Bayesian estimation, Gibbs sampling.

Introduction. The high-reliability devices have become an integral part of our lives with technological and

industrial improvements. Therefore, the pressure on the manufacturer to produce high-quality products has increased

day by day. It is crucial for manufacturers to test the lifetime of their products before launch to the market. However,

testing the products under their normal-use conditions can be very costly and take a long time. For this reason,

accelerated life tests (ALT) are preferred to obtain enough failure data in a short period [1]. In ALT, the products are

tested under stresses, such as temperature, pressure, vibration amplitude, cycling rate, load, etc. The underlying

assumption of ALT is that the mathematical model related to the lifetime of the unit and the stress are known.

Nevertheless, life-stress relations are not always known, and ALT is not available [2, 3]. In this case, a partially

accelerated life test (PALT) is used, in which items are firstly tested under normal conditions until the prefixed time.

Then, the survived ones are subjected to accelerated test/stress conditions [4].

According to Nelson [5], stress application can be reduced to step-stress and constant-stress schemes. In

step-stress PALT (SSPALT), firstly, the tested item is run under normal conditions. If it does not fail for a specified

time, then it is run under accelerated condition until the test terminates. However, in constant-stress PALT

(CSPALT), each unit is run at constant stress level until the test is terminated. The objective of these methods is to

collect more failure data in a limited time without applying high stresses to all test units [6]. It should be noted that

both SSPALT and CSPALT are used to shorten the test time. However, they would be long-term if they proceed until

the failure of all units. Therefore, it is necessary to consider the impact of censoring schemes.

480 0039–2316/20/5203–0480 © 2020 Springer Science+Business Media, LLC

a
Department of Computer Engineering, Artvin Coruh University, Artvin, Turkey (

1
ftm.gul.fuz@artvin.edu.tr).

b
Department of Mathematical Sciences, Brunel University, London, UK (

2
keming.yu@brunel.ac.uk).

c
Department of

Statistics, Ankara University, Ankara, Turkey (
3
senoglu@science.ankara.edu.tr). Translated from Problemy Prochnosti,

No. 3, pp. 169 – 187, May – June, 2020. Original article submitted October 17, 2018.

DOI 10.1007/s11223-020-00200-y



Goel [7] and DeGroot and Goel [8] introduced the concept of SSPALT. Since then, SSPALT has been

considered by several authors, especially under conventional type-I and type-II censoring schemes. For example, the

problem of the estimation of the acceleration factor and distribution parameters were handled under type-I, or type-II

censored data when the lifetime of the components are Burr type-II, Weibull, Gompertz, truncated logistic, Pareto,

and Lomax by [9–14], respectively. In addition to these studies, Ismail [6, 15–17] and Zhang et al. [4] considered

estimation of model parameters based on SSPALT using hybrid censoring, type-I progressive hybrid censoring,

type-II progressive hybrid censoring, type-I progressive hybrid censoring with competing risk and adaptive type-I

progressive hybrid censoring schemes under the assumption of Weibull lifetimes.

The Weibull distribution is one of the most popular distributions in life testing and reliability studies. Its

popularity stems from the wide variety of shapes. Depending on the choice of the shape parameter, Weibull

distribution is described by a decreasing or increasing hazard function (hf). However, if the data represent

non-monotone hf, such as unimodal, Weibull distribution may not be suitable. In this case, the inverse Weibull (IW)

distribution is a more appropriate model than the Weibull distribution with its unimodal or decreasing hf, see [18, 19]

for the details. Also, the IW distribution has a larger right-tail probability than the Weibull one [20]. This property

provides the flexibility of IW distribution for modeling the data set with extremes or outliers in the direction of the

right tail.

The purpose of this paper is to focus on the estimation of the acceleration factor and parameters of IW

distribution when the data are type-I censored under SSPALT. To this end, the maximum likelihood (ML) estimates

of the model parameters are obtained by using iterative methods. Also, the approximated Fisher information matrix is

derived from conducting the approximate confidence intervals (ACI) of the model parameters. Then, we obtain the

Bayesian estimators of the model parameters under square error loss (SEL) function based on informative and

non-informative priors by using three different methods. As expected, the Bayesian estimators cannot be obtained

explicitly. Therefore, we implement Lindley’s approximation, Tierney–Kadane approximation, and Gibbs sampling

methods to compute the Bayesian estimates and also use the Gibbs sampling method to construct the Bayesian

credible intervals (BCI).

The rest of this paper is organized as follows. The description of the model is elaborated in Section 1. In

Section 2, the ML estimates of the SSPALT model parameters are obtained, and ACI for the model parameters are

constructed. In Section 3, the Bayesian estimates of the model parameters are obtained using Lindley’s

approximation, Tierney–Kadane approximation, and Gibbs sampling methods. Furthermore, BCIs are constructed.

Section 4 includes the Monte Carlo simulation study. Final comments and conclusions are also provided.

1. Description of the Model. IW distribution was proposed by Keller and Kamath [21] as a suitable model

for describing the degeneration phenomena of mechanical components, especially in the dynamic components

(pistons, crankshaft, etc.) of diesel engines. Erto and Rapone [22] explored that IW distribution provides a good fit

for survival data such as the times to breakdown of an insulating fluid subject to the action of constant tension, see

also [23]. IW distribution has many applications in different areas, for example, geology [24], wind energy [25],

medical studies [26]. Also, in recent years, it has been used as a lifetime distribution for the ALT model by

Hakamipour and Rezaei [27] and Ismail and Tamimi [28].

Assume that the random variable Y representing the lifetime of a product has IW distribution with shape

and scale parameters � and �, respectively. The probability density function (pdf) of Y is defined as
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respectively.

In SSPALT, all of the n items are firstly tested under normal conditions. If the item does not fail for a

pre-specified time �, the test is switched to a higher level of stress and continues until the items fail. The effect of

this switch is to multiply the remaining lifetime of the item by the inverse of the acceleration factor 	. The total

lifetime of Y under SSPALT is expressed as follows:

Y
T T

T T
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where T is the lifetime of an item at normal condition, � is the stress change time, and 	 is the acceleration factor,

which is the ratio of mean life under normal conditions to that under accelerated ones, usually 	 � 1. This model is

called the tampered random variable (TRV) model.

Assume that the lifetime of the test item follows the IW distribution with parameters � and �. Then, the pdf

of the total lifetime Y of an item under SSPALT is given by

f y

y

f y y

f y y

( )

, ,

( ), ,

( ), ,

�




� 


�

�

�

�



�

0 0

01

2

if

if

if

�

�

(6)
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It is obvious that f y2 ( ) is obtained by using the variable transformation defined in (5).

2. Maximum Likelihood Estimation. Under the type I censoring scheme, the test terminates when the

censoring time � is reached. The observed values of lifetime Y are given by

y y y yn n n na a u a( ) ( ) ( ) ( ) ,1 1
 � � � 
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� �
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where na and nu are the number of items that failed under normal and accelerated conditions, respectively. Let

n n nu a0 � � . For simplification, we express y i( ) by yi .

Let y y y yn� ( , , ..., )1 2 be the total lifetimes of n items, then the likelihood function of them is given

below:
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where � � 	 �i iy� � �( ) and � � 	 � �
�
� � �( ).

The log-likelihood function �( , , | ) log ( , , | )� � 	 � � 	y L y� is then given by

�( , , | ) ln ln ln� � 	 � � 	y n n nu� � �0 0
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By taking the derivatives of (8) with respect to unknown parameters � , �, and 	, respectively, the likelihood

equations are obtained as follows:
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The solutions of the likelihood equations (9)–(11) are the ML estimators of the parameters, but there are no explicit

forms of these equations. Therefore, we resort to iterative methods such as Newton–Raphson to solve them and

obtain the ML estimates of � , �, and 	.

In the context of interval estimation, the ACI of the parameters is constructed based on the asymptotic

distribution of the ML estimators of unknown parameters. The variance-covariance matrix for the ML estimates of

the parameters � � � 	� ( , , ) is derived from the inverse of the following Fisher information matrix
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The second derivatives of the log-likelihood function are given in Appendix 1.

Insofar as the derivation of exact mathematical expressions for the expectations (12) is quite problematic and

cumbersome, the approximated (observed) Fisher information matrix can be used. Therefore, by writing the

approximated variance-covariance matrix as
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we have the approximate 100 1( )%� " two-sided confidence intervals for � , �, and 	 as follows:
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Here z
" /2 is the upper (" 2)th percentile of a standard normal distribution and �� ii (i �1, 2, 3) is the ML estimates of

� ii .

3. The Bayesian Estimation. We compute Bayesian estimates and credible intervals of the model

parameters � , �, and 	. To this end, independent priors of the parameters � , �, and 	 are considered as

Gamma a b( , ),1 1 Gamma a b( , ),2 2 and Gamma a b( , )3 3 , respectively. Then, the joint prior distribution function is

written as follows:
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where ( , ),a b1 1 ( , ),a b2 2 and ( , )a b3 3 are assumed to be known and positive. Thus, using the likelihood function (7)

and the joint prior distribution function (15), the joint posterior distribution function is given by
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Therefore, Bayesian estimators of any function of the parameters, say u( , , )� � 	 , under squared error loss (SEL)

function are obtained from the following expression:
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u
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However, it is clear from (17) that there is no explicit form of the Bayesian estimators of the model parameters. So,

we consider three different approximation methods, namely Lindley’s approximation, Tierney–Kadane approximation,

and Gibbs sampling for computing the corresponding Bayesian estimators. The details of these methods are

explained in the following subsections.

3.1. Lindley’s Approximation. Lindley’s approximation is proposed to calculate the approximate ratio of

two integrals, such as (17) by Lindley [29]. Now, let � � � �� ( , , )1 2 3 be a set of parameters, then the posterior

expectation of an arbitrary function u( )� can be calculated from the following expression:
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where u u i� ( ),� i j k l, , , ,�1 2, 3, u ui i� � �� , u uij i j� � �� ��
2
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3
� ,) $ �� log ( ), ) �) ��j j� ,

� ij are the elements of the inverse of the Fisher information matrix in (13), and �
� is the ML estimator of �.

Based on Lindley’s approximation, the approximate Bayesian estimates of � , �, and 	 under SEL function

are obtained as
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The explicit expressions of Lijk and ) j ( , ,i j k � 1, 2, 3) are given in Appendix 2.

3.2. The Tierney–Kadane Approximation. Now, we derive the approximate Bayes estimates of � , �, and 	

under SEL using the Tierney–Kadane approximation [30]. According to this method, the posterior expectation of an

arbitrary function u( , , )� � 	 can be written as follows:
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The estimation procedure of ( � , � , � )� � 	 and the calculation of the corresponding inverse Hessian matrix can

be summarized as follows:
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In terms of estimation of � *
� , � *

� , and � *
	 , the SEL function u( , , )� � 	 is taken as a function of � , �, and 	,

respectively. Then, for each value of u( , , ),� � 	 a similar procedure is applied by incorporating , � � 	( , , ) into

, � � 	
*
( , , ), separately.

It should be noted that either Lindley’s approximation or Tierner–Kadane approximation provides to obtain

the Bayesian estimate of the parameters. However, it is not possible to construct credible intervals using these

methods. Therefore, in the following subsection, the Bayesian estimators of model parameters together with their

BCIs are obtained using posterior distributions.

3.3. Gibbs Sampling. In this subsection, we use the Gibbs sampling procedure, which is a particular case of

Markov Chain Monte Carlo method to generate samples from the conditional posterior distributions of the model

parameters.

The posterior distribution function of � , �, and 	 in (16) can be written as
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It is obvious that the posteriors of � , �, and 	 in (25)–(27) are unknown. Therefore, to generate samples from these

distributions, we use the Metropolis-Hastings algorithm, which is proposed by Metropolis et al. [31]. Now, we

propose to use the following Gibbs sampling procedure to compute the Bayesian estimates of � , �, and 	. The steps

of Gibbs sampling are given as follows:

Step 1. Start with � �
( ) � ,
0

� � �
( ) � ,
0

� and 	 	
( ) �0

� and set j � 1.

Step 2. Use the following Metropolis-Hasting algorithm, generate �
( )j

, �
( )j

, and 	
( )j

from

g y
j j j

1
1 1 1
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( ) ( ) ( )
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1 1

( | , , ),
( ) ( ) ( )

� � 	
� �

and g y
j j j

3
1

( | , , )
( ) ( ) ( )

	 � �
�

with normal proposal

distributions Normal
j

( , )
( )

� �
�1

11 , Normal
j

( , ),
( )

� �
�1

22 and Normal
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	 �
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33 where � ii (i �1, 2, 3) is from

the variance-covariance matrix in (13).
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from Normal
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(ii). Evaluate the acceptance probabilities
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(iii). Generate U1, U 2 , and U 3 from Uniform( , ).0 1

(iv). If U1 
 )
�
, accept the proposal and set � �

( ) *j
� , else set � �

( ) ( )j j
�

�1
.

(v). If U 2 
 )
�
, accept the proposal and set � �

( ) *j
� , else set � �

( ) ( )j j
�

�1
.

(vi). If U 3 
 )
	
, accept the proposal and set 	 	

( ) *j
� , else set 	 	

( ) ( )j j
�

�1
.

Step 3. Set j j� �1.

Step 4. Repeat steps 1–4 M times and obtain ( , , ), ..., ( , , ).� � 	 � � 	1 1 1 M M M

Step 5. Obtain the Bayesian estimate of � , �, and 	 under SEL function as follows:

~ ,� ��

�

�
1

1M
j

j

M ~
,� ��

�

�
1

1M
j

j

M ~
.	 	�

�

�
1

1M
j

j

M

(28)

Step 6. Order � �1, ..., M as � �( ) ( )...1 
 
 M , � �1, ..., M as � �( ) ( )...1 
 
 M , and 	 	1, ..., M as

	 	( ) ( )... .1 
 
 M

Then, the 100 1( )%� " BCIs of model parameters are constructed as follows:

( , ),[[ ( / )]] [[ ( / )]]� �
" "M M2 1 2�

( , ),[[ ( / )]] [[ ( / )]]� �
" "M M2 1 2�

( , ),[[ ( / )]] [[ ( / )]]	 	
" "M M2 1 2�

(29)

where [[ ]]� represents the integer value function.

4. Simulation Study. In this section, we compare the performances of ML and Bayesian estimates of the

model parameters � , �, and 	 via an extensive Monte Carlo simulation study. The comparisons are made for both

point and interval estimations. In the context of point estimation, the means and mean square error (MSE) of the

estimator of each parameter is calculated. In terms of interval estimation, 95% ACIs of the model parameters are

constructed based on the asymptotic distribution of ML estimates. Furthermore, we compute 95% BCIs of the

parameters of interest. Average confidence/credible lengths (ACL) and corresponding coverage probabilities (CP)

are calculated.

The simulation study is carried out according to the following settings:

(1). The sample size is taken as n � 50, 100, 150, and 200.

(2). The parameter settings are considered as ( , , )� � 	 � (3, 1, 2) and (1.2, 1.7, 1.5). For the first setting, �

and � are specified as (1, 1.3) and (1, 4), respectively. For the second setting, � and � are specified as (2, 7) and (2,

15), respectively.

(3). The random sample of size n from Y is generated by using (5). To do this, let U be a random variable

from Uniform( , ).0 1 If y 
 �, then Y U� �
�

( ( ) log )
/

1
1

�
�
. If y� �, then Y U� � � �

�

(( ( ) log ) ) .
/

1
1

� � 	 �
�

(4). Bayesian estimates of the model parameters are obtained by using informative and non-informative

priors. In case of informative priors, we choose a1 2� , b a b a b1 2 2 3 3� � � � � 1. We call them Prior-I. For

non-informative priors, we take a bi i� � 0, i �1, 2, 3, and they are referred to as Prior-II.

(5). All computations are realized in MATLAB R2013 based on 1000 Monte Carlo runs. Also, Bayesian

estimates based on the Gibbs sampling and corresponding credible intervals are obtained using 1000 sampling,

namely M � 1000.

The estimated mean and MSEs of the ML estimates and Bayesian estimates based on Lindley’s

approximation, Tierney–Kadane approximation, and Gibbs sampling methods for � , �, and 	 are represented in

Tables 1 and 2. The ACL and CP of 95% confidence/credible intervals are presented in Table 3.

It is clear from Tables 1 and 2 that in terms of the means of the estimates, the Bayesian estimates based on

Lindley’s approximation have the largest bias under both informative and non-informative priors. Furthermore,

Bayesian estimates based on Tierney–Kadane approximation and Gibbs sampling outperform other estimates in all

cases. The ML estimates do not perform well as much as Bayesian estimates based on Tierney–Kadane

approximation and Gibbs sampling. It should also be stated that the biases of all estimates decrease as the sample size

n or the censoring value � increases as expected.
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TABLE 1. The Mean and MSE Values of � , �, and 	 (� � 3, � � 1, 	 � 2) for Given (� � 1, � � 1.3)

and (� � 1, � � 4)

n Parameter ML Prior-I Prior-II

Lindley TK GS Lindley TK GS

1 2 3 4 5 6 7 8 9

� � 3, � � 1, 	 � 2, � � 1, � � 13.

50 � 3.1475

(0.3574)

3.2663

(0.2857)

3.1129

(0.2342)

3.1089

(0.2402)

3.3663

(0.5737)

3.0989

(0.3418)

3.0862

(0.3478)

� 1.0106

(0.0328)

0.9524

(0.0208)

1.0138

(0.0277)

1.0141

(0.0285)

0.9097

(0.0344)

1.0232

(0.0338)

1.0241

(0.0350)

	 2.0508

(0.5324)

1.7013

(0.2928)

2.0036

(0.2873)

2.0059

(0.2990)

1.8359

(0.5782)

2.2685

(0.8050)

2.2824

(0.8430)

100 � 3.0802

(0.1568)

3.2112

(0.1905)

3.0699

(0.1251)

3.0713

(0.1279)

3.0957

(0.1555)

3.0260

(0.1414)

3.0264

(0.1446)

� 1.0022

(0.0169)

0.9410

(0.0164)

0.9998

(0.0147)

0.9988

(0.0149)

0.9847

(0.0139)

1.0125

(0.0156)

1.0119

(0.0158)

	 2.0394

(0.2477)

1.7918

(0.2049)

2.0042

(0.1757)

2.0008

(0.1848)

1.9972

(0.2476)

2.1395

(0.3059)

2.1332

(0.3133)

150 � 3.0508

(0.0995)

3.1245

(0.1081)

3.0234

(0.0789)

3.0225

(0.0798)

3.1460

(0.1237)

3.0406

(0.0869)

3.0376

(0.0897)

� 1.0041

(0.0109)

0.9607

(0.0110)

1.0024

(0.0101)

1.0023

(0.0101)

0.9656

(0.0116)

1.0083

(0.0110)

1.0087

(0.0113)

	 2.0204

(0.1545)

1.8764

(0.1555)

2.0389

(0.1401)

2.0379

(0.1424)

1.9002

(0.1848)

2.0697

(0.1756)

2.0724

(0.1836)

200 � 3.0434

(0.0709)

3.1251

(0.0864)

3.0389

(0.0631)

3.0376

(0.0646)

3.1032

(0.0858)

3.0172

(0.0658)

3.0152

(0.0659)

� 1.0016

(0.0079)

0.9667

(0.0081)

1.0007

(0.0073)

1.0008

(0.0075)

0.9703

(0.0090)

1.0044

(0.0085)

1.0047

(0.0086)

	 2.0050

(0.1123)

1.8666

(0.1178)

2.0066

(0.0981)

2.0053

(0.0985)

1.9146

(0.1270)

2.0588

(0.1204)

2.0583

(0.1215)

� � 3, � � 1, 	 � 2, � � 1, � � 4

50 � 3.1487

(0.3543)

3.1683

(0.8526)

3.1374

(0.2321)

3.1324

(0.2412)

3.1290

(1.1270)

3.1035

(0.3048)

3.1004

(0.3240)

� 1.0114

(0.0374)

0.9610

(0.0487)

1.0022

(0.0282)

1.0030

(0.0287)

0.9893

(0.0720)

1.0242

(0.0350)

1.0231

(0.0364)

	 2.1113

(0.6097)

1.8780

(0.5202)

2.0533

(0.2926)

2.0599

(0.3086)

2.1454

(1.8198)

2.2903

(0.8833)

2.2910

(0.9361)

100 � 3.0729

(0.1513)

3.0786

(0.2664)

3.0710

(0.1204)

3.0703

(0.1247)

3.0925

(0.2724)

3.0650

(0.1469)

3.0644

(0.1495)

� 1.0076

(0.0156)

0.9858

(0.0179)

1.0040

(0.0134)

1.0039

(0.0138)

0.9891

(0.0203)

1.0117

(0.0170)

1.0108

(0.0171)

	 2.0379

(0.2456)

1.9065

(0.2965)

2.0335

(0.1779)

2.0323

(0.1813)

1.9887

(0.3952)

2.1297

(0.2861)

2.1256

(0.2873)
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Table 1 continued

1 2 3 4 5 6 7 8 9

150 � 3.0621

(0.0946)

3.0705

(0.1179)

3.0438

(0.0829)

3.0428

(0.0844)

3.0822

(0.1344)

3.0465

(0.0922)

3.0471

(0.0946)

� 1.0066

(0.0113)

0.9861

(0.0108)

1.0041

(0.0101)

1.0045

(0.0103)

0.9851

(0.0113)

1.0048

(0.0109)

1.0042

(0.0111)

	 2.0448

(0.1700)

1.9175

(0.1898)

2.0459

(0.1384)

2.0441

(0.1420)

1.9257

(0.2062)

2.0674

(0.1597)

2.0639

(0.1627)

200 � 3.0358

(0.0693)

3.0708

(0.0784)

3.0354

(0.0613)

3.0346

(0.0632)

3.0708

(0.0876)

3.0366

(0.0676)

3.0371

(0.0698)

� 0.9984

(0.0079)

0.9842

(0.0073)

1.0018

(0.0072)

1.0015

(0.0074)

0.9843

(0.0079)

1.0014

(0.0079)

1.0013

(0.0081)

	 2.0185

(0.1193)

1.8986

(0.1281)

2.0231

(0.1039)

2.0225

(0.1074)

1.9096

(0.1428)

2.0395

(0.1210)

2.0375

(0.1249)

Notes. Here and in Table 2: 1. MSEs are reported within brackets. 2. Tierney–Kadane approximation

and Gibbs sampling are represented as TK and GS, respectively, for brevity.

TABLE 2. The Mean and MSE Values of � , �, and 	 (� � 1.2, � � 1.7, 	 � 1.5) for Given (� � 2, � � 7)

and (� � 2, � � 15)

n Parameter ML Prior-I Prior-II

Lindley TK GS Lindley TK GS

1 2 3 4 5 6 7 8 9

� � 12. , � � 17. , 	 � 15. , � � 2, � � 7

50 � 1.2530

(0.0398)

1.3037

(0.0518)

1.2870

(0.0398)

1.2822

(0.0386)

1.2345

(0.0534)

1.2241

(0.0400)

1.2301

(0.0360)

� 1.7545

(0.0753)

1.6692

(0.0581)

1.7182

(0.0577)

1.7186

(0.0577)

1.6951

(0.0679)

1.7463

(0.1171)

1.7404

(0.0687)

	 1.5868

(0.5549)

1.2802

(0.2984)

1.4914

(0.2367)

1.5050

(0.2252)

1.6804

(1.0028)

1.8596

(0.8973)

1.8092

(0.7292)

100 � 1.2241

(0.0166)

1.2538

(0.0200)

1.2389

(0.0159)

1.2381

(0.0162)

1.2295

(0.0216)

1.2161

(0.0171)

1.2150

(0.0172)

� 1.7240

(0.0339)

1.6730

(0.0316)

1.7048

(0.0318)

1.7044

(0.0320)

1.6921

(0.0299)

1.7232

(0.0312)

1.7239

(0.0316)

	 1.5238

(0.2037)

1.3564

(0.2002)

1.5005

0.1410)

1.5042

(0.1470)

1.5028

(0.3154)

1.6503

(0.2706)

1.6536

(0.2786)

150 � 1.2119

(0.0118)

1.2406

(0.0143)

1.2256

(0.0117)

1.2243

(0.0116)

1.2215

(0.0134)

1.2074

(0.0113)

1.2067

(0.0114)

� 1.7210

(0.0214)

1.6824

(0.0212)

1.7061

(0.0214)

1.7065

(0.0216)

1.6877

(0.0205)

1.7110

(0.0210)

1.7119

(0.0212)

	 1.5427

(0.1525)

1.3986

(0.1540)

1.5285

(0.1201)

1.5310

(0.1250)

1.4873

(0.1915)

1.6195

(0.1751)

1.6079

(0.1830)



In view of the MSE values of the estimates, all Bayesian estimates under Prior-I demonstrate better

performance with smaller MSEs than the ML estimates. However, when n � 50 and under non-informative priors,

the ML estimates perform better than all Bayesian estimates. As the sample size n increases, the MSE values of the

ML estimates and the Bayesian estimates under Prior-II are close to each other. It is clear from Table 1 that

increasing of � does not affect the MSE values of estimates prominently. Nevertheless, according to Table 2 that if

� increases significantly, the MSEs of the estimates decrease apparently for the same sample size n.

In the context of the comparisons of confidence/credible intervals, it can easily be seen from Table 3 that the

ACLs based on BCIs of the model parameters under informative priors are significantly shorter than the ACLs based

on ACIs. Furthermore, the ACLs based on BCIs under non-informative priors provide shorter intervals according to
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Table 2 continued

1 2 3 4 5 6 7 8 9

200 � 1.2102

(0.0083)

1.2322

(0.0094)

1.2178

(0.0080)

1.2188

(0.0083)

1.2245

(0.0098)

1.2097

(0.0085)

1.2091

(0.0087)

� 1.7108

(0.0151)

1.6822

(0.0146)

1.7013

(0.0146)

1.7009

(0.0147)

1.6977

(0.0157)

1.7167

(0.0163)

1.7114

(0.0161)

	 1.5240

(0.0976)

1.4005

(0.1061)

1.5200

(0.0891)

1.5205

(0.0884)

1.4417

(0.1194)

1.5655

(0.1116)

1.5669

(0.1141)

� � 12. , � � 17. , 	 � 15. , � � 2, � � 15

50 � 1.2472

(0.0401)

1.2940

(0.0504)

1.2761

(0.0355)

1.2704

(0.0344)

1.2572

(0.0394)

1.2606

(0.0577)

1.2452

(0.0381)

� 1.7627

(0.0805)

1.6504

(0.0631)

1.7082

(0.0631)

1.7080

(0.0641)

1.7404

(0.0787)

1.6823

(0.0771)

1.7343

(0.0767)

	 1.5973

(0.4602)

1.2570

(0.3473)

1.4972

(0.2411)

1.5155

(0.2226)

1.5539

(0.4673)

1.5403

(0.8522)

1.7684

(0.6960)

100 � 1.2286

(0.0179)

1.2540

(0.0219)

1.2393

(0.0169)

1.2384

(0.0171)

1.2241

(0.0167)

1.2307

(0.0213)

1.2173

(0.0163)

� 1.7200

(0.0330)

1.6653

(0.0312)

1.7013

(0.0317)

1.7017

(0.0323)

1.7309

(0.0339)

1.6923

(0.0310)

1.7277

(0.0333)

	 1.5483

(0.2282)

1.3565

(0.2264)

1.5188

(0.1555)

1.5218

(0.1580)

1.5415

(0.2100)

1.4792

(0.3157)

1.6438

(0.2629)

150 � 1.2171

(0.0109)

1.2429

(0.0132)

1.2272

(0.0105)

1.2264

(0.0107)

1.2156

(0.0109)

1.2263

(0.0131)

1.2110

(0.0107)

� 1.7160

(0.0215)

1.6768

(0.0204)

1.7033

(0.0206)

1.7036

(0.0209)

1.7133

(0.0187)

1.6851

(0.0179)

1.7113

(0.0185)

	 1.5209

(0.1309)

1.3622

(0.1467)

1.5092

(0.1040)

1.5114

(0.1073)

1.5239

(0.1381)

1.4404

(0.1866)

1.5903

(0.1597)

200 � 1.2109

(0.0080)

1.2335

(0.0094)

1.2186

(0.0078)

1.2188

(0.0080)

1.2155

(0.0083)

1.2267

(0.0096)

1.2119

(0.0082)

� 1.7147

(0.0152)

1.6814

(0.0137)

1.7026

(0.0138)

1.7021

(0.0140)

1.7110

(0.0155)

1.6886

(0.0150)

1.7095

(0.0154)

	 1.5168

(0.0952)

1.3772

(0.1045)

1.5102

(0.0813)

1.5098

(0.0841)

1.5091

(0.0961)

1.4244

(0.1182)

1.5580

(0.1066)
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TABLE 3. Comparisons of ACL and CP of 95% CIs for All Parameter Settings

n Parameter ML Prior-I Prior-II

GS GS

ACL CP ACL CP ACL CP

1 2 3 4 5 6 7 8

� � 3, � � 1, 	 � 2, � � 1, � � 13.

50 � 2.2463 0.953 1.8908 0.947 2.0722 0.934

� 0.7330 0.954 0.6549 0.953 0.7023 0.940

	 3.0799 0.920 2.3619 0.946 3.2859 0.935

100 � 1.5302 0.948 1.3756 0.950 1.4229 0.934

� 0.5095 0.945 0.4735 0.932 0.4897 0.946

	 2.0406 0.946 1.7586 0.945 2.0355 0.939

150 � 1.2322 0.955 1.1236 0.949 1.1717 0.945

� 0.4153 0.950 0.3910 0.943 0.4011 0.932

	 1.6187 0.948 1.4855 0.944 1.5994 0.933

200 � 1.0605 0.960 0.9829 0.950 1.0010 0.946

� 0.3582 0.950 0.3389 0.944 0.3447 0.942

	 1.3789 0.954 1.2711 0.951 1.3585 0.945

� � 3, � � 1, 	 � 2, � � 1, � � 4

50 � 2.2008 0.944 1.8440 0.952 1.9999 0.934

� 0.7299 0.944 0.6507 0.942 0.6990 0.937

	 3.1634 0.921 2.3705 0.950 3.1778 0.933

100 � 1.4965 0.955 1.3365 0.947 1.3984 0.941

� 0.5091 0.958 0.4718 0.947 0.4881 0.930

	 2.0147 0.937 1.7424 0.940 1.9702 0.943

150 � 1.2073 0.950 1.0870 0.946 1.1409 0.935

� 0.4138 0.954 0.3875 0.946 0.3980 0.943

	 1.6190 0.945 1.4452 0.946 1.5453 0.935

200 � 1.0335 0.955 0.9519 0.947 0.9810 0.945

� 0.3555 0.955 0.3380 0.956 0.3427 0.940

	 1.3694 0.946 1.2562 0.942 1.3173 0.936

� � �3 , � � 17. , 	 � 15. , � � 2, � � 7

50 � 0.7502 0.944 0.6867 0.939 0.7116 0.944

� 1.0090 0.946 0.9506 0.959 0.9790 0.946

	 3.0032 0.924 2.1265 0.952 3.2026 0.948

100 � 0.5135 0.966 0.4807 0.958 0.4936 0.936

� 0.6915 0.950 0.6700 0.948 0.6815 0.955

	 1.8647 0.939 1.6035 0.952 1.9592 0.950



ACIs, except for the acceleration factor 	 at the sample size n � 50. It should be noted that for same n, the ACLs of

ACIs and BCIs decrease as the censoring value � increases.

In view of the CPs, the CPs of the ACIs are close the nominal value 0.95 in most of the cases apart from the

CPs of the ACI of 	 for n � 50. As the sample size n increases, it also approaches its nominal value. On the other

hand, the CPs of BCIs of the model parameters under Prior-I are more or less the same with the expected value. It

can also be seen that the CPs of BCIs under informative priors work quite well than their non-informative

alternatives.

Conclusions. In this study, we consider the classical and Bayesian estimation of SSPALT model under

type-I censoring when the lifetime distribution is IW. The ML estimates of the model parameters are obtained

numerically using iterative methods. The ACIs of the parameters of interest are constructed based on the asymptotic

distribution of the ML estimates. Furthermore, Bayesian estimates of the parameters are obtained under SEL function

based on informative and non-informative priors. In the context of informative priors, Gamma priors are used. Since

the Bayesian estimates cannot be obtained in explicit form, Lindley’s approximation and Tierney–Kadane

approximation and Gibbs sampling methods are used to compute these estimates, respectively. Also, BCIs are

constructed based on Gibbs sampling. We compare the performances of these methods via a Monte Carlo simulation

study. It is observed that the Bayesian estimates under informative priors outperform other ML estimates and

Bayesian estimates under non-informative priors.

Appendix 1

The second derivatives of log L � � with respect to � , �, and 	 are as follows:
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1 2 3 4 5 6 7 8

150 � 0.4154 0.950 0.3935 0.941 0.4004 0.937

� 0.5612 0.953 0.5474 0.944 0.5495 0.949

	 1.5198 0.940 1.3624 0.953 1.5338 0.939

200 � 0.3570 0.952 0.3427 0.942 0.3478 0.941

� 0.4821 0.947 0.4732 0.946 0.4782 0.945

	 1.2828 0.950 1.1863 0.945 1.2797 0.948

� � 12. , � � �35, 	 � 15. , � � 2, � � 15

50 � 0.7340 0.950 0.6653 0.940 0.6876 0.944

� 1.0159 0.948 0.9491 0.941 0.9762 0.941

	 2.9185 0.913 2.1435 0.957 3.0548 0.951

100 � 0.5044 0.955 0.4742 0.936 0.4851 0.943

� 0.6893 0.951 0.6689 0.945 0.6854 0.953

	 1.9082 0.933 1.6270 0.953 1.9336 0.945

150 � 0.4065 0.958 0.3881 0.943 0.3927 0.943

� 0.5594 0.952 0.5487 0.955 0.5520 0.956

	 1.4861 0.942 1.3490 0.948 1.4998 0.945

200 � 0.3511 0.945 0.3355 0.939 0.3409 0.945

� 0.4832 0.956 0.4724 0.955 0.4774 0.941

	 1.2739 0.950 1.1788 0.948 1.2628 0.946

Table 3 continued
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Appendix 2

The third derivatives of log L � � with respect to � , �, and 	 are as follows:
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Also, 41, 42 , and 43 are defined similarly as in Appendix 1.

Using the prior joint distribution (15), we obtain
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