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ABSTRACT 

Pseudomonas aeruginosa has been declared as one of the “six top priority dangerous microbes” 

and has also been classified as one of the six ESKAPE organisms with emerging clinical 

importance. The organism possesses a large plastic genome which is considered the base for its 

high physiologic diversity and high metabolic adaptability. Ps. aeruginosa shows extreme 

adaptability to colonize different habitats including hospital environments.  

Although equipped with extensive intrinsic resistance machinery that leads to basal levels of 

lower susceptibility to many antibiotics, a complete understanding of core resistance mechanisms 

is considered challenging. High-throughput methods that explore for system-level resistance 

including transcriptional profiling, mutant library screening, and experimental evolution have 

many technical drawbacks which make them unreliable to predict clinical resistance.  

In the thesis, a novel strategy has been adopted to mine for the system level antibiotic 

susceptibility determinants using a sequence-based integrated genomics approach that combines 

cluster analysis, predictive modelling, and comparative behavioral genomics. Combining the 

existing body of knowledge about resistance-associated variants and results of comparative 

behavioral genomics has resulted into a new way to understand resistance and to prioritize 

system elements contributing to resistance. This new knowledge is expected to offer promising 

diagnostic and therapeutic potentials.  

The approach has interrogated the whole physiologic system resulting in the identification of a 

new group of candidate resistance predictor markers and new combinations showing up to 90% 

better performance. The approach has also created a new understanding about the combinatorial 

quantitative contribution of different resistance mechanism to quinolones and aminoglycoside 

groups of antibiotics focusing on gentamycin, amikacin, ciprofloxacin, and levofloxacin. It has 

also highlighted some novel functional groups and genes that contribute to resistance. This 

knowledge could offer improved genome-based directed antibiotic treatment.   

Recent advances in sequencing technologies are expected to provide a rich information resource 

and a promising diagnostic platform. The new knowledge is capable of providing a base for rapid 

point-of-care antibiotic resistance diagnostic platforms, thus increasing the spectrum and 

informative value of some diagnostic panels in current use.  
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1.1. Antibiotic Resistance 

Bacterial resistance to antibiotics is an ancient feature in some bacterial populations. 

Environmental bacteria living in soil or other natural reservoirs with millions of other species 

must have evolved many components of resistance to naturally occurring antibiotics a long time 

before antimicrobials were introduced in clinical practice. These bacteria, especially when they 

are producers of antimicrobial compounds, have acquired or evolved resistance determinants for 

self-protection (Wright and Poinar, 2012). 

There is a growing interest in exploiting the pool of genes composing bacterial pan-genomes for 

the identification of novel functional determinants underlying antibiotic resistance. Novel 

functional resistance may arise from proto-resistance genes or silent resistance genes through 

mutations, changing gene expression, changing the degree of mobility, or changing allele 

frequency under modern-day selective pressure (Perry, Westman and Wright, 2014). The 

hypothesis of resistance arising from changes in the gene pool can be supported by several 

sources of evidence. One example is the ancient DNA analysis collected from the 30,000 years 

old Beringian Permafrost showing resistance genes for beta lactams, tetracycline, and 

glycopeptide antibiotics (D’Costa et al., 2011). Another example is the culturable four million 

years old isolates from isolated cave environments that showed phenotypic resistance to 14 

different antibiotics. Diverse resistance genes including novel ones have been identified in these 

isolates (Bhullar et al., 2012). Thorough investigation of the basic biology underlying evolution 

and spread of resistance in bacterial populations is fundamental for identifying determinants that 

may represent predictive potential for clinical resistance. 

The current problem of antibiotic resistance appears to be affected by two forces: first is the 

natural ecologic biologic or environmental part, second is the human-derived clinical force. The 

selective pressure exerted by human use of antimicrobials can originate from different sources. 

These include antibiotic use in medicine, its use in food, animal or fish production, and in 

agriculture. Compared to the natural ecologic force, clinical selection resulting from human use 

of antibiotics and antimicrobial compounds is considered much more recent (Baquero, Alvarez-

Ortega and Martinez, 2009).   



4 | P a g e  
 

Since the golden era of antibiotic discovery of penicillin in 1929 to the current post-antibiotic 

era, antibiotic drug discovery and development have passed through several stages (Lewis, 

2013). The first antimicrobials used preceding the golden era of penicillin relied upon synthetic 

molecule discovery. This included screening libraries of chemicals for selective antibacterial 

activity and these efforts have resulted in using salvarsan and the 'sulfa' drugs. The golden era 

then followed with penicillin discovery, and during that era, the discovery of natural products 

and whole-cell screens showed high success (Lewis, 2013).  

By the mid-sixties, the era of medicinal chemistry came about to form the next stage of antibiotic 

discovery and innovation. This involved the creation of synthetic versions of the preceding 

natural scaffolds with the aim of lowering the therapeutic dose or increasing the spectrum of 

activity. The approach has achieved success through improving the properties of previous 

compounds and fighting resistance. Although some efforts are currently directed to new agent 

development, this is considered challenging and is currently facing many hurdles in respect to 

experimentation, clinical trials and approval. In addition, resistance usually arises and rapidly 

spreads to most newly developed agents. This can be observed by reviewing most previous 

agents in the market. Reviewing the timeline of resistance appearance shows that resistance 

arises shortly after the introduction of each new drug (Lewis, 2013).  

Consequently, extending the life of available antimicrobial agents can be considered the easiest 

approach to tackle the problem. This can be achieved through improving the prescription of the 

currently available antibiotics which requires giving the right antibiotic to the right patient in the 

right dose (Liu et al., 2019). In most clinical settings, physicians have long been unaware about 

the concept of proper prescription especially in patients with critical conditions and those in the 

intensive care units (ICUs) (Teixeira Rodrigues et al., 2013). They depend on the empiric use of 

broad-spectrum antibiotics being considered as  “the most powerful option that works for all 

suspected infections”. This results in over-prescription which makes the problem more 

complicated because such a practice would select for resistant strains that otherwise could have 

remained susceptible. Another example of poor clinical practice is the improper prescription of 

last line agents or 'reserve agents', a practice that would deplete the antimicrobial reserve needed 

for proper future and necessary use (García et al., 2011). Data from the CDC Newsroom show 

that 1 in 3 antibiotic prescriptions is unnecessary and that at least 30% of antibiotics prescribed 
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in the united states are unnecessary with goals set to reduce unnecessary use by 2020 according 

to Fleming-Dutra et al., (2016). However, the problem is still of rising concern according to the 

latest antibiotic resistance CDC report (US CDC, 2019). A recent study from China has also 

shown that the problem of inappropriate antibiotic use is still existent in pediatrics wards 

including over-prescription and overuse of parenteral administration (Miao et al., 2020). Another 

recent study showed that nearly 45% of antibiotics prescribed over a 10-year period were given 

out for no clear clinical reason (Fischer et al., 2020). Decreasing the widespread superfluous 

overuse of antibiotics requires an exhaustive policy. This should include improving stewardship 

programs and regulations in addition to discovering and optimizing well-functioning rapid 

diagnostics suited for different types of infections.  

1.2. Social, economic, and health-care related impact of antibiotic resistance 

The WHO report showed that the yearly cost of antimicrobial resistance problem to the US 

health system alone has been estimated at $21 to $34 billion, with the additional cost of more 

than 8 million additional days of hospital stay (WHO, 2016). The review on antimicrobial 

resistance (2014) by Jim O’Neil showed that antibiotic-resistant infections cause at least 50,000 

deaths per year in Europe and the US alone, with many hundreds of thousands in other areas of 

the world which have not been accurately reported. The continued rise in resistance is predicted 

to kill 10 million people every year by the year 2050. Three hundred million people are expected 

to die prematurely in the following thirty-five years if the current problem of resistance is not 

handled effectively (O’ Neil, 2014).  

It is also estimated that there will be around 60 to 100 trillion USD economic losses if the 

antimicrobial resistance problem is not tackled effectively. Also, deaths attributable to 

antimicrobial resistance are estimated to be around 390,000 in Europe, 317,000 in North 

America, 4,150,000 in Africa and about 4,730,000 in Asia by the year 2050 (O’ Neil, 2014). 

National summary data from the CDC report 2013 in the US have also shown that antibiotic 

resistance causes at least 2,049,442 illnesses and 23,000 deaths in the US (Centers for Disease 

Control and Prevention, 2013). 

The antibiotic resistance problem is affecting all the modern areas of medicine including cancer 

chemotherapy, end-stage renal disease patients on dialysis, bone marrow and organ transplant 

patients, and all types of surgeries. Cancer patients on chemotherapy being immunocompromised 
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are more susceptible to serious infections and the lack of proper treatment may lead to serious 

complications and death. Besides, complex surgeries including cardiac bypass, joint 

replacements, and other major surgeries may need pre-operative antibiotic prophylaxis in some 

cases or may be complicated with surgical site infections compromising the whole process and 

leading to post-surgical failure as a result of the infections caused by resistant pathogens. End-

stage renal disease patients on dialysis are also more susceptible to serious bloodstream 

infections. The success of organ or bone marrow transplants also depends greatly on the ability 

to effectively treat resistant bacterial infections. 

1.3. Pipeline of new drug introduction and emergence of resistance 

It has been predicted since the discovery of penicillin that resistance will arise to antibiotics as a 

normal biologic evolutionary mechanism. However, this has been much accelerated through the 

selective pressure exerted by clinical and environmental misuse of these drugs. Alexander 

Fleming warned that bacteria could become resistant to that remarkable discovery in his Nobel 

prize speech in 1945 (Ventola, 2015). 

This has later become evident through the timeline of resistance development following the 

introduction of each antibiotic class into clinical practice. We are now facing an antibiotic 

discovery void as reported by Fischbach and Walsh, (2009) who showed that no major classes of 

antibiotics were introduced between 1962 and 2000 referring to this as 'innovation gap' 

(Fischbach and Walsh, 2009). Except for carbapenem introduction in 1985, all antibiotics 

introduced between the 1960s and 2000 were synthetic derivatives of the commonly used 

scaffolds (or core structure). Developing antimicrobial agents was based on few scaffolds with 

many generations (Fischbach and Walsh, 2009). Even some of the more recently approved drugs 

show some limitations and are developing resistance or cross resistance to some previous agents. 

This consequently necessitates directing efforts of new agent development towards the discovery 

of new classes rather than to chemically modify existing ones. This can be achieved through 

mining unexplored natural products and through screening for new synthetic molecules. 

However, this approach is not considered the most effective and does not offer the most rapid or 

the best practical solutions.  
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1.4. Approaches and initiatives to address antibiotic resistance (WHO, 2016) 

 

1.4.1. Some WHO Initiatives  

In the 2016 WHO global surveillance report, a strategy was proposed to achieve containment of 

antimicrobial resistance. The strategy includes: 

1) Prioritizations of diseases that need intervention and that included bacterial infections other 

than tuberculosis.  

2) Identification of core sets of interventions for national implementation.  

3) Effective implementation including a clear action plan, authority delegation, resource 

assignment with clear mechanisms for intervention and monitoring of the outcome. 

4) Commitment to an all-inclusive national plan with the responsibility and the engagement of 

civil society and this includes: 

• Establishment and consolidation of surveillance and laboratory capacity.  

• Ensuring the ongoing access to necessary medicines of guaranteed quality.  

• Ruling and advancement for the rational use of medicines, including its use in animal 

husbandry, and safeguarding appropriate patient care.  

• Enhancing infection prevention and control.  

• Nurturing innovation in research and development.  

5) Improving attentiveness and understanding of antimicrobial resistance through operative 

communication, education, and training.  

6) Solidification of knowledge and evidence base through surveillance and research. 

7) Reducing the incidence of infection through effective sanitation, hygiene, and infection 

prevention measures.  

8) Improving the use of antimicrobial medicines in human and animal health.  

9) Mounting the economic case for maintainable investment that takes account of the needs of all 

countries and that increase investment in new medicines, diagnostic tools, vaccines, and other 

interventions. 
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1.4.2. The CDC report on antimicrobial resistance threat in the United States (2013)  

This report has recommended four actions for the problem including: 

1) Preventing infection to prevent the spread of resistance which includes following the general 

and specific prophylaxis including general hygiene, hand washing, safe food preparation, and 

immunization. This aims at decreasing the incidence of infection and consequently decreasing 

antibiotic use and development of resistance.  

2) Tracking and surveillance. This includes data gathering which can then be used to guide and 

develop relevant strategies.  

3) Improving antibiotic prescription and stewardship which includes stopping the inappropriate 

and unnecessary use of antibiotics, a step listed as the most important in managing the problem.  

4) Developing new drugs and diagnostic tests. 

(Centers for Disease Control and Prevention, 2013) (Centers for Disease Control and Prevention, 

2018). 

 
1.4.3. The state of the world's antibiotic report by the center for disease dynamics and 

economics 

This report has suggested six strategies for successful national policies which include:  

1) Reducing the need for antibiotics by reducing the burden of infectious diseases requiring 

antibiotic. This can be achieved through improving vaccination coverage, improving access to 

clean water, safe and healthful food supply and improving sanitation in order to improve the 

health and well-being of people in general.  

2) Improving hospital infection control and antimicrobial stewardship programs.  

3) Changing the incentives that encourage antibiotics overuse and misuse which mainly affect 

hospitals, health care providers and pharmacists.  

4) Reducing and abolishing antibiotic use in agriculture and aquaculture. 

5) Educating and informing health care professionals and policy makers about rational antibiotic 

use.  

6) Ensuring political commitment to address antibiotic resistance by generating local interest and 

pressure of the health care professionals and the public so that policy makers can allocate time 

and resources to design and implement strategies that promote rational use of antibiotics. 

(Hellen Gelband et al., 2015). 
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1.4.4. The review on antimicrobial resistance chaired by Jim O’Neill (May 2016)  

This final report has highlighted 10 important approaches towards solving the problem which 

include: 

1. A massive global public awareness campaign. 

2. Improving hygiene and preventing the spread of infection. 

3. Abolishing the needless use of antimicrobials in agriculture and their dissemination into the 

environment. 

4. Improving universal surveillance of drug resistance and antimicrobial utilization in humans 

and animals. 

5. Promoting new, rapid diagnostics to cut unnecessary use of antibiotics. 

6. Promoting the development and use of vaccines and alternatives. 

7. Improving the quantitative and qualitative capacity of people working in infectious disease. 

8. Launching a Global Innovation Fund for early-stage and non-commercial research. 

9. Better motivations to promote developing new drugs and to advance existing ones. 

10. Building a global coalition for real action. (O’Neill, 2016). 

1.5. Mechanisms and origins of bacterial resistance to antibiotics  

Bacterial resistance to antibiotics can be classified into intrinsic or innate resistance and acquired 

resistance. Intrinsic resistance means that the bacteria have certain inherent structural or 

functional characteristics that lead to resistance to a single agent or group of agents irrespective 

of prior antibiotic exposure. On the other hand, acquired resistance can originate from the 

acquisition of resistance genes or from chromosomal DNA mutations or from both effects (Blair 

et al., 2015).  

Acquisition of resistance genes is mediated by transferable genetic elements including plasmids, 

transposons, and integrons. Although mutations in bacteria are rare, one in the population of 106 

to 108 microorganisms, these spontaneous mutations, resulting from errors in chromosomal 

replications or incorrect repair of damaged DNA, can be responsible for clinically functional 

resistance to antibiotics.  

Bacteria can acquire resistance to antibiotics through five basic mechanisms. The first two 

mechanisms result in decreasing the intracellular concentration of the antibiotic either by 

decreasing antibiotic penetration inside cells preventing antibiotic access to its targets or by 
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increasing efflux of the drug outside the cell. Efflux pumps are a group of transporter proteins 

with several families responsible for pumping out drugs or toxic materials outside the bacterial 

cell and they vary widely in their substrate specificity (Webber and Piddock, 2003). Other 

resistance-underlying mechanisms include protection or modification of antibiotic targets, 

mutations changing antibiotic targets and direct inactivation of antibiotics through hydrolysis or 

modification (Blair et al., 2015). 

1.6. Why it is important to understand intrinsic antimicrobial resistance? 

Although antibiotic resistance is traditionally considered an acquired trait in previously 

susceptible bacteria, it is crucial to differentiate species-specific intrinsic bacterial resistome 

from acquired resistance genes or mutations in formerly susceptible bacteria. The intrinsic 

resistome is defined as the group of chromosomal genes involved in intrinsic resistance  which 

presence is independent of  previous antibiotic exposure and is not due to horizontal gene 

transfer (Fajardo et al., 2008). 

Being characterized by a large degree of non-specificity, investigating intrinsic resistance is 

considered challenging especially in Ps. aeruginosa. In addition to the specific well-known 

mechanisms of resistance, intrinsically resistant bacterial species carry what is called  

“physiology-dependent” resistome (Fajardo et al., 2008). The greater part of research studies on 

antibiotic resistance lacks clarity of differentiation between intrinsic resistance and acquired 

resistance. The contribution of intrinsic system properties to overall resistance is usually not 

explored. Although important and frequently well-studied, acquired resistance cannot be 

considered an original or a stable robustly predicted character to be considered as an essential 

contributor to species behavior. A reason why, the thesis has focused on the assessment of 

intrinsic chromosomal resistance mechanisms rather than acquired mechanisms of resistance. 

1.7. Pseudomonas aeruginosa  

1.7.1. An environmental pathogen with intrinsic resistance 

Ps. aeruginosa is a prominent example of intrinsically resistant bacteria with an environmental 

origin. The physiologic elements underlying resistance are necessary for the fitness of the species 

in their natural habitat and can be considered an evolutionary ancient phenotype (Alonso, 

Sánchez and Martínez, 2001). Intrinsic resistance in soil-dwelling bacteria is an ancient 
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component that predates the clinical use of antibiotics. An example of that are strains of Ps. 

aeruginosa isolated from non-clinical environments dating back before the discovery of the 

synthetic quinolones group of antibiotics and exhibiting resistance to this group (Alonso, Rojo 

and Martínez, 1999). This property becomes problematic when transmitted to the clinic. In 

addition to being pathogenic, they carry additional potential to transmit some resistance-related 

elements to other clinically important bacterial species (Forsberg et al., 2012). Opportunistic 

pathogens may show similar characters of pathogenicity, multidrug resistance, and substrate 

utilization that are similarly observed in both environmental isolates and in clinical isolates 

(Alonso, Rojo and Martínez, 1999). Strains of Ps. aeruginosa from both clinical and 

environmental origins have shown to be similar at the genomic level in different studies 

(Wiehlmann et al., 2007). A study investigating the intrinsic resistome in Ps. aeruginosa 

concluded that intrinsic resistance phenotype requires the combined action of several genes 

encoding basic functions in cell physiology and that the capacity of this organism to acquire 

higher levels of resistance can result from complex network interactions among several bacterial 

proteins (Fajardo et al., 2008). 

Although the resistome of Ps. aeruginosa has been investigated in different studies, there is a 

lack of satisfactory explanation and complete understanding about system-level determinants of 

resistance. The research done to date on Ps. aeruginosa resistance determinants has not been able 

to determine the relative importance or the quantitative contribution of different chromosomal 

mechanisms of resistance. Our knowledge about the chromosomal basis of resistance is still 

growing. It can significantly advance with the increasing availability of the huge numbers of 

sequenced genomes that form a new valuable resource for research and discovery. However, the 

relative contribution and the extent to which both well-established and other yet undiscovered 

mechanisms contribute to phenotype remains poorly understood and this was a main gap in the 

knowledge that the thesis aimed to investigate in more detail. 

1.7.2. Pseudomonas aeruginosa: The clinical pathogen 

Ps. aeruginosa has been declared as one of the “six top priority dangerous microbes” by the 

infectious disease society of America since 2006 and is still among the list of the most worrying 

pathogens. According to CDC 2013, MDR Ps. aeruginosa was classified as a serious public 

health threat and is still classified among the organisms with serious threats according to the 



12 | P a g e  
 

latest CDC antibiotic resistance threat report 2019. It is estimated that 51,000 cases of infection 

exist each year. It is not considered among the urgent threats but it may worsen and becomes 

urgent without ongoing monitoring and prevention activities (Centers for Disease Control and 

Prevention, 2013) (US CDC, 2019). 

Ps. aeruginosa is one of the Gram-negative bacteria currently causing serious hospital-acquired 

infections with very few treatment options (Oliveira et al., 2015). The organism has been 

classified as one of the six ESKAPE organisms with emerging clinical importance. This group of 

organisms has long been known as responsible for the majority of nosocomial infections and are 

capable of escaping the action of antimicrobial agents (Pendleton, Gorman and Gilmore, 2013). 

The organism has been prevalent especially in intensive care units, in patients with critical 

conditions, and in burn units. It can also cause a variety of life-threatening conditions including 

complicated urinary tract infections, ventilator associated pneumonia, and bacteremia. It is also 

associated with other infections including lung cystic fibrosis, eye infections, and ear infections. 

Epidemiology of MDR Gram-negative bacilli has been changing over the last two decades. 

There has been a 5% increase from 17% to 22% in the frequency of Ps. aeruginosa in intensive 

care units as reported by some authors in the period between 2000 and 2008 (Kallen and 

Srinivasan, 2010). A study that reported the organisms isolated from a large tertiary care hospital 

in the period between 2000 and 2008 showed that 28.7% of isolated organisms were Ps. 

aeruginosa (2,700 cases). It ranked second to Acinetobacter baumannii in its frequency of 

isolation (36.2% of isolates) (Oliveira et al., 2015). 

In the United States, several studies have reported the prevalence of MDR Ps. aeruginosa to 

range between 10-14 % (Karlowsky et al., 2003) (Karlowsky et al., 2005). In Europe, the 

prevalence of resistance varied between 3-50 % as reported in some earlier studies (Gales et al., 

2001) (Goossens, 2003). In multiple countries of Asia and the Pacific, prevalence of resistance 

was lower during the same period and ranged between 1.6-6.9 % (Tsuji et al., 2005) (Gales et 

al., 2001) (Raja and Singh, 2007). A more recent study has reported an increase in resistance rate 

to different antibiotic agents from 25 % to reach 37 %  in the period between 2013-2015 (Lila et 

al., 2017). Another study in China reported an increase in the percentage of Ps. aeruginosa 

isolates in the period between 2007 to 2014 from 10 % to 26 % to represent the most commonly 

isolated type of Gram-negative pathogens coming only second to Enterococcus fecalis from the 



13 | P a g e  
 

Gram-positive group of pathogens. The same study also reported a significant increase in the 

percentage of MDR isolates from 64% to reach 89.87% in the period between 2007-2014 (Dou et 

al., 2017). 

1.7.3. The challenging nature of Ps. aeruginosa species 

The high diversity of physiologic traits observed in Pseudomonas species is mainly due to its 

high metabolic adaptability, its ability to use peripheral metabolic pathways, and its possession 

of a large plastic genome that shows frequent recombination and acquisition of accessory 

elements that allow its adaptation to different ecologic changes. Ps. aeruginosa is considered an 

epitome of opportunistic infections having the ability to infect tissues with compromised defense 

mechanisms. It can colonize a broad spectrum of habitats and can exploit different nutritional 

sources with high capability for adaptation to environmental changes. Ps. aeruginosa has 

minimum nutritional requirements and can grow well at 37 ℃ and also at wide range of 

temperatures ranging between 4 ℃ and  42 ℃ (Jensen et al., 2004). Ps. aeruginosa can produce 

a polysaccharide, alginate, and can develop biofilms which help to protect against phagocytosis 

and allow it to multiply inside tissues. Ps. aeruginosa strains are highly resistant to 

antimicrobials and can grow in some hospital disinfectants. It is known to be associated with a 

wide range of nosocomial infections and can colonize various hospital devices such as catheters 

and bronchoscopes. Ps. aeruginosa is also a source of septicemia in burn wound injuries, urinary 

tract infections in catheterized patients, and pneumonia in patients on respirators. It is also a 

predominant cause of morbidity and mortality in patients with lung cystic fibrosis. 

1.7.3.1. The genome of Ps. aeruginosa 

Ps. aeruginosa possess a relatively large genome when compared to most other sequenced 

bacterial species. The genome size of Ps. aeruginosa strains falls in the range of 5.5–7 Mb with 

the average size of 6.52 Mb which is considered one third longer than that of E. coli (4.6 Mb) or 

of B. subtilis (4.2 Mb). Genome Sequencing has offered a better understanding about the 

diversity of the species. The genomes of Pseudomonas spp. show a highly mosaic structure 

composed of a relatively stable core region interspersed with variable regions, probably acquired 

through horizontal gene transfer, and accounting for plasticity of the genome (Klockgether et al., 

2011). Ps. aeruginosa has less genome diversity when compared to other species such as 

Streptococcus agalactiae and Haemophilus influenzae (Tettelin et al., 2008) which are known to 
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have more genomic diversity. Among Ps. aeruginosa strains, only about 10 % of genes vary and 

the rest are homologues. Earlier studies have shown the core genome of Ps. aeruginosa to be of 

5.84 Mb in size representing 89.7 % (range 86.4 % - 93.3 %) of the total genome. Core genome 

was initially predicted to contain 5316 predicted genes accounting for 90 % out of 5892 total 

coding sequences in PA14 and 5570 predicted genes accounting for 95 % out of the total coding 

sequences of PAO1 (Ozer, Allen and Hauser, 2014). In other earlier studies, the core genome 

was defined at 5233 orthrologs which represented ~88 % of the average genome (Valot et al., 

2015). The predicted core genome was shown to vary between  4455 to 5316 genes in some 

studies (Grosso-Becerra et al., 2014) (Ozer, Allen and Hauser, 2014). In other studies, the 

pangenome of Ps. aeruginosa was estimated to contain about 16,820 non-redundant genes with 

15 % (2503 genes) constituting the core genome which is notably lower than previous studies 

(Mosquera-Rendón et al., 2016). Other studies using clinical strains of Ps. aeruginosa from 

different geographic locations and different types of infections showed a core genome to be 

composed of 4910 genes (Subedi et al., 2018). Other more recent studies have predicted the core 

genome of Ps. aeruginosa to be composed of 665 genes (constituting only 1 % of the entire pan-

genome which was shown to consist of 54272 genes) (Freschi et al., 2019). Authors show that 

the reason for that is attributable to the number of isolates used in earlier studies which was an 

order of magnitude lower than the data set used in their study. The isolates have also shown to 

include all five Ps. aeruginosa phylogenetic groups. However, the reason for these different 

findings may originate from fully automated informatics and non-manual consolidation. This 

may also result from fixed length/identity criteria, improper selection of strains or poor 

compensation of sequence errors. Other recent studies have shown the core genome to consist of 

5109 protein-coding genes with defining a set of 321 genes as the core essential genes 

representing only 6.6 % of the genome (Poulsen et al., 2019).  

1.7.3.2. Extensive metabolic adaptability in Ps. aeruginosa 

Ps. aeruginosa is a highly adaptable organism with the ability to use over 80 different organic 

compounds as energy and carbon sources (Singh, Saini and Kahlon, 2016). The genus 

Pseudomonas containing a gene pool up to 6396 predicted genes has the ability to converge wide 

array of organic compounds ranging from simple sugars to complex aromatic hydrocarbons 

using species-specific peripheral metabolic pathways. Using their peripheral metabolic 



15 | P a g e  
 

pathways, Pseudomonads can degrade and utilize a broad range of toxic and non-toxic 

compounds. The genus also has the potential to produce a wide array of secondary metabolites 

including various biomolecules, biosurfactants and antimicrobial compounds. These properties 

are considered instrumental in allowing the species to compete with other populations in the 

ecosystem making members of this genus one of the most successful and abundant organisms on 

the earth (Singh, Saini and Kahlon, 2016). Pseudomonads have a flexible metabolism that is 

mostly respiratory/aerobic, however, Ps. aeruginosa may grow in the absence of O2 by using 

nitrate as terminal electron acceptor. Virulence of Ps. aeruginosa as an opportunistic pathogen 

and its ability to form biofilm-like microcolonies in cystic fibrosis lungs has been linked to its 

denitrification capabilities (Singh, Saini and Kahlon, 2016). 

1.8. Different approaches used to globally investigate antimicrobial resistance 

New resistance-underlying genes/gene variants and functional pathways modifying susceptibility 

to antibiotics are being increasingly discovered (Breidenstein et al., 2008). Different functional 

and genomic methods have been used to mine for the basis of microbial resistance. Functional 

metagenomics is one of the techniques developed to mine metagenomes directly without the 

need for culture (Sommer, Dantas and Church, 2009). It involves extracting total metagenomic 

DNA from a microbial community, shearing genomic DNA to target size and shotgun cloning of 

the fragments into expression vectors. This is followed by phenotypic testing of the expression 

library. The method is considered superior to other methods based on alignment to reference 

databases because it enables the discovery of novel elements from diverse microbiomes and is 

independent of prior knowledge of resistance function (Pehrsson et al., 2013). However, 

metagenomic libraries are not capable of identifying combinatorial antimicrobial resistance 

requiring the combined presence of multiple genes (Schmieder and Edwards, 2012).  

“Molecular padlock probes” is another example of a function-based method for resistance 

discovery (Mezger et al., 2015). The method was used to predict susceptibility profiles in the 

patients’ clinical samples. In this method, the microbial community is exposed to an 

antimicrobial of interest for a short duration of time. Metagenomic DNA is then extracted and 

mixed with oligonucleotides to capture and detect the gene sequence. DNA copy number is 

compared before and after exposure to antibiotics. If copy number increases following exposure, 

this indicates resistance. Although this method was effectively used by clinicians to prescribe 
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antibiotics for some uro-pathogens, it is considered as a targeted method because it can only 

detect some resistance elements which are carried on the probe and cannot be used to 

characterize novel resistance genes (Mezger et al., 2015). 

On the other hand, “Sequence-based methods” for resistance discovery using antibiotic 

resistance databases is another alternative approach used to mine for microbial resistomes. This 

approach is based on BLASTing query sequences of interest against specific databases in order 

to catalog the antimicrobial resistance gene content of the genome or the metagenome as a 

general principle. This approach suffers many practical and theoretical limitations as will be 

addressed in detail later in Chapter 2. Different research approaches have been used to globally 

investigate for antimicrobial resistance (Adu-Oppong, Gasparrini and Dantas, 2017) including 

transcriptional profiling, experimental evolution, and mutant library screening. These will be 

briefly described in the following sections. 

1.8.1. Transcriptional profiling 

Microarray studies can provide a snapshot of the genome-wide response of an organism to the 

surrounding environment where bacterial transcriptome or genome-wide expression profiles can 

show bacterial response to antibiotic exposure (Michelle D Brazas and Hancock, 2005). 

However, these changes are so complex and can include directly related as well as other less 

related changes. There are different types of expression responses resulting from antibiotic 

exposure. The first type represents changes resulting as a direct consequence of target inhibition 

by antibiotic. The second includes other genes that are indirectly related to resistance but can be 

triggered as a result of target inhibition. The third type of genes are secondary effects which 

occur downstream of inhibited targets. These have no particular role in antibiotic action and 

consequently may not affect the fate of antibiotic-treated bacteria. The fourth type is the 

bystander effect that occurs in generally unrelated genes (Michelle D Brazas and Hancock, 

2005). This complexity of expression responses can be significantly challenging for conclusive 

interpretation. Also, not all cellular functions are regulated at the expression level, the fact that 

limits the usefulness of this approach when used separately to draw conclusions. 

Genome-wide expression studies used to globally investigate antimicrobial resistance did not 

show to be a good predictor for antimicrobial resistance (Murray et al., 2015). The underpinning 

principle of using this approach is summarized in examining genes differentially expressed in the 
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presence of sub-inhibitory levels of antibiotics. This can provide insights into some intrinsic 

resistance-related factors. However, it has a major drawback of inconsistent physiology which 

may result from undefined growth media or different growth conditions, the fact that makes it 

difficult to compare different studies. Exposure to sub-inhibitory concentrations of 

antimicrobials can slow bacterial growth which may lead to a shift of determinants towards 

general growth mediated ones (Cirz et al., 2006). An example is the shift in expression pattern 

on exposure to inhibitory concentrations of ciprofloxacin towards inducible polymerases (Cirz et 

al., 2006). 

Microarray was used to characterize the response of Ps. aeruginosa to ciprofloxacin where 941 

genes showed statistically significant differential expression to 0.3 MIC (M. D. Brazas and 

Hancock, 2005). Although hundreds of genes were induced or repressed on exposure to 

inhibitory and sub-inhibitory concentrations of antibiotics (Morita, Tomida and Kawamura, 

2014), the responses resulting from microarray studies can reflect bacterial cell adaptation to 

stress which may reflect experimental conditions rather than real clinical exposure. Results of  

microarray analysis examining expression responses to inhibitory, sub-inhibitory, and lethal 

concentrations of tobramycin support that. Kindrachuk et al., (2011) showed that the drug 

concentration used has significantly affected the types of genes involved as well as the level of 

gene expression. Genes involved were either providing short term immediate protection or long 

term more sustained protection and these findings varied with different drug concentrations used 

(Kindrachuk et al., 2011). Murray et al., (2015) suggested in their study that fitness profiling in 

combination with gene expression profiles are considered a better approach towards identifying 

antimicrobial fitness determinants. The approach offers the advantage of avoiding technical 

faults related to experimental conditions. Experimental profiles may not reflect real differential 

profiles because they can result from the adaptive prediction process of the bacteria to growth 

environment and they can also result from the pooled nature of the experiment leading to 

interaction between individual mutants and consequently net community-based resistance.  

The analysis of global patterns of gene expression has been transformed through high-throughput 

sequencing which enabled RNA-seq to replace microarray (Davey and Valdivia, 2020). RNA 

sequencing has been used as a general approach for gene expression profiling and especially for 

defining transcripts boundaries and operons. It also has the ability to identify novel transcripts 
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including small non-coding RNA molecules and anti-sense RNA (Sharma and Vogel, 2014). In 

addition, it provides information on transcriptional start sites, untranslated regions of mRNA 

genes, open reading frames or sRNA genes which could improve genome annotations. In 

addition, it has been used to study RNA-protein complexes (König et al., 2012). Multiple 

methods have been used including RNA-seq with ONT and cDNA sequencing with SMRT. 

SMRT-Cappable-seq has been developed to isolate unfragmented primary transcript with long 

read sequencing and showed potential in revealing complex operon variants in bacteria thus 

enabling detailed analysis of prokaryotic network regulation (Yan et al., 2018). Illumina 

sequencing of cDNA with higher depth coverage is now considered an important approach to 

provide detailed transcriptional profiling and gene regulation information. Expression of mRNA 

and small RNA can also be studied during infection with the ability to study the differential 

regulation of bacterial and host transcripts using dual RNA-seq (Ritchie and Evans, 2019). 

Achieving higher sequence depths has enabled the better understanding of the dynamics of 

infections in multiple organisms (Davey and Valdivia, 2020). Quantifying the expression of 

transcriptional features has been mainly used to define operons including promotors and 

terminators. However, precise analysis is a critical step needed to maximize the value of 

obtaining high-quality information including promotor motif analysis and RNA polymerase 

binding assay (Creecy and Conway, 2015). Although bacterial transcriptomics offer a new 

potential of revealing new ways of host-pathogen interaction and for the understanding of 

networks underpinning metabolic regulation, comparisons of bacterial metabolic pathways in 

cultured, in vitro growth conditions versus in vivo animal host models becomes essential (Chan 

et al., 2019). Although messenger RNA could provide valuable information about the metabolic 

processes in microorganisms and about microbial community dynamics, many limitations are 

usually encountered on using that approach in general. These limitations essentially originate 

from the rapid decay and turn-over time of mRNA, very short RNA half-life times and the poor 

correlations between mRNA and protein levels. All these factors together with the complex 

mechanisms governing RNA degradability and instability can raise concerns about its 

application for activity profiling especially in environmental and also in clinical samples (Steiner 

et al., 2019). 
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1.8.2. Mutant library screening 

Transposon-Mutant library screening is a systematic approach used to gain a detailed 

understanding about all single-gene dependent mechanisms underlying bacterial resistance to 

antibiotics. It has helped to uncover unknown genetic determinants of resistance in Ps. 

aeruginosa with the identification of genes whose inactivation sensitizes bacteria to a broad 

spectrum of antimicrobial agents (Dötsch et al., 2009). Although this approach is global and is 

applied at the whole genome level, it is far from being comprehensive. The first reason lies in 

being limited to identifying non-essential genes. Another important drawback is the probability 

of missing small mutational events in addition to combinations of mutations leading to resistance 

(Dötsch et al., 2009). Screening mutant libraries has identified a large ciprofloxacin resistome in 

Ps. aeruginosa including more than 100 genes. It is also unknown whether resistance identified 

using this approach reflects clinically significant resistance or not. However, identified elements 

can provide a hypothesized candidate gene pool that may have an influence on antibiotic 

susceptibility (Breidenstein et al., 2008) with lack of evidence about their practical or clinical 

significance. Transposon Directed Insertion Sequencing (TraDIS) can be used to analyze the 

contribution of every gene in the genome to fitness in a particular environment. TraDIS allows 

the identification of essential genes through allowing large scale competition of millions of 

single-transposon mutants. First, a library containing thousands of individual transposon 

insertions at different insertion sites within each gene is constructed and sequenced to determine 

the specific location and frequency of insertions into each gene. The library is then cultured 

under the specific condition under study and re-sequenced to determine the positions and 

frequencies of transposons in the final population (Langridge et al., 2009). Mutants in genes 

required for growth under particular stress condition will not grow or will poorly grow and thus 

the gene will be identified as conditionally essential. Other mutants may show relatively 

improved growth which may indicate that gene inhibition has provided some fitness advantage. 

This would then help to identify genes that may be required for growth under certain conditions 

or those that may provide some fitness advantage for the condition tested. However, results from 

TraDIS can show inconsistencies in the number of genes considered essential and this may result 

from insertion location or frequency bias. This consequently necessitates determining the 

difference between truly essential genes and conditionally essential or non-essential genes 

(Goodall et al., 2018).  
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1.8.3. Experimental evolution 

Experimental evolution is another approach used to understand antibiotic resistance evolution 

and fitness in Ps. aeruginosa (Cabot et al., 2016). It involves exposing the organism to 

increasing concentrations of antibiotics and using genome sequencing information to compare 

wild type to mutated strains in controlled laboratory populations (McDonald, 2019). As opposed 

to transposon-mutant library screening, the approach can give clues about biologic fitness and 

costs of different genetic events where transposon-mutant library screening shows bias and does 

not allow studying the functional modifications in essential and non-essential genes. In addition, 

information obtained from mutant-library screening is restricted to single genetic events and 

consequently does not have the potential to show competition between emerging variants. 

In a study using experimental evolution to perform a comparative analysis of the evolution of 

antibiotic resistance in Ps. aeruginosa mutator phenotypes, the approach has identified 

mutagenic signatures associated with resistance to different antibiotics which also showed 

correlations between genotype and antibiotic resistance phenotype. Identified mutations included 

mutations in some classically established pathways in addition to other newly identified  

pathways (Cabot et al., 2016).The most important point that needs consideration when using this 

approach is that evolutionary trajectories may not be the same in-vivo when compared to results 

of in-vitro evolutionary experiments. Also, candidate evolutionary trajectories need to be 

investigated in strains with different genetic backgrounds (Cabot et al., 2016) (McDonald, 2019). 

Consequently, using this approach independently is not recommended and should be used as a 

complement to studying evolution in clinical isolates. Genomics of the evolutionary adaptation 

on exposure of Ps. aeruginosa to ciprofloxacin have been studied. Genome sequencing of 

evolved isolates showed a parallel evolution of some known resistance genes which correlated 

with different levels of resistance (Wong, Rodrigue and Kassen, 2012). However, other 

mutations that co-occurred with other known stereotypic mutations have conferred higher 

resistance levels suggesting the importance of mutations that compensate for resistance cost. 

Another limiting factor that also affects conclusions drawn from these experiments is the 

concentration of antibiotics used and the length of exposure needed before an effect is measured 

and analyzed. Sub-inhibitory concentrations have led to phenotypic evolutionary changes in Ps. 
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aeruginosa population (Høiby et al., 2016) and this showed to be affected by the length of 

exposure resulting in different immediate and long-term effects.  

1.9. Previous investigation of quinolone resistance in Ps. aeruginosa  

1.9.1. Mechanism of quinolones action 

Quinolones and fluoroquinolone antibiotics are considered one of the most commonly prescribed 

classes of antibacterial agents for the treatment of a wide range of infections (Correia et al., 

2017) (Martínez, 2019). These agents have been increasingly used in clinical as well as 

veterinary settings since the 1990s (Aldred, Kerns and Osheroff, 2014). Quinolones target 

mainly DNA gyrase and topisomerase Ⅳ with varying efficiencies in different bacterial species 

(Drlica et al., 2009) (Martínez, 2019). The quinolone cell targets are the essential enzymes 

involved in DNA replication and supercoiling. When these two enzymes are targeted by the 

drug, the resulting drug-enzyme-DNA complex results in DNA breaks and chromosomal 

fragmentation and ultimately into cell death. Two pathways have been linked to the lethal action 

of quinolones; the protein synthesis-dependent pathway, and the protein synthesis independent 

pathway (Drlica et al., 2008) (Drlica et al., 2009). 

Although there is some research evidence to support that the initial targets for fluoroquinolones 

action are different in Gram negative from Gram positive species with parC considered as the 

primary target for ciprofloxacin in some studied Gram positive species and gyrA as the primary 

target in Gram negative species (Tankovic et al., 1996) (Ferrero, Cameron and Crouzet, 1995) 

(Drlica et al., 2008), this topic is still considered controversial and needs to be evaluated on a 

species-by-species and a drug-by-drug basis (Aldred, Kerns and Osheroff, 2014). 

1.9.2. Mechanisms and determinants of quinolones resistance and the importance of 

understanding the global picture  

Resistance to quinolone agents has been reported as multifactorial. Resistance can result from a 

combination of mechanisms including target site gene mutations, increased production of MDR 

efflux pumps and modifying enzymes (Redgrave et al., 2014) (Correia et al., 2017). 

Although several quinolone resistance mechanisms have been reported in the literature and are 

quantitatively contributing to increasing quinolones MIC and resistance, it appears that there are 
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other as yet unknown mechanisms that can be contributing to increased quinolones MIC in 

clinical isolates of Ps. aeruginosa (Bruchmann et al., 2013). The established mechanisms of 

quinolone resistance reported in the literature will be discussed in detail in Chapter 3. Most 

studies addressing quinolone resistance have focused on target-mediated site mutations as the 

essential mechanisms underlying resistance. Although highly important, other known and yet 

undiscovered resistance mechanisms need to be adequately studied in much more detail. There is 

a growing body of evidence to suggest that resistance-associated mechanisms should not be 

considered mutually exclusive and that multiple mechanisms can accumulate to exhibit higher 

levels of resistance in an additive way (Aldred, Kerns and Osheroff, 2014) (Correia et al., 2017). 

The individual impact of these mechanisms can also vary among different bacterial species as 

manifested by the comparative effect of each of these mechanisms on ciprofloxacin MIC in 

different species. Several research observations have supported that. While a single gyrA 

mutation in E.coli exhibited 10-16 fold changes in ciprofloxacin MIC (Piddock, 1999)(Everett et 

al., 1996), the same mutation showed no impact at all on MIC for Staphylococcus aureus 

(Hooper, 2000)(Hooper, 1999). On the other hand, accumulation of multiple gyrA and parC 

mutations showed higher ciprofloxacin MIC fold-changes ranging from 60 in E. coli (Morgan-

Linnell and Zechiedrich, 2007) to 128 in Staph. aureus (Hooper, 2000) (Hooper, 1999). For 

efflux pump upregulation, fold changes in ciprofloxacin MIC varied between 4 in some Gram 

positive species (Kaatz, Seo and Foster, 1999) (Hooper, 2000) to 4 to 8 in other Gram negative 

species (Komp Lindgren et al., 2005). Surprisingly, carriage of qnr alleles and qepA showed 30-

32 ciprofloxacin MIC fold changes in some studies (Briales et al., 2012) (Yamane et al., 2007). 

There would therefore seems to be a definite need for the investigation of quinolone resistance 

mechanisms that takes the system level into consideration rather than target level alone. This 

requires the inclusion of all the events that lead to resistance which also necessitates considering 

all the steps of quinolone interaction with different cellular molecules. This starts with quinolone 

trapping of DNA replication machinery to form cleavage complexes that result in bacteriostasis 

ending into cell death from chromosomal fragmentation through oxidative DNA damage by 

reactive oxygen species in the protein synthesis dependent pathway and also through the other 

protein synthesis independent pathway (Cheng et al., 2013). 
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Many studies have previously proposed that the main mechanism of fluoroquinolone resistance 

is mediated through mutations in gyrA and parC, and that efflux regulatory genes mutations are 

secondary. However, this theory may not prove to be true in Ps. aeruginosa. Some studies have 

investigated the combined effect of mutations in QRDR and in efflux-pump regulatory genes and 

have concluded that the cumulative effect of these mutations in conferring resistance phenotype 

is possible (Higgins et al., 2003). It is likely that efflux-pump regulatory mutations can add up to 

show equivalence to QRDR mutations towards increasing the level of resistance (Oh et al., 

2003). This can be supported by the fact that the presence of one regulatory gene mutation is not 

usually associated with drug resistance, and that multiple efflux regulatory gene mutations may 

be required (Kiser et al., 2010). It is also unknown whether individual mutations or changes in 

protein expression are directly responsible for resistance or they are only markers for the 

presence of resistance (Kiser et al., 2010). 

It has been suggested in some small epidemiologic studies using clinical isolates that 

chromosomal mutations are not usually required for fluoroquinolones resistance. This 

observation may indicate that other mechanisms including efflux pumps may represent more 

essential contributors to resistance (Oh et al., 2003) (Higgins et al., 2003). However, the degree 

of resistance conferred by efflux pumps is also variable (Suresh et al., 2018). Llanes et al., 

(2011) have shown that activation of efflux pumps can act as the first step in causing low level 

resistance to fluoroquinolones. Similarly, the additive effect of multiple mutations in efflux 

pump regulatory genes on enhancing the pump system expression and consequently on 

producing multidrug resistant phenotype have been observed in both lab mutants and in clinical 

isolates of Ps. aeruginosa (Sobel et al., 2005) (Llanes et al., 2004). 

1.9.3.  Agents studied from the quinolone group 

levofloxacin and ciprofloxacin were chosen to study in the current analysis because they are the 

most commonly used agents from the quinolone group of antibiotics in the treatment of different 

types of clinical infections caused by Ps. aeruginosa (Mensa et al., 2018) (Rehman, W. M. 

Patrick and Lamont, 2019). Both agents show the highest efficacy from the quinolone group of 

antibiotics against Ps. aeruginosa with different reports showing comparable bactericidal 

activities of these two agents against different clinical infections. The successful treatment of 

bacterial keratitis and conjunctivitis using ciprofloxacin and ofloxacin and also using the third 
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generation levofloxacin has been well-established (Leibowitz, 1991) (O’Brien et al., 1995) 

(LaBorwit et al., 2001). Fluoroquinolone monotherapy is still among the successful options used 

in the treatment of Pseudomonas keratitis (Austin, Lietman and Rose-Nussbaumer, 2017). 

Levofloxacin has also been successfully used in the treatment of severe infections caused by Ps. 

aeruginosa including serious respiratory infections and blood stream infections (Marchetti and 

Viale, 2003) (Schito and Schito, 2004). Levofloxacin is well known in the treatment regimen of 

ventilator-associated pneumonia and is considered well-tolerated in critically ill patients with 

fewer adverse events  (Álvarez-Lerma, Grau and Álvarez-Beltrán, 2006). On the other hand, 

ciprofloxacin continues to be the preferred oral agent used for the treatment of urinary tract 

infection caused by Ps. aeruginosa (Shahab Qureshi, Michael Stuart Bronze, 2020). It has also 

been used for the treatment of osteochondritis, eye infections, ear infections and malignant otitis 

externa (Mösges, Nematian-Samani and Eichel, 2011). Fluoroquinolones also provide alternative 

treatment for bacteremia in beta-lactam sensitive patients (Shahab Qureshi, Michael Stuart 

Bronze, 2020). Ciprofloxacin has long been known in the treatment of Ps. aeruginosa and is still 

considered one of the most effective and most important agents widely used against the 

bacterium (Mensa et al., 2018) (Rehman, W. M. Patrick and Lamont, 2019). It is delivered orally 

and intravenously with inhalable formulations developed for the treatment of chronic Ps. 

aeruginosa infections in cystic fibrosis patients (Kłodzińska et al., 2016). 

Findings have shown equal in-vitro activities of both ciprofloxacin and levofloxacin against 300 

Ps. aeruginosa isolates from hospitalized patients which were both more active than ofloxacin 

(Bonfiglio, 2001). The study has concluded that levofloxacin is a good option for the treatment 

of infections sustained by Ps. aeruginosa with excellent bactericidal activity (Bonfiglio, 2001). 

Similarly, in vitro antibacterial efficacy studies have suggested equivalent activities for both 

ciprofloxacin and levofloxacin against Ps. aeruginosa (MacGowan, Wootton and Holt, 1999). 

This has also been supported by Kowalski et al., (2001) who showed comparable in-vitro activity 

of the three quinolone agents including levofloxacin, ciprofloxacin and, ofloxacin when applied 

to keratitis isolates from 200 patients (Kowalski et al., 2001). 

On the other hand, other studies have shown that Ps. aeruginosa clinical isolates are more 

susceptible to levofloxacin than to ciprofloxacin with levofloxacin showing greater bactericidal 

activity than ciprofloxacin using time-kill experiments (Segatore et al., 2000). This has also been 
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supported by Segatore et al., (1999) who demonstrated the superior activity of levofloxacin when 

compared to ciprofloxacin as assessed from a national survey including intensive care units from 

oncology and hematology wards from 13 Italian hospitals (Segatore et al., 1999). Grillon et al., 

(2016). The study has concluded that the superiority of levofloxacin to ciprofloxacin cannot be 

affirmed. While ciprofloxacin seems to have good efficiency against susceptible Ps. aeruginosa, 

levofloxacin showed better activity than ciprofloxacin in some tested strains (Grillon et al., 

2016). 

Although the speed of bacterial killing has been shown to be superior in levofloxacin than in 

ciprofloxacin, some research evidence has pointed to the equivalence of in-vitro potency of both 

ciprofloxacin and levofloxacin when calculated on the basis of incidence of resistance (Schito 

and Schito, 2004). A study has shown that levofloxacin use was more associated with the 

isolation of quinolone resistant Ps. aeruginosa when compared to ciprofloxacin use. This has 

been attributed to the greater in-vitro activity of ciprofloxacin than that of levofloxacin in Ps. 

aeruginosa (Kaye et al., 2006). Other studies have supported the same observations by 

demonstrating that emergence of fluoroquinolone resistance was correlated with levofloxacin 

rather than ciprofloxacin use (Lee et al., 2010). Similarly, the proportion of fluoroquinolone 

resistant Ps. aeruginosa was observed to be correlated with the consumption of all antibiotics 

and specifically with levofloxacin (Yang et al., 2020). 

1.10. Previous investigations of aminoglycoside resistance in Ps. aeruginosa 

1.10.1. Mechanisms of aminoglycoside action 

Aminoglycosides were identified through systematic screening of soil Actinobacteria that started 

in the 1940s. The first aminoglycoside streptomycin was discovered from Streptomyces griseus 

and was successfully used for the treatment of tuberculosis and then for other infections caused 

by Gram-negative bacteria in 1944 (Schatz, Bugle and Waksman, 1944). Aminoglycoside agents 

have been widely used in medicine with the ongoing growth of their use as a result of the 

increased progress in developing effective derivatives since 1970s (Mingeot-Leclercq, 

Glupczynski and Tulkens, 1999). 

Aminoglycosides have long been considered essential agents in Ps. aeruginosa therapy. They are 

used in the treatment of a wide variety of clinical infections including pulmonary infections, 
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blood stream infections, urinary infections, eye, wound, and burn infections. Aminoglycosides 

are bactericidal agents and usually exhibit synergy, hence they are used in combination with 

other anti-pseudomonas agents, most notably with beta-lactams (Edson and Terrell, 1999). They 

are commonly used in the combination treatment protocols for serious Gram-negative bacterial 

infections. 

While quinolones penetrate cell membrane through porin channels to enter the bacterial cell, 

aminoglycosides promote their own uptake by interacting with bacterial LPS on the outer 

membrane of Gram-negative bacteria (Poole, 2005). Although the mechanism by which 

aminoglycosides antibiotics penetrate Gram negative bacterial cell wall remains incompletely 

understood, it has been proposed to consist of three different stages. According to the current 

model, the first stage is simply an electrostatic interaction between the positively charged 

aminoglycosides (AGs) and the negatively charged lipopolysaccharides (LPS) of the outer 

bacterial membrane. The two subsequent stages are the energy dependent phase I (EDPI) which 

is characterized by a slow rate of uptake that is correlated with aminoglycosides concentrations 

and the energy-dependent phase II (EDPII) that uses energy from electron transport and ATP 

hydrolysis (Taber et al., 1987). 

The main mechanism of bactericidal activity of aminoglycoside antibiotics is related to 

interfering with various aspects of protein synthesis. Aminoglycosides bind to the decoding 

region of the 16S ribosomal RNA (rRNA) component of the 30S subunit of bacterial ribosomes. 

Binding to the A site leads to conformational changes in rRNA which consequently lead to 

mRNA misreading. This consequently affect translation accuracy, stopping peptide chain 

elongation which results in the synthesis of defective proteins. Defective proteins accumulated in 

the cell membrane lead to altered permeability and the resulting secondary increase in 

intracellular aminoglycosides concentrations. Aminoglycosides also act by inhibiting 

translocation through immobilizing peptidyl-tRNA at the A-site of the ribosome, consequently 

inhibiting protein synthesis. Some aminoglycoside agents can also bind to the 23S rRNA 

component of the 50S subunit. This binding affects the mobility of ribosomal subunits, which 

consequently interferes with translation and ribosome recycling (Borovinskaya et al., 2007) 

(Becker and Cooper, 2013). 
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An important point to consider here is that following the entry of the first few molecules of 

aminoglycosides which leads to misreading in protein translation, cytoplasmic membrane 

integrity and function are compromised due to faulty proteins, leading to an autocatalytic cycle 

of AGs uptake, followed by cell death (Davis, Chen and Tai, 1986). 

1.10.2. Molecular mechanisms and system level perspectives of aminoglycosides resistance 

Diverse mechanisms have been described as contributors to aminoglycoside resistance in Ps. 

aeruginosa. The most noticeable mechanisms include drug inactivation by aminoglycoside-

modifying enzymes and decreased drug accumulation either through active efflux or decreased 

cell wall permeability. The genes coding for ribosomal protein L25 (rplY), UDP-glucose 

pyrophosphorylase (galU), and the nuo operon have been linked to aminoglycosides resistance. 

Inactivation of some chromosomal genes including mexZ, rplY, galU, PA5471, and nuoG have 

been shown to be associated with gradual increase in aminoglycosides MIC in laboratory 

mutants (El’Garch et al., 2007a)  (Islam et al., 2009). El’Garch et al., (2007) showed in their 

study that double, triple, and quadruple mutants have resulted in a cumulative effect on 

aminoglycoside resistance. Quadruple mutants have shown 16- to 64-fold increase in MIC when 

compared to the wild-type strain PAO1. This may demonstrate the ability of Ps. aeruginosa to 

accumulate resistance via intrinsic (i.e. nonenzymatic) mechanisms. 

Other studies have also shown that upregulation of MexXY–OprM efflux system is the most 

important aminoglycoside resistance-conferring system in CF Ps. aeruginosa (CFPA) isolates. 

This usually results from mutations occurring in the repressor regulatory gene mexZ, which 

product downregulates the expression of the operon mexXY. MexAB–OprM was also reported to 

contribute to aminoglycoside resistance in a low ionic strength environment. It was suggested 

that efflux-mediated aminoglycoside resistance only lead to a moderate two-fold increase in MIC 

(Vogne et al., 2004).  

1.10.3. Agents studied from the aminoglycoside group 

According to the British National Formulary (BNF) (Committee, 2020), gentamycin is the 

aminoglycoside of choice in the UK and is widely used in the treatment of serious infections 

caused by multiple Gram negative organisms including Ps. aeruginosa. On the other hand, 

amikacin is more stable to enzyme inactivation than gentamycin and is used in the treatment of 
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serious infections caused by gentamycin-resistant organisms including biliary infections, 

septicemia, and endocarditis. Aminoglycosides have been considered as a vital component in 

anti-pseudomonas chemotherapy particularly pulmonary infections in cystic fibrosis patients 

(Poole, 2005). 

Although gentamycin is generally considered an old drug, it possesses a potent bactericidal 

activity and remains to have a key role in the treatment of some types of infections caused by Ps. 

aeruginosa. Amikacin has the broadest spectrum of activity among the aminoglycosides group of 

antibiotics and is considered a good treatment candidate to strains showing multiple resistance to 

other aminoglycosides (Ehsan and Clancy, 2015).  

Gentamycin is known to be more active against Ps. aeruginosa than amikacin while amikacin is 

known to exhibit less resistance rates due to its structural nature (Kluge et al., 1974). Both 

gentamycin and amikacin have been used in the treatment of urinary tract infections caused by 

Ps. aeruginosa with amikacin achieving better peak serum concentrations at lower therapeutic 

doses (Gilbert, Eubanks and Jackson, 1977). In addition, amikacin also shows activity against 

gentamycin resistant strains and can achieve high blood levels making it clinically effective in 

the treatment of Pseudomonas-associated pulmonary infections complicating cystic fibrosis (Lau 

et al., 1977). Recent evidence also shows that amikacin can achieve high in vitro potency against 

Ps. aeruginosa respiratory and blood isolates (Sutherland, Verastegui and Nicolau, 2016).  

Kim et al., (2018) have recently demonstrated declining trends of gentamycin and amikacin 

resistance in Ps. aeruginosa according to data from the Korean Nationwide Surveillance of 

Antimicrobial Resistance (KONSAR) program which was attributable to decreased 

aminoglycosides consumption levels (Kim et al., 2018). This makes it important to investigate 

the molecular bases of resistance in these agents. 

1.11. Molecular platforms used for identifying antibiotic resistance markers 

Most molecular platforms for bacterial ID/AST use nucleic acid-based markers indicative of the 

presence of bacteria and/or antibiotic resistance. Other newly emerging molecular markers also 

include enzyme, protein, or metabolite markers. Current nucleic-acid based molecular platforms 

used for bacterial AST include PCR-based assays or other microarray, nanoparticle and 

microparticle-based nucleic acid assays. 
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PCR-based assays depend on using culture samples to detect specific sets of pre-identified 

nucleic acid targets that are species-specific, for bacterial ID, or antibiotic resistance-associated 

for bacterial AST. While most of these assays are culture-dependent, some other culture-

independent assays are available and can greatly reduce the turn-around time (1 to 8 hours). 

Some examples of FDA-cleared rapid bacterial ID/AST molecular assays are what is known as 

“Multiplex Infectious Diseases Syndromic Panels” including; FilmArray®, VERIGNE®, 

Unyvero, ePlex®, MAXTM, ProGastroTM (Gonzalez and McElvania, 2018), (Hanson and 

Couturier, 2016). Unyvero is a Multiplex Panel used for detection of lower respiratory tract 

pathogens (Ozongwu et al., 2017). The lower respiratory tract infection panel was FDA cleared 

April 3, 2018 and can detect 19 Gram-positive and Gram-negative bacterial organisms and 10 

genetic markers for antibiotic resistance which include; mecA, tem, ctx-M, kpc, ndm, oxa-48, 

oxa-58, oxa-23, oxa-24, and vim. Another rapid detection system is BIOFIRE® FILMARRAY® 

Multiplex Real-Time PCR Systems (Poritz et al., 2011). The respiratory panel of this system can 

detect 20 bacteria and 7 antibiotic resistance markers including; CTX-M, KPC, IM, NDM, VIM, 

Oxa48-like, mecA/C and MREJ. The blood culture identification panel can also test for 24 

pathogens and 3 antibiotic-resistance genes. VERIGENE® Gram-positive blood culture test can 

detect 4 bacterial genera, 9 species, and 3 resistance markers including; mecA, vanA, and vanB. 

VERIGENE® Gram-negative blood culture test can test for 4 bacterial genera, 5 species and 6 

resistance genes including; CTX-M, IMP, KPC, NDM, OXA and VIM (Kim et al., 2016). The 

ePlex® platform by GenMark is an example of another rapid diagnostic testing platforms 

(Schmitz and Tang, 2018) that uses ferrocene-labeled oligonucleotide probes for multiplex 

detection of some syndromic panel targets. The platform employs rapid sample-to-answer 

workflow. The entire steps of nucleic acid extraction, fluidic transport of sample to the 

amplification, and detection steps occur within the platform cartridge. 

Other microarray nucleic acid-based platforms are capable of highly multiplex SNP analysis in a 

single assay. Pre-culture or nucleic acid amplification primary steps may still be required. 

Examples for this approach include Check-MDR CT array and the VERIGENE®system. Check-

MDR CT103 array (CheckPoints, Wageningen, Netherlands) allows the rapid detection of 

Extended Spectrum Beta Lactamases (ESBLs), including TEM, SHV, and CTX-M; plasmid-

mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/ MIR, and CMY-1-
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like/MOX); and CREs (KPC, OXA-48, VIM, IMP, and NDM) (Cuzon et al., 2012). The 

VERIGENE® system (Nanosphere, Luminex, Austin, TX) can identify a panel of resistance 

markers (mecA for methicillin; vanA and vanB for vancomycin; and CTX-M for the detection of 

ESBLs, IMP, KPC, NDM, OXA, and VIM for carbapenemases) from positive blood cultures 

(Ward et al., 2015). 

Using multiplex PCR even when combined with DNA microarray hybridization is considered 

less robust for the detection of less abundant targets and consequently shows lower clinical 

sensitivity and some discrepancy with culture methods. Also, it may suffer from some technical 

limitations associated with contamination from non-pathogenic bacteria. The main theoretic 

challenge here remains in their limited potential to detect a set of pre-identified genes rather than 

gene variants or SNPs in most cases. I also need to re-emphasize that resistance identification in 

all currently available rapid “Multiples Syndromic Panels” available is directed to a very limited 

subset of genes that often includes specific types of acquired resistance rather than intrinsic 

resistance elements. Most available panels detect carbapenemases-related genes or Extended-

spectrum B-lactamases (ESBL). For example, Xpert CarbaR® detects 5 gene families; KPC, 

NDM, VIM, IMP and OXA-48; Verigene® system detects the most common carbapenemases 

and CTX-M ESBL and FilmArray® BCID detect KPC (Tuite et al., 2014). 

1.12. Practical technologic advances addressing some sequence-based diagnostics 

limitations 

The increasing use of next-generation sequencing technologies has made the analysis of bacterial 

genomes much more accessible at a lower cost than was previously possible. Introducing 

benchtop sequencers can be considered a good step towards sequence-based diagnostics and is 

now considered in the capability of many analytic laboratories (Deurenberg et al., 2017) (Chai et 

al., 2018) (Morganti et al., 2020). The cost can be specifically reduced for target gene panel 

identification (van Nimwegen et al., 2016). Using such an approach is superior to PCR-based 

marker detection as it can detect genetic markers underpinning specific risk profiles and can also 

provide typing without shipping isolates to reference facilities. In this way, it can provide the 

“one-solution fits all” approach to deal with different types of infections. An important limitation 

for some sequencing technologies is the time required for completion of a full sequencing run 

which can exceed 2 days. One of the approaches used to overcome this situation is GeneSipper 

which was used for the identification of foodborne pathogens within one working day (Lambert 
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et al., 2015). It is a genomic tool used for the analysis of single colony isolates by sampling 

(sipping) of raw data during an early stage of the genome sequencing process to identify a pre-

defined set of markers with a quality evaluation to validate the analysis. Another study has also 

applied a developed bioinformatics analytic approach (Chainmapper) that can be used to analyze 

microbial reads directly from clinical samples and was used to evaluate sequencing directly from 

urine samples enabling microbial identification from polymicrobial clinical specimens. It showed 

a performance comparable to culture-based identification (Hasman et al., 2014). Whole-genome 

sequencing of Chlamydia trachomatis was first achieved directly from clinical samples without 

culture using an approach called immunomagnetic separation for targeted bacterial enrichment 

with multiple displacement amplification (IMS-MDA) (Seth-Smith et al., 2013). Other studies 

have also proved the possibility of metagenome sequencing directly from vaginal swab 

specimens (Andersson et al., 2013). In other research studies, genome sequencing was applied to 

identify bacterial outbreak genomes directly from fecal outbreak samples (Loman et al., 2013). 

All these approaches can prove that direct sequencing and bioinformatics analysis from clinical 

specimens are now becoming more achievable. 

As will be discussed in Chapter2, genome sequencing has the potential to provide the 

information needed to transform the use of the technology into clinical diagnostics. With the 

increased understanding about the correlation between phenotype and genotype especially in 

some organisms, there remain some practical limitations that need to be overcome to shorten the 

turn-around time in case of using different sequencing technologies as a diagnostic tool. 

The nucleic acid extraction step is considered a rate-limiting step in sequencing studies. 

Eliminating inhibitory substances and having high-quality extracts with a rapid turn-around time 

are essential for successful downstream processing. An example of a recently introduced rapid 

genomic extraction methodology is PDQeX (Stanton et al., 2019). It is a single-step DNA 

extraction method that is compatible with high-throughput sequencing and capable of purifying 

nucleic acid from the sample for downstream applications in under 30 min. It is proposed that 

similar novel systems can transform and accelerate sample preparation with minimal chance of 

sample contamination and reduced operator handling which can achieve higher sample quality to 

be directly used for WGS. Simple and reliable methods for extracting nucleic acids directly from 

biologic samples are expected to facilitate molecular point of care testing within the next 5 years. 
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Portable DNA extraction machines and portable sequencers such as MicroGEM’s (UK) PDQeX 

were tested for in-field use. These systems have enabled farmers to whole-genome sequence 

viruses from plant material in a single day on the farm (Shaffer, 2019).  

Another approach is clinical metagenomics using third generation sequencing. MinION (Oxford 

Nanopore Technologies, Oxford, UK) is a highly portable genome sequencer that weighs less 

than 100 grams, an advantage that makes it applicable for in-field or point of care use. Data is 

read off the MinION from a laptop via a Universal Serial Bus (USB) port which adds to the 

feasibility of its use (Quick, Quinlan and Loman, 2014). 

In contrast to Illumina sequencing platforms that utilize optical readings and require precise 

microscopic alignment with repeated calibration, the MinION (Oxford Nanopore Technologies, 

Oxford, UK) works by taking high-frequency electrical current measurements as DNA passes 

through a protein nanopore at 450 bases per second. MinION is a single molecule sequencing 

approach that can read long DNA molecules which may also lead to a higher error rate. 

However, generating accurate sequence readings can be achieved by reading the same genomic 

regions many times and thus eliminating the errors through consensus averaging (Loman and 

Watson, 2015). However, some errors are systematic which still makes the error rate a 

challenging point. 

The technology has been tried for in-field applications in the diagnosis of some plant viruses and 

showed successful results (Boykin et al., 2018). It was also used in the field for real-time 

genomic surveillance and monitoring of the Ebola virus and also showed success in some 

resource-limited settings (Quick et al., 2016). It has also been used for the diagnosis of Zika 

virus directly from clinical samples for the purpose of epidemic surveillance and monitoring 

(Quick et al., 2017) (Faria et al., 2016). In the clinic, Schmidt et al., (2017) show in their study 

that it is also possible to use the technology for direct metagenome diagnosis of pathogens and 

acquired antibiotic resistance genes directly from urine samples. In addition, Charalampous et 

al., (2019) have developed an optimized rapid clinical metagenomics pipeline for the diagnosis 

of bacterial lower respiratory tract infection and for the identification of resistance genes using 

nanopore metagenomics which has achieved a rapid turn-around time of 6 hours from sample to 

answer. Metagenomic sequencing-based approaches show the potential to overcome limitations 

related to both culture and PCR including the speed and the coverage of wider organism 
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spectrum (Chiu and Miller, 2019). Although some computational challenges still exist, nanopore 

sequencing has great potential to be used as point-of-care diagnostic for multiple clinical 

sequencing applications including patient’s bedside, emergency room, local clinic, or field 

applications (Chiu and Miller, 2019). The use of novel portable sequencing technologies together 

with clinical metagenomics can also form a foundation for real time pathogen and disease 

surveillance which helps to direct outbreak responses (Gardy and Loman, 2018). 

1.13. Project 

1.13.1. Significance, justification and outline 

Although Ps. aeruginosa is equipped with extensive intrinsic resistance machinery that leads to 

basal level of lower susceptibility to antibiotics, there is still a lack of comprehensive 

understanding of resistance-underlying mechanisms. There is still a gap in understanding 

elements that underpin intrinsic resistance at the whole system level. 

Considering the challenging and the worrisome nature of Ps. aeruginosa as a species and as an 

opportunistic clinical pathogen, many targeted comprehensive studies have been performed to 

survey all known resistance elements and showed that there is still a gap in knowledge and that 

some undetermined chromosomal mechanisms need to be further investigated (Henrichfreise et 

al., 2007). The special nature of the species makes AMR prediction in Ps. aeruginosa 

challenging due to the complexity of associating phenotype and AMR genotype, the species 

large pangenome, lack of understanding about the difference in gene content for virulence and 

AMR determinants between clinical and environmental isolates (Freschi et al., 2015), and the 

species-specific complicated regulation of resistance mechanisms (Jeukens, Freschi, Kukavica-

Ibrulj, J.-G. Emond-Rheault, et al., 2019). Comparative genomic approaches can be considered 

superior to other approaches discussed above including genome-wide expression profiling, 

mutant library screening, and experimental evolution. Sequence-based approaches are considered 

powerful as they can examine all possible genes and gene variants simultaneously at the 

population level offering the highest resolution analysis to the single nucleotide variant level. 

Identifying genetic variants underpinning different phenotypic behavior in the population can 

help to characterize the genetic background of complex phenotypic traits and to identify genetic 

signatures related to these traits which can consequently be used to predict and diagnose 

resistance at the practical level. 
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1.13.2. Study aim and objectives 

▪ Setting up sequenced strain resources for Ps. aeruginosa suitable for comparative 

genomics. 

▪ Functional analysis to determine functional groups of behavior for antibiotic resistance 

phenotype. 

▪ Applying comparative behavioral genomics for candidate behavioral determinants. 

▪ Comparing and contrasting findings with prior knowledge and relating it to population 

structure and wider system determinants. 

▪ Secondary use of genomes to address species genomics and population biology, and ways 

in which it can otherwise inform the use of genomes in diagnostic microbiology. 

▪ Testing the predictive value of identified determinants and those in literature as a 

potential basis for genome-based directed antibiotic treatment. 

▪ Identification of DNA markers that can be used for inclusion in rapid diagnostic tests to 

direct antibiotic selection and treatment. 

▪ Identifying optimized combination of candidate markers from research output and what is 

known in literature that could act as potential genome-based molecular rapid diagnostics. 

▪ Understanding the population structure of studied bacterial species in relation to studied 

antibiotic resistance phenotype. 

What is this research really about? 

Although different approaches have been used to investigate for mechanisms underlying 

antibiotic resistance at the global level, the thesis tries to explore the topic in a hypothesis free 

manner using a multi-step approach. Different genome sequencing technologies are emerging 

with some existing limitations to be addressed before it can be transformed into a practical 

applied tool. The application of next- generation sequencing technologies for example may 

require some demanding infrastructure requirements which may limit its use to some settings as 

will be discussed in Chapter 2. On the theoretic level, the performance of some available 

bioinformatic platforms are not considered comprehensive enough to be used as an applied tool 

with Ps. aeruginosa species as will be evaluated in Chapter 2. Comprehensive databases that can 

be utilized for diagnostic workflows are still lacking. In general, there is still uncertainty about 

the practicality or the feasibility of applying different sequencing technologies in clinical 
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diagnostics. Some practical and theoretic limitations still exist as will be discussed further in 

chapter 6 and these limitations still need to be handled. There is still a gap in our knowledge 

about the most comprehensive and most informative set of molecular predictors that can be 

translated into best potential diagnostic markers for practical application. 

The research approach adopted here focuses on the best use of sequence information to explore 

for the best predictor molecular elements that explain resistance and susceptibility phenotype in 

the organism Ps. aeruginosa at the system level and within the frame of background population 

structure. This will be achieved by evaluating the performance of some available bioinformatics 

resources and workflows in predicting for antibiotic resistance phenotype in Chapter 2. The next 

stage will expand more on the findings of the first stage by mining for known genes and gene 

variants that have been described in the literature in relation to chromosomal resistance of 

quinolone and aminoglycoside groups of antibiotics. This will be combined with the evaluation 

of newly encountered variants in the genes assessed as will be shown in Chapter 3. The stage 

that follows will investigate the background population structure in Ps. aeruginosa with the aim 

of exploring the relation of the identified elements to high-risk clones, the topic that will be 

studied in Chapter 4. In Chapter 5, comparative behavioral genomics will be applied to fill 

additional gaps by exploring for new elements that can be added to improve our understanding 

and knowledge. The ultimate aim is to find the best combination of molecular predictors from 

what is known and what is newly explored in order to be adapted into an assessment and 

decisions flows that can improve our toolbox to fight against AMR, the perspective and steps 

that are going to be discussed in detail in Chapter 6. 

Adopting this approach, the thesis seeks to create new understanding of the existing knowledge 

about antibiotic resistance by exploring the relative contribution of different chromosomal 

mechanisms of quinolone and aminoglycoside resistance in order to prioritize the best 

performing set of candidate markers for inclusion into a rapid diagnostic platform. This is 

expected to offer better alternatives to other rapid diagnostics that are currently available in the 

market. The thesis also suggests a diagnostic algorithm using the investigated markers to be used 

when sequencing information becomes available in a clinical setting as will be illustrated in 

examples shown in Chapter 6. The following table summarizes the themes that will be presented 

in the thesis to achieve its over-all aim. 
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Topic Objectives 

Chapter 2. Genotypic versus phenotypic prediction 

of antibiotic resistance in Pseudomonas aeruginosa 

using existing tools and databases 

• Evaluation of the accuracy of some currently 

available (WGS)-based tools in predicting 

antibiotic resistance in Ps. aeruginosa and the 

best ways to overcome current limitations. 

Chapter 3. The role of known Quinolones and 

Aminoglycosides resistance mechanisms in 

explaining resistance in Pseudomonas aeruginosa 

 

• Review of the literature to extract genes and gene 

variants associated with quinolone and 

aminoglycoside resistance. 

• Describing and analyzing the distribution of 

identified resistance-associated markers in the 

studied set of Ps. aeruginosa isolates. 

• Testing for predictive values and other measures 

of diagnostic accuracy for known resistance- 

associated markers. 

• Exploring the best predictor combination of 

markers that could improve diagnostic 

performance using cluster analysis and multiple 

regression analysis. 

Chapter 4. Background genomic context of 

Quinolone and Aminoglycoside resistance 

determinant and molecular markers in 

Pseudomonas aeruginosa 

 

• MLST and serotype profile analysis in relation to 

quinolone and aminoglycoside resistance 

phenotype. 

• Describing the population structure and diversity 

in Ps. aeruginosa.  

• Identifying quinolone and aminoglycoside 

resistance markers in relation to high-risk clones. 

Chapter 5. Investigation of Whole System 

determinants of antibiotic resistance to gentamycin 

and ciprofloxacin in Ps. aeruginosa using 

comparative behavioral genomics 

• Identification of system-level functions 

associated with susceptibility and resistance 

phenotype to quinolone group of antibiotics (1st 

round of CBG annotation). 

• Identification of gene variants showing 

significant association with susceptibility and 

resistance to ciprofloxacin and gentamycin (2nd 

round of CBG annotation). 

• Testing for the potential practical application of 

the identified variants to be used as molecular 

diagnostics by evaluating the diagnostic accuracy 

of candidate markers. 

• Examining the functional effect of prioritized 

gene variants. 

• Finding the best combination of variants with 

improved diagnostic performance. 

• Examining the distribution of candidate alleles in 

relation to background genomic structure. 

Chapter 6. General discussion and conclusions • Conceptual and practical framework of current 

research findings into real-life application. 
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Chapter 2. Genotypic versus phenotypic prediction of antibiotic resistance in 

Ps. aeruginosa using existing tools and databases  

2.1. Introduction and background 

2.1.1. Applications of Genome-sequencing in clinical microbiology for public health 

benefit 

2.1.1.1. Culture-free microbial identification  

2.1.1.2. Molecular epidemiologic investigations and Typing 

2.1.1.3. Tracing bacterial transmission pathways  

2.1.2. Advantage and value of using genome-sequencing in diagnostic microbiology 

2.1.3. Culture-free clinical metagenomics 

2.1.4. Available Resistance Prediction Tools and bioinformatics platforms 

2.1.5. Antimicrobial resistance prediction in Ps. aeruginosa 

2.2. Aim: Evaluation of the accuracy of Whole Genome Sequencing (WGS)-based tools in 

predicting antibiotic resistance in Ps. aeruginosa 

2.3. Methodology 

2.3.1. Collection, culture and preservation of study isolates 

2.3.2. Phenotypic antimicrobial susceptibility testing 

2.3.3. Whole genome DNA extraction, sequencing and assembly 

2.3.4. Assessment of genetic diversity and selection of the most diverse group 

2.3.5 In-silico prediction of antimicrobial susceptibility 

2.3.6. Comparison of phenotypic testing to genomic prediction 

2.4. Results 

2.4.1. Description of the genetic background of studied Ps. aeruginosa isolates 



38 | P a g e  
 

2.4.2. Comparison of the phenotype distribution of study collection with 

international population data 

2.4.3. Predicted antibiotic sensitivity using in-silico tool 

2.4.4. Comparing predictions to measured phenotypes 

2.5. Discussion 

2.6. Conclusions: Requirements for the implementation of WGS in clinical microbiology 

laboratories to predict resistance and guide interventions 
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2.1. Introduction and Background 

The use of genome sequencing is expected to offer a key tool to fight against antimicrobial 

resistance (AMR). The impressive number of sequenced bacterial genomes represents an 

invaluable resource to investigate the molecular basis underlying AMR. Sequencing as a 

growing technology is expected to offer personalized infection diagnosis and management that 

can overcome many of the current limitations encountered using conventional infectious disease 

diagnostics.  

Susceptibility testing based on culture is still considered the current standard of practice in 

guiding antibiotic selection (Bayot ML, 2020). While the method has an inherent drawback of 

longer specimen to answer time compared to what sequencing is currently capable of 

(Charalampous et al., 2019), it is still considered the gold standard method for most pathogens 

(Belkum and Dunne, 2013). Other limitations of conventional culture include the need for 

relatively large numbers of viable organisms, several steps of pre-analytic processing, and 

limited organism detection spectrum (Belkum and Dunne, 2013). Some practical drawbacks can 

also be encountered in clinical practice which makes using sequencing-based diagnosis and 

treatment a better alternative in some settings. Sequence-based diagnostics have a great potential 

to overcome some challenges related to conventional culture yield and organism recovery 

timelines through the rapid identification and testing of pathogens occurring at very low 

concentrations (Allcock, Jennison and Warrilow, 2017). This would make it possible to detect 

pathogens or antibiotic resistance markers from specimens even when collected after initiation of 

antibiotic therapy at higher sensitivity (Rossen et al., 2018). This gives the opportunity to change 

empirical therapy into more specific antimicrobials earlier in the treatment course. This would 

subsequently help to shorten the duration of treatment and its other associated complications 

(Caliendo et al., 2013). 

Over the past decade, there has been a growing interest in developing a rapid molecular 

diagnostic approach for early detection of antibiotic resistance (Clerc and Greub, 2010) (Bauer et 

al., 2014) (Carey-Ann D. Burnham et al., 2017). PCR has been the most common nucleic acid-

based tool used for microbial identification, typing, and for identification of the genomic basis of 

resistance. To identify resistance using PCR, commercial PCR kits and in-house tests are used to 

identify resistance genes and mutations or to identify a panel of markers of interest (Walker et 
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al., 2016) (Torres et al., 2016) (Allcock, Jennison and Warrilow, 2017). The most widely used 

commercial kits for this purpose include those used for the identification of mecA methicillin 

resistance Staphylococcus aureus (Patel et al., 2011) and vanB Enterococcus resistance genes 

(Bourdon et al., 2010). Other examples include the detection of resistance causing mutations in 

Mycobacterium tuberculosis (Bowles et al., 2011) and macrolides resistance in Helicobacter 

pylori (Zhang et al., 2016). Sequencing has the potential to reveal the entire genomic repertoire 

of markers linked to resistance including core genes and also acquired resistance elements, 

thereby enabling the identification of multiple resistance mechanisms simultaneously (Allcock, 

Jennison and Warrilow, 2017). Identified resistance elements can also be linked to genomic and 

epidemiologic background giving greater insights into forces that drive resistance spread and 

transmission. New variants of genes can sometimes preclude their detection using available PCR 

kits (García-Álvarez et al., 2011), while this is not an obstacle if sequencing is used instead.  

2.1.1. Applications of genome-sequencing in clinical microbiology for public health benefit 

Genome sequencing has been used for culture free microbial identification, for molecular 

epidemiologic investigations and for high-resolution typing. It has also been used for tracing 

bacterial transmission pathways in localized hospital outbreaks and in larger epidemics, for the 

identification and prediction of antimicrobial resistance and virulence genes, and also to direct 

infection control policies and procedures. Some of these uses are discussed in the following 

sections. 

2.1.1.1. Culture-free microbial identification 

Using genome sequencing to identify microbial species has the advantage of rapid high precision 

species identification using the same technology, platform, and expertise. This includes 

fastidious, slowly growing and difficult to culture taxa. It also provides an unbiased approach for 

identifying a wide range of pathogens in complex polymicrobial samples (Sabat et al., 2017).  

Wide arguments exist about the possibility of genome sequencing to replace routine microbial 

culture-based identification. However, genome-based signatures can offer the ultimate resolution 

and precision compared to conventional morphologic and biochemical-based identification. In 

the near future, routine bacterial culture may end up as a lost art. This can result from the 

increasing availability of genome sequence data information together with the accumulating 

knowledge about the molecular bases of resistance and virulence (Rossen et al., 2018). 16S 
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rRNA gene Sanger sequencing has been historically used for accurate bacterial identification 

from biologic samples independent of their cultivability or phenotype (Woo, P.C.; Lau, S.K.; 

Teng, J.L.; Tse, H.; Yuen, 2008). It has been used as an alternative to conventional culture in 

some slowly growing, difficult to culture bacteria, or bacteria with uncommon phenotype. Next 

generation sequencing and third generation sequencing technologies have more recently allowed 

reliable identification of bacterial genera as a rapid alternative analysis to sanger sequencing 

without culturing steps (Winand et al., 2020). Due to the high sequencing throughput, NGS 

technologies have allowed 16S rRNA gene sequences generation from organisms in mixed 

samples without the need for intermediary culture steps.  

2.1.1.2. Molecular epidemiologic investigations and Typing 

Next generation sequencing has emerged as a powerful tool with a greater discriminatory power 

when compared to all other molecular typing methods (Allcock, Jennison and Warrilow, 2017). 

It can discriminate similarities and differences with evolutionary projections about relatedness 

that consequently help to frame these differences into background biologic context (Ladner et 

al., 2019). Sequencing allows the comparison of bacterial isolates down to the resolution of 

single nucleotide differences, thus providing higher discriminatory resolution which can greatly 

improve our understanding of different epidemiologic and biologic aspects of hospital pathogens. 

It can help to monitor the global emergence and dispersal of infections in different settings. This 

has also enabled pathogen outbreak investigation at the highest possible resolution which also 

allowed the improved detection of transmission events in addition to other potential cost benefits 

(Madigan et al., 2018) (Besser et al., 2018). The added value of WGS to routine local TB 

surveillance systems has been studied by integrating epidemiologic and clinical information with 

WGS genotypic data of Mycobacterium tuberculosis (Zakham et al., 2019). WGS-based SNP 

typing showed to be useful for routine TB surveillance system. Another study has also shown 

that molecular typing enabled the detection of unsuspected M. tuberculosis transmission as 

compared to traditional contact tracing (Genestet et al., 2019). 

Using genome sequencing data has previously shown to provide some insights about the biology 

and the epidemiology of persistent isolates of Ps. aeruginosa in hospital settings. In a study 

investigating hospital outbreaks of Ps. aeruginosa , a group of strain specific gene clusters and 

SNP differences that confer phenotypic differences were described as helping in strain 
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persistence and survival over years in hospital environment (Snyder et al., 2013). Using whole 

genome sequencing to investigate for Ps. aeruginosa hospital outbreaks provided detailed 

epidemiologic information without the need for further typing. Authors suggest that 

implementation of WGS in real time typing of hospital outbreaks can become widespread due to 

reproducibility and lower cost as it also helped to understand the outbreak situation rapidly and 

with certainty (Parcell et al., 2018).  

2.1.1.3. Tracing bacterial transmission pathways  

Sequencing data can be used effectively to trace bacterial transmission pathways. This includes 

direct transmission between individuals, identifying worldwide patterns of spread as well as local 

outbreak investigations (Croucher and Didelot, 2015). Direct transmission between individuals is 

often used to determine whether individuals are part of the same transmission chain or not. The 

genomic investigations of outbreaks help in identifying sources of infection, in identifying super-

spreaders and consequently in directing infection control measures. Using genome sequence data 

combined with epidemiologic date allows outbreaks’ recognition and accurate inferences about 

transmission patterns. This permits more effective interventions and targeting of infection control 

resources (Price et al., 2013). 

Bacterial genome sequencing enables the understanding of the dynamics of infection 

transmission within hospital settings and the factors governing such an interaction between 

health-care facilities and the community. Sequencing has superior discriminatory capability to 

reconstruct pathogen transmission pathways when compared to conventional typing 

(Nikolayevskyy et al., 2019). This can show great potential when used as part of the surveillance 

system for the early detection and management of health care-associated infection. Applying 

epidemiologic surveillance systems internationally will permit the monitoring of newly emerging 

strains. When these types are linked to local epidemiologic clinical surveillance data, they can 

provide an effective early warning system. 

Harris et al., (2013) have evaluated the advantage of whole genome sequencing for the accurate 

detection and understanding of outbreak transmission events and concluded that more precise 

identification of all patients involved in a MRSA outbreak was possible with sequencing offering 

superior discrimination than other standard techniques in practice. This has consequently enabled 

more precise detection of the outbreak network and the community sources linked to the 
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outbreak (Harris et al., 2013). Using sequencing-based approaches offer an advantage for 

identifying sources of ongoing transmission of hospital outbreaks which can directly inform 

infection-control interventions. This is considered promising with the declining cost of rapid 

genome sequencing (Campbell et al., 2018). The discriminatory power of sequencing-based 

outbreak investigation has been evident in different organisms including Vibrios cholera (Chin et 

al., 2011), Mycobacterium tuberculosis (Gardy et al., 2011) and Escherichia coli (Rasko et al., 

2011). Other more recent studies have also used SNP-based analysis in hospital epidemiologic 

investigation in Staphylococcus aureus in ICU and identified multiple transmission pathways 

between patients and hospital reservoirs (Dancer et al., 2019). This investigation helps in 

identifying sources of infection transmission which consequently helps in its control. WGS was 

also used to investigate outbreak versus non-outbreak inter-facility transmission of carbapenem 

resistant Klebsiella pneumoniae (Spencer et al., 2019). WGS-based typing has also showed an 

important role in tracing inter-hospital transmission of carbapenemase producing K. pneumoniae 

in other recent studies (van Beek et al., 2019). This has also shown an important role in tracing  

Ps. aeruginosa outbreaks (Parcell et al., 2018). 

2.1.2. Advantage and value of using genome-sequencing in diagnostic microbiology 

WGS is becoming increasingly used to confirm infection outbreaks and other types of persistent 

infections, thus enabling the highest discrimination previously unachievable using conventional 

methods (Humphreys and Coleman, 2019). Köser, Holden, et al., (2012) showed that using 

conventional methods to infer transmission (including antibiograms) was useful in only minority 

of cases with genome-sequencing showing at least 136 SNPs in isolates with nearly identical 

antibiograms and the same sequence type which would suggest absence of any relation or 

transmission event among these patients as judged by the genetic differences. latest generation 

benchtop sequencing platforms can provide useful sequence data in less than one day when 

compared to the standard clinical microbiology practice. It also enables multiple additional 

analyses with direct and immediate clinical value at no additional costs (Köser, Holden, et al., 

2012). The accuracy and depth of information provided enables the discrimination of outbreak 

and non-outbreak isolates which is faster and superior to other commonly used conventional 

typing methods (Reuter et al., 2013) (Quainoo et al., 2017). 
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The need for customized species-based clinical diagnosis is an underestimated drawback 

encountered in conventional microbiology lab. Cost of reagents, equipment, specialized tests and 

the need for experienced staff to diagnose and test for uncommon or rare organisms are usually 

overlooked. This makes some tests limited to reference laboratories which usually have more-

prolonged turnaround time and commonly do not provide results with the speed needed to inform 

patient management (Mosammaparast, Nolte and McAdam, 2012). Genome sequencing can 

offer a promising solution to this situation in routine diagnostic laboratories. This can be 

implemented through analytic platforms integrated into the laboratory usual workflow. When 

sufficient background knowledge and infrastructure becomes readily available, sequence-based 

analytic platforms can become an automated process applied to a wide spectrum of organisms. 

This would  provide superior quality information, decreased cost and decreased turn-around time 

(Köser, Ellington, et al., 2012) (Ladner et al., 2019). 

Harris et al., (2013) showed in their study that health-care cost attributable to MRSA outbreak 

was in excess of 10000 sterling pounds while the cost of rapid WGS of one isolate was 95 

sterling pounds including sample preparation, library quality control and sequencing (Harris et 

al., 2013). The current availability of bench top sequencers and data analysis software with price 

tags comparable to conventional molecular techniques are taking the technology closer to clinical 

microbiology laboratories (Rossen et al., 2018). 

Although next-generation sequencing has improved precision and sensitivity of detection when 

compared to culture-based molecular identification, turn-around time is sometimes considered a 

challenge with the use of next-generation sequencing (Loit et al., 2019). This includes the time 

needed for complex library preparation, other technical steps including post sequencing assembly 

and interpretation. However, bench top sequencers and third generation sequencing are 

becoming more accessible and user friendly and would allow sequencing in hours (Schadt, 

Turner and Kasarskis, 2010) (Watts et al., 2017). Harris et al., (2013) showed that the time 

needed to do MLST, to detect certain genes and to verify point mutations associated with 

virulence/risk can outweigh the time needed to perform one sequencing run. The sequencing run 

took one day to complete and the bioinformatics pipeline required less than 1 hour of analysis 

time (Harris et al., 2013).  
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Another study has shown that a rapid turn-around time is achievable using Illumina Miseq 

benchtop sequencer which is capable of providing a comprehensive report with all possible 

genomic information and with the highest resolution for outbreak investigation in just two days 

(McGann et al., 2016). Many challenges exist for the application of genome sequencing both in 

the wet lab and in the dry lab. These challenges include sample preparation, library construction 

and sequencing in the wet lab. Bioinformatics support with infrastructure and the need for 

automation in the dry lab. However, there is evidence that a rapid turnaround time can be 

achieved in small-scale laboratories and not only in reference laboratories (McGann et al., 2016). 

Third generation sequencing technologies including MinION (Oxford Nanopore Technologies) 

allows more rapid identification of organisms following both amplicon-based and PCR-free 

metagenomics approaches (Loit et al., 2019). MinION showed the potential to be used as a rapid 

diagnostic achieving turnaround time as short as 2.5 hours (Loit et al., 2019). 

2.1.3. Culture-free clinical metagenomics 

A faster diagnostic capable of rapid identification of infectious pathogens and antibiotic 

resistance is needed (‘Antibiotic susceptibility diagnostics for the future’, 2019). Clinical 

metagenomics includes the comprehensive analysis of microbial and host genetic material using 

sequencing (Chiu and Miller, 2019). Metagenomic sequencing enables the identification of a 

broad range of pathogens including viruses, bacteria, fungi and/or parasites directly from clinical 

samples on the basis of unique DNA and/or RNA sequences. The approach has high potential to 

change infectious disease diagnostics especially when combined with portable sequencing 

technologies such as MinION nanopore. Clinical metagenomics can prove superior to WGS-

based single isolate identification when considering the turnaround time of sample to answer 

(Carey-Ann D Burnham et al., 2017). Metagenomic-based tests has been developed for dual 

pathogen and antimicrobial resistance identification achieving short turn-around time of 6 hours 

sample-to-answer (Charalampous et al., 2018). It has been shown that metagenomic-based 

sequencing could replace “gold standard” culture by providing rapid, sensitive and real time 

results for the diagnosis of lower respiratory infections (Charalampous et al., 2018). In addition, 

technical feasibility and proof-of concept clinical validity have also been demonstrated for 

nanopore metagenomics sequencing use in severe pneumonia diagnosis offering the information 

needed from the sequencing profiles in culture negative samples (Yang et al., 2019). 
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Another metagenomic application is the detection of circulating pathogens produced by 

infections at diverse body sites using the “Karius test”. This test allows the detection and 

quantification of microbial cell free DNA circulating in the bloodstream with the capability of 

identifying more than 1250 clinical pathogens in blood samples (O’Grady, 2019). The test has 

been validated for the diagnosis of sepsis and showed promising results. Because detection can 

be confounded by commensal microorganisms or unrelated minor infections that may lead to 

false positive results, it is recommended for use as a complement standard diagnosis in patients 

with suspected sepsis, pneumonia, or fever of unknown origin (O’Grady, 2019). 

2.1.4. Available Resistance Prediction Tools and bioinformatics platforms 

Some high-throughput tools are currently available to analyze sequence data and to predict for 

antibiotic resistance. These tools can usually identify AMR associated genes and single 

nucleotide polymorphism in query sequences based on the databases supported by the tool. This 

subsequently depend on data curation by software developers. Using this approach has many 

theoretical and practical limitations. 

In theory, our understanding about the mechanisms and diversity of the molecular basis of AMR 

is still growing with the increasing availability of genome sequence data. Available methods are 

limited to the known types of AMR determinants and sometimes cannot be applied to the data 

generated by all sequencing technologies. In addition, the data used can be restricted to a specific 

set of reference sequences that are sometimes not comprehensively representative of all available 

knowledge on AMR determinants in the microbial species studied. Another important point is 

the organism spectrum included in the tool analysis capabilities. Most tools either align 

sequencing reads to a set of reference genes or search for reference gene matches in de novo 

assembled sequences. Examples for the first include SRST2 (Inouye et al., 2014) and Kmer 

Resistance (Clausen et al., 2016). A drawback for both SRST2 and Kmer Resistance is their 

inability to identify or interpret different variants such as some SNP-associated resistance 

mutations. They are usually limited to the identification of particular genes or a group of pre-

defined alleles. Other tools that require the use of pre-assembled sequences can be considered 

more computationally expensive with the possibility of errors during the assembly step which 

can lead to missed identification of some resistance associated determinants. Examples of these 
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tools include ARG-ANNOT (Gupta et al., 2014a), ResFinder (Zankari et al., 2012), SSTAR (de 

Man and Limbago, 2016), and RAST (Davis et al., 2016). 

On the practical side, many limitations exist for using these tools for applied purposes. First of 

all is the availability of the tool and its accessible use for microbiologists or clinicians without 

specialist bioinformatics skills. Second practical limitation is their high computational resource 

requirements. Some tools are only available via web services while others lack the high-

throughput analysis stream for a large number of samples. For example, ARIBA tool (Hunt et 

al., 2017) combines both alignment and targeted local assembly with the opportunity to identify 

AMR genes and variants precisely. It gives support to a number of public databases including 

ARG-ANNOT, CARD (Jia et al., 2017), MEGARes (Lakin et al., 2017), and ResFinder. Despite 

having many functionalities, it requires specific expertise skills for obtaining the input data, for 

preparing the data for analysis, running, and summarizing the output data which cannot be easily 

achieved in most clinical settings. 

2.1.5. Antimicrobial resistance prediction in Pseudomonas aeruginosa 

Ps. aeruginosa can be considered a candidate study system for antibiotic resistance prediction, 

however, the special nature of the species makes AMR prediction in Ps. aeruginosa specifically 

challenging (Jeukens, Freschi, Kukavica-Ibrulj, J.-G. Emond-Rheault, et al., 2019). This is in 

part attributable to the large pan-genome of the species. J. Jeukens et al., (2017) have highlighted 

the complexity of associating phenotype and AMR genotype in Ps. aeruginosa due to the 

species-specific complicated regulation of resistance mechanisms. Their results showed that the 

identified resistome using the CARD database does not correlate with phenotype and that some 

resistance genes can be found in some sensitive isolates. It is important to consider that even 

antibiotic susceptible strains of the species can carry some resistance mechanisms due to intrinsic 

AMR. Another possible source of bias in predicting clinically important resistance determinants 

is the current lack of clarity of understanding of the difference in gene content for virulence and 

AMR between clinical and environmental isolates (Freschi et al., 2015). 
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2.2. Aim: Evaluation of the accuracy of Whole Genome Sequencing (WGS)-based tools in 

predicting antibiotic resistance in Ps. aeruginosa 

The ultimate goal of a better molecular microbiology diagnostic is to reduce the traditional 

microbiology lab turn-around time to be able to impact decision making. This can only be 

achieved when sequencing is linked to an automated system of data interpretation which can be 

converted into real time meaningful clinical reports that can be used to direct treatment choice. 

However, to date, these automated comprehensive diagnostic workflows have not yet been 

developed for clinical use for most bacterial species. Instead some current bioinformatics tools 

are publicly available and are used to predict for phenotypic resistance by identifying all known 

resistance associated genes and mutations. The aim of this chapter is to evaluate the accuracy of 

some genomic based antibiotic resistance-prediction tools currently available for Ps. aeruginosa 

and consequently their suitability to be used practically to direct treatment. 

There is also a lack of comprehensive studies that investigate the concordance between 

phenotypic antimicrobial susceptibility testing and WGS-based resistance prediction for Ps. 

aeruginosa. Although some studies have been performed for epidemiologic purposes to link 

background genetic markers of antimicrobial resistance to phenotype (Kos et al., 2015), these 

studies are directed to identify previously known intrinsic and acquired resistance determinants. 

Kos et al., (2015) showed in their study a sensitivity and specificity of 94% for genotypic 

inference of levofloxacin resistance. Genotypic markers for amikacin resistance were identified 

in only 60% of amikacin non-susceptible isolates. In addition, 30 out of 283 amikacin susceptible 

isolates were found to carry amikacin resistance-associated genes. However, in that study, 

resistant strains were over-represented and there was no information about the genetic diversity 

of tested isolates. In a recent comprehensive study, the CARD database was used to identify the 

resistome of 390 Ps. aeruginosa strains from a wide array of environmental, clinical, and animal 

sources, but it was not linked to the strains phenotype (Julie Jeukens et al., 2017). To achieve 

that, a genetically and epidemiologically representative collection of Ps. aeruginosa isolates 

including both sensitive and resistant isolates has been tested in this chapter. 

 

 



49 | P a g e  
 

2.3. Methodology 

2.3.1. Collection, culture and preservation of study isolates 

Strains included in the study were kindly provided by Prof. David Livermore (Livermore, 

Williams and Williams, 1981) and from the BSAC Bacteraemia Resistance Surveillance 

Program (Reynolds, Hope and Williams, 2008). 

Bacterial strains provided on agar slopes were cultured overnight at 37.5 ℃ on non-selective 

nutrient agar media obtained from Sigma-Aldrich. Cryogenic bacterial stocks were preserved by 

collecting 200 µl of pure culture colonies for each isolate grown on nutrient agar in 

cryopreservation fluid which was preserved in cryogenic tubes and kept at - 80 ℃. The 

preservation cryogenic fluid was prepared from a mix of 1:1 nutrient broth and 80 % glycerol to 

a total volume of 3 ml. 80 % glycerol for cryopreserved stocks was prepared by dissolving 200 

gm in final volume of 250 ml Milli-Q water, autoclaved at 121 ℃, 15 minutes. Nutrient broth for 

microbiology was obtained from Sigma-Aldrich and prepared by dissolving 4 g media powder in 

250 ml (2X) and autoclaving for 15 minutes at 121 ℃. 

2.3.2. Phenotypic antimicrobial susceptibility testing 

Eighty- seven highly diverse isolates of Ps. aeruginosa were selected from an in-house collection 

developed at Brunel University London. Antibiotic susceptibility testing was performed using 

the disc diffusion Kirby-Bauer method (Andrews and Howe, 2011) and the Oxoid 

M.I.C.Evaluator™ (Thermo Fisher Scientific) to measure MIC values according to the 

manufacturer’s instructions. Each strain was tested for its susceptibility to ciprofloxacin, 

levofloxacin, gentamycin, and amikacin. Disc-zone diameter and MIC values were used to 

classify the isolates into sensitive or resistant according to the latest clinical breakpoints defined 

by EUCAST (EUCAST, 2018). Figures are shown in Appendix Ι. 

Oxoid M.I.C. Evaluator™ (Thermo Fisher Scientific) provides a gradient of antibiotic stabilized 

on a plastic strip with 30 graduations to give an accurate MIC over the range of 256 µg/ml- 0.015 

µg/ml. The antibiotic starts to release from the plastic forming a defined concentration gradient 

in the area around the strip after the M.I.C. evaluator strip is applied to the pre-inoculated agar. 

After incubation, a zone of inhibition forms around the M.I.C. evaluator strip. The MIC is read 

using the graduated scale at the point where the growth of the test organism touches the strip. 
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Antibiotic susceptibility testing using Oxoid M.I.C. Evaluator™ (Thermo Fisher Scientific) to 

measure MIC was performed according to the following steps: 

• Muller-Hinton or Cation-adjusted Muller Hinton agar media was prepared and poured to 

a depth of 4mm ±0.5 mm. 

• Several colonies of the test isolate from a pure culture were emulsified into saline 

suspension and compared to 0.5 McFarland Standard to adjust turbidity level. McFarland 

standard was prepared as shown in Appendix Ι. 

• A sterile cotton swab was then dipped into the suspension and excess moisture was 

removed by pressing and rotating against the edge of the tube.  

• The plate was then inoculated with the bacterial suspension by swabbing in at least three 

different directions taking care to do this evenly to ensure that no gaps are left in the 

deposited inoculum. 

• The surface of the agar was then allowed to dry completely before applying the M.I.C.E 

strip since excess moisture can cause distortion of the gradient.  

• The strip was applied to the plates within 15 minutes of inoculation to avoid pre-growth 

of the organism. 

• Using sterile forceps, the strip was removed from the sachet by handling the end with 

logo and antibiotic code. 

• The strip was then placed with the scale facing upwards and the antibiotic gradient 

downwards in contact with the agar. 

• The strip was applied by putting the end with the lowest concentration onto the plate first 

and then carefully rolling the strip onto the agar to ensure good contact with the entire 

length of the strip. 

• Once the strip was applied to the agar, the plates were the incubated immediately to avoid 

pre-diffusion of the antibiotic. 

• After incubation, MIC value was read at the point of intersection of growth inhibition 

with the strip gradient. 
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2.3.3. Whole genome DNA extraction, purity check, sequencing, and assembly 

Whole genomic DNA extraction for Ps. aeruginosa isolates was done using the FastDNA® 

SPIN Kit and the FastPrep® Instrument (MP Biomedicals, Santa Ana, CA).  

The following shows whole genome DNA extraction steps performed: 

1) Cell Lysis: 

►Lysing matrix containing garnet matrix and one ¼ inch ceramic bead was used with the cell 

lysis solution and homogenized in the FastPrep instrument. The orange-capped tubes containing 

Lysing Matrix A were appropriately labeled and filled with 1 mL of CLS-TC solution (from the 

kit). A 10 µl  blue inoculating loop was used to generously scoop approx. 200 µl of bacteria from 

the plate. The bacteria on the loop were then rubbed against the tube wall and matrix to dislodge 

into the tube. The caps were then screwed tightly making sure the rubber seal was in place, and 

processed in the FastPrep Instrument at speed 6.0 m/s for 40 sec. 

► The tubes were then centrifuged at 13,000 rpm for 10 min at room temperature. The 

centrifuge step was done to pellet the debris including all membranes and proteins. 

►DNA released in solution is then added to the binding matrix step, mixed, and incubated. The 

Binding Matrix (from the kit) was thoroughly mixed to resuspend silica particles, and 750 µl was 

dispensed in fresh marked 2 mL Eppendorf tubes. After centrifugation, the supernatant 

(approx.750 µl) was transferred into the tube with Binding Matrix, avoiding the pellet of cell 

debris and lysing matrix. The tube was thoroughly mixed by inverting several times, and the 

tubes were the incubated with agitation on a rotating wheel for 5 minutes at room temperature. 

The tubes were then centrifuged at 13,000 rpm for 1 minute at room temperature to pellet the 

binding matrix. The supernatant was carefully discarded to preserve the pellet, subsequently 500 

µl of SEWS-M solution (from the kit) was added and the pellet was completely resuspended by 

tapping the tube. 

2) Solid phase purification of DNA: 

►DNA was then transferred to the spin column module and after centrifugation, it was bound to 

the silica membrane and all other contaminants are removed by two wash steps. To achieve that, 

the resuspended Binding Matrix was applied to a SPIN module and centrifuged at 13,000 rpm for 



52 | P a g e  
 

1 minute. The contents of the catch tube were discarded and replaced. The SPIN modules were 

centrifuged a second time at 13,000 rpm for 1 minute at room temperature, and the catch tube 

was replaced with a recovery tube. 

►DNA was then eluted in TE buffer and collected in the tube. The DNA was eluted by gently 

re-suspending Binding Matrix above the SPIN filter in 100 µl TE. This was then incubated for 5 

minutes at 55 ℃ in a heat block. The SPIN module was then centrifuged at 13,000 rpm for 1 

minute to bring the eluted DNA into the recovery tube, and the SPIN filter was discarded. 

3) Purification and precipitation of DNA: 

This stage includes RNase treatment, washing DNA pellets in 70 % ethanol solution to remove 

trapped solutes and finally DNA was eluted and stored in TE buffer. The DNA was RNase 

treated by adding 2 µl RNase A (10 mg/mL) and incubated for 30-45 minutes at 37 ℃.1/10 

volume of 3M Na-Ac pH 5.2 was added and mixed thoroughly; subsequently 2.5 volume of cold 

100 % ethanol was added. The tubes were inverted several times to mix and stored at - 20 ºC for 

30 minutes. The tubes were then centrifuged at 13,000 rpm for 30 minutes at room temperature. 

After the presence of the pellet was carefully inspected, the supernatant was carefully removed 

and 500 µl  of cold 70 % ethanol was added and inverted several times. The tubes were 

centrifuged at 13,000 rpm for 5 minutes at room temperature. The ethanol was carefully 

removed, and the pellet was air-dried for 5 minutes at room temperature. The DNA pellet was 

finally dissolved in 50-100 µl TE buffer, by gently tapping the tube and the tubes were incubated 

tubes in heat block at 55 ℃ for 5 minutes or room temperature for 1 hour (Bej et al., 1996). 

Checking DNA quantity and purity: 

This step was carried out using the NanoDrop microvolume sample retention system (Thermo 

Scientific NanoDrop). The software automatically calculates the nucleic acid concentration and 

purity ratios after sample measurement. Sample quality can also be assessed from spectral image 

assessment. Sample quality can be accurately assessed by assessing the overall spectral quality 

together with 260/280 or 260/230 ratios. Pure nucleic acids typically yield a 260/280 ratio of 

~1.8 for DNA. The 260/230 purity ratio is a second measure of DNA purity with values for a 

"pure" nucleic acid commonly in the range of 1.8 - 2.2 (Desjardins and Conklin, 2010). Graphs 

showing assessment of sample quality using NanoDrop are shown in Appendix Ι.  
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The Qubit® dsDNA HS Assay Kits (Invitrogen by life technologies) and the Qubit® 2.0 

Fluorometer instrument (Invitrogen by life technologies) were used according to manufacturer 

instructions to quantify dsDNA in extracted DNA samples and the final DNA concentration was 

normalized to 30 ng/µl before being sent for sequencing. Detailed steps are shown in Appendix Ι. 

Sequencing and assembly: 

Isolates were sequenced by the Wellcome Trust Centre for Human Genetics using Illumina next 

generation 150-bp paired-end sequencing with 192 multiplexed libraries to generate 14-45x 

coverage on Illumina HiSeq 2500. Each genome was assembled using the de novo sequence 

assembly program SPAdes (Bankevich et al., 2012). Assembly quality  and downstream 

sequence analyses were carried out using MUMmer (Delcher, 2002), BLAST (Altschul et al., 

1990), and in-house perl scripts.  

2.3.4. Assessment of genetic diversity and selection of the most diverse group 

The isolates used in this study were chosen as a set of strains best representing species diversity 

from a larger collection of isolates developed at Brunel University London. Strains with greater 

than 13,500 SNPs in the core genome separating any strain from its nearest neighbor in the 

collection were selected for use in this study.  

2.3.5. In-silico prediction of antimicrobial susceptibility 

Three methods were used to predict microbial sensitivity based upon the genome sequence data. 

Depending upon the requirements of the analysis pipeline, Raw sequence reads, or assembled 

sequences were submitted for analysis. 

MICRA: FASTQ files of sequenced strains were uploaded for analysis by the core part of 

MICRA pipeline before running the antibiotic susceptibility and resistance prediction module 

(www.pegasebiosciences.com/MICRA/micra.php). The post-analysis module of MICRA 

pipeline was used to identify potential antibiotic susceptibility and resistance as described 

(Caboche et al., 2017).  

CARD: The Resistance Gene Identifier (RGI) analytic tool provided by CARD 

(https://card.mcmaster.ca/analyze/rgi) was used to analyze uploaded sequence files in FASTA 

format as described (McArthur et al., 2013). The RGI tool generated a detailed output report 

http://www.pegasebiosciences.com/MICRA/micra.php
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showing all antibiotic resistance associated genes and SNPs that were identified in submitted 

sequences. Those associated with resistance to aminoglycosides and quinolone groups of 

antibiotics were selected for further analysis in this study. 

ResFinder: Assembled sequences in FASTA format were used as the input to the web-based tool 

ResFinder provided by the Centre for Genomic Epidemiology 

(https://cge.cbs.dtu.dk/services/ResFinder/) to identify  acquired antimicrobial resistance genes 

related to aminoglycosides and quinolones groups of antibiotics (Zankari et al., 2012). Default 

parameter for gene identification were used (90% as the threshold for %ID and 60% as minimum 

length). 

2.3.6. Comparison of phenotypic testing to genomic prediction 

The phenotypically determined susceptibilities were compared with the results of the WGS-

based prediction tools. The accuracy of the genome-based methods was assessed by calculating 

sensitivity, specificity, and predictive values using IBM SPSS Statistics for Windows 

(SPSS.V21). 

2.4. Results 

2.4.1. Description of the genetic background of studied Ps. aeruginosa isolates 

The dataset included in this study showed a total of 877,218 SNPs in the comparable core 

genomes. The isolate distance measure used to ascertain diversity was the pairwise SNP distance 

of an isolate from its nearest neighbor in the core genome. The isolates had an average distance 

of 18,213 SNPs, and the isolates with the minimum and maximum distance being 13,731 and 

63,011 SNPs, respectively (Figure 2.1). 
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Figure 2.1. Estimates of Evolutionary Divergence in sequences shown as pairwise distances to the next nearest 

strain in the collection 

2.4.2. Comparison of antibiotic susceptibility phenotype distribution of study collection 

with international population data 

The distribution of ciprofloxacin MICs measured in tested isolates was compared to the 

international MIC distribution available from EUCAST databases at 

http://www.eucast.org/mic_distributions_and_ecoffs/  (Figure 2.2). Compared distributions show that 

the distribution of susceptibility of the strains used in this study is representative of that observed 

in the normal clinically isolated population; though it does not include strains with very high 

resistance phenotypes. The international MIC distribution of ciprofloxacin sensitivity from 

EUCAST reference database is based on 27,967 observations (82 data sources). Similarly, Figure 

2.3 shows the compared distribution of ciprofloxacin sensitivity of study isolates to the 

international distribution from the EUCAST reference database based on 4,096 observations (9 

data sources) as expressed by the diameter of the growth inhibition zone. 
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Figure 2.2. Distribution of ciprofloxacin susceptibility among international Ps. aeruginosa population and study 

isolates (MIC) 

 

Figure 2.3. Distribution of ciprofloxacin susceptibility among international Ps. aeruginosa population and study 

isolates (zone diameters) 

The distribution of levofloxacin sensitivity as measured by both MIC and the diameter of the 

growth inhibition zone was also compared to the international distribution available from 

EUCAST databases as shown in Figure 2.4 and Figure 2.5, respectively. The international 

distribution of levofloxacin MIC is based on 14,871 observations (11 data sources) and that of 

diameter of inhibition zone is based on 363 observations (4 data sources). Similar to 

ciprofloxacin, the distribution of sensitivity is highly concordant with that observed in the 
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worldwide clinical population, though slightly shifted towards smaller zone diameters as 

observed in Figure 2.5. 

 

Figure 2.4. Distribution of levofloxacin susceptibility among international Ps. aeruginosa population and tested 

isolates (MIC) 

 

Figure 2.5. Distribution of levofloxacin susceptibility among international Ps. aeruginosa population and tested 

isolates (zone diameters) 

The same distribution data for amikacin sensitivity using MIC and growth inhibition zones are 

shown in Figure 2.6 and Figure 2.7, respectively. International distribution of amikacin MIC is 

based on 17,369 observations (13 data sources) and that of diameter of inhibition zone is based 

on 538 observations (3 data sources). Again, the distribution of susceptibility and resistance is 

highly concordant with that observed in worldwide clinical population. This similar distribution 
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is expected because the strains in the collection are selected for diversity and include clinical 

strains that pre-date much of the selective pressures for evolution to resistance. 

 

Figure 2.6. Distribution of amikacin susceptibility among international Ps. aeruginosa population and tested 

isolates (MIC) 

 

Figure 2.7. Distribution of amikacin susceptibility among international Ps. aeruginosa population and tested 

isolates (zone diameter) 

The distribution of gentamycin susceptibility as measured by both MIC and the diameter of the 

growth inhibition zone were also compared to the international distribution available from 

EUCAST databases as shown in Figure 2.8 and Figure 2.9, respectively. The international 
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diameter of inhibition zone is based on 4095 observations (9 data sources). The distribution of 

studied isolates was  shifted towards higher gentamycin MICs and towards lower zone diameters. 

 

Figure 2.8.  Distribution of gentamycin susceptibility among international Ps. aeruginosa population and tested 

isolates (MIC) 

 

Figure 2.9. Distribution of gentamycin susceptibility among international Ps. aeruginosa population and tested 

isolates (Zone diameter) 
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Table 2.1. Although the CARD database does not provide predicted e-antibiogram, identified 

elements of resistance (mutations and genes) do not correlate with or predict for the 

experimentally determined phenotype. Most of the known resistance genes and mutations were 

identified in nearly all isolates irrespective of their phenotype and were similarly identified in 

both resistant and sensitive isolates.  

The creation and curation of a database that describes all point mutations associated with 

antibiotic resistance is considered one of the main challenges for culture-independent 

susceptibility testing (Gordon et al., 2014) (Stoesser et al., 2013).  ResFinder cannot be used to 

address quinolone resistance because it can only identify acquired resistance elements and not 

nucleotide changes associated with resistance for Ps. aeruginosa. The species included in the 

platform identifying chromosomal mutations by ResFinder are E. coli, Enterococcus faecalis, 

Enterococcus faecium, H. pylori, Klebsiella, M. tuberculosis, N. gonorrhoeae,  Salmonella and 

Staphylococcus aureus. In addition, it did not identify any of the acquired resistance genes that 

are associated with transferable quinolone resistance. ResFinder does not distinguish between 

specific agents within the same antibiotic class. The results reported here are therefore only for 

the aminoglycoside group (Table 2.2). Even then it can only identify the presence or absence of 

three aminoglycosides resistance genes: aph (3')-IIb, aadA13 and ant (2'')-Ia. The acquired 

aminoglycosides resistance gene aph (3')-IIb which confers resistance to some aminoglycosides 

but not to amikacin was identified in almost all studied isolates (86 isolates) except for one 

susceptible isolate which lacked the gene. This means that the gene cannot differentiate 

resistance from susceptibility because it has been identified in 42 gentamycin resistant isolates 

and in 44 gentamycin susceptible isolates. The two other genes for acquired aminoglycosides 

resistance; aadA13 and ant (2'')-Ia were absent in all 86 isolates except for one susceptible 

isolate that showed presence of the gene aadA13. Acquired resistance genes as distributed in the 

studied set of isolates do not appear to be the main underlying basis of aminoglycosides 

resistance or at least they do not appear to differentiate susceptibility from resistance for both 

studied agents (gentamycin and amikacin). 

MICRA is another publicly available automatic pipeline for microbial identification and 

characterization (Caboche et al., 2017). The antibiotic resistance computational post-analysis 

module for prediction was used. The predicted e-antibiograms are shown in (Table 2).  
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MICRA predicts the e-antibiogram by identifying ‘susceptibility genes’ through BLASTing the 

query sequences against a local version of Drug Bank (Wishart et al., 2006). It also identifies 

‘resistance genes’ by BLASTing the sequences against a modified version of the antibiotic 

resistance database (ARDB) (Liu and Pop, 2009). In that respect, MICRA has an added function 

of identifying ‘susceptibility elements’ in addition to ‘resistance elements’ that can be identified 

using the other tools. The final MICRA in-silico report showed details for the complete set of 

genes identified as match from ARDB in addition to matches from Drug Bank. All study isolates 

were identified as ‘not susceptible’ as shown in (Table 2.2) because all had matches from the 

ARDB and no matches from Drug Bank. In addition, we tested for gentamycin and norfloxacin 

in-silico susceptibility using MICRA, but the final report showed the result as ‘not defined’. This 

means that prediction data may not be available for all agents even from the same antibiotic 

class.  

Table 2.1. Resistance profiles identified using the resistance gene Identifier tool by CARD database 
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Grey cell: gene present, white cell: gene absent Q: Quinolone, AG: Aminoglycoside 

Table 2.2. Results of susceptibility testing using both MICRA and ResFinder compared to measured susceptibility 

using both zone inhibition diameter and MIC 
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PAE0002 NS NS NS    8 R 14 R 24 S 1 S 28 S 0.1 S 21 S 4 S 

PAE0005 NS NS NS    8 R 14 R 21 R 1 S 25 R 0.1 S 18 S 4 S 

PAE0006 NS NS NS    16 R 18 S 23 S 1 S 30 S 0.1 S 23 S 4 S 

PAE0007 NS NS NS    4 S 16 S 21 R 1 S 30 S 0.1 S 19 S 2 S 

PAE0008 NS NS NS    4 S 19 S 27 S 0.5 S 33 S 0.1 S 23 S 4 S 

PAE0010 NS NS NS    16 R 14 R 6 R >32 R 6 R 8 R 17 I 8 S 

PAE0011 NS NS NS    8 R 17 S 28 S 0.25 S 35 S 0.1 S 22 S 4 S 

PAE0012 NS NS NS    8 R 15 S 15 R 2 R 22 R 0.3 S 19 S 4 S 

PAE0014 NS NS NS    8 R 14 R 20 R 1 S 25 R 0.1 S 17 I 4 S 

PAE0018 NS NS NS    1 S 19 S 23 S 0.5 S 31 S 0.1 S 22 S 2 S 

PAE0020 NS NS NS    4 S 15 S 23 S 0.5 S 28 S 0.1 S 19 S 2 S 

PAE0021 NS NS NS    4 S 16 S 23 S 0.5 S 31 S 0.1 S 21 S 2 S 

PAE0024 NS NS NS    16 R 12 R 12 R 4 R 20 R 0.5 S 15 I 8 S 

PAE0025 NS NS NS    4 S 17 S 27 S 0.5 S 33 S 0.1 S 23 S 2 S 

PAE0026 NS NS NS    4 S 17 S 23 S 1 S 28 S 0.3 S 20 S 4 S 

PAE0029 NS NS NS    8 R 15 S 21 R 0.5 S 27 S 0.1 S 18 S 4 S 

PAE0030 NS NS NS    4 S 16 S 24 S 1 S 31 S 0.1 S 22 S 2 S 

PAE0032 NS NS NS    8 R 16 S 27 S 0.5 S 34 S 0.1 S 20 S 4 S 

PAE0035 NS NS NS    16 R 11 R 17 R 2 R 24 R 0.5 S 15 R 16 I 

PAE0036 NS NS NS    4 S 18 S 19 R 2 R 27 S 0.3 S 22 S 2 S 

PAE0039 NS NS NS    8 R 15 S 21 R 1 S 27 S 0.1 S 19 S 4 S 

PAE0040 NS NS NS    4 S 17 S 23 S 0.5 S 31 S 0.1 S 20 S 4 S 
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PAE0041 NS NS NS    1 S 21 S 27 S 0.5 S 3 S 0.1 S 25 S 0.5 S 

PAE0043 NS NS NS    2 S 19 S 26 S 0.5 S 31 S 0.1 S 23 S 2 S 

PAE0044 NS NS NS    8 R 15 S 22 S 0.5 S 25 R 0.1 S 21 S 4 S 

PAE0046 NS NS NS    16 R 12 R 17 R 4 R 26 S 0.3 S 15 I 8 S 

PAE0047 NS NS NS    8 R 17 S 20 R 1 S 21 R 0.1 S 17 I 4 S 

PAE0048 NS NS NS    8 R 14 R 20 R 2 R 32 S 0.1 S 21 S 4 S 

PAE0051 NS NS NS    8 R 14 R 21 R 0.5 S 27 S 0.1 S 18 I 4 S 

PAE0055 NS NS NS    8 R 15 S 22 S 1 S 30 S 0.3 S 20 S 4 S 

PAE0057 NS NS NS    1 S 20 S 25 S 0.5 S 32 S 0.1 S 23 S 2 S 

PAE0059 NS NS NS    16 R 13 R 13 R 4 R 22 R 0.5 S 16 I 8 S 

PAE0060 NS NS NS    0.5 S 20 S 24 S 0.5 S 32 S 0.1 S 23 S 2 S 

PAE0061 NS NS NS    16 R 11 R 14 R 4 R 24 R 0.5 S 16 I 8 S 

PAE0062 NS NS NS    2 S 19 S 30 S 0.5 S 32 S 0.1 S 24 S 1 S 

PAE0063 NS NS NS    8 R 15 S 18 R 4 R 27 S 0.3 S 19 S 4 S 

PAE0068 NS NS NS    4 S 17 S 31 S 0.25 S 34 S 0 S 22 S 4 S 

PAE0070 NS NS NS    2 S 18 S 21 R 1 S 32 S 0.1 S 23 S 2 S 

PAE0071 NS NS NS    4 S 16 S 16 R 2 R 28 S 0.3 S 21 S 4 S 

PAE0072 NS NS NS    8 R 16 S 24 S 0.5 S 30 S 0.1 S 21 S 2 S 

PAE0076 NS NS NS    2 S 18 S 25 S 0.5 S 31 S 0.1 S 23 S 2 S 

PAE0079 NS NS NS    4 S 17 S 15 R 2 R 21 R 0.5 S 17 I 4 S 

PAE0081 NS NS NS    0.5 S 21 S 26 S 0.25 S 34 S 0.1 S 24 S 1 S 

PAE0082 NS NS NS    4 S 16 S 28 S 0.25 S 33 S 0.1 S 20 S 2 S 

PAE0083 NS NS NS    4 S 16 S 21 R 0.5 S 29 S 0.1 S 21 S 2 S 

PAE0084 NS NS NS    2 S 20 S 27 S 0.5 S 35 S 0.1 S 24 S 1 S 

PAE0085 NS NS NS    8 R 15 S 21 R 0.5 S 27 S 0.1 S 19 S 4 S 

PAE0087 NS NS NS    4 S 16 S 15 R 4 R 21 R 0.5 S 21 S 4 S 

PAE0088 NS NS NS    16 R 12 R 32 S 0.12 S 32 S 0 S 17 I 8 S 

PAE0090 NS NS NS    2 S 19 S 23 S 0.5 S 32 S 0.1 S 22 S 2 S 

PAE0091 NS NS NS    8 R 15 S 21 R 1 S 25 R 0.1 S 19 S 4 S 

PAE0092 NS NS NS    2 S 20 S 20 R 1 S 31 S 0.1 S 22 S 2 S 

PAE0093 NS NS NS    4 S 18 S 31 S 0.25 S 39 S 0.1 S 21 S 4 S 

PAE0095 NS NS NS    0.25 S 24 S 14 R 4 R 25 R 0.5 S 26 S 0.5 S 

PAE0096 NS NS NS    4 S 17 S 25 S 0.5 S 31 S 0.1 S 22 S 2 S 

PAE0098 NS NS NS    2 S 18 S 26 S 0.5 S 35 S 0.1 S 23 S 1 S 

PAE0099 NS NS NS    1 S 20 S 24 S 0.5 S 33 S 0.1 S 24 S 1 S 

PAE0106 NS NS NS    2 S 20 S 25 S 0.5 S 35 S 0.1 S 25 S 2 S 

PAE0109 NS NS NS    8 R 13 R 21 R 0.5 S 24 R 0.1 S 18 S 4 S 

PAE0111 NS NS NS    8 R 16 S 13 R 16 R 15 R 2 R 19 S 4 S 

PAE0112 NS NS NS    4 S 17 S 23 S 1 S 31 S 0.1 S 21 S 2 S 

PAE0113 NS NS NS    8 R 16 S 23 S 1 S 31 S 0.1 S 22 S 2 S 

PAE0115 NS NS NS    2 S 18 S 14 R 2 R 24 R 0.3 S 23 S 2 S 

PAE0116 NS NS NS    2 S 19 S 26 S 0.5 S 32 S 0.1 S 23 S 1 S 

PAE0119 NS NS NS    0.5 S 21 S 25 S 0.5 S 35 S 0.1 S 25 S 0.5 S 

PAE0124 NS NS NS    16 R 13 R 16 R 4 R 23 R 0.5 S 17 I 8 S 

PAE0125 NS NS NS    8 R 16 S 24 S 0.5 S 30 S 0.1 S 21 S 4 S 

PAE0136 NS NS NS    8 R 16 S 29 S 0.25 S 32 S 0.1 S 20 S 4 S 

PAE0142 NS NS NS    16 R 13 R 19 R 2 R 26 S 0.3 S 18 I 4 S 

PAE0144 NS NS NS    8 R 14 R 23 S 0.5 S 30 S 0.1 S 19 S 4 S 

PAE0145 NS NS NS    16 R 14 R 22 S 1 S 28 S 0.1 S 19 S 4 S 

PAE0147 NS NS NS    4 S 17 S 26 S 0.5 S 34 S 0.1 S 21 S 4 S 

PAE0148 NS NS NS    4 S 16 S 21 R 1 S 30 S 0.3 S 21 S 4 S 

PAE0149 NS NS NS    0.25 S 22 S 28 S 0.25 S 34 S 0.1 S 26 S 0.5 S 

PAE0151 NS NS NS    0.25 S 24 S 31 S 0.06 S 32 S 0 S 27 S 0.5 S 

PAE0154 NS NS NS    8 R 15 S 22 R 2 R 27 S 0.3 S 20 S 8 S 

PAE0156 NS NS NS    16 R 15 S 22 S 1 S 28 S 0.3 S 19 S 4 S 

PAE0157 NS NS NS    32 R 7 R 25 S 1 S 32 S 0.1 S 8 R 32 R 

PAE0158 NS NS NS    4 S 18 S 16 R 4 R 25 R 0.5 S 22 S 2 S 

PAE0160 NS NS NS    8 R 13 R 18 R 2 R 25 R 0.3 S 18 S 4 S 

PAE0161 NS NS NS    1 S 19 S 25 S 0.5 S 32 S 0.1 S 23 S 1 S 
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PAE0167 NS NS NS    16 R 13 R 20 R 1 S 26 S 0.3 S 17 I 8 S 

PAE0168 NS NS NS    64 R 7 R 23 S 1 S 31 S 0.3 S 11 R 32 R 

PAE0171 NS NS NS    16 R 13 R 18 R 1 S 25 R 0.3 S 17 I 8 S 

PAE0172 NS NS NS    4 S 16 S 25 S 0.5 S 33 S 0.1 S 21 S 4 S 

PAE0174 NS NS NS    1 S 19 S 20 R 1 S 25 R 0.1 S 20 S 2 S 

PAE0175 NS NS NS    64 R 7 R 21 R 1 S 26 S 0.3 S 11 R 32 R 

NS: Not sensitive, R: resistant, S: sensitive, I: intermediate, MIC values are shown in mg/L, Zone diameters are shown in mm.                         

Grey cell: gene present, white cell: gene absent 

2.4.4. Comparing predictions to measured phenotypes 

Sensitivity, specificity, and predictive values were used to evaluate accuracy of prediction. The 

results are shown in Table 2.3 and 2.4. Predictive values presented are rounded to the nearest 

percent. Only three genes identified using CARD showed different distribution among isolates. 

These were mexY, mexF, and armR. The other twenty resistance genes were identified in all 

eighty-seven study isolates as shown in (Table 2.1). Five of the previously known quinolone 

resistances associated mutations were also identified. Genes and mutations showing different 

distributions among isolates were evaluated. This is shown in Table 2.3. 

To evaluate the performance of the set of genes/gene variants included in ResFinder and CARD 

as predictors to phenotypic resistance in the studied quinolones and aminoglycosides agents, 

repeated genetic profiles shown in last column of Table 2.1 are assessed here. This was done 

because no one set of predictors is seen with all tested isolates, instead profiles of different 

combinations are observed. In addition, ResFinder and CARD do not give a final predicted 

resistance/susceptibility (positive/negative) output to evaluate. Assessment of the observed 

profiles based on the known set of markers (as extracted from ResFinder and CARD) is shown in 

Table 2.5. Profiles that occurred only once or twice were not assessed. The MICRA-predicted e-

antibiogram was compared to the experimentally determined phenotype and the results are 

shown in Table 2.4. MICRA predicted all isolates as ‘not susceptible’, so only sensitivity and 

positive predictive values can be calculated because there are no true negative cases. The 

MICRA prediction output gave a detailed table (in HTML format) showing antibiotic 

susceptibility and resistance prediction for each tested isolate (tables are not shown here). This 

table showed a detailed list of all hits the pipeline has identified for each drug by BLASTing the 

query sequences against modified local versions for both ARDB and Drug bank as well as the 

detailed BLAST results. The tool then identified its final prediction based on this detailed report 

for each isolate and this final prediction is shown here (Table 2.2). The MICRA pipeline 
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validation has been performed with different organisms including E. coli str. K12 substr. 

DH10B, Bordetella pertussis, E. coli O104:H4, Staphylococcus aureus, and Clostridium 

autoethanogenum. However, the authors and developers of the tool did not show that the tool 

application is restricted to certain species or to a specific spectrum of organisms. There did not 

seem to be any issues related to the prediction module functionalities because a detailed output 

table showing the hits for all the tested sequences was generated using the tool. A possible 

reason for the false prediction (generated using the tool) in susceptible isolates perhaps originates 

from the databases that the tool uses to retrieve “antibiotic resistance genes” hits. The set of 

genes retrieved from the commonly used databases and especially for (ARDB) appear to be not 

comprehensive enough to predict and differentiate the antibiotic resistance/susceptibility 

phenotype. This can be essentially related to the nature of Ps. aeruginosa species that carry many 

resistant determinants even in wild type strains and clinically susceptible isolates. It seems that 

these resistance determinants are not sufficient to predict clinical resistance, and this is the main 

topic that needs more evaluation and understanding. Although MICRA identified all resistant 

strains correctly (high sensitivity) false positive rate (Type 1 error) was high as it identified 

‘phenotypically susceptible’ as ‘not susceptible’ (Table 2.4). This is a situation that we need to 

minimize because the cost of false positives can lead to antibiotic over prescription. 

Table 2.3. Performance of some known genomic markers (genes-mutations) identified by CARD database for in-

silico antibiotic resistance prediction 

Genomic marker 

Sensitivity Specificity 

Positive 

predictive 

value 

Negative 

predictive 

value 
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parE A473V  5% 3% 97% 96% 33% 33% 75% 55% 

gyrA T83I  9% 5% 100% 100% 100% 100% 77% 57% 

nalC S209R 82% 77% 25% 23% 27% 45% 80% 55% 

nalC G71E 86% 90% 8% 8% 24% 44% 63% 50% 

nalC A186T 14% 10% 94% 94% 43% 57% 76% 56% 

mexY 73% 80% 19% 21% 23% 45% 67% 56% 

mexF  73% 74% 14% 10% 22% 40% 60% 33% 

armR 23% 21% 83% 83% 31% 50% 76% 56% 
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Table 2.4. Evaluation of post-analysis module of MICRA pipeline as an in-silico antibiotic resistance prediction tool 

 

Table 2.5. Evaluation of the genetic profiles identified using ResFinder and CARD as possible resistance predictors 
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Genetic profile 1 Sensitivity 45.5% ----- 43.6% 38.1% 75% 66.7% 54.5% 54.8% 

Specificity 52.3% 51.8% 50% 50% 55.1% 54.2% 55.6% 59.1% 

PPV 24.4% ---- 41.5% 19.5% 8.8% 5% 30% 56.1% 

NPV 73.9% 95.7% 52.2% 71.7% 97.4% 97.8% 77.8% 57.8% 

Genetic profile 2 Sensitivity 9.1% 50% 10.3% 14.3% 25% 33.3% 9.1% 9.5% 

Specificity 86.2% 88.2% 85.4% 87.9% 87% 88% 85.7% 84.1% 

PPV 18.2% 9.1% 36.4% 27.3% 10% 9.1% 18.2% 36.4% 

NPV 73.7% 98.7% 53.9% 76.3% 95.2% 97.3% 73% 49.3% 

Genetic profile 3 Sensitivity 9.1% ----- 5.1% 4.8% ----- ----- ------- ------ 

Specificity 98.5% 96.5% 97.9% 97% 97.1% 96.4% 96.8% 95.5% 

PPV 66.7% ----- 66.7% 33.3% ----- ----- ------- ------- 

NPV 76.2% 97.6% 56% 76.2% 94.4% 96.4% 73.5% 50% 

Measured phenotype as determined 

by 

MICRA prediction 

Sensitivity Positive Predictive 

Value 

False positive rate (Type 1 

error) 

Ciprofloxacin zone inhibition 

diameter 

100% 25% 75% 

Ciprofloxacin MIC 100% 2% 98% 

Levofloxacin zone inhibition 

diameter 

100% 45% 55% 

Levofloxacin MIC 100% 24% 76% 

Amikacin zone inhibition diameter 100% 21% 79% 

Amikacin MIC 100% 5% 95% 
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Genetic profile 4 Sensitivity 4.5% ------- 7.7% 9.55% ------- ----- 9.1% 7.1% 

Specificity 90.8% 91.8% 91.7% 92.4% 92.8% 91.6% 92.1% 90.9% 

PPV 14.3% ------- 42.9% 28.6% -------- ------ 28.6% 42.9% 

NPV 73.8% 97.5% 55% 76.3% 94.1% 96.2% 74.4% 50.6% 

Genetic profile 8 Sensitivity 9.1% ------ 7.7% 9.5% ------- ------ 4.5% 9.5% 

Specificity 95.4% 94.1% 95.8% 95.5% 92.8% 94% 93.7% 97.7% 

PPV 40% ------- 60% 40% ------- ------ 20% 80% 

NPV 75.6% 97.6% 56.1% 76.8% 94.1% 96.3% 73.8 53.1% 

Genetic profile 9 Sensitivity ------- ------- 5.1% 9.5% ------- ----- 4.5% 4.8% 

Specificity 92.3% 94.1% 93.8% 95.5% 94.2% 94% 93.7% 93.2% 

PPV ------- ------- 40% 40% -------- ----- 20% 40% 

NPV 73.2% 97.6% 54.9% 76.8% 94.2% 96.3% 73.8% 50.6% 

 

2.5. Discussion 

The ability to predict antibiotic resistance phenotypes from genotypes is still in development. It 

was reported that the presence or absence of AMR genes does not always guarantee a respective 

phenotypic profile in all bacterial species (Rossen et al., 2018), and this is born-out in this study. 

While this can be established for some species, it is more challenging for Ps. aeruginosa as will 

be discussed in more detail. Consequently, it is not reliable to build a predicted e-antibiogram 

that can be used in the clinic based on the identification of known resistance genes and mutations 

for these antibiotics because there are clearly many other unknown determinants of resistance 

that are still inadequately understood. In addition, tools used for in silico prediction depend on 

either BLAST or reference mapping to known AMR genetic determinants without considering 

the background gene pool or other cellular mechanisms that contribute to resistance. These may 

include modification of endogenous genes by insertion sequences, regulatory or post-

translational modifications, and alteration of gene expression levels which can all play a 

combinatorial role in determining susceptibility. Based on the results of this chapter, the set of 

known resistance determinants is currently insufficient to predict for the net behavior of 

resistance to aminoglycosides and quinolones groups of antibiotics in Ps. aeruginosa. 

Acceptable standards for positive and negative predictive values that can translate into changes 

in patient management are still lacking (Caliendo et al., 2013). This makes it important to 

consider all the parameters that can be used to assess accuracy of the diagnostic test on a setting-
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relevant basis and according to the condition under consideration. Some studies have compared 

sequence-based prediction to phenotypic resistance in different bacterial pathogens including 

Staph. aureus (Gordon et al., 2014) (Köser, Holden, et al., 2012), E. coli, and K. pneumoniae 

(Stoesser et al., 2013) and have shown high predictive values and high concordance between in 

silico prediction and measured phenotype. However, validation studies and more extensive 

evaluation using larger and diverse sets of isolates are still needed before it can be reliably used 

to support clinical decision making more widely (Stoesser et al., 2013) (Köser, Holden, et al., 

2012). It has also been shown in several later studies that antimicrobial resistance can be 

accurately predicted in some bacterial species based on genome-derived sequence information 

(Bradley et al., 2015) (Juarez et al., 2018). 

Ps. aeruginosa is an environmental pathogen with extensive metabolic adaptability and is 

considered a potentially challenging species for antimicrobial resistance prediction using 

genomics-based approaches. Even antibiotic-susceptible strains of Ps. aeruginosa have natural 

defenses due to intrinsic AMR (Julie Jeukens et al., 2017). The organism poses a specific 

challenge in carrying a very large pool of genes encoding transcriptional regulators and two-

component regulatory systems (Silby et al., 2011). The mosaic structure of Ps. aeruginosa 

chromosome which can be continuously modified by acquisition of new DNA, larger or smaller 

mutational deletion events, mutations, and chromosomal inversions can continuously modify the 

phenotype (Klockgether et al., 2011). Although the prediction of phenotypic susceptibility  using 

a pre-defined set of genomic markers might give high sensitivity and specificity for some 

bacterial species (M. S. Wright et al., 2015) (Gupta et al., 2014b), this can be a major challenge 

when applied to Ps. aeruginosa. To the best of our knowledge, there are no studies available to 

date that evaluate the accuracy of WGS-based prediction for this organism. In a recent review, 

Ellington et al., (2017) concluded that there is not sufficient evidence for many bacterial species 

to support the use of  sequence-inferred antibiotic susceptibility in clinical practice. A conclusion 

that the current study would support. Many sources of error can be encountered when WGS is 

used for prediction of antibiotic resistance which often leads to lack of concordance between 

phenotypic AMR and genotypic AMR (Ellington et al., 2017). A more recent study investigating 

the use of machine learning approach in combination with transcriptomics for predicting 

antibiotic resistance in Ps. aeruginosa has shown that gene expression information can improve 

the diagnostic performance for all drugs tested except for ciprofloxacin (Khaledi et al., 2020). A 
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major drawback of the currently available genomic-based tools is that the set of markers used as 

determinants to differentiate susceptibility from resistance appears to be very limited. In most 

cases these are gene presence or absence information. An expanded set of markers including 

different gene variants is needed to give more complete understanding and prediction of 

phenotype. Although detailed investigation of the genetic elements underlying resistance is 

considered a promising step towards building better diagnostics, combining transcriptomic 

profiles with genomic-based resistance profiles have generated improved predictive models for 

antibiotic resistance in Ps. aeruginosa for tobramycin, ceftazidime, and meropenem but not for 

ciprofloxacin (Khaledi et al., 2020). However, some transcriptional responses due to mutations 

in some gene expression negative regulators have shown to be fixed in clinical Ps. aeruginosa 

isolates (Frimodt-Møller et al., 2018). This consequently mean that although beneficial, 

combining both quantitative gene expression information and genome information may not 

reliably predict the corresponding phenotype in all cases. 

It is concluded that genome-sequencing can provide rich source of information on the correlation 

between genotype and phenotype, however, more research is still needed to find a reliable 

approach that can be converted into a practical and informative tool within the time frame of the 

clinic and the routine health care needs. To do that, predictive interpretive tools need to be 

available to interpret sequencing-derived information for the bacterial species addressed. Such 

tools need to be highly accurate, rapid, comprehensive, informative, and capable of providing 

clinically trusted interpretations (Judge et al., 2015). More data and validation studies are still 

needed to test for the reliability and practicality of the currently available tools before they can 

be used in clinical practice to guide patient interventions. This is important to avoid misuse of 

antibiotics and over-prescription of unnecessary medications that can lead to loss of the current 

available treatment options. In order to transform the use of NGS technologies from a research 

tool into a clinically useful tool that can be used in routine clinical practice and diagnostic 

setting, several important requirements need to be fulfilled. 

2.6. Conclusions: Requirements for the implementation of sequencing technologies in 

clinical microbiology laboratories to predict resistance and to guide interventions 

• The need to improve sample preparation techniques that enable sequencing from primary 

isolation plates and single colonies without the need to subculture. 
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• The need to have knowledge about the population structure and the biologic background 

context for significant pathogenic species and lineages at national and individual patient 

specimen levels. 

• The need to develop central database for comparison of sequence data generated in real 

time with the previously available local, national, and global isolates’ data. 

• The need to develop a system for automated sequence data interpretation. This will help 

to decrease turnaround times and to disseminate the use of the technology to settings with 

less expertise.  

• The need for information technology infrastructure for data storage and exchange. 

• The need for expertise in technical issues of sequencing in addition to collaboration with 

specialist bioinformaticians and analysts’ teams. 

• The need for automated data interpretation into real time meaningful clinical reports 

easily understood by clinicians and health care providers.  

Different genome sequencing technologies can provide clinically relevant data within a time 

frame that would influence patient care. It has the potential to replace multiple diagnostic and 

reference tests. Genome sequencing can make important contributions to infection-control 

investigations and practice and can also impact different other aspects of clinical practice. This 

can subsequently reduce infection-associated morbidity and cost. It can confirm the outbreak 

close to its start point and can also draw the link between outbreak cases and the community. It 

can detect genotypes and other information related to important virulence genes and mutations in 

a short time with greater discriminatory power (Besser et al., 2018) . 

However, it is still considered relatively expensive and technically difficult. Using the 

technology has some practical limitations and is currently preserved to the research community. 

Despite that, it is expected that genome sequencing will revolutionize and replace many other 

sets of diagnostic techniques. This is attributable to the decline in the cost of sequencing 

machines and to the growing interest among clinical microbiologists in using the technology. 

The increasing availability of user-friendly analysis pipelines and workflows has greatly 

enforced that interest. In this chapter, some current limitations that exist to transform sequencing 

technologies from a research tool into a clinically useful tool have been discussed suggesting a 

framework for implementation at the practical level. This can be achieved once a valid theory 
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becomes available on the genotypic-phenotypic correlation for antibiotic resistance behavior. 

The chapter that follows reviews the literature related to the molecular bases of quinolone and 

aminoglycoside resistance and establishes a framework for the detailed assessment of all known 

genes and gene variants that can act as molecular diagnostic markers. 
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sequenced Ps. aeruginosa isolates through Brunel Systems and Synthetic Biology lab resources. 

I would like also to thank Mr. Arshad Khan for performing genome assembly, quality checks and 

analysis and for running the diversity analysis and estimates of evolutionary divergence to select 

for the most diverse group of isolates as described in Methods sections 2.3.3 and 2.4.1. 
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Chapter 3. The role of known Quinolones and Aminoglycosides resistance 

mechanisms in explaining resistance in Pseudomonas aeruginosa 

3.1. Molecular basis of quinolone resistance 

3.1.1. Quinolone Resistance Determining Region (QRDR) Mutations 

3.1.2. Efflux pumps’ regulators and global transcription regulators 

3.1.3. SOS response (stress)-mediated pathways 

3.1.4. The importance of understanding the global picture 

3.2. Molecular basis of aminoglycosides resistance 

3.2.1. Aminoglycosides-Modifying Enzymes (enzymatically catalyzed antibiotic-

inactivation) 

3.2.2. Ribosomal Mutations or Modification 

3.2.3. Cell membrane modifications (Changes in cellular permeability) 

3.2.4. Efflux pumps and SOS response Mediated pathways 

3.3. Objectives 

3.4. Methodology: Assessment of the predictive potential of established resistance 

mechanisms and markers separately and in combination for prediction of ciprofloxacin, 
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3.1. Molecular Basis of Quinolone Resistance 

3.1.1. Quinolone Resistance Determining Region (QRDR) mutations 

Quinolone resistance determining region or “QRDR” is the name given to key sites of the 

enzymes acting as targets for quinolones action. Mutations affecting these key sites lead to 

quinolone resistance. Four genes commonly show theses mutations including genes encoding 

DNA gyrase (gyrA and gyrB) and/or topisomerase Ⅳ (parC and parE) (Correia et al., 2017). 

These mutations lead to decreasing the binding affinity of quinolones to their targets (Yoshida et 

al., 1990). It has been shown in different studies that these mutations can show variable effects 

on different quinolone agents’ resistance in different organisms (Piddock, 1999) (Kaatz, Seo and 

Foster, 1999) (Komp Lindgren et al., 2005) (Morgan-Linnell and Zechiedrich, 2007) (Hooper, 

1999) (Hooper, 2000) (Everett et al., 1996). 

 A study including 100 clinical isolates of Ps. aeruginosa concluded that mutations in QRDR 

adds to pre-existing specific resistance levels of isolates including efflux pumps overexpression. 

The study showed that these mutations can separately contribute to low level resistance and may 

lead to higher-level resistance in an additive way when combined with other mechanisms of 

resistance (Bruchmann et al., 2013). The additive effect has also been shown in multiple other 

studies (Hooper and Jacoby, 2015) (Rehman, W. Patrick and Lamont, 2019). 

Although some other studies have shown that even a single amino acid alteration in gyrA can 

cause clinically important levels of resistance to fluoroquinolones in Ps. aeruginosa (Nouri et al., 

2016), comprehensive review of the literature does not support that. It appears from more careful 

analysis of studies investigating QRDR mutations and its relation to resistance that these 

mutations can be necessary but may not be sufficient in all cases to lead to a full-blown clinical 

resistance. Supplementary Table 5 summarizes the results of a review of research articles 

studying quinolone resistance and its relation to mutations in the QRDR; 1) (Matsumoto et al., 

2012), 2) (Salma et al., 2013), 3) (Nouri et al., 2016), 4) (Wang, Lee and Peng, 2014), 5) 

(Yonezawa et al., 1995), 6) (Jalal et al., 2000), 7) (Akasaka et al., 2001), 8) (Nakano et al., 

1997), 9) (Mouneimné et al., 1999). 
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3.1.2. Efflux pump regulators and global transcriptional regulators 

Efflux pumps are membrane associated porin-regulated systems that enable resistance to a wide 

range of drugs with different structural and functional features. Four types of MDR efflux pumps 

(from the RND family) have been reported as the main contributing types to extruding a broad 

range of antibiotic agents in Ps. aeruginosa including quinolones. These efflux pumps show 

varying degrees of effect with the most important one being MexEF-OprN. Efflux pumps can 

either be constitutively expressed, such as (MexAB-OprM) and (MexXY-OprM); or inducible, 

such as (MexCD-OprJ) and (MexEF-OprN) (Yordanov and Strateva, 2009). 

These four active efflux-pump systems can be responsible for increasing resistance to quinolones 

agents which can vary in the range of 2-fold up to 16-fold (Mima et al., 2005). Mutations in 

different efflux pump-associated regulatory genes can induce pump over-expression and 

consequently increase resistance. 

A) Mex AB-OprM 

This efflux pump was the first one to be described in Ps. aeruginosa. It is described to target a 

wide range of drug classes as well as other dyes and chemicals. It is constitutively expressed in 

wild-type organisms and is considered a contributor to intrinsic resistance to a wide range of 

antimicrobial agents (Zhao et al., 1998). In addition, the system can be hyper-expressed in 

different types of mutants affecting its regulatory elements. nalB mutant is the first type of 

regulator mutant detected in some clinical isolates and can also be selected through in vivo and in 

vitro treatment by quinolones. The nalB mutant affects the mexR gene which is a pump repressor 

located upstream of MexAB-OprM (Srikumar, Paul and Poole, 2000). Strains with the nalB 

phenotype also occur as a result of total absence of mexR, decreased amounts of MexR or normal 

amounts with loss of its ability to dimerize (Boutoille et al., 2004). nalC and nalD were also 

linked to MexAB-OprM hyper-expression. The protein products of these two genes are  

considered as negative regulators for the expression of MexAB-OprM operon.  (Srikumar, Paul 

and Poole, 2000). Different types of mutations in nalC and nalD genes showed association with 

different resistance phenotypes (Pan et al., 2016). Mutations in mexR, nalC, nalD, and armR that 

were reported in the literature as linked to increased expression of MexAB-OprM are 

summarized in Table 3.1 
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B) MexCD-OprJ 

This type of efflux pump exhibits a high degree of sequence similarity to MexAB-OprM with a 

similar range of substrate activity. However, it is not expressed in wild type cells, so it is not 

considered as a contributor to intrinsic resistance of the organism (Srikumar, Li and Poole, 

1997). The pump can also export a wide range of other substrates. Expression of MexCD-OprJ is 

controlled by nfxB which is a negative regulator of the pump (Poole and Srikumar, 2001). 

Mutations in nfxB can alter its repressor activity leading to overexpression of the pump which 

can significantly affect quinolone resistance. This results in increased MIC that is not interpreted 

by topisomerase mutations alone (Oh et al., 2003). Two types of nfxB mutants were described 

including Type A which leads to a moderate level of efflux system expression and Type B with 

high level of expression (Masuda et al., 1996). MexCD-OprJ efflux pump regulatory mutations 

reported in the literature are summarized in Table 3.1 

C) Mex XY-OprM 

This type of efflux pump has a narrower substrate specificity and its substrate profile includes 

fluoroquinolones, specific B-lactams, aminoglycosides, tetracyclines, chloramphenicol, and 

erythromycin (Schweizer, 2003). However, this efflux-pump is recognized as one of the primary 

determinants of aminoglycosides resistance (Nikaido and Pagès, 2012). The system is known to 

be expressed in wild type strains in the presence of aminoglycosides, tetracyclines, and 

erythromycin which makes it an element for intrinsic resistance for these agents in Ps. 

aeruginosa. On the other hand, its expression is not known to be induced by quinolones in wild 

type strains. However, mutants hyper-expressing the pump demonstrate enhanced resistance to 

fluoroquinolones (Masuda et al., 2000). The system is under the control of the mexZ gene which 

encodes a MexXY repressor. mexZ deletion has been linked to increased MexXY transcription 

and consequently aminoglycosides, quinolones, and cefepime resistance (Hay et al., 2013). 

D) MexEF-OprN 

The fourth type of efflux pump that shows significant relation to quinolone resistance is the 

MexEF-OprN. This type of efflux pump is quiescent in wild type strains and therefore is not 

considered a cause of intrinsic resistance. It is known to be under regulation of MexT and MexS 

in addition to other regulators. The nfxC type mutant is a multidrug resistant mutant type known 
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to be originally selected by fluoroquinolones (Köhler et al., 1997). nfx-C type mutant in Ps. 

aeruginosa is a quinolone resistant mutant with over-expressed efflux-pump MexEF-OprN. This 

over-expression phenotype was linked to mexS mutation that makes it non-functional and 

consequently releasing its repression on MexT. Different types of mutations were linked to the 

nfxC type mutant including mutations in mexS, mexT, mvaT, ampR, and mxtR genes (Llanes et 

al., 2011). MexEF-OprN over-expression mutant (nfxC phenotype) was observed to be prevalent 

in hospital settings where different types of mexS and mexT as well as other possible unexplored 

mutations are thought to contribute to the phenotype (Richardot et al., 2016). 

In addition, transcription of the mexEF-oprN operon has been shown to be regulated by both 

MexT (PA2492) positive regulator and MexS (PA2491) acting as a negative regulator (Köhler et 

al., 1999). The MexEF-OprN system of operon is known to be quiescent in wild-type cells. An 

active MexT transcriptional regulator is required to produce the pump MexEF-OprN with the 

presence of an upper negative regulator MexS that inactivate MexT in wild type strains and 

prevent pump expression. This occurs through two independent pathways (Uwate et al., 2013). 

MexEF-OprN efflux pump regulatory mutations are listed in Table 3.1 

In addition to both mexS and mexT, mvaT (PA4315) mutation was also shown to modify the 

expression of MexEF-OprN independent of the MexT or MexS pathway (Westfall et al., 2006). 

Mutations in genes that encode for the global regulators MvaT and AmpR have also been 

reported in other studies to activate MexEF-OprN operon in the in vitro mutants. It was reported 

that nfxC mutant overexpressing MexEF-OprN shows mutations in either mexT, mexS or mvaT 

genes (Llanes et al., 2011). However, it was also shown more recently that there are still other 

unknown loci that appear to be implicated in the pump overproduction in clinical settings 

(Richardot et al., 2016).  

E) Global transcriptional regulators 

MvaT is a global transcriptional regulator that appears to be involved in several aspects of 

bacterial physiology in Ps. aeruginosa. It was originally described as a global regulator of 

virulence gene function in Ps. aeruginosa (Diggle et al., 2002). mvaT mutation has shown to 

modify MexEF-OprN efflux pump expression (Westfall et al., 2006) and it was concluded that 

mvaT mutants modify the resistance of Ps. aeruginosa to several antibiotics by increasing the 

expression of MexEF-OprN operon. 
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ampR is an additional non-specific transcriptional regulator showing more global roles in the 

regulation of several pathways in Ps. aeruginosa. It was established that ampR has a critical 

regulatory role in antibiotic resistance, virulence and general metabolism in Ps. aeruginosa 

(Balasubramanian et al., 2012). It is also involved in transcriptional regulation of hundreds of 

genes from diverse pathways (Balasubramanian, Kumari and Mathee, 2014). Gene transcriptions 

and other phenotypic assays have shown that ampR negatively regulates the transcription and 

function of MexEF-OprN efflux system through modulating the expression of MexT which 

encodes a positive regulator. Several ampR mutations in clinical isolates were reported in the 

literature as associated with multidrug resistance in Ps. aeruginosa (Balasubramanian, Kumari 

and Mathee, 2014) (Cabot et al., 2012). Some of these mutations are summarized in Table 3.1 

The following diagram summarizes the different efflux pump-regulatory mechanisms described 

above. 

                     

 

              Reference: (Housseini B Issa, Phan and Broutin, 2018) 
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Table 3.1.  Summary of mutations in transcriptional regulator genes related to hyperexpression of different types of 

efflux pumps 

Reference Type/position of mutation Description Mutant 

(Adewoye et al., 2002) 

Arg70Trp, Leu80Pro, Arg91His, 

Arg83His, Leu13Met, Ala110Thr 

Leu57Arg, Arg59Cys, Gly58Glu, 

Leu95Phe, Thr69Ile, Arg21Trp 

Thr130Pro 
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nalB 

mutants 
(Choudhury et al., 2016) Asp8Gly, Ala66His, Lys44Ser 

(Srikumar, Paul and 

Poole, 2000) 

Arg70Trp, Thr130Pro 

Gln94Pro, Leu57Arg 

(Suresh et al., 2018) Pro7leu, Pro143Thr, Val126Glu 

(Ziha-Zarifi et al., 1999) Asp8Glu, Ala66val 

(Llanes et al., 2004) Lys44Met, Val126Glu, Ala66Pro 

(Higgins et al., 2003) 

His107Pro, Ala103Thr, Gln106His, 

Asn53Asp, Asn53Tyr, Arg21Gly 

Ser26Gly, Asn79Gly, Met10Arg, 

Ser88Cys 

  

(Vaez et al., 2014) Val-126-Glu 

(Llanes et al., 2004) 

Gly71Glu, Ser46Ala, Glu153Gln, 

Ser209Arg, Asp76Glu, Leu61Pro 

Met151Thr  
nalC 

mutants 
(Cao, Srikumar and 

Poole, 2004) 
Ser127Pro, Thr50Pro 

(Sobel et al., 2005) 

Ser32Asn 

Change at nucloetideT410 

Change at nucleotide G433 

 

 

nalD gene absence or 

disruption leads to 

overexpression of efflux 

pump 
nalD 

mutants (Chen et al., 2016) Phe175Ala nalD mutations that interfere 

with NalD binding to its 

promoter 
(Jorth et al., 2017) Leu22Pro, Thr158Ile  

(Suresh et al., 2018) Leu153Gln 
Mutation in ligand binding 

domain 
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(Higgins et al., 2003) 

Ala124Glu, Glu111Lys, Arg21His, 

Asp56Gly, Glu8Lys, Gln64His 

Gln52His, Ala141Gly, Ser36Gly, 

Ala38Gly, Glu75Gln 
Mutation leading to loss of 

repressor activity of nfxB 

which results in 

hyperexpression of MexCD-

OprJ 

nfxB 
(Purssell and Poole, 

2013) 
Gly166Asp, Gly192Asp, Phe147Ser 

(Chuanchuen et al., 

2001) 
Arg42Gly, Arg42His 

(Vaez et al., 2014) Glu124Ala 

(Jalal et al., 2000) Arg82Leu 

(Richardot et al., 2016) 
mexS Asn249Asp, mexS Val104Ala, 

mexS Phe253Leu, mexS Leu263Gln 

Laboratory and clinical 

mutants overproducing 

MexEF-OprN due to 

derepressed mexT or non-

functional mexS.  

nfxC 
(Llanes et al., 2011) 

mexS Glu54Gly, mexS Gly78Ser 

mexS Ala75Val, mexS Thr152Ala 

mexS Ala175Val, mexS Glu181Asp 

mexS Val308Ile, mexS Cys269Yyr 

(Sobel, Neshat and 

Poole, 2005) 

mexS Asp244Asn, mexS Val333Gly 

mexS Ser124Arg 

(Richardot et al., 2016) mexT Gly258Asp, mexT Yyr138Asp 

(Llanes et al., 2011) mexT Gly257Ser, mexT Arg166His   

(Llanes et al., 2011) mvaT Ala115Thr  mvaT 

(Cabot et al., 2012) 
Gly154Arg, Glu114Ala, Gly283Glu 

Met288Arg, Ala51Thr 

A global transcriptional 

regulator -its deletion or 

some types of mutations are 

associated with XDR/MDR  

ampR 

(Caille et al., 2014) Asp135Asn, Gly102Glu 

 

3.1.3. SOS response (stress) mediated pathways 

Resistance mechanisms listed above appear to contribute additively to determine quinolone 

resistance. Although each mechanism can be identified separately in individual isolates and can 

generally contribute to resistance, it appears that each is not enough separately for high level 

resistance.  Mutations in genes encoded in the SOS system were linked to quinolone resistance 

and these mutations appear to show a more remarkable effect on quinolone resistance with a 

possible cross-interaction with other resistance mechanisms.  
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(Breidenstein, Bains and Hancock, 2012). The two most commonly studied and reported 

mutations were LexA and Lon protease related mutations. The SOS response is considered a 

classic bacterial stress response that is induced by DNA damage which results from a wide range 

of stressful exposures including antibiotics (Miller et al., 2004). Fluoroquinolones cause dsDNA 

breaks as an essential step of its mechanism of action and thus is considered as a potent inducer 

of SOS response (Blázquez et al., 2006). 

In Ps. aeruginosa, the global transcriptional response to clinical doses of ciprofloxacin was 

studied in a microarray analysis comparing LexA mutant to wild type. This showed that LexA 

regulates the expression of 15 genes with specialized DNA recombination and replication 

function (Cirz et al., 2006)(Erill, Campoy and Barbé, 2007). In addition, other complex 

coordinated networks of lexA-dependent responses to ciprofloxacin related to downregulation of 

many aspects of metabolism, motility and permeability were also identified (Cirz et al., 2006). 

The same study showed that sixty-four of the upregulated genes in the response to ciprofloxacin 

are in regulons controlled by LexA-like repressor. Lon protease also affects the SOS response 

through acting on sulA as a substrate. It showed to act by cleaving recA repressors leading to 

SOS induction. Results of microarray studies comparing Lon mutants to wild type showed that 

lon mutants exhibit increased susceptibility to ciprofloxacin as a result of suppression of the SOS 

response triggered by DNA damaging agents (Breidenstein, Bains and Hancock, 2012). 

3.1.4. The importance of understanding the global picture 

Understanding the global picture and the core physiology of resistance is crucial for designing 

better diagnostics and also for identifying more effective drug-targets. It is important to 

understand the relative contribution of each resistance-associated element to the overall 

resistance in order to fully predict what it really takes the cell to be resistant. Research 

investigating the effect of efflux pumps on function is usually performed on experimental 

mutants under controlled laboratory conditions. This means that such studies may not be a true 

reflection of the real clinical conditions. For that reason, a larger scale analysis is needed and 

should include both resistant and susceptible clinical isolates. This would help in evaluating the 

combined effect and the co-contribution of all resistance elements to overall resistance. 

Doing that would increase the knowledge needed for the practical use of genome sequencing 

data in the development of rapid diagnostics that can direct treatment in an effective way. 
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Although there are currently some bioinformatics tools that are available to predict for resistance 

using WGS data, these pipelines have major drawbacks as evaluated and explained in detail in 

Chapter 2. They are not evaluated for their practical use and they only include a limited set of 

molecular markers as a basis for their prediction. Most of these markers include gene 

presence/absence information. Based on the assessment of these tools in Chapter 2, the set of 

molecular markers in these databases appears to be insufficient to predict for the correct 

phenotype. Performance criteria of the diagnostic test needs to be optimized to offer the most 

accurate and reliable diagnostic. Although reported in different studies that QRDR mutations are 

not the main contributor to overall resistance, this observation was not advanced into more 

detailed exploration of the relative contribution of each system element into resistance. The idea 

of cumulative mutational events, whether in target enzymes or in transcriptional regulators, that 

add up to cause resistance was observed before. However, to the best of my knowledge, no 

particular specific predictive model has been proposed to link different mutational patterns to 

resistance phenotypes. 

The aim of this chapter is to test the theory of additive and combinatorial effect of resistance-

conferring genes and mutations and to build a simple predictive model that shows the relative 

contribution and the significance of each mechanism in explaining resistance. This helps to find 

the best combination of changes that can predict resistance and can subsequently be used as a 

better molecular diagnostic set of markers. 

3.2. Molecular basis of aminoglycoside resistance 

3.2.1. Aminoglycoside-modifying enzymes (enzymatically- catalyzed antibiotic-inactivation) 

Inactivation of aminoglycosides antibiotics by resistant Ps. aeruginosa isolates has been 

recognized since the 1960s and 1970s. Modifying enzymes have been extensively described in 

the literature (Smith and Baker, 2002) (Azucena and Mobashery, 2001). Many enzymes exist to 

perform the role of enzymatic inactivation through acetylation, adenylation or, phosphorylation 

(Wright, 1999). This mechanism has been considered the most widespread cause of 

aminoglycosides resistance. Some of these enzymes are usually detected using publicly available 

tools for resistance prediction and were assessed in Chapter 2.Although these enzymes are 

commonly encountered and reported in the literature, chromosomal mutations need to be 
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evaluated in detail to understand their contribution to overall resistance, and this is one of the 

study points addressed in this chapter. 

3.2.2. Ribosomal Mutation or Modification 

 Mutations or enzymatic modifications of the ribosome at aminoglycosides binding sites are two 

possible ways bacteria can evade aminoglycoside access to its target. Ribosomal modifying 

methyltransferases (16SrRNA methylases) perform the role of enzymatic modifications at the 

aminoglycosides ribosomal binding site. rmtA, that encodes a 16S rRNA methylase has been 

recognized as a cause of high-level pan-aminoglycosides resistance (Yokoyama et al., 2003). 

Highly drug resistant bacteria that produce enzymes capable of modifying the active site of the 

16S rRNA through methylation has become prominent in recent years (Doi, Wachino and 

Arakawa, 2016). Although resistance mediated by acquired 16S-RMTase was first described in 

the early 2000s, not much data are available on the impact of acquired 16S-RMTase production 

and clinical outcome of patients when they are treated with aminoglycosides (Doi, Wachino and 

Arakawa, 2016). Mutations in rrs gene, which code for 16S rRNA, hinders aminoglycoside 

binding to its ribosomal target leading to resistance. These mutations are not very common 

because changes to this vital cellular machinery are often lethal. However, some viable 

mutations in rrs have been reported including A1401G, C1402T, and G1484T. These mutations 

have been identified in some clinically isolated strains of resistant M. tuberculosis (Maus, 

Plikaytis and Shinnick, 2005). Loss-of-function mutations in rRNA methylase tlyA and the gidB 

gene have also been identified in resistant M. tuberculosis (Georghiou et al., 2012). Mutations in 

the rplY (PA14_61780) gene which encodes a ribosome associated protein (L25) with a role in 

protein synthesis ensuring accurate ribosomal translation under stress conditions have been 

recognized to affect aminoglycosides susceptibility. The rplB gene that codes for the L2 protein 

associated with a 50S ribosome has also been linked to aminoglycosides resistance (Feng, 

Jonker, Moustakas, Brul and Ter Kuile, 2016). Mutations in fusA1, coding for the elongation 

factor EF-G1A, has also been linked to aminoglycoside resistance in both clinical isolates and in-

vitro mutants (López-Causapé et al., 2018). Mutations associated with aminoglycosides 

resistance as extracted from the literature are summarized in Table 3.2 
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3.2.3. Cell membrane modifications (changes in cellular permeability) 

 The role of cell membrane permeability changes in aminoglycosides-resistant clinical isolates of 

Ps. aeruginosa (Kettner et al., 1995) has been early recognized. Impermeability-related 

resistance has been linked to changes in outer membrane composition of Ps. aeruginosa, 

including alterations in the structure of lipopolysaccharide, overexpression of outer membrane 

protein (OMP) OprH and changes in the electron transport chain. Mutations associated with 

outer membrane porin changes (OprH-PhoP/PhoQ) have been linked to aminoglycosides 

resistance including resistance in clinical isolates (Hasegawa et al., 1997) (Yoneyama, Sato and 

Nakae, 1991).(Shearer and Legakis, 1985).  

Inactivation of galU and nuoG genes is also associated with impaired outer membrane uptake in 

addition to reduced active transport (El’Garch et al., 2007). The inactivation of some genes, 

including nuoG, rplY, and galU, has shown to gradually increase AG resistance by reducing 

proton motif force, modifying the AGs target and impairing AG binding and uptake in laboratory 

strains, respectively (Dean and Goldberg, 2002). Combined activation of Ps. aeruginosa two-

component systems amgRS and pmrAB has also been linked to aminoglycoside resistance 

phenotype (Schniederjans, Koska and Häussler, 2017). Expression levels of pmrA PA4776 

(PA14_63150) two component sensor-regulator and pmrB PA4777 (PA14_63160) two 

component sensor kinase has been reported to increase in clinical Ps. aeruginosa isolates in 

association with aminoglycosides resistance and the small colony variant phenotype. 

Genes associated with lipid biosynthesis or metabolism (lptA, faoA, arn genes) and phosphate 

uptake (pstB) are another group of genes showing important link to aminoglycosides resistance. 

Disruption of the genes pstB,  faoAB, and lptA showed association with increased 

aminoglycosides susceptibility (Krahn et al., 2012). Arn (PA3552-PA3559) LPS modification 

genes have also been linked to aminoglycosides resistance. Expression of the arnBCADTEF 

operon is known to decrease the interaction and uptake of polycationic antibiotics 

(Schniederjans, Koska and Häussler, 2017). 

3.2.4. Efflux-pumps and SOS response -mediated pathways 

 MexXY-OprM in Ps. aeruginosa has an important role in conferring resistance to the 

aminoglycoside (AG) class of antimicrobials studied (Morita, Tomida and Kawamura, 2012).. 
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The expression of the MexXY-OprM efflux pump has also shown to be inducible by exposure to 

reactive oxygen species, contributing to pan-AG resistance (Fraud and Poole, 2011). Overall, the 

contribution of efflux to aminoglycosides resistance is low, however, MexXY overexpression 

due to a mutation in the repressor gene mexZ is the most common mechanism of AG resistance 

in lung isolates from cystic fibrosis patients with chronic Ps. aeruginosa infections (Poole, 

2011). Regulatory mutations related to this type of efflux-pump are shown in Table 3.1 

SOS-response stress mediated pathways are known to be induced by both aminoglycosides and 

quinolones as shown above in section 3.1.3 

Table 3.2. Summary of mutations extracted from the literature in relation to aminoglycosides resistance 

Gene Variant Reference 

rplY (PA4671) Gly367Thr, Ala123Ser 

 

(Islam et al., 2009) 

(Poonsuk, Tribuddharat and 

Chuanchuen, 2013) 

rpsL G524C (Springer et al., 2001) 

Rrs gene A1401G, A514C, C517T, A513C 

G1484T 

C1402T, G1158T, A1338C, A907C 

A1408G, T1406A, C1409T, G1491T 

G524C, C526T, C522T 

(Feuerriegel et al., 2009) 

(Jugheli et al., 2009) 

(Perdigao et al., 2010) 

(Leung et al., 2010) 

(Campbell et al., 2011) 

(Engstrom et al., 2011) 

(Sirgel et al., 2012) 

(Maus, Plikaytis and Shinnick, 

2005) 

(Nessar et al., 2011) 

(Springer et al., 2001) 

 

tlyA Gly196Glu, G223T, T220C, T708G 

gidB T230C, C286T, T104G, A254G 

amgS Arg182Cys, Val121Gly, Asp106Asn 

Ala28Glu, Cys28Ala 

(Lau et al., 2015) 

(Lau et al., 2013) 

(Schniederjans, Koska and 

Häussler, 2017) 

pmrA Leu71Arg, Asp92Tyr (Schniederjans, Koska and 

Häussler, 2017) 

pmrB Thr4Ala, Leu323His, Ser420Arg 

Gly423Cys, Leu243Gln, Ala248Val 

(Schniederjans, Koska and 

Häussler, 2017) 
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(Moskowitz, Ernst and Miller, 

2004) 

fusA1 (PA4266) Yyr552Cys, Arg371Cys, Thr456Ala 

Arg680Cys, Val93Ala, Ala555Glu 

Thr671Ala 

(Bolard, Plésiat and Jeannot, 

2018) 

(López-Causapé et al., 2018) 

 

The aim of this chapter is to test the combinatorial effect of different quinolone and 

aminoglycoside resistance mechanisms to understand the significance and relative contribution 

of some previously reported variants as well as newly identified variants in genes known to have 

a role through the quinolone and aminoglycoside mechanisms of action pathway. I also seek to 

build a simple predictive model for quinolones and aminoglycoside resistance phenotype. 

3.3. Objectives 

The work detailed in this chapter aims to: 

• Review of the literature to extract genes and gene variants associated with quinolone and 

aminoglycoside resistance. 

• Describe and analyze the distribution of previously identified resistance-associated 

markers in the studied set of Ps. aeruginosa isolates. 

• Test predictive values and other measures of diagnostic accuracy for established 

resistance- associated markers. 

• Explore the best predictor combinations of markers that can improve diagnostic 

performance using cluster analysis and multiple regression analysis. 

3.4. Methodology: Assessment of the predictive potential of established resistance 

mechanisms and markers separately and in combination for predicting ciprofloxacin, 

levofloxacin, gentamycin, and amikacin resistance/susceptibility phenotypes 

3.4.1. Literature search and identification of variants 

• Primary literature review to extract genes and gene variants associated with quinolone 

and aminoglycoside resistance was carried out on each of PMC PubMed, ACADEMIC 

SEARCH COMPLETE (EBSCO host) and ScienceDirect using search criteria: 
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"Pseudomonas aeruginosa"[title/abstract] AND "aminoglycosides 

resistance"[title/abstract] 

"Pseudomonas aeruginosa"[title/abstract] AND "Quinolone resistance"[title/abstract] 

• Secondary more specific searches were also conducted using search criteria ‘Efflux 

pumps OR Target mutations AND Pseudomonas aeruginosa’. 

• All search results were analyzed to extract variants and genes with function related to 

antibiotic resistance to studied antibiotic groups. These are briefly discussed in section 

3.1 and section 3.2 and summarized in Table 3.1 and Table 3.2 

3.4.2. Choosing a set of completely sequenced genomes for performing the analysis 

• Completely sequenced genomes with associated laboratory measured phenotypic data for  

ciprofloxacin, levofloxacin, gentamycin, and amikacin were downloaded from the Patric 

database (Wattam et al., 2017). The list of genomes included in the study are shown in 

supplementary Table 1A. 

• Sources of bias originating from possible deviation in disease spectrum was decreased by 

including the whole spectrum of the conditions under evaluation (resistance and 

susceptibility to antibiotics). 

• For ciprofloxacin, the analysis included the lab group of isolates in addition to 144 

genomes for which ciprofloxacin lab measured susceptibility data are available from the 

Patric database (37 susceptible isolates and107 resistant isolates). For levofloxacin the 

analysis included the lab group of isolates in addition to 532 genomes for which 

levofloxacin lab measured phenotypic data are available from the Patric database (342 

resistant and 190 susceptible). For amikacin, the analysis included a total of 690 Ps. 

aeruginosa isolates; 162 lab group of isolates (6 are amikacin resistant isolates and 156 

amikacin susceptible isolates) and 528 genomes from Patric database for which 

phenotypic data are available (142 amikacin resistant isolates and 386 amikacin 

susceptible isolates). For gentamycin the analysis included a total of 301 Ps. aeruginosa 

isolates: 162 lab group of isolates (49 are gentamycin resistant) and 139 genomes from 

the Patric database for which phenotypic data are available (57 are gentamycin resistant). 

• Breakpoints for analysis of sensitivity and resistance were defined according to the latest 

EUCAST recommendations (Rules, 2018). The list of genomes included in the study is 
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shown in supplementary Table 1A and Table 1B. Primary data of distribution of studied 

genes and mutations are shown in supplementary Table 2A, Table 2B, Table 3A and 

Table 3B for quinolones and in supplementary Table 4A and Table 4B for 

aminoglycosides. 

3.4.3. Identifying the distribution and performance of each of the resistance/susceptibility-

associated genes and mutations 

• The distribution of resistance-associated mutations previously described in the literature 

in both completely sequenced genomes (lab group) and genomes selected from Patric was 

identified using NCBI BLAST (Delcher, 2002) or integrated CARD resistance genes 

features and mutation annotations when available for genomes from Patric (Wattam et 

al., 2017). Detailed results are shown in supplementary Table 2A and Table 2B. 

• The sequence of each of the genes shown in the literature was extracted by searching the 

Pseudomonas genome database (Winsor et al., 2016) available at 

https://www.pseudomonas.com/ using the known gene identifier ID and/or the gene name 

as shown in the review detailed above and in case the gene was not found, the gene was 

alternatively extracted from NCBI database at https://www.ncbi.nlm.nih.gov/gene. The 

available gene sequence was download from Pseudomonas genome database or from 

NCBI by constructing a FASTA file using the sequence available on either of the two 

databases. 

• The NCBI BLAST+ BLASTN tool available at https://usegalaxy.org/ was used to search 

nucleotide database with nucleotide query sequence(s) (Galaxy Version 0.3.3) (Cock et 

al., 2015). The nucleotide query sequence of the gene sequences extracted above was 

used to search the constructed nucleotide BLAST database using the megaBLAST option 

and the default Set expectation value cutoff at 0.001. The BLAST tabular output of the 

tool was then converted into FASTA format using the convert formats tool Tabular-to-

FASTA which converts tabular file to FASTA format (Galaxy Version 1.1.0). 

• The aligned part of both subject and query sequences in FASTA format was then 

visualized and explored using MEGA 7 software (Kumar, Stecher and Tamura, 2016) 

https://www.pseudomonas.com/
https://www.ncbi.nlm.nih.gov/gene
https://usegalaxy.org/
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• Multiple gene copies from the same genome and partial hits were excluded from the 

alignment. All genes identified, included and used in the current analyses showed > 80% 

percentage identity and >95% query coverage. 

• Genes of interest were manually explored in detail to extract variants of interest (that 

were previously reported in the literature) as well as novel variants (amino acids or 

nucleotide changes showing specific differential pattern of distribution). 

• A matrix showing the distribution of each of the variants of interest was manually 

generated in an excel data sheet which was then used to conduct further analyses. 

• Where novel variants were identified, these were tested for their predicted functional 

effect using PROVEAN (Choi and Chan, 2015).  

• PROVEAN (Protein Variation Effect Analyzer) is a software tool used to predict 

whether an amino acid substitution has an effect on the protein biologic function. 

PROVEAN Protein tool from the PROVEAN web server functions using PROVEAN 

v1.1.3.provides PROVEAN prediction for a protein sequence from any organisms. The 

tool available at http://provean.jcvi.org/seq_submit.php was used to study the effect of 

different amino acid variants of interest. Protein query sequences of interest were 

extracted from the Pseudomonas genome database or from NCBI; and the protein 

sequence file in FASTA format together with the amino acid variant of interest were used 

as input to the tool using the input format as specified by the tool at 

http://provean.jcvi.org/help.php#protein_variation_input_format. The output showed 

PROVEAN scores for each of variants entered and this was then used to predict the 

functional effect of the variant based on either the (-2.5) default cutoff point or a less 

stringent cutoff of (-1.3). Scores less than -2.5 or -1.3 are predicted as deleterious based 

on the cutoff chosen for prediction. 

• The distribution of the mutations was then tested for its correlational pattern with 

phenotype and different measures of diagnostic accuracy were evaluated to test their 

diagnostic benefit and potential use as molecular predictive markers in the whole 

collection.  

• To do so, the variant distribution matrix generated was used to construct a 2*2 

contingency table for each variant in relation to resistance/susceptibility phenotype. 

“Cross Tab” function was used to generate these contingency tables using SPSS 

http://sourceforge.net/projects/provean/
http://sourceforge.net/projects/provean/
http://provean.jcvi.org/about.php#about_1
http://provean.jcvi.org/seq_submit.php
http://provean.jcvi.org/help.php#protein_variation_input_format
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(SPSS.V21) with checking all the options to calculate chisquare test for independence or 

Fischer exact, significance value, phi coefficient, cramer V and likelihood ratios.  

• Parameters of performance for each single variant including, sensitivity, specificity, 

NPV, PPV, Likelihood Ratio (LR), Likelihood Ratio positive (LHR+), Likelihood Ratio 

negative (LHR-), diagnostic odds ratio (DOR), Youden index and diagnostic accuracy for 

each contingency table were calculated according to the following equations; Sensitivity 

= TP/TP+FN, Specificity =TN/TN+FP, PPV= TP/TP+FP, NPV= TN/TN+FN, LHR+ = 

sensitivity / (1-specificity), LHR - = (1-sensitivity) / specificity, DOR= LHR+/ LHR- or 

DOR= sensitivity* specificity/ [(1-sensitivity)*(1-specificity)]. Diagnostic accuracy= 

(TP+TN)/(TP+TN+FP+FN). 

3.4.4. Finding combinations with improved performance 

Common guides of test performance include sensitivity, specificity, positive and negative 

predictive values, and positive and negative likelihood ratios. None of these indicators in itself 

can represent a full discriminatory performance. 

Sensitivity can be considered only one part of the discriminatory evidence (Shaughnessy, 2007). 

There is no simple combination rule to associate sensitivity and specificity into one operational 

measure. Also, there are no guidelines to rank pairs of indicators with better performance. For all 

these reasons, a single indicator showing high discriminatory performance needs to be used (Glas 

et al., 2003). Examples of these types of single indicators include accuracy, Youden’s index, and 

diagnostic odds ratio. Accuracy can show the percentage of correct classification by the test 

under evaluation and it depends on the prevalence of the target condition evaluated when 

sensitivity and specificity are not equal. It also has the advantage of weighing false positive and 

false negative findings equally (Linnet, 1988). Youden’s index is another single indicator derived 

from sensitivity and specificity, but its values are difficult to interpret (Hilden and Glasziou, 

1996). Diagnostic odds ratio can be considered as a global single measure of test performance 

and is not prevalence dependent (Glas et al., 2003). An important point to consider is that for all 

indicators of test performance, the spectrum of disease severity has a great effect (G. M. Moons 

et al., 1997) and this has been considered in the current analysis. 
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Sensitivity and specificity cannot be considered as the sole predictive measures because they can 

only describe the ability of the diagnostic test used to correctly identify all cases with the disease 

or specific diagnosis (sensitivity) or to correctly exclude cases without the disease (specificity). 

Both sensitivity and specificity have the advantage of being not influenced by disease prevalence 

which means that results can be transferred from one study to others. However, sensitivity and 

specificity can vary greatly depending on the disease spectrum which was considered in the 

current analysis by including a wide range of sensitivity and resistance phenotypes (MIC ranges). 

Predictive values can provide useful information about the usefulness of the diagnostic test; 

however, it is highly affected by the prevalence of the disease or condition under investigation. 

Predictive values give information about the probability of having the disease when test result is 

positive (PPV) or the probability of being healthy with a negative test result (NPV). Likelihood 

ratio should be an optimal choice in reporting diagnostic accuracy because it considers both 

sensitivity and specificity and is not dependent on disease prevalence (Eusebi, 2013).  

For all of the reasons described above, a new approach was applied here to evaluate the 

quantitative individual and combined relative contribution of variants to the phenotype under 

evaluation and this was implemented in two stages: 

Stage 1: 

Selecting the best performing individual markers that showed the highest values among the 

combination of the parameters listed above. These included: Diagnostic accuracy > 0.65, LHR+ 

> 5, DOR >20, Youden index > 0.5 and any value greater than 90% or 95% for sensitivity, 

specificity, PPV, and NPV. Where these values are not met in a specific dataset, the highest 

values found in the evaluated sets are used. For example, for DOR and LR, any value > 1 is 

accepted for differentiating cases from controls, however, the higher the value the better the 

performance is. This means that for each set of data evaluated, standards from literature are 

applied first and if not found, the best values among each specific data set are used. 

Stage 2: 

This stage aimed at the evaluation of the combinatorial and quantitative contribution of different 

genomic elements to phenotype in order to find the most informative individual markers or 

combination of markers that can add to the interpretation of the phenotype. This was done 
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through applying two statistical techniques including step- wise multiple regression analysis and 

cluster analysis. 

• Stepwise multiple regression was conducted to examine the extent of variance in 

phenotype as explained by different molecular markers under assessment. It can also give 

an indication about the relative contribution of each marker to antibiotic resistance 

phenotype. The method is used to develop a subset of independent variables (genes/gene 

variants) that are useful in predicting the dependent variable (susceptibility/resistance 

phenotype) and eliminate those independent variables that do not provide additional 

prediction. The method was chosen because we have a group of independent variables 

(genomic markers) and there is no theoretical background about which variables are 

contributing more towards determining the phenotype. Using this method, blocks of 

variables are assessed step-wise without base line hypotheses with all variables being 

entered into the equation , then some variables can be included based on a set of 

statistical criteria for selection (variables with smaller correlations and multi-collinearity 

are removed) to find the best model. Variables are assessed step-wise and once all the 

variables are entered, the overall model is assessed in terms of its ability to predict 

variance in the dependent variable and the relative contribution of each block of 

variables. 

• Cluster analysis (Bacher, Wenzig and Vogler, 2004) was then used to explore the variants 

distribution to find previously hidden but useful groups or combination of mutations that 

can improve diagnostic accuracy. 

• Cluster analysis is an exploratory multivariate method used for the classification or 

grouping of subjects under study (in our case; isolates genomes) to find connectivity 

based on a set of measured parameters. Cluster analysis classifies cases into relative 

groups which is based on similarities of different attributes among members of the same 

group. Clusters are examined to determine characteristics that are unique to each cluster. 

The attributes examined here include: The S/R phenotype, the MIC values and the marker 

presence/absence information. 

• Clustering is not an automatic process but an iterative process of knowledge discovery. It 

involves several trials of iterative optimization. Data entered into the cluster analysis 
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needs to be pre-processed based on the desired tested parameters till the best model is 

found. 

• To apply that, different individual markers are assessed for their diagnostic performance 

using the parameters shown above, then those showing the highest possible values or 

according to what is shown in stage 1 above are evaluated through the clustering 

algorithm. Because there are no standard criteria or guidelines about what are considered 

the best values for some parameters, different combinations are therefore tested till better 

combinations are achieved. The number and the size of clusters are automatically 

determined by the clustering algorithm. 

• The final output tables or graphs from the cluster analysis show the following: 

• The size (number of isolates and percentage to total) for each set of isolates 

defined as a group. 

• The comparative pattern in the evaluated set based on MIC distribution and 

average MIC. 

• The percentage of susceptibility/resistance observed in each group according to 

clinical breakpoint classification. 

• The relative difference in the distribution of observed variants on which the 

classification was based (The differential percentage of marker presence/absence). 

• After applying cluster analysis which showed output classification based on 3 attributes 

(S/R phenotype, MIC values and marker presence/absence information), all the strains for 

which phenotypic data were available were tested for each antibiotic as entry at the same 

time (there was no prior classification into resistant and sensitive). From the output, each 

strain from all those tested then should belong to one cluster as defined by the algorithm. 

Each of all tested strains will then belong to one of the predicted clusters with improved 

performance and is given “new cluster or group membership ID”, here we do not have 

missing cases. Each of the tested strains have a phenotype which is either sensitive or 

resistant. In basic definition, sensitivity, specificity and predictive values cannot be 

calculated except when divided by the total number of strains assessed. So, for each strain 

of all those assessed, we only have 2 probabilities either to belong to a certain predicted 

cluster or not, either positive or negative and this may be true or false (based on 

phenotypic data). This forms the basic 2*2 table which is used for calculation of 
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predictive values. In the end we have true positive, true negative, false positive and false 

negative. Each of assessed strains must then belong to one category of those four (True 

Positive [TP]- True Negative [TN]- False Positive [FP]- False Negative [FN]). The 

equations for the predictive values are then applied as shown above. 

• All statistical analyses including predictive values, cluster analysis and stepwise multiple 

regression analysis were conducted using IBM SPSS (SPSS.V21) according to the 

instructions shown in the IBM SPSS manual guide at https://www-

01.ibm.com/support/docview.wss?uid=swg27021213 

3.5. Results Section.1 (ciprofloxacin) 

3.5.1. Description of mutations distribution 

1) QRDR 

gyrA G83I was the most frequently observed in this group. This mutation was identified in 29 

genomes (28 resistant and 1 susceptible) out of 310 genomes studied for ciprofloxacin 

sensitivity. A total of 84 ciprofloxacin resistant isolates did not show gyrA G83I mutation. gyrA 

D87N was identified in only 4 genomes (all resistant to ciprofloxacin). gyrB E468D was 

identified in only one resistant isolate.  

parE mutations were less frequently observed. parE A473V was identified only in 3 genomes 

out of 310 (all three are ciprofloxacin susceptible). parE V460G was found only in one 

susceptible isolate. parE S457G was identified in only one resistant isolate. The same was true 

for both, parC E91K and parC E91L. parC S87W was identified in only four isolates out of 310 

(all are ciprofloxacin resistant MIC=8). Interestingly, parC S87L was more frequently observed 

being present in14 out of 310 total genomes (all of which are ciprofloxacin resistant). 

2) Efflux pumps related operons and regulators 

1) nalD transcriptional regulator (PA3574) 

This gene was searched for in the whole collection using the CARD annotation available at the 

Patric genome group linked special features (Wattam et al., 2017) or NCBI blast (Cock et al., 

2015). The gene was absent in 18 genomes out of 310 (all were ciprofloxacin resistant). 

https://www-01.ibm.com/support/docview.wss?uid=swg27021213
https://www-01.ibm.com/support/docview.wss?uid=swg27021213
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Mutations previously reported in the literature as shown in Table 3.1 were explored in the 

studied collection. nalD ser32Asn variant identified in two isolates by Sobel et al., (2005) was 

identified in one susceptible isolate in the current study set. The mechanism of nalD induced 

regulation of MexAB-OprM is not fully understood. One of the studied pathways of MexAB-

OprM nalD- induced regulation showed that PAO1ΔnalD complemented with nalD F175A is 

capable of exhibiting increased resistance and thus concluded that this mutation leads to 

decreased DNA binding affinity to its promotor leading to the pump overexpression (Chen et al., 

2016). Suresh et al., (2018) showed that this is one hypothesis to explain one mechanism of 

nalD-related regulation but also showed that there is a diversity of other regulatory mechanisms 

that can be involved in resistance regulation. When the current set of isolates were scanned, the 

reported mutation was not identified. A possible reason is that although the experimentally 

induced mutation showed functional effect on its binding domain, this does not necessarily mean 

that the mutation must be encountered in the clinical population of the organism but 

alternatively, other mutations can be encountered to produce the same function or the same effect 

on DNA binding affinity. On the other hand, another variant (nalD L153Q) previously reported 

to affect the ligand binding domain (Suresh et al., 2018) was identified in 2 isolates among the 

current study set and both were ciprofloxacin resistant. nalD Thr158Ile and nalD Leu 22 Pro are 

two other mutations that showed to be selected experimentally by multiple passages on exposure 

to aztreonam (Jorth et al., 2017). nalD is a regulator that affects MexAB-OprM expression and 

hence nalD mutations should affect resistance to a wide range of antibiotics that are substrates of 

the pump. However, Jorth et al., (2017) showed that although these mutations were selected by 

continuous experimental passage with aztreonam, there was no corresponding increase in 

resistance phenotype to all antibiotics exported by the pump, the fact that may be expected 

because no single variant in one regulatory gene would necessarily confer resistance to all 

different antibiotic classes even if all are substrates of the pump. This would also explain why 

these two mutations were not encountered in the current analysis. In addition, Jorth et al., (2017) 

showed that the same mutations can have a role in modifying virulence but concluded that such 

mexR and nalD selected mutations can affect both resistance and virulence, however this needs 

to be further tested. 

Although the nalD regulator appeared to be conserved in the studied set, a group of nalD 

variants were observed in the current study set which includes nalD D187A identified in 6 
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isolates (2 were ciprofloxacin susceptible and 4 were resistant), nalD D187H identified in 4 

isolates (all were susceptible to ciprofloxacin) and nalD D185H identified in 1 isolate which was 

also susceptible. These types of observations are listed here for further detailed functional and 

epidemiologic testing. 

2) nalC transcriptional regulator (PA3721) 

The nalC gene was absent in 27 genomes out of 310 studied in total (all are ciprofloxacin 

resistant). nalC G71E identified by Llanes et al., (2004) was a common variant in the current 

study set and was identified in 257 isolates. nalC S209R identified in the same study was also 

commonly encountered in 207 isolates. In addition, both nalC S46A and nalC E153Q reported in 

the same study were identified in 116 isolates and 16 isolates respectively. However, three other 

variants including D76E, L61P and M151T were not encountered in the current study set. This 

may be expected because each of these three variants were identified in only one isolate each by 

Llanes et al., (2004). The other three variants which were frequently observed in the current 

study set also appeared to be a recurrent substitution as shown by Llanes et al., (2004). Each of 

G71E, E153Q and S209R were identified in 11 out of 12 isolates which support the distribution 

encountered in the current study set. nalC A186T was identified in 23 isolates. nalC Thr50pro 

shown by Cao, Srikumar and Poole, (2004) using transposon insertion mutants displaying the 

nalC phenotype was identified in 2 isolates among the current set while Ser127Pro shown in the 

same study was not identified. 

3) nalB mutant phenotype: mexR multidrug resistance operon repressor MexR (PA0424) 

MexR R79S previously reported in the literature (Higgins et al., 2003) was identified in 7 

isolates (4 are resistant and 3 are susceptible). Another substitution mexR R79N at the same 

position was more frequently observed in 297 isolates (102 are resistant and 195 are susceptible). 

Four other substitutions in mexR; mexR G97L, mexR L29D, mexR E70R and; mexR L130T were 

frequently observed in 306, 304, 303, 302 isolates respectively. All were more frequently 

observed in susceptible isolates. Other single amino acid changes previously shown by Adewoye 

et al., (2002) and Choudhury et al., (2016) to affect the stability of mexR or its ability to dimerize 

were not identified in the studied set possibly because the other identified mutations are 

performing this function or are inactivating the gene in an alternative mechanism. The detailed 

study of the possible effect of each variant was not the aim of the current analysis.   
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4) armR (PA3719) 

This gene was one of the important genes observed in the current analysis to have a differential 

effect on susceptibility and resistance and was present in 182 isolates out of 306 (102 resistants 

to ciprofloxacin and 80 susceptible to ciprofloxacin).  

5) nfxB mutant 

The nfxB gene was absent in 6 genomes, 5 of which are ciprofloxacin resistant and one is 

ciprofloxacin susceptible. The mutation nfxB Ala124Glu which was reported by Higgins et al., 

(2003) was not found in the studied group of genomes but instead another substitution at the 

same position A124T was found in 5 isolates; one of which is susceptible to ciprofloxacin while 

the other 4 are resistant. This would support the importance of mutation observed at that position 

in compromising the activity of nfxB repressor. nfxB Arg82Leu was found in 6 isolates out of 

310 (2 are ciprofloxacin resistant and 4 are susceptible). nfxB Arg 21 His was found in 13 

isolates (10 are susceptible and 3 are resistant). nfxB Asp56Gly was also found in 15 isolates (12 

are ciprofloxacin susceptible and 3 are resistant). Some other mutations reported in one study 

(Higgins et al., 2003) including; nfxB ser36Gly (reported in only one isolate in combination with 

other gyrA and parC mutations), nfxB Ala38Gly (reported only in one isolate in combination 

with another gyrA mutation) and nfxB glu111Lys (which was similarly reported in one isolate in 

combination with three other mutations in gyrA, parC and mexR) were not identified in the 

current studied group of the strains. This may be expected as the study reporting these mutations 

has included 58 Ps. aeruginosa isolates from a certain geographic locality (European hospitals) 

at certain time period (1998-1999). The study has identified each of these three mutations only in 

a single isolate and in combination with other mutations. The study has showed the observation 

of these variant in combination with other variants which indicates a possible additive role of 

these mutations. However, this is not necessarily generalizable to other settings and also gives no 

confirmation about the possible role of each of these mutations separately considering that these 

three mutations were very infrequent. Each of these variants was identified only in 1 out of 58 

isolates and was also observed in association with other mutations. The current analysis which 

included a more diverse and comprehensive set shows agreement with the findings from the 

same study by reporting exactly the same mutations excluding the three variants shown above. 

This may indicate that these mutations are not so frequent or important. The same study has also 
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concluded that these regulatory mutations were not found separately but were identified in 

combination with other gyrA or parC mutations. 

Taken together, these findings support conclusions drawn from the literature about the 

association of some mutations in DNA binding domain of nfxB regulator with resistance 

(Okazaki and Hirai, 1992), and that spectra of mutations can also occur in the entire length of the 

gene leading to compromised activity of nfxB repressor (Monti et al., 2013). Both experimental 

and clinical isolates expressing the efflux system and exhibiting high levels of quinolone 

resistance invariably show mutations in nfxB (Purssell and Poole, 2013). It has also been 

reported that the MIC of different antibiotic classes can show up to 500-fold increase in nfxB 

mutants including the MIC of ciprofloxacin which showed 94-fold increase (Chuanchuen et al., 

2001). nfxB mutations are considered particularly important because it is the only known basis 

for over-expression of MexCD-OprJ operon which is normally silent in wild-type cells (Li, 

Plésiat and Nikaido, 2015). 

6) mexS (PA2491) mutations 

mexS gene was absent in a total 12 genomes in the whole studied group (11 are ciprofloxacin 

resistant and 1 is susceptible). The most common mutation reported in the literature was mexS 

N249D, however, this mutation was not identified among the smaller collection of isolates 

(tested with ciprofloxacin) with an alternative substitution at the same position which was 

identified in the larger collection (tested with levofloxacin as will be discussed in levofloxacin 

section below). Similarly, mexS Ser124Arg was not identified in the smaller collection but was 

identified in 88 isolates of the larger collection (shown in levofloxacin section below). mexS 

Val333Gly was identified in only 2 resistant isolates out of 310. mexS A75V was identified in 12 

out of 310 genomes (9 are susceptible and 3 are resistant). mexS E181D was identified in 12 out 

of 310 genomes (7 are resistant and 5 are susceptible). mexS V308I was identified in 13 genomes 

(8 are resistant) and mexS G78S in 6 genomes (5 of which are susceptible). Both mexS E54G and 

mexS T152A were not identified in any isolate among the smaller collection evaluated with 

ciprofloxacin but were identified in the larger collection (shown in levofloxacin section). mexS 

V104A was identified in only 1 resistant isolate among those evaluated for ciprofloxacin 

resistance. mexS F253L, mexS L263Q, and mexS C269Y previously reported in the literature 

(Richardot et al., 2016) (Llanes et al., 2011) were not identified in any isolate among the smaller 
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set but alternative mutations were identified at the same position in the larger study set (shown in 

levofloxacin section). 

7) mexT (PA2492) mutations: 

None of the mutations previously identified in two studies (Richardot et al., 2016) (Llanes et al., 

2011) for mexT gene including mexTG257S, mexTR166H, mexTG258D, and mexTY138D were 

identified in the studied set of isolates.  

3) Global transcriptional regulators 

1) ampR  

The gene was absent in 4 resistant isolates. The most frequently observed mutation in the gene 

was ampR G283E. It was identified in 132 isolates (78 are susceptible). Other frequently 

observed mutations included ampR M288R and ampR E114A which were identified in 99 (62 

susceptible) and 73 (50 susceptible) isolates respectively. Both ampR A51T and ampR D135N 

were less frequently identified in 8 and 5 isolates, respectively. Both G154R and G102E 

substitutions previously reported in the literature (Cabot et al., 2012)(Caille et al., 2014) were 

not identified in any single isolate. 

2) mvaT (PA4315) 

mvaT R80A was identified only in 6 isolates (2 are susceptible and 4 are resistant). 

4) SOS-response regulation and related mutants 

The lexA mutant S125A previously reported in the literature as associated with uncleavable lexA 

(Cirz et al., 2006) and consequently hyper-susceptibility was not detected in any isolate. Other 

studied mutants that are associated with non-cleavable lexA including those at essential sites 

V88, G91, A90 were similarly not identified. Alternatively, lonA499S variant was frequently 

present in the studied collection and was identified in a total of 83 isolates (65 of which were 

susceptible). 
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3.5.2. Predictive values and measures of diagnostic accuracy for known resistance-

associated genes and mutations 

Table 3.3. Summary of different measures of diagnostic accuracy for genes and mutations in relation to 

ciprofloxacin resistance 
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armR 91.1 59.6 56 92.2 2.25 0.15 85.8 15.05 0.507 0.71 58.7 

mexZ 97.3 1.5 35.9 50 0.99 1.8 0.5 0.56 -0.012 0.36 98.1 

nalCS46A 71.4 81.8 69 97 3.92 0.35 217 72 0.532 0.86 37.4 

nalCG71E 70.5 10.1 30.7 76.9 0.78 2.92 60.3 1.48 -0.194 0.35 82.9 

nalCS209R 52.7 25.3 28.5 65.8 0.71 1.87 60.5 0.77 -0.22 0.39 66.8 

ampR G283E 48.2 60.2 40.9 68.6 1.211 0.86 11.128 1.51 0.084 0.57 42.9 

gyrA T83I 25 99.5 96.6 70.1 50 0.75 54.08 65.67 0.245 0.73 9.4 

nfxB A124T 3.6 99 80 65.6 3.6 0.97 10.07 7.61 0.026 0.66 1.6 

nalC E153Q 9.8 97.5 68.8 72.3 3.92 0.93 70.5 5.74 0.073 0.72 5.2 

nalC Thr50pro 0.9 99.5 50 70.1 1.8 0.99 60 2.35 0.004 0.69 0.6 

nalD D187A 3.6 99 66.7 68.5 3.6 0.97 41.7 4.35 0.026 0.68 1.9 

mexSVal333Gly 1.8 99.5 100 66.8 3.6 0.99 23.4 ND 0.013 0.67 0.6 

mexS A175V 6.3 97.5 63.6 67.5 2.52 0.96 23.34 3.63 0.038 0.67 3.5 

mexS E181D 6.3 97 58.3 67.4 2.1 0.97 22.24 2.89 0.033 0.67 3.9 

mexS V308I 7.1 97 61.5 67.6 2.37 0.96 23.5 3.34 0.041 0.67 4.2 

mexR R79S 3.6 98.5 57.1 64.6 2.4 0.98 3.4 2.43 0.021 0.64 2.3 

ampR A51T 5.4 99 75 66 5.4 0.96 13.7 5.8 0.044 0.66 2.6 

ampR D135N 3.6 99.5 80 65.7 7.2 0.97 12.6 7.65 0.031 0.66 1.6 

mvaT R80A 3.6 99 66.7 64.7 3.6 0.973 2.4 3.66 0.026 0.65 1.9 

mexS V104G 0.9 99.5 100 66.6 1.8 0.995 21.25 ND 0.004 0.67 0.3 

mexS T152E 0.9 99.5 100 66.6 1.8 0.995 21.25 ND 0.004 0.67 0.3 

nfxB Arg82Leu 1.8 97.5 33.3 64.8 0.72 1.007 5.8 0.92 -0.007 0.64 1.9 

nfxB Arg21His 2.7 94.4 23.1 64.3 0.48 1.03 6.7 0.54 -0.029 0.625 4.2 

nfxB Asp56Gly 2.7 93.4 20 64 0.41 1.041 7.5 0.44 -0.039 0.62 4.8 

nalC A186T 8 92.9 39.1 70.8 1.13 0.99 60.6 1.56 0.009 0.68 7.4 

mexS G78S 0.9 97 16.7 66 0.3 1.021 20 0.39 -0.021 0.65 1.9 

mexS A75V 2.7 94.9 25 66 0.53 1.025 19.5 0.65 -0.024 0.64 3.9 

nalD I153Q 1.8 100 100 68.3 ND 0.982 43.2 ND 0.018 0.68 0.6 

parE V460G 0.9 100 100 64.1 ND 0.991 2.04 ND 0.009 0.64 0.3 
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parE S457G 0.9 100 100 64.1 ND 0.991 2.04 ND 0.009 0.64 0.3 

parC S87W 3.6 100 100 64.7 ND 0.964 8.24 ND 0.036 0.65 1.3 

parC S87L 12.5 100 100 66.9 ND 0.875 29.7 ND 0.125 0.68 4.5 

parC E91K 0.9 100 100 64.1 ND 0.991 2.042 ND 0.009 0.64 0.3 

parC E91L 0.9 100 100 64.1 ND 0.991 2.04 ND 0.009 0.64 0.3 

gyrA D87N 3.6 100 100 64.7 ND 0.964 8.24 ND 0.036 0.65 1.3 

gyrB E468D 0.9 100 100 64.3 ND 0.991 2.05 ND 0.009 0.64 0.3 

ampR M288R 33.6 68 37.4 65.7 1.05 0.98 8.5 1.14 0.016 0.56 32.6 

lon A499S 

(PA1803) 
16.2 57.1 21.7 71.5 0.38 1.47 45.5 0.69 -0.267 0.54 26.9 

nalD gene  100 16.1 67.8 100 1.19 0 38.6 ND 0.161 0.69 94.2 

nalC gene  100 24.1 70 100 1.32 0 59.7 ND 0.241 0.73 91.3 

mexS gene  99.5 9.8 66.1 91.7 1.10 0.05 17 21.46 0.093 0.67 96.1 

nfxB gene 99.5 4.5 64.8 83.3 1.04 0.11 5.8 9.21 0.04 0.65 98.1 

ampR gene  100 3.6 64.7 100 1.04 0 8.23 ND 0.036 0.65 98.7 

mexR R79N  98.5 8 65.7 75 1.07 0.19 10 5.74 0.065 0.66 95.8 

mexR E70R  99.5 4.5 65 83.3 1.04 0.11 7.9 9.29 0.04 0.65 97.7 

mexR L130T  100 6.3 65.6 100 1.07 0 16.7 ND 0.063 0.66 97.4 

mexR G97L  100 2.7 64.7 100 1.03 0 8.23 ND 0.027 0.65 98.7 

mexR L29D  100 4.5 65.1 100 1.05 0 12.43 ND 0.045 0.66 98.1 

nalD D187H  2 83.9 100 32.6 0.12 1.17 41.8 ND -0.141 0.34 1.3 

nalD ser32Asn  0.5 83.9 100 32.3 0.03 1.19 39.42 ND -0.16 0.33 0.3 

parE A473V  1.5 100 100 36.5 ND 0.99 2.7 ND 0.015 0.37 1 

AmpR E114A  25.3 75.9 68.5 36.5 1.049 0.98 8.9 1.25 0.012 0.44 23.5 

 

Numbers in bold show markers with best performance parameters. These were used as input to be tested through the 

clustering model in an iterative multi-step process. Multiple combinations were tested based on the results shown in 

this table. 

3.5.3. Finding the best possible predictor combinations 

Applying cluster analysis using 12 of the previously tested molecular markers showing the best 

performance (based on the combination of parameters shown in Table 3.3) among the whole 

group of 48 tested markers as an input to the predictive model revealed five clusters 

(combination of molecular markers) with improved diagnostic performance. Twelve markers 

were used as an input and eight of them showed to differentiate the clusters as an output of the 

analysis (These are shown in Table 3.4). The clusters are based on the probabilities of occurrence 

of the markers in different categories of behavior according to clustering algorithm (Chiu et al., 

2001). These probabilities are shown in Table 3.4. The number of isolates classified as belonging 

to each cluster are shown with the respective MIC for each cluster in Table 3.5 while the total 

number of susceptible and resistant isolates belonging to each cluster is shown in Figure 3.1. 
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Both combinations 1 and 2 showed a tendency to cluster at lower ciprofloxacin MICs while 

combinations 3, 4, and 5 showed tendency to cluster towards higher ciprofloxacin MICs. The 

three markers (nalCE153Q, nalCThr50pro, and armR) showed the highest importance among all 

predictors in the model. The new clusters showed very high likelihood ratio in differentiating 

sensitivity from resistance phenotype (LR=283.721, p<0.0005) with strong effect sizes 

(Phi=0.862, p<0.0005). A summary of all combinations or markers in observed clusters are 

shown in Table 3.4. 

Table 3.4. combination of molecular markers forming new clusters in relation to ciprofloxacin susceptibility and 

resistance 

Cluster 1 5 2 4 3 

Size 123 (39.8%) 61 (19.7%) 60 (19.4%) 39 (12.6%) 26 (8.4%) 

Cipro sensitivity 

(breakpoint) 

95.9% 

susceptible 

67.2% 

resistant 

100% 

susceptible 

100% resistant 100% resistant 

Average 

ciprofloxacin MIC 

0.22 1.39 0.22 4.82 4.62 

nalC E153Q Mutation absent 

95.9% 

Mutation absent 

93.4% 

Mutation absent 

100% 

Mutation absent 

82.1% 

Gene absent 100% 

nalC Thr50pro Mutation absent 

99.2% 

Mutation absent 

100% 

Mutation absent 

100% 

Mutation absent 

97.4% 

Gene absent 100% 

arm R Gene absent 100% Gene present 98.4 Gene present 100% Gene present 97.4% Gene present 92.3% 

nalD Gene present 100% Gene present 98.4% Gene present 100% Gene present 97.4% Gene absent 57.7% 

gyrA T83I Mutation absent 

99.2% 

Mutation absent 

100% 

Mutation absent 

100% 

Mutation absent 

56.4% 

Mutation absent 

57.7% 

mexS Gene present 99.2% Gene present 98.4% Gene present 100% Gene present 100% Gene present 61.5% 

mexZ Gene present 98.4% Gene present 98.4% Gene present 100% Gene present 100% Gene present 92.3% 

nfxB A124T Mutation absent 

95.9% 

Mutation absent 

96.7% 

Mutation absent 

100% 

Mutation absent 

97.4% 

Mutation absent 

92.3% 
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Figure 3.1. Clusters of molecular markers in relation to ciprofloxacin susceptibility and resistance according to 

clinical breakpoints 

Table 3.5. Distribution of observed ciprofloxacin clusters among different categories of behavior in the studied set 

of isolates 

MIC 0.012 0.03 0.06 0.08 0.12 0.25 0.5 1 2 4 8 Total 

Cluster 1 1 8 26 4 45 26 7 1 4 0 0 122 

Cluster 2 0 4 16 1 15 6 18 0 0 0 0 60 

Cluster 3 0 0 0 0 0 0 0 4 10 0 12 26 

Cluster 4 0 0 0 0 0 0 0 4 14 3 18 39 

Cluster 5 0 0 0 0 0 0 20 7 34 0 0 61 

Total 1 12 42 5 60 32 45 16 62 3 30 308 
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Figure 3.2. Distribution of different ciprofloxacin susceptibility levels within new clusters of molecular markers 

3.5.4. Statistical and practical significance of individual molecular markers and new 

combinations 

Table 3.6. Statistical significance and effect sizes for the  studied ciprofloxacin molecular markers 
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armR 75.8 <0.005 0.494 <0.005 0.494 <0.005 

mexZ 0.5 0.475 0.041 0.475 0.041 0.475 

nalC S46A 181.4 <0.005 0.765 <0.005 0.765 <0.005 

nalC G71E 52.9 <0.005 0.413 <0.005 0.413 <0.005 

nalC S209R 53.07 <0.005 0.414 <0.005 0.414 <0.005 

ampR G283E 10.013 0.007 0.18 0.007 0.18 0.007 

gyrA T83I 50.6 <0.005 0.404 <0.005 0.404 <0.005 

nfxB A124T 10.33 0.006 0.183 0.006 0.183 0.006 

nalC E153Q 63.3 <0.005 0.452 <0.005 0.452 <0.005 

nalC Thr50pro 52.6 <0.005 0.412 <0.005 0.412 <0.005 

nalD D187A 37 <0.005 0.345 <0.005 0.345 <0.005 

mexS Val333Gly 22.4 <0.005 0.269 <0.005 0.269 <0.005 

mexS A175V 23 <0.005 0.272 <0.005 0.272 <0.005 

mexS E181D 21.9 <0.005 0.266 <0.005 0.266 <0.005 

mexS V308I 23.13 <0.005 0.273 <0.005 0.273 <0.005 

mexR R79S 3.17 0.205 0.101 0.205 0.101 0.205 

ampR A51T 12.9 0.002 0.204 0.002 0.204 0.002 
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ampR D135N 11.7 0.003 0.194 0.003 0.194 0.003 

mvaT R80A 2.5 0.113 0.09 0.113 0.09 0.113 

mexS V104G 20.5 <0.005 0.257 <0.005 0.257 <0.005 

mexS T152E 20.5 <0.005 0.257 <0.005 0.257 <0.005 

nfxB Arg82Leu 5.9 0.052 0.138 0.052 0.138 0.052 

nfxB Arg21His 6.8 0.034 0.148 0.034 0.148 0.034 

nfxB Asp56Gly 7.5 0.024 0.155 0.024 0.155 0.024 

nalC A186T 53.18 <0.005 0.414 <0.005 0.414 <0.005 

mexS G78S 19.32 <0.005 0.25 <0.005 0.25 <0.005 

mexS A75V 19 <0.005 0.247 <0.005 0.247 <0.005 

nalD I153Q 37.8 <0.005 0.345 <0.005 0.345 <0.005 

parE V460G 1.8 0.183 0.076 0.183 0.076 0.183 

parE S457G 1.8 0.183 0.076 0.183 0.076 0.183 

parC S87W 7.16 0.007 0.152 0.007 0.152 0.007 

parC S87L 25.92 <0.005 0.289 <0.005 0.289 <0.005 

parC E91K 1.8 0.183 0.076 0.183 0.076 0.183 

parC E91L 1.8 0.183 0.076 0.183 0.076 0.183 

gyrA D87N 7.16 0.007 0.152 0.007 0.152 0.007 

gyrB E468D 1.8 0.181 0.076 0.181 0.076 0.181 

ampR M288R 7.4 0.025 0.156 0.025 0.156 0.025 

lon A499S (PA1803) 46.6 <0.005 0.388 <0.005 0.388 <0.005 

nalD gene 33.8 <0.005 0.33 <0.005 0.33 <0.005 

nalC gene  52.3 <0.005 0.411 <0.005 0.411 <0.005 

mexS gene  16.7 <0.005 0.232 <0.005 0.232 <0.005 

nfxB gene  5.9 0.015 0.138 0.015 0.138 0.015 

ampR gene  7.16 0.007 0.152 0.007 0.152 0.007 

mexR R79N  10.03 0.007 0.18 0.007 0.018 0.007 

mexR E70R  7.8 0.021 0.158 0.021 0.158 0.021 

mexR L130T  14.5 0.001 0.216 0.001 0.216 0.001 

mexR G97L  0.716 0.028 0.152 0.028 0.152 0.028 

mexR L29D  10.816 0.004 0.187 0.004 0.187 0.004 

nalD D187H  35.6 <0.005 0.339 <0.005 0.339 <0.005 

nalD ser32Asn  34.23 <0.005 0.332 <0.005 0.332 <0.005 

parE A473V  1.7 0.191 0.074 0.191 0.074 0.191 

ampR E114A  7.8 0.021 0.158 0.021 0.158 0.021 

New clusters 228.88 <0.005 0.862 <0.005 0.862 <0.005 
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3.5.5. Multiple regression for best molecular predictors 

Stepwise multiple regression was used to assess the ability of all molecular markers assessed 

above to predict the MIC, after excluding markers with high multicollinearity, the most 

important predictors in the model were mexS N249L, gyrA T83I, mvaT R80A, mexZ, ampR 

A51T, nalC S46A, and mexR R79S. 

In the proposed model, 77.2 % of variance in the dependent variable (the MIC) is explained by 

the predictors in the model (p<0.0005). Variables that make significant unique contributions to 

the prediction of the dependent variable (MIC level) when statistical effect of overlapping 

variables is excluded includes gyrAT83I (beta= -0.654, p <0.0005), nalCS46A (beta= -0.433, p 

<0.0005), mexRR79S (beta= 0.176, p <0.0005), and mvaTR80A (beta= -0.111, p <0.011). In this 

model, gyrAT83I uniquely explains 28.8% of the variance in MIC, nalC S46A uniquely explains 

8.8% of the variance in MIC and mexR R79S uniquely explains 1.18 % of the variance in MIC. 

3.6. Results Section 2 (levofloxacin) 

3.6.1. Description of mutations distribution 

1) QRDR 

Among 696 genomes for which levofloxacin susceptibility data are available, gyrA G83I was 

also the most frequently observed mutation. The mutation was identified in 186 genomes (two 

are levofloxacin susceptible). gyrA D87N was identified in 31 genomes (all are resistant) and 

gyrB E468D was identified in 8 genomes (all are resistant). 

The parE mutations were less frequently observed. parE A473V was present in 13 genomes out 

of 696 (8 are resistant and 5 are susceptible to levofloxacin). parE V460G was present in four 

genomes out of 696 (3 are levofloxacin resistant). ParE S457G in 5 genomes out of 696 (all are 

levofloxacin resistant). Similarly, parC E91K was rare and identified in only 5 isolates out of 

696 in total (4 are resistant). parC S87W was identified in 20 isolates (all are resistant). 

Interestingly, ParC S87L was more frequently observed; in 133 out of 698 (all are resistant). 
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2) Efflux pumps related operons and regulators 

1) nalD transcriptional regulator (PA3574) 

The gene was absent in 47 isolates out of 696 (all are resistant). Two of the previously identified 

mutations were not identified in any isolate. These are nalD Ser32Asn and the nalD Thr158Ile. 

However, other mutations identified in the tested group included nalD D187A which was 

identified in 9 isolates (5 are levofloxacin susceptible and 4 are resistant). The other mutation 

was the nalD D187H which was identified in 7 isolates and (5 isolates are levofloxacin 

susceptible and 2 are resistant). Other significant mutations include: nalD Ser32Asn which was 

identified in 9 isolates (all are levofloxacin resistant) and nalD I153Q which was identified in 10 

isolates (all are levofloxacin resistant). 

2) nalC transcriptional regulator (PA3721) 

The nalC gene was absent in 35 isolates out of 696 (33 are resistant). Three nalC mutations 

annotated by the CARD database were identified and studied. nalC G71E was a relatively 

frequent mutation that was identified in 348 isolates out of 696 (50%). nalC S209R was also 

frequent and was identified in 267 isolates out of 696 (38.36%). In contrast, nalC A186T was 

only identified in 38 isolates (5.46%). Another frequently observed mutation nalC S46A was 

identified in 396 isolates out of 696 while nalC E153Q was less frequently observed only in 21 

isolates. 

3) nalB mutant phenotype: mexR multidrug resistance operon repressor MexR (PA0424) 

mexR R79S as previously reported in the literature was identified only in 11 isolates (5 are 

resistant and 6 are susceptible). A novel mutation mexR R79N was more frequently observed at 

the same position in 306 isolates. Both mexR G97L and mexR L29D were frequently observed 

variants identified in 325 and 322 isolates respectively. Similarly, each of the two variants; mexR 

E70R and mexR L130T was identified in 311 isolates. The mexR gene was absent in 7 resistant 

isolates out of 696 total isolates studied. 

4) nfxB mutant 

The nfxB gene was absent in 37 genomes out of 696. nfxB Ala124Glu, which was previously 

reported in the literature, was not identified in the studied group of genomes, but instead a nfxB 
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A124T variant was identified in 7 isolates; four are levofloxacin resistant and three are 

susceptible. nfxB Arg82leu was identified in 18 isolates (10 are resistant and 8 are susceptible). 

nfxB Arg21His was identified in 29 isolates (21 are susceptible and 8 are resistant). Similarly, 

nfxB Asp56Gly was identified in 31 isolates (23 are susceptible and 8 are resistant). Other 

mutations including nfxB Ser36Gly, nfxB Ala38Gly, and nfxB Glu111Lys which were previously 

reported by Higgins et al., (2003) were not identified in the current data set as these appear to be 

infrequently occurring mutations (detailed explanation shown in ciprofloxacin section).  

5) mexS (PA2491) mutations 

Many types of mexS mutations have been reported as associated with MexEF-OprN efflux pump 

hyperexpression. These mutations were explored in the studied set of strains. In addition, novel 

types of substitutions were also observed at the same positions as those previously reported in 

the literature, and these new types of substitutions were more frequent. The gene was absent in a 

total 34 isolates in the whole studied group of 696 isolates. 

The most common mutation previously reported in the literature was mexS N249D. This 

mutation was not identified among the studied collection of isolates and alternatively mexS 

N249L variant was identified at the same position in 72 isolates. mexS Val333Gly was only 

identified in 3 isolates. mexS Ser124Arg was identified in a total of 88 isolates. mexS A175V 

was identified in 18 isolates out of 696 (10 are resistant and 8 are susceptible). mexS E181D was 

similarly identified in 18 isolates (12 are resistant and 6 are susceptible). mexS V308I was 

identified in 11 isolates, mexS A75V in 14 isolates, mexS G78S in 21 isolates. mexS E54G was a 

more frequent variant which was identified in 77 isolates. Similarly, mexS T152A was also a 

frequent variant identified in 79 isolates. Similarly, mexS V104G was identified in 76 isolates. 

mexS F253L, mexS L263Q, and mexS C269Y previously reported in one study by Richardot et 

al., (2016) were not encountered in the current study set but alternatively, other variants were 

identified at the same position including mexS F253D variant which was identified in 70 isolates 

and mexS C269D variant which was identified in 73 isolates, a finding that supports the 

importance of these positions. 
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6) mexT (PA2492) mutations 

Some mexT mutations previously shown in the literature including mexT G257S, mexT R166H, 

mexT G258D, and mexT Y138D were not identified in the current set. Both mexT Gly257Ser and 

mexT Arg166His reported by Llanes et al., (2011) were only detected in 2 isolates out of 10 

isolates showing upregulation of MexEF-OprN with each variant being reported only in one 

isolate. Llanes et al., (2011)  have also shown that these substitutions map outside both the helix-

turn-helix motif and the DNA binding domain in mexT which would not be expected for these 

mutations should they affect the MexT function. This gives a possible explanation for not 

observing these mutations in the studied set of isolates. In addition, Llanes et al., (2011) showed 

that the extent to which each of the amino acid substitutions in MexS, MexT and/or MvaT may 

account for the nfxC resistance profile is still unclear and thus concluded that regulation of 

MexEF-OprN is more complex than anticipated and requires further investigation which may 

indicate that these two mutations were only a bystander finding. mexT G258D and mexT Y138D 

were reported by Richardot et al., (2016). The two variants were observed in MexT in only two 

isolates and were tested for the effect associated with the substitution on MexT activity and 

showed that complemented strains did not show any effect on MexT function and also concluded 

that nfxC phenotype can be caused by other unknown mutations. None of these mutations have 

been identified in the current set of isolates. This supports the conclusion about the complex 

regulatory elements affecting MexT function and activity and the unclear role of these changes 

on resistance profiles. An important point to consider here is that the nfxC mutant overexpressing 

MexEF-OprN may show mutations in either mexT, mexS, or mvaT genes (Llanes et al., 2011) 

and not necessarily all at the same time because pump overexpression occurs through two 

pathways; either the mexS and mexT pathway or the mvaT dependent pathway. mvaT dependent 

pathway can also modify the expression of MexEF-OprN independent of the MexT or MexS-

related pathway (Westfall et al., 2006). This all taken together means that observing one variant 

and not the other is normally expected as two alternative mechanisms/pathways affecting same 

pump-system regulation. In addition, Richardot et al., (2016) have shown that there are still other 

unknown loci that appear to be implicated in the pump overproduction in clinical settings which 

makes it expected to find mutations in either mexS, mexT, mvaT, and ampR each one separately 

or in combination with others, the notion that is being explored here. 
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3) Global transcriptional regulators 

1) ampR  

The gene was absent in 33 isolates (all are resistant). The most frequently observed mutation in 

the gene was ampR G283E. It was identified in 213 isolates (127 are resistant and 86 are 

susceptible). Other frequently observed mutations included ampR M288R which was identified 

in 159 isolates (92 are resistant and 67 are susceptible). Both ampR A51T and ampR D135N 

were less frequently identified in 11 and 6 isolates respectively. Both G154R reported by Cabot 

et al., (2012) and G102E reported by Caille et al., (2014) were not identified in the studied set of 

isolates. This may be an expected finding for different reasons. Caille et al., (2014) has 

performed functional studies for the effect of both ampR D135N and G102E substitution on the 

activity of AmpR. Both variants were previously implicated in the repression state of AmpR 

from the Enterobacteriaceae. ampR D135N was identified in 6 isolates among the current study 

set (5 of which are levofloxacin resistant and 4 are ciprofloxacin resistant), a finding that 

supports the findings of  Caille et al., (2014) who identified the same substitution in link to 

inducer-independent increase in the transcriptional activity. In the same study, it has been 

postulated that D135N substitution in the effector binding domain appears to stabilize the active 

conformation turning AmpR into an activator of ampC transcription. On the other hand, the same 

study has shown Gly102 substitution to play a different role which was suggested to be a 

structural role that leads to destabilization of the protein and loss of activity. This substitution 

was not encountered in the current studied set of isolates probably because the function of AmpR 

is jeopardized through the other types of variants reported in this study. The ampR variant 

G154R reported by Cabot et al., (2012) can convert AmpR into a transcriptional activator, but 

was not identified in the current set of isolates. However, the other three variants shown in the 

same study including ampRG283E, ampRM288R, and ampRA51T were identified with variable 

frequencies as shown above. A possible explanation is that G154R was more frequently observed 

in XDR while both ampRG283E and ampRM288R were shown to co-occur in MDR and 

moderately resistant isolates and the set included here has variable degrees of susceptibility. An 

important point to keep in mind while doing such an exploratory analysis that it is not necessary 

to find every single mutation reported in certain settings in all other settings within the same 

gene and that was one purpose of doing the current study to find the possible co-contribution of 
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different regulatory mutations. In addition, for AmpR as a global transcriptional regulator 

affecting different metabolic functions, different variants can perform different functional roles. 

2) mvaT (PA4315) 

mvaT R80A was identified only in 9 isolates (4 are resistant and 5 are susceptible). 

4) SOS-response regulation and related mutants 

The lexA S125A reported in the literature to be associated with uncleavable lexA and 

consequently hyper-susceptibility was not detected in any isolate. Other studied mutants that are 

associated with non-cleavable lexA including those at essential sites V88, G91, A90 were 

similarly not identified. On the other hand, Lon A499S variant that is related to SOS response 

regulation of resistance was identified in 184 isolates (103 susceptible and 81 resistant). 

3.6.2. Predictive values and measures of diagnostic accuracy for known resistance-

associated genes and mutations 

Table 3.7. Summary of different measures of diagnostic accuracy for genes and mutations related to levofloxacin 

resistance 
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nfxB gene 99.7 9.4 47.8 97.3 1.10 0.032 34.48 32.97 0.091 0.50 94.7 

mexR gene 100 1.8 45.9 100 1.02 0 ND ND 0.018 0.46 99 

mexS gene 99.7 8.7 47.6 97.1 1.092 0.034 31.67 29.97 0.084 0.5 95.1 

nalC gene 99.4 8.7 47.5 94.3 1.089 0.069 15.79 14.94 0.081 0.49 95 

nalD gene 100 12.3 48.7 100 1.14 0 ND ND 0.123 0.52 93.3 

AmpR gene 100 8.7 47.7 100 1.095 0 ND ND 0.087 0.50 95.3 

mexZ 99.1 9.7 47.7 92.5 1.097 0.093 11.83 11.26 0.088 0.50 94.3 

gyrT83I 48.3 99.4 98.9 61.5 80.5 0.52 154.77 147.1 0.477 0.71 26.6 

nfxBA124T 1 98.7 57.1 47.9 0.769 1.003 0.77 1.22 -0.003 0.48 1 

nfxBArg82Leu 2.6 97.2 55.6 47.9 0.93 1.002 0.93 1.149 -0.002 0.48 2.6 

nalCE153Q 4.5 98.4 81 48.5 2.81 0.97 2.89 4.006 0.029 0.49 3 

nalDser32Asn 2.4 100 100 49.4 ND 0.976 ND ND 0.024 0.50 1.3 

nalDI153Q 2.6 100 100 49.5 ND 0.974 ND ND 0.026 0.50 1.4 
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mexRR79S 1.3 98.1 45.5 45.7 0.68 1.006 0.68 0.70 -0.006 0.46 1.6 

mexSA75V 2.4 98.1 64.3 47.8 1.26 0.995 1.27 1.651 0.005 0.48 2 

mexSA175V 2.6 97.2 55.6 47.7 0.929 1.002 0.927 1.139 -0.002 0.48 2.6 

mexSE181D 3.1 97.8 66.7 48 1.41 0.99 1.422 1.85 0.009 0.48 2.6 

mexSV308I 1 97.5 36.4 47.3 0.4 1.015385 0.393 0.513 -0.015 0.47 1.6 

nfxBArg21His 2.1 93.1 27.6 46.7 0.304 1.05 0.289 0.33 -0.048 0.46 4.2 

nfxB Asp56Gly 2.1 92.4 25.8 46.5 0.28 1.059 0.26 0.30 -0.055 0.46 4.4 

parEA473V 2.1 98.4 61.5 45.5 1.31 0.995 1.32 1.34 0.005 0.46 1.9 

parEV460G 0.8 99.7 75 45.5 2.67 0.995 2.68 2.51 0.005 0.46 0.6 

parES457G 1.3 100 100 45.7 ND 0.987 ND ND 0.013 0.46 0.7 

parCS87W 5.2 100 100 46.8 ND 0.948 ND ND 0.052 0.48 2.9 

parCS87L 34.9 100 100 55.8 ND 0.651 ND ND 0.349 0.64 19.2 

parCE91K 1 99.7 80 45.6 3.33 0.99 3.36 3.35 0.007 0.46 0.7 

parCE91V 0.8 100 100 45.6 ND 0.992 ND ND 0.008 0.46 0.4 

gyrAD87N 8.1 100 100 47.5 ND 0.919 ND ND 0.081 0.498 4.4 

gyrBE468D 2.1 100 100 46 ND 0.979 ND ND 0.021 0.47 1.1 

ampRA51T 1.6 98.4 54.5 47.9 1 1 1 1.10 0 0.48 1.6 

ampRD135N 1.3 99.7 83.3 48 4.33 0.99 4.38 4.62 0.01 0.48 0.9 

mexSVal333Gly 0.5 99.4 66.7 47.7 0.83 1.001 0.83 1.82 -0.001 0.48 0.4 

mexSSer124Arg 13.4 88 58 48.4 1.12 0.98 1.13 1.29 0.014 0.49 12.6 

mexSG78S 2.1 95.6 38.1 47.1 0.48 1.024 0.47 0.55 -0.023 0.47 3 

mexSN249L 9.7 88.6 51.4 47.5 0.85 1.019 0.83 0.96 -0.017 0.48 10.3 

mexSV104G 11.1 89 55.3 48 1.009 0.99 1.01 1.14 0.001 0.49 10.9 

mexSF253D 9.4 89 51.4 47.5 0.85 1.018 0.84 0.96 -0.016 0.48 10 

mexSC269D 10.5 89.3 54.8 47.9 0.98 1.002 0.98 1.11 -0.002 0.49 10.5 

mexSE54V 11.5 89.3 57.1 48.2 1.075 0.9 1.08 1.24 0.008 0.49 11 

mexSG78A 11.5 89.3 57.1 48.2 1.075 0.99 1.08 1.24 0.008 0.49 11 

mexST152E 11.5 88.6 55.7 48 1.008 0.99 1.009 1.16 0.001 0.49 11.3 

ampRG283E 33.3 72.7 59.6 50.9 1.22 0.92 1.33 1.53 0.06 0.54 30.6 

ampRM288R 24.3 78.7 57.9 49.3 1.14 0.96 1.19 1.34 0.03 0.51 22.9 

nalCG71E 44.9 43.5 49.1 43.8 0.79 1.27 0.63 0.75 -0.116 0.47 49.9 

nalCA186T 6 94.6 60.5 47.9 1.11 0.99 1.12 1.41 0.006 0.49 5.5 

nalC S209R 33.9 55.8 48.3 44.7 0.77 1.19 0.65 32 -0.103 0.46 38.3 

mexR R79N 50.8 60.1 52.6 59.5 1.27 0.82 1.56 18.6 0.109 0.56 43.8 

mexR E79R 52.4 60.1 53.4 60.3 1.31 0.79 1.66 21.4 0.125 0.57 44.6 

mexR E70R 52.4 60.1 53.4 60.3 1.31 0.79 1.66 21.4 0.125 0.57 44.6 

mexR L130T 53 60.6 54 60.8 1.35 0.78 1.73 23.7 0.136 0.58 44.6 

mexR G97L 53 57 51.7 59.3 1.23 0.82 1.49 17 0.1 0.56 46.6 

mexR L29D 53 58 52.2 59.7 1.26 0.81 1.56 17.2 0.11 0.56 46.1 

ampR E114A 16.4 80.3 55.3 53.6 0.83 1.04 0.79 43.9 -0.033 0.54 13.5 

mvaT R80A 1.6 98.9 55.6 54.6 1.45 0.99 1.46 0.366 0.005 0.55 1.3 

lonA499S 32.5 58.5 56 53.6 0.78 1.15 0.68 33 -0.09 0.54 26.4 

armR gene 82.4 29.7 58.5 58.4 1.17 0.59 1.98 14.2 0.121 0.58 76.9 

nalC S46A 64.3 52.1 61.9 61.6 1.34 0.69 1.96 69.2 0.164 0.62 56.7 
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Numbers in bold represent markers with best performance parameters. These were used as an input to test using the 

clustering model in an iterative multi-step process. Multiple combinations were tested based on the results shown in 

the table above. 

3.6.3. Finding the best possible predictor combinations 

Applying cluster analysis using 13 of the previously tested molecular markers showing the best 

performance among the whole group of 57 tested markers as an input to the predictive model 

revealed five clusters (combination of molecular markers) with improved diagnostic 

performance. The markers differentiating these clusters included 10 markers as an output (These 

markers are shown in Table 3.8) Cluster 1 and cluster 5 showed tendency to cluster at lower 

levofloxacin MICs (susceptible isolates) while cluster 2, cluster 3, and cluster 4 showed tendency 

to cluster towards higher levofloxacin MICs (resistant isolates). The five markers (nalC S46A, 

nalC E153Q, ampR D135N, nfxB, mexZ) showed the highest importance among all predictors in 

the model. 

The new clusters showed very high likelihood ratio in differentiating sensitivity from resistance 

phenotype (LR=931.639, p<0.0005) with strong effect sizes (Phi=0.991, p<0.0005). Summary of 

all combination or markers in observed clusters are shown in Table 3.8. 

Table 3.8. Combinations of molecular markers forming the new clusters in relation to levofloxacin susceptibility and 

resistance 

Cluster 4 1 5 2 3 

Size 214 (30.7%) 164 (23.5%) 150 (21.5%) 138 (19.8%) 31 (4.4%) 

Levofloxacin 

sensitivity 

(breakpoint) 

100% resistant 100% 

susceptible 

100% 

susceptible 

97.8% 

resistant 

100% resistant 

Average levofloxacin 

MIC 

16.88 0.56 0.54 11.05 4.13 

nalC E153Q Mutation absent 

100% 

Mutation absent 

97.6% 

Mutation absent 

100% 

Mutation absent 

85.5% 

Gene absent 100% 

nalC gene Gene present 100% Gene present 99.4% Gene present 100% Gene present 97.8% Gene absent 100% 

ampR D135N Mutation absent 

100% 

Mutation absent 

100% 

Mutation absent 

99.3% 

Mutation absent 

94.2% 

Gene absent 93.5% 

nfxB gene Gene present 100% Gene present 100% Gene present 100% Gene present 94.9% Gene absent 96.8% 

mexZ gene Gene present 100% Gene present 100% Gene present 99.3% Gene present 94.2% Gene absent 100% 

armR gene Gene present 100% Gene absent 56.1% Gene present 99.3% Gene present 72.5% Gene absent 96.8% 

mexS gene Gene present 100% Gene present 100% Gene present 99.3% Gene present 91.3% Gene absent 64.5% 

mexR gene Gene present 100% Gene present 100% Gene present 100% Gene present 96.4% Gene present 93.5% 
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parC E91K Mutation absent 

100% 

Mutation absent 

100% 

Mutation absent 

100% 

Mutation absent 

97.1% 

Mutation absent 

96.8% 

parE V460G Mutation absent 

100% 

Mutation absent 

100% 

Mutation absent 

99.3% 

Mutation absent 

97.8% 

Mutation absent 

100% 

 

It is important to note here that the size of the clusters identified by the clustering algorithm is automatically 

determined in the two-step method, because markers do not occur in the population with the same frequency. Some 

markers are rare and not commonly encountered in the population. The algorithm aims at finding observable or 

significant patterns based on the difference in the percentage of presence or absence of specific markers. When the 

variant is more frequent in the population, the difference in distribution is more observable. 

 

Figure 3.3. Clusters of molecular markers in relation to levofloxacin susceptibility and resistance according to 

clinical breakpoints 

Table 3.9. Distribution of observed levofloxacin clusters in different categories of behavior among the studied set of 

isolates 

MIC 0.012 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 128 Total 

Cluster 1 0 0 2 9 37 68 48 0 0 0 0 0 0 164 

Cluster 2 0 0 0 0 0 1 2 33 40 24 7 31 0 138 

Cluster 3 0 0 0 0 0 0 0 0 30 1 0 0 0 31 

Cluster 4 0 0 0 0 0 0 0 36 35 43 15 84 1 214 

Cluster 5 3 3 3 6 42 48 45 0 0 0 0 0 0 150 

Total 3 3 5 15 79 117 95 69 105 68 22 115 1 697 
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Figure 3.4. Distribution of different levofloxacin susceptibility levels within new clusters of molecular markers 

3.6.4. Statistical and practical significance of individual molecular markers and new 

combinations 

Table 3.10. Statistical significance and effect sizes for different studied levofloxacin molecular marker 
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nfxB gene  28.8 <0.005 0.203 <0.005 0.203 <0.005 

mexR gene  5.9 0.015 0.092 0.015 0.092 0.015 

mexS gene  26.01 <0.005 0.0193 <0.005 0.193 <0.005 

nalC gene  23.4 <0.005 0.183 <0.005 0.183 <0.005 

nalD gene 41.9 <0.005 0.245 <0.005 0.245 <0.005 

ampR gene  28.8 <0.005 0.203 <0.005 0.203 <0.005 

mexZ  24.6 <0.005 0.188 <0.005 0.188 <0.005 

gyrT83I 201 <0.005 0.537 <0.005 0.537 <0.005 

nfxBA124T 29 <0.005 0.203 <0.005 0.203 <0.005 

nfxBArg82Leu 28.8 <0.005 <0.005 <0.005 <0.005 <0.005 

nalCE153Q 33.1 <0.005 0.218 <0.005 0.218 <0.005 

nalDser32Asn 51 <0.005 0.269 <0.005 0.269 <0.005 

nalDI153Q 52 <0.005 0.272 <0.005 0.272 <0.005 

mexR R79S 6.2 0.045 0.094 0.045 0.094 0.045 

mexSA75V 27 <0.005 0.196 <0.005 0.196 <0.005 

mexS A175V 26 <0.005 0.193 <0.005 0.193 <0.005 

mexSE181D 27.5 <0.005 0.199 <0.005 0.199 <0.005 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

C
o

u
n
t

New clusters of molecular markers

LevoMIC .02 .03 .06 .12 .25 .50 1.00 2.00 4.00 8.00 16.00 32.00 128.00



117 | P a g e  
 

 

ch
i 

sq
u

a
re

 

si
g

n
if

ic
a

n
ce

 

P
h

i 
co

ef
fi

ci
en

t 

si
g

n
if

ic
a

n
ce

 

C
ra

m
er

’
s 

V
 

si
g

n
if

ic
a

n
ce

 

mexSV308I 27.2 <0.005 0.197 <0.005 0.197 <0.005 

nfxBArg21His 36.2 <0.005 0.228 <0.005 0.228 <0.005 

nfxB Asp56Gly 38 <0.005 0.233 <0.005 0.233 <0.005 

parEA473V 0.26 0.611 0.019 0.611 0.019 0.611 

parEV460G 0.676 0.411 0.031 0.0411 0.031 0.411 

parES457G 4.2 0.041 0.077 0.041 0.077 0.041 

parCS87W 17.13 <0.005 0.157 <0.005 0.157 <0.005 

parCS87L 135.2 <0.005 0.441 <0.005 0.441 <0.005 

parCE91K 1.3 0.252 0.043 0.252 0.043 0.252 

parCE91V 2.5 0.113 0.06 0.113 0.06 0.113 

gyrAD87N 27 <0.005 0.197 <0.005 0.197 <0.005 

gyrBE468D 6.8 0.009 0.098 0.009 0.098 0.009 

ampRA51T 29 <0.005 0.204 <0.005 0.204 <0.005 

ampRD135N 31.3 <0.005 0.212 <0.005 0.212 <0.005 

mexSVal333Gly 26.2 <0.005 0.194 <0.005 0.194 <0.005 

mexS ser124Arg 27.2 <0.005 0.198 <0.005 0.198 <0.005 

mexSG78S 28 <0.005 0.2 <0.005 0.2 <0.005 

mexSN249L 26 <0.005 0.193 <0.005 0.193 <0.005 

mexSV104G 26.4 <0.005 0.195 <0.005 0.195 <0.005 

mexSF253D 26 <0.005 0.193 <0.005 0.193 <0.005 

mexSC269D 26.2 <0.005 0.194 <0.005 0.194 <0.005 

mexSE54V 27 <0.005 0.196 <0.005 0.196 <0.005 

mexSG78A 27 <0.005 0.196 <0.005 0.196 <0.005 

mexST152E 26.4 <0.005 0.194 <0.005 0.194 <0.005 

ampRG283E 35.09 <0.005 0.225 <0.005 0.225 <0.005 

ampRM288R 31.2 <0.005 0.212 <0.005 0.212 <0.005 

nalCG71E 27 <0.005 0.196 <0.005 0.196 <0.005 

nalCA186T 24.4 <0.005 0.187 <0.005 0.187 <0.005 

nalCS209R  27 <0.005 0.195 <0.005 0.195 <0.005 

mexR R79N 16 <0.005 0.151 <0.005 0.151 <0.005 

mexRE79R  18.7 <0.005 0.164 <0.005 0.164 <0.005 

mexRE70R  18.7 <0.005 0.164 <0.005 0.164 <0.005 

mexRL130T  21 <0.005 0.174 <0.005 0.174 <0.005 

mexRG97L  14.3 <0.005 0.143 0.001 0.143 0.001 

mexRL29D  14.9 0.001 0.146 0.001 0.0146 0.001 

ampRE114A 31.4 <0.005 0.212 <0.005 0.212 <0.005 

mvaT R80A  0.37 0.544 0.023 0.544 0.023 0.544 

lonA499S  31.2 <0.005 0.211 <0.005 0.211 <0.005 

armR gene 14.2 <0.005 0.143 <0.005 0.143 <0.005 

nalCS46A 61.4 <0.005 0.297 <0.005 0.297 <0.005 
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nfxB gene  28.8 <0.005 0.203 <0.005 0.203 <0.005 

New clusters 685.164 <0.005 0.991 <0.005 0.991 <0.005 

 

3.6.5. Multiple regression for best molecular predictors 

Stepwise multiple regression was used to assess the ability of all molecular markers assessed 

above to predict level of MIC, after excluding markers with high multicollinearity, the most 

important predictors in the model included Predictors gyrA T83I, parC S87L, parC S87W, 

mexR L130T, parC E91K, nalC G71E, gyrA D87N, mexR E70R, mexS Ser124Arg, and mexS 

G78S. In the proposed model, 60.9 % of variance in the dependent variable (MIC level) is 

explained by the predictors in the model (p<0.0005). Variables that make significant unique 

contribution to the prediction of the dependent variable (MIC level) includes gyrA T83I (beta= -

0.388, p <0.0005), parC S87L (beta= -0.341, p <0.0005), mexR L130T (beta= 0.254, p <0.009), 

mexR E70R (beta= -0.208, p <0.031), and parC S87W (beta= -0.126, p <0.0005). In this model, 

gyrA T83I uniquely explains 4.2 % of the variance in MIC and parC S87L uniquely explains 3.4 

% of the variance in MIC. 

3.7. Results Section 3 (Amikacin and Gentamycin) 

3.7.1. Description of mutation distribution 

The rrs gene in Ps. aeruginosa was explored for mutations similar to those reported in the 

literature with M. tuberculosis. Among those variants previously reported (shown in Table 3.2), 

five mutations were identified in the studied set of isolates, however, these were very infrequent. 

Both A907C and A514C were identified only in one isolate. Both A514C and G1491T were 

identified in two isolates. Variant C522T was identified in four isolates.  

However, fusA1 gene coding for elongation factor appeared to be an important determinant of 

resistance. Among seven mutations previously reported in the literature (shown in Table 3.2), the 

variant fusA1Y552C was identified in 7 isolates, 2 of them are gentamycin resistant, 5 are 

amikacin resistant, and 2 are amikacin susceptible while the fusA1 Ala555Glu mutation which is 
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located just 2 nucleotides at the start of its containing beta strand was identified only in one 

amikacin resistant isolate. This may indicate that fusA1Y552C is probably performing a more 

important functional roles being located just at the bend between the previous alpha helix and the 

subsequent beta strand (Nyfeler et al., 2012).  

 Bolard, Plésiat and Jeannot, (2018) have shown that three in vitro mutants in fusA1 including 

Arg371Cys in domains II, Thr456Ala in domain III, and Arg680Cys in domain V have resulted 

in increased MIC to some tested aminoglycosides. By scanning the current studied set of isolates, 

two of these in vitro mutations have been identified in the clinical set of isolates including fusA1 

Thr456Ala which was identified in 2 amikacin resistant isolates and fusA1 Arg680Cys which 

was identified in one isolate that showed resistance to both gentamycin and amikacin. The 

mutation mapped just at the end of the turn between the previous alpha helix and the subsequent 

beta strand. These results combined together confirm the role of multiple mutations in EF-G1A 

in conferring aminoglycoside resistance. 

 fusA1 Thr671Ala mutation located at domain V at the start of an alpha helix is probably 

affecting the gene function (Bolard, Plésiat and Jeannot, 2018). In the current set, the variant was 

identified in one gentamycin resistant but amikacin susceptible isolate. Interestingly, a novel 

variant, fusA1 D588G which map 2 nucleotides before the end of its containing beta strand at 

position 590 (Nyfeler et al., 2012) was identified in 5 isolates; 3 are resistant to both gentamycin 

and amikacin and 2 are resistant to amikacin. This variant was predicted as deleterious at - 2.5 

cutoff (PROVEAN score = -6.198). 

rpsL appeared to be conserved in the studied set of isolates with no significant variation 

observed. The gidB nucleotide variants T230C, C286T, T104G, and A254G reported in the 

literature were not identified among the studied isolates. Instead, other novel amino acid variants 

were observed. Three AA substitutions predicted as deleterious at -1.3 cutoff were identified. 

These included E126G (PROVEAN score= -2.779), E97Q (PROVEAN score= -2.240), and 

Q28K (PROVEAN score= -1.442). gidB E126G was identified in 8 isolates, all are amikacin 

susceptible, 3 are gentamycin susceptible, and 1 is gentamycin resistant. The position of this 

variant when mapped to the secondary structure of gidB methyltransferase from Bacillus Subtilis 

showed to occur at the position of the bend between the end of the third beta strand and the 

following alpha helix which may indicate its possible associated functional role. gidB Q28K 
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which occurs at the end of the second alpha helix (Zhang, R., Wu, R., Collart, F., Joachimiak, 

2004) was identified in 9 isolates, all are amikacin susceptible and 4 are gentamycin resistant. 

gidB E97Q was identified in 54 isolates, 11 are gentamycin resistant and 3 are gentamycin 

susceptible, 22 are amikacin resistant and 32 are amikacin susceptible. gidB E186A was 

identified in 54 isolates, 9 are gentamycin resistant and 7 are gentamycin susceptible, 22 are 

amikacin resistant and 30 are amikacin susceptible.  

Among the amgS variants previously reported in the literature, amgS D106N was identified in 3 

isolates; 1 isolate was resistant to both gentamycin and amikacin, 1 isolate was susceptible to 

both gentamycin and amikacin, and 1 isolate was susceptible to amikacin. amgS V121G was 

identified in 1 isolate which was resistant to both gentamycin and amikacin. The other three 

variants extracted from the literature (shown in Table 3.2) were not identified. Interestingly, the 

novel variant E108Q was identified in 11 isolates; all are amikacin susceptible (3 of which are 

susceptible to both gentamycin and amikacin and 5 are resistant to gentamycin but susceptible to 

amikacin). This novel variant was predicted as deleterious at a cutoff of -1.3, PROVEAN score = 

-1.774. 

In contrast to the genes explored and summarized above, pmrA-pmrB aminoglycosides 

resistance-related genes showed more frequent variations. pmrB showed frequent occurrence of 

the same type of variants reported in the literature. The five variants Leu323His, Ser420Arg, 

Gly423Cys, L243Q, and A248V occurred together in 112 isolates. Thirty isolates were 

susceptible to both gentamycin and amikacin. Thirty-eight isolates were susceptible to amikacin, 

eleven were susceptible to amikacin and resistant to gentamycin. Twenty-two were resistant to 

amikacin and ten were resistant to both gentamycin and amikacin. pmrB Ala4Thr was identified 

in 117 isolates; 27 were amikacin resistant and 12 were gentamycin resistant. pmrA Asp92Tyr 

previously reported in the literature was not identified in the studied set of isolates, while pmrA 

Leu71Arg was identified in 178 isolates (37 are amikacin resistant and 30 are gentamycin 

resistant). Similarly, rplY Ala123Ser was identified in 217 isolates (47 are amikacin resistant and 

34 are gentamycin resistant). Novel variant rplY Q41L was identified in 6 isolates; all are 

amikacin and gentamycin susceptible and only 1 isolate is gentamycin resistant. Q41L was 

predicted as deleterious at -2.5 cutoff (PROVEAN score= -3.098). 
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By exploring other aminoglycosides resistance-related genes, some novel variants were 

identified in phoP, phoQ, nuoG, pstP, lptA, faoA, and arnABCD. phoP P31Q was identified in 9 

isolates (8 are amikacin susceptible, 1 is amikacin resistant and 3 are gentamycin resistant). 

phoQ Y85F was identified in 69 isolates (42 are amikacin susceptible, 27 are amikacin resistant, 

13 are gentamycin resistant, and 15 are gentamycin susceptible). Two other variants in phoQ 

S300R and L331Q predicted to be deleterious (PROVEAN score: -1.562 and -2.182) were 

identified in 13 isolates and 4 isolates respectively. Among 13 isolates with phoQ S300R, 10 

were amikacin susceptible (5 of which were susceptible to both amikacin and gentamycin). nuoG 

S468A was identified in 118 isolates (82 are amikacin susceptible and 29 of which are 

susceptible to both amikacin and gentamycin). nuoG A574T variant predicted as deleterious 

(PROVEAN score= -1.940) was identified in 36 isolates (34 are amikacin susceptible and 10 of 

which were susceptible to both amikacin and gentamycin). nuoG A890T was identified in 19 

isolates (4 are susceptible to both amikacin and gentamycin, 18 are amikacin susceptible and 1 

isolate is amikacin resistant). Two novel variants were identified in pstB and both were predicted 

as deleterious. These include pstB R87C (PROVEAN score= -6.874) and pstB E89Q 

(PROVEAN score= -1.865). pstB R87C was identified only in 4 isolates (all are gentamycin and 

amikacin susceptible). On the other hand, pstB E89Q was identified in 20 isolates (14 are 

amikacin resistant, 6 are amikacin susceptible, 5 are gentamycin resistant, and 2 are gentamycin 

susceptible). 

lptA T55A was identified in 53 isolates (6 are amikacin resistant, 47 are amikacin susceptible 

and 18 were susceptible to both amikacin and gentamycin). lptA R62S predicted as deleterious 

(PROVEAN score= -3.392) was identified in 28 isolates (27 are amikacin susceptible while 12 

were susceptible to both amikacin and gentamycin). 

faoA T385A predicted as deleterious (PROVEAN score= -3.272) was identified in 16 isolates (8 

are susceptible to both gentamycin and amikacin, 15 are amikacin susceptible and 1isolate is 

amikacin resistant). Two other novel variants observed in arnABCD operon included: arnA 

A170T (PROVEAN score= -2.065) and arnD G206C (PROVEAN score= -8.374). Both were 

predicted as deleterious and were identified in 24 isolates. arnA A170T was identified in 9 

amikacin susceptible isolates, 15 amikacin resistant isolates, 8 gentamycin resistant isolates and 

2 gentamycin susceptible isolates. arnD G206C was identified in 10 amikacin susceptible 
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isolates, 14 amikacin resistant isolates, 7 gentamycin resistant isolates and 2 gentamycin 

susceptible isolates. 

3.7.2. Predictive values and measures of diagnostic accuracy for known resistance-

associated genes and mutations 

Table 3.11. Summary of different measures of diagnostic accuracy for genes and mutations related to gentamycin 

resistance 
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nalC 100 1.5 35.7 100 1.015 0 2.632 ND 0.015 0.36 99 

mexZ 100 2.1 35.8 100 1.021 0 3.517 ND 0.021 0.37 98.7 

ampR 100 1.5 35.7 100 1.015 0 2.632 ND 0.015 0.36 99 

mexRG97L 99.5 0.9 64.8 50 1.004 0.56 0.181 1.84 0.004 0.65 99.3 

mexRL29D 99.5 1.9 65 66.7 1.014 0.26 1.227 3.71 0.014 0.65 99 

mexRE70R 97.4 4.7 65.2 50 1.022 0.55 0.932 1.87 0.021 0.65 96.7 

mexRL130T 97.4 3.8 64.9 44.4 1.012 0.68 0.327 1.48 0.012 0.64 97 

mexRR79N 96.9 5.7 65.3 50 1.028 0.54 1.127 1.88 0.026 0.65 96 

nalD 95.3 4.1 35.2 61.5 0.993 1.15 0.058 0.87 -0.006 0.36 95.7 

nalCG71E 90.2 8.5 64.3 32.1 0.986 1.15 0.139 0.85 -0.013 0.61 90.7 

nalCS209R 72.7 27.4 64.7 35.4 1.0014 0.99 0 1.00 0.001 0.57 72.7 

armR 59.4 41.8 35.8 65.3 1.021 0.97 0.04 1.01 0.012 0.47 58.7 

ampRG283E 46.2 59.8 38.1 67.4 1.149 0.89 0.978 1.27 0.06 0.55 42.3 

nalCS46A 43.4 64.4 40 67.6 1.219 0.88 1.767 1.39 0.078 0.57 38.3 

ampRM288R 34 68.4 36.5 66 1.08 0.96 0.172 1.11 0.024 0.56 32.4 

rplYAla123Ser 33 66.5 35 64.5 0.99 1.01 0.007 0.98 -0.005 0.55 33.3 

lonA499S 30.9 81.1 75 39.1 1.63 0.85 5.29 1.93 0.12 0.49 26.7 

pmrALeu71Arg 28.3 74.7 38 65.6 1.12 0.96 0.325 1.17 0.03 0.58 26.3 

ampRE114A 23.2 78.3 66.2 35.8 1.07 0.98 0.088 1.09 0.015 0.43 22.7 

pmrBLeu323His 19.8 84 40.4 65.7 1.24 0.95 0.692 1.29 0.038 0.61 17.3 

pmrBSer420Arg 19.8 84 40.4 65.7 1.24 0.95 0.692 1.29 0.038 0.61 17.3 

pmrBGly423Cys 19.8 84.5 41.2 65.9 1.28 0.95 0.902 1.35 0.043 0.61 17 

pmrBL243Q 19.8 84.5 41.2 65.9 1.28 0.95 0.902 1.35 0.043 0.61 17 

pmrBA248V 19.8 84 40.4 65.7 1.24 0.95 0.692 1.29 0.038 0.61 17.3 

nuoGS468A 19.8 84 40.4 65.7 1.24 0.95 0.692 1.29 0.038 0.61 17.3 

pmrBALA4Thr 12.3 85.6 31.7 64.1 0.85 1.02 0.277 0.83 -0.021 0.59 13.7 

phoQY85F 12.3 92.3 46.4 65.8 1.59 0.95 1.609 1.67 0.046 0.64 9.3 
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nalCE153Q 11.3 95.9 60 66.4 2.76 0.92 5.406 2.97 0.072 0.66 6.7 

nalCA186T 10.4 93.3 45.8 65.6 1.55 0.96 1.218 1.61 0.037 0.64 8 

gidBE97Q 10.4 97.4 68.8 66.5 4 0.92 7.816 4.38 0.078 0.67 5.3 

gidBE186A 10.4 97.4 68.8 66.5 4 0.92 7.816 4.38 0.078 0.67 5.3 

lptAT55A 8.8 94.3 73.9 36.1 1.54 0.97 0.974 1.60 0.031 0.39 7.7 

arnAA170T 7.5 99 80 66.2 7.5 0.93 8.684 7.84 0.065 0.67 3.3 

arnDG206C 6.6 99 77.8 66 6.6 0.94 6.995 6.79 0.056 0.66 3 

lptAR62S 6.2 98.1 85.7 36.4 3.26 0.96 3.273 3.43 0.043 0.39 4.7 

pstBE89Q 5.7 99 75 65.8 5.7 0.95 5.382 5.76 0.047 0.66 2.7 

faoAT385A 4.1 99.1 88.9 36.1 4.56 0.97 2.848 4.52 0.032 0.38 3 

nuoGA574T 3.8 94.3 26.7 64.2 0.67 1.02 0.542 0.65 -0.019 0.62 5 

nalDser32Asn  2.8 100 100 65.3 ND 0.972 6.298 ND 0.028 0.66 1 

nalDl153Q 2.8 99.5 75 65.2 5.6 0.98 2.653 5.62 0.023 0.65 1.3 

fusA1D588G 2.8 100 100 65.3 ND 0.972 6.298 ND 0.028 0.66 1 

nuoGA890T 2.6 98.1 71.4 35.5 1.37 0.99 0.148 1.38 0.007 0.36 2.3 

mexRR79S  1.5 96.2 42.9 34.8 0.39 1.02 1.412 0.40 -0.023 0.35 2.3 

amgSE108Q 1.5 95.3 37.5 34.6 0.32 1.034 2.505 0.32 -0.032 0.35 2.7 

gidBE126G 1.5 99.1 75 35.5 1.67 0.99 0.2 1.65 0.006 0.36 1.3 

pstBR87C 1.5 100 100 35.7 ND 0.985 2.632 ND 0.015 0.36 1 

mvaTR80A 1 96.2 33.3 34.9 0.26 1.029 2.442 0.27 -0.028 0.35 2 

ampRA51T 1 95.3 28.6 34.7 0.21 1.04 3.81 0.21 -0.037 0.35 2.3 

rplYQ41L 1 99.1 66.7 35.4 1.11 0.99 0.005 1.09 0.001 0.36 1 

gidBQ28K 1 96.2 33.3 34.7 0.26 1.03 2.48 0.27 -0.028 0.35 2 

 

Numbers in bold show markers with best performance parameters. These were used as input to be tested through the 

clustering model in an iterative multi-step process. Multiple combinations were tested based on the results shown in 

this table. 
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Table 3.12. Summary of different measures of diagnostic accuracy for genes and mutations in relation to amikacin 

resistance 
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mexR 99.3 0.7 21.4 80 1 1 0.006 1.091 0 0.219 99.3 

nalC 90.5 3.1 20.3 54.8 0.934 3.065 9.151 0.309 0.064 0.219 95.5 

ampR 89.9 2.8 20.1 50 0.925 3.607 12.541 0.252 0.073 0.214 95.7 

mexZ 89.2 3.7 20.2 55.6 0.926 2.919 10.122 0.315 0.071 0.219 94.8 

nalD 87.8 4.6 20.1 58.1 0.920 2.652 9.779 0.349 0.076 0.224 93.8 

armR 86.5 25 23.9 87.2 1.153 0.54 9.658 2.139 0.115 0.382 77.4 

nalCS46A 66.2 45.1 24.7 83.1 1.206 0.749 6.218 1.611 0.113 0.496 57.3 

nalCG71E 52.3 58.8 82.3 25.1 1.269 0.811 5.741 1.564 0.111 0.537 49.9 

mexRG97L 50.5 67.6 85.1 27.1 1.559 0.732 15.513 2.122 0.181 0.541 46.6 

mexRL29D 50.3 68.9 85.6 27.4 1.617 0.721 17.674 2.242 0.192 0.543 46.2 

mexRE70R 48.4 69.6 85.4 26.9 1.592 0.741 15.726 2.149 0.18 0.529 44.6 

mexRL130T 48.4 69.6 85.4 26.9 1.592 0.741 15.726 2.149 0.18 0.529 44.6 

mexRR79N 47.1 68.2 84.5 26 1.481 0.776 11.453 1.917 0.153 0.517 43.8 

nalCS209R 41.1 72.3 84.5 25.1 1.484 0.815 9.101 1.8187 0.134 0.478 38.2 

rplYAla123Ser 32.4 68.9 22.1 78.9 1.042 0.981 0.092 1.062 0.013 0.611 31.4 

lonA499S 29.8 86.5 89 25.1 2.207 0.812 17.727 2.721 0.163 0.419 26.3 

ampRG283E 27 68.4 19 77.4 0.854 1.067 1.168 0.801 0.046 0.595 30.6 

pmrALeu71Arg 25 74 20.8 78.4 0.962 1.014 0.057 0.950 -0.01 0.635 25.8 

nuoGS468A 23.6 84.7 29.7 80.3 1.542 0.902 5.397 1.717 0.083 0.716 17.1 

ampRM288R 22.3 77 21 78.3 0.969 1.009 0.037 0.958 0.007 0.652 22.9 

pmrBLeu323His 21.6 85.4 28.8 80 1.479 0.918 4.035 1.617 0.07 0.717 16.1 

pmrBSer420Arg 21.6 85.3 28.6 80 1.469 0.919 3.841 1.597 0.069 0.716 16.2 

pmrBGly423Cys 21.6 85.5 28.8 80 1.489 0.917 4.071 1.620 0.071 0.718 16.1 

pmrBL243Q 21.6 85.5 28.8 80 1.489 0.9169 4.071 1.620 0.071 0.718 16.1 

pmrBA248V 21.6 85.3 28.6 80 1.469 0.919 3.841 1.59 0.069 0.72 16.2 

pmrBALA4Thr 18.2 83.2 22.9 78.9 1.101 0.979 0.179 1.108 0.017 0.69 17.1 

phoQY85F 18.2 92.3 39.1 80.5 2.364 0.886 12.55 2.661 0.105 0.76 10 

gidBE186A 15.5 94.3 42.6 80.4 2.719 0.896 13.402 3.038 0.098 0.77 7.8 

ampRE114A 15.3 93.9 90.2 23.2 2.508 0.902 9.931 2.79 0.092 0.32 13.3 

gidBE97Q 14.9 93.9 40 80.2 2.443 0.906 10.672 2.698 0.088 0.77 8 

arnAA170T 10.1 98.3 62.5 80.1 5.941 0.915 19.692 6.691 0.084 0.79 3.5 

pstBE89Q 9.5 98.9 70 80 8.636 0.915 22.454 9.35 0.084 0.79 2.9 

arnDG206C 9.5 98.2 58.3 79.9 5.278 0.922 16.075 5.57 0.077 0.79 3.5 

lptAT55A 8.7 95.9 88.7 22.3 2.122 0.952 3.976 2.2426 0.046 0.27 7.7 



125 | P a g e  
 

nalCA186T 8.1 95.2 31.6 79.1 1.688 0.965 2.24 1.751 0.033 0.77 5.5 

lptAR62S 4.8 98.6 92.9 22 3.429 0.966 4.43 3.671 0.034 0.25 4.1 

nalCE153Q 4.1 97.2 28.6 78.8 1.464 0.987 0.615 1.487 0.013 0.77 3 

nalDser32Asn  4.1 99.4 66.7 79.2 6.833 0.965 8.626 7.606 0.035 0.79 1.3 

fusA1D588G 3.4 100 100 79.2 ND 0.966 15.544 ND 0.034 0.79 0.7 

nuoGA890T 3.3 99.3 94.7 21.9 4.714 0.974 4.007 5.04 0.026 0.24 2.7 

faoAT385A 2.8 99.3 93.8 21.8 4 0.979 2.883 4.176 0.021 0.23 2.3 

mexRR79S  2 100 100 21.8 ND 0.98 5.351 ND 0.02 0.23 1.6 

amgSE108Q 2 100 100 21.8 ND 0.98 5.351 ND 0.02 0.23 1.6 

ampRA51T 1.8 100 100 21.8 ND 0.982 4.877 ND 0.018 0.23 1.5 

mvaTR80A 1.7 100 100 21.8 ND 0.983 4.385 ND 0.017 0.23 1.3 

gidBQ28K 1.7 100 100 21.7 ND 0.983 4.371 ND 0.017 0.23 1.3 

gidBE126G 1.5 100 100 21.7 ND 0.985 3.882 ND 0.015 0.23 1.2 

nalDl153Q 1.4 98.5 20 78.6 0.933 1.001 0.012 0.916 0.001 0.78 1.4 

nuoGA574T 1.4 93.7 5.6 77.7 0.222 1.052 7.398 0.205 0.049 0.74 5.2 

rplYQ41L 1.1 100 100 21.6 ND 0.989 2.907 ND 0.011 0.22 0.9 

pstBR87C 0.7 100 100 21.5 ND 0.993 1.935 ND 0.007 0.22 0.6 

 

Numbers in bold show markers with best performance parameters. These were used as input to be tested through the 

clustering model in an iterative multi-step process. Multiple combinations were tested based on the results shown in 

this table. 

3.7.3. Finding the best possible predictor combinations 

Applying cluster analysis using 6 of previously tested gentamycin molecular markers showing 

the best performance among the whole group of 50 tested markers as an input to the predictive 

model revealed 5 clusters (combinations of molecular markers) with improved diagnostic 

performance. Combination 1 showed a tendency to cluster towards higher gentamycin MICs 

while combination 5 showed a tendency to cluster towards lower gentamycin MICs. Predictor 

markers forming the new combinations included gidBE97Q, gidB E186A, arnAA170T, 

arnDG206C, nalCE153Q, and pstBE89Q. The new clusters showed very high likelihood ratio in 

differentiating sensitivity from resistance phenotype (LR=345.5, p<0.0005) with strong effect 

sizes (Phi=0.943, p<0.0005). A summary of all combination or markers in observed clusters are 

shown in Table 3.13. 
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Table 3.13. combination of molecular markers forming the new clusters in relation to gentamycin susceptibility and 

resistance 

Cluster 5 1 4 3 2 

Size 183 (61%) 81 (27%) 16 (5.3%) 11 (3.7%) 9 (3%) 

Gentamycin 

sensitivity 

(breakpoint) 

100% 

susceptible 

100% 

resistant 

68.8% 

resistant 

72.7% 

resistant 

66.7% resistant 

Average gentamycin 

MIC 

2.9 12.94 10.91 11.73 26.89 

gidB E186A Marker absent 

69% 

Marker absent 

28% 

Marker present 

100% 

Marker absent 

5% 

Marker absent 

3% 

gidBE97Q Marker absent 

63% 

Marker absent 

29% 

Marker present 

100% 

Marker absent 

5% 

Marker absent 

4% 

arnAA170T Marker absent 

62% 

Marker absent 

28% 

Marker absent 

5% 

Marker present 

90.9% 

Marker absent 

3% 

arnDG206C Marker absent 

62% 

Marker absent 

28% 

Marker absent 

5% 

Marker present 

81.8% 

Marker absent 

3% 

nalCE153Q Marker absent 

65% 

Marker absent 

29% 

Marker present 

87.5% 

Marker absent 

3% 

Marker present 

30% 

pstBE89Q Marker absent 

62% 

Marker absent 

29% 

Marker absent 

6% 

Marker present 

72.7% 

Marker absent 

4% 

 

 

Figure 3.5. Clusters of molecular markers in relation to gentamycin susceptibility and resistance according to 

clinical breakpoints 
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Table 3.14. Distribution of observed gentamycin clusters in different categories of behavior among the studied 

isolates 

MIC .25 .50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 Total 

Cluster 1 0 0 0 0 0 35 44 2 0 81 

Cluster 2 0 0 0 1 2 1 2 0 3 9 

Cluster 3 0 0 1 0 2 1 7 0 0 11 

Cluster 4 0 1 0 1 3 2 9 0 0 16 

Cluster 5 5 6 24 45 103 0 0 0 0 183 

Total 5 7 25 47 110 39 62 2 3 300 

 

 

Figure 3.6. Distribution of different gentamycin levels of  susceptibility within the new clusters of molecular markers 

Applying cluster analysis using 8 of the previously tested amikacin molecular markers showing 

the best performance among the whole group of 51 tested markers as an input to the predictive 

model revealed 2 clusters (combination of molecular markers) with improved diagnostic 

performance. Combination 1 showed a tendency to cluster towards lower amikacin MICs while 

combination 2 showed tendency to cluster towards higher amikacin MICs. Predictor markers 

forming the new combination included arnAA170T, arnDG206C, pstBE89Q, nalDSer32Asn, 

0

20

40

60

80

100

120

1 2 3 4 5

C
o

u
n
t

Distribution of records showing different combinations of markers

CNMIC .25 .50 1.00 2.00 4.00 8.00 16.00 32.00 64.00



128 | P a g e  
 

lptAR62S, nuoGA890T, faoAT385A, and lptAT55A. The new clusters showed very high 

likelihood ratio in differentiating sensitivity from resistance phenotype (LR=617.727, p<0.0005) 

with strong effect sizes (Phi=0.94, p<0.0005). 

Table 3.15. combination of molecular markers forming the new clusters in relation to amikacin susceptibility and 

resistance 

Cluster 1 2 

Size 528 (76.4%) 163 (23.6%) 

Amikacin sensitivity 

(breakpoint) 

100% susceptible 90.8% resistant 

Average amikacin MIC 3.69 54.47 

arnAA170T Mutation absent 100% Mutation absent 85.3% 

arnDG206C Mutation absent 100% Mutation absent 85.3% 

pstBE89Q Mutation absent 100% Mutation absent 87.7% 

nalDSer32Asn Mutation absent 100% Mutation absent 94.5% 

lptAR62S Marker absent 95.1% Marker absent 98.8% 

nuoGA890T Marker absent 96.6% Marker absent 99.4% 

faoAT385A Marker absent 97.2% Marker absent 99.4% 

lptAT55A Marker absent 91.5% Marker absent 95.1% 

 

 

Figure 3.7. Clusters of molecular markers in relation to amikacin susceptibility and resistance according to clinical 

breakpoints 
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Table 3.16. Distribution of observed amikacin clusters in different categories of behavior among the studied isolates 

MIC .12 .25 .50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 Total 

Cluster 1 3 7 22 80 164 122 130 0 0 0 0 

Cluster 2 0 0 0 1 5 5 4 35 40 37 36 

Total 3 7 22 81 169 127 134 35 40 37 36 

 

 

Figure 3.8. Distribution of different amikacin levels of susceptibility within the new clusters of molecular markers 

3.7.4. Statistical and practical significance of individual molecular markers and new 

combinations 

Table 3.17. Statistical significance and effect sizes for different studied gentamycin molecular marker 
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nalC 1.656 0.198 0.074 0.198 0.074 0.198 

mexZ 2.215 0.137 0.086 0.137 0.086 0.137 

ampR 1.656 0.198 0.074 0.198 0.074 0.198 

mexRG97L 0.19 0.663 -0.025 0.663 0.025 0.663 

mexRL29D 1.302 0.254 -0.066 0.254 0.066 0.254 

mexRE70R 0.974 0.324 -0.057 0.324 0.057 0.324 

mexRL130T 0.337 0.562 -0.034 0.562 0.034 0.562 

mexRR79N 1.177 0.278 -0.063 0.278 0.063 0.278 
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nalD 0.058 0.809 -0.014 0.809 0.014 0.809 

nalCG71E 0.138 0.711 0.021 0.711 0.021 0.711 

nalCS209R <0.005 0.994 <0.005 0.994 <0.005 0.994 

armR 0.04 0.842 0.012 0.842 0.012 0.842 

ampRG283E 0.981 0.322 0.057 0.322 0.057 0.322 

nalCS46A 1.777 0.182 0.077 0.182 0.077 0.182 

ampRM288R 0.173 0.678 0.024 0.678 0.024 0.678 

rplYAla123Ser 0.007 0.932 -0.005 0.932 0.005 0.932 

lonA499S 5.098 0.024 -0.13 0.024 0.13 0.024 

pmrALeu71Arg 0.327 0.567 0.033 0.567 0.033 0.567 

ampRE114A 0.088 0.767 -0.017 0.767 0.017 0.767 

pmrBLeu323His 0.702 0.402 0.048 0.402 0.048 0.402 

pmrBSer420Arg 0.702 0.402 0.048 0.402 0.048 0.402 

pmrBGly423Cys 0.918 0.338 0.055 0.388 0.055 0.388 

pmrBL243Q 0.918 0.338 0.055 0.388 0.055 0.388 

pmrBA248V 0.702 0.402 0.048 0.402 0.048 0.402 

nuoGS468A 0.702 0.402 0.048 0.402 0.048 0.402 

pmrBALA4Thr 0.273 0.601 -0.03 0.601 0.03 0.601 

phoQY85F 1.664 0.197 0.074 0.197 0.074 0.197 

nalCE153Q 5.706 0.017 0.138 0.017 0.138 0.017 

nalCA186T 1.259 0.262 0.065 0.262 0.065 0.262 

gidBE97Q 8.26 0.004 0.166 0.004 0.166 0.004 

gidBE186A 8.26 0.004 0.166 0.004 0.166 0.004 

lptAT55A 0.932 0.334 -0.056 0.334 0.056 0.334 

arnAA170T 9.033 0.003 0.174 0.003 0.174 0.003 

arnDG206C 7.316 0.007 0.156 0.007 0.156 0.007 

lptAR62S 2.847 0.092 -0.097 0.092 0.097 0.092 

pstBE89Q 5.66 0.017 0.137 0.017 0.137 0.017 

faoAT385A 2.383 0.123 -0.089 0.123 0.089 0.123 

nuoGA574T 0.519 0.471 -0.042 0.471 0.042 0.471 

nalDser32Asn  5.546 0.019 0.136 0.019 0.136 0.019 

nalDl153Q 2.792 0.095 0.096 0.095 0.096 0.095 

fusA1D588G 5.546 0.019 0.136 0.019 0.136 0.019 

nuoGA890T 0.143 0.705 -0.022 0.705 0.022 0.705 

mexRR79S  1.492 0.222 0.071 0.222 0.071 0.222 

amgSE108Q 2.655 0.103 0.094 0.103 0.094 0.103 

gidBE126G 0.189 0.663 -0.025 0.663 0.025 0.663 

pstBR87C 1.656 0.198 -0.074 0.198 0.074 0.198 

mvaTR80A 2.584 0.108 0.093 0.108 0.093 0.108 

ampRA51T 4.022 0.045 0.116 0.045 0.116 0.045 
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rplYQ41L 0.005 0.942 -0.004 0.942 0.004 0.942 

gidBQ28K 2.631 0.105 0.094 0.105 0.094 0.105 

New clusters 266.653 <0.0005 0.943 <0.0005 0.943 <0.0005 

 

Table 3.18. Statistical significance and effect sizes for different studied amikacin molecular marker 
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mexR 0.006 0.938 0.006 0.938 0.006 0.938 

nalC 10.871 0.001 -0.125 0.001 0.125 0.001 

ampR 15.222 
<0.005 

-0.148 
<0.005 

0.148 
<0.005 

mexZ 11.964 0.001 -0.132 0.001 0.132 0.001 

nalD 11.385 0.001 -0.128 0.001 0.128 0.001 

armR 8.849 0.003 0.113 0.003 0.113 0.003 

nalCS46A 6.109 0.013 0.094 0.013 0.094 0.013 

nalCG71E 5.717 0.017 -0.091 0.017 0.091 0.017 

mexRG97L 15.19 
<0.005 

-0.148 
<0.005 

0.148 
<0.005 

mexRL29D 17.242 
<0.005 

-0.158 
<0.005 

0.158 
<0.005 

mexRE70R 15.302 
<0.005 

-0.149 
<0.005 

0.149 
<0.005 

mexRL130T 15.302 
<0.005 

-0.149 
<0.005 

0.149 
<0.005 

mexRR79N 11.186 0.001 -0.127 0.001 0.127 0.001 

nalCS209R 8.8 0.003 -0.113 0.003 0.113 0.003 

rplYAla123Ser 0.093 0.761 0.012 0.761 0.012 0.761 

lonA499S 15.967 
<0.005 

-0.152 
<0.005 

0.152 
<0.005 

ampRG283E 1.148 0.284 -0.041 0.284 0.041 0.284 

pmrALeu71Arg 0.057 0.812 0.009 0.812 0.009 0.812 

nuoGS468A 5.744 0.017 0.091 0.017 0.091 0.017 
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ampRM288R 0.037 0.847 -0.007 0.847 0.007 0.847 

pmrBLeu323His 4.276 0.039 0.079 0.039 0.079 0.039 

pmrBSer420Arg 4.064 0.044 0.077 0.044 0.077 0.044 

pmrBGly423Cys 4.315 0.038 0.079 0.038 0.079 0.038 

pmrBL243Q 4.315 0.038 0.079 0.038 0.079 0.038 

pmrBA248V 4.064 0.044 0.077 0.044 0.077 0.044 

pmrBALA4Thr 0.181 0.671 0.016 0.671 0.016 0.671 

phoQY85F 14.288 
<0.005 

0.144 
<0.005 

0.144 
<0.005 

gidBE186A 15.604 
<0.005 

0.15 
<0.005 

0.15 
<0.005 

ampRE114A 8.537 0.003 -0.111 0.003 0.111 0.003 

gidBE97Q 12.259 
<0.005 

0.133 
<0.005 

0.133 
<0.005 

arnAA170T 24.932 
<0.005 

0.19 
<0.005 

0.19 
<0.005 

pstBE89Q 28.882 
<0.005 

0.204 
<0.005 

0.204 
<0.005 

arnDG206C 20.131 
<0.005 

0.171 
<0.005 

0.171 
<0.005 

lptAT55A 3.477 0.062 -0.071 0.062 0.071 0.062 

nalCA186T 2.449 0.118 0.06 0.118 0.06 0.118 

lptAR62S 3.533 0.06 -0.072 0.06 0.072 0.06 

nalCE153Q 0.658 0.417 0.031 0.417 0.031 0.417 

nalDser32Asn  11.093 0.001 0.127 0.001 0.127 0.001 

fusA1D588G 18.478 
<0.005 

0.164 
<0.005 

0.164 
<0.005 

nuoGA890T 3.03 0.082 -0.066 0.082 0.066 0.082 

faoAT385A 2.239 0.135 -0.057 0.135 0.057 0.135 

mexRR79S  3.047 0.081 -0.066 0.081 0.006 0.081 

amgSE108Q 3.047 0.081 -0.066 0.081 0.066 0.081 

ampRA51T 2.776 0.096 -0.063 0.096 0.063 0.096 

mvaTR80A 2.495 0.114 -0.06 0.114 0.06 0.114 

gidBQ28K 2.485 0.115 -0.06 0.115 0.06 0.115 
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gidBE126G 2.206 0.137 -0.057 0.137 0.057 0.137 

nalDl153Q 0.012 0.912 0.004 0.912 0.004 0.912 

nuoGA574T 5.678 0.017 -0.091 0.017 0.091 0.017 

rplYQ41L 1.65 0.199 -0.049 0.199 0.049 0.199 

pstBR87C 1.097 0.295 -0.04 0.295 0.04 0.295 

New clusters 610.079 <0.0005 -0.94 0.0005 0.94 0.0005 

 

3.7.5. Multiple Regression Analysis for best molecular predictors 

Stepwise multiple regression analysis was used to assess the ability of variants showing higher 

correlations with phenotype to predict the level of gentamycin and amikacin MIC. For Amikacin, 

after excluding variants with high multicollinearity and variants with smaller correlations with 

phenotype, the most important predictors in the model included pstBE89Q, mexRL29D, 

nalDser32Asn, ampR, pmrBGly423Cys, fusA1D588G, and lonA499S. In the proposed model, 

only 15% of variance in the dependent variable (Amikacin MIC) is explained by the above 7 

predictors in the model (p=0.016). When the statistical effect of overlapping variables was 

excluded, variables making significant unique contribution to the prediction of the dependent 

variable (Amikacin MIC) include in order of importance: pstBE89Q (beta= 0.245, p<0.0005), 

mexRL29D (beta= 0.177, p<0.0005), nalDser32Asn (beta= 0.104, p<0.004), ampR (beta= 0.107, 

p<0.003), pmrBGly423Cys (beta= 0.110, p<0.002), fusA1D588G (beta= 0.094, p<0.009), and 

lonA499S (beta= 0.088, p<0.016).  

When other variants were re-included as predictors for a better model, only 17.9% of variance in 

Amikacin MIC (p<0.0005) can be explained by 32 markers including arnDG206C, ampR, 

rplYQ41L, gidBQ28K, nalDser32Asn, nuoGA890T, gidBE186A, fusA1D588G, mexRG97L, 

pmrBA248V, pmrALeu71Arg, lonA499S, AmpRE114A, pmrBALA4Thr, nalCS209R, 

nuoGS468A, rplYAla123Ser, nuoGA574T, pstBE89Q, mexZ, nalCG71E, gidBE126G, nalC 
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gene, phoQY85F, amgSE108Q, mexRE70R, arnAA170T, gidBE97Q, mexRL130T, mexRL29D, 

mexRR79N, and pmrBL243Q. 

For gentamycin, after excluding variants with high multicollinearity and variants with smaller 

correlations with the phenotypes, the most important predictors in the model included 

fusA1D588G, lonA499S, pmrALeu71Arg, gidBQ28K, and gidBE97Q. In the proposed model, 

only 16.2% of variance in the dependent variable (Gentamycin MIC) is explained by the above 5 

predictors in the model (p=0.02). When the statistical effect of overlapping variables was 

excluded, variables making significant unique contributions to the prediction of the dependent 

variable (Gentamycin MIC) include in order of importance: fusA1D588G (beta= 0.301, 

p<0.0005), lonA499S (beta= 0.182, p<0.001), pmrALeu71Arg (beta= 0.160, p<0.004), 

gidBQ28K (beta= 0.134, p<0.015), and gidBE97Q (beta= 0.127, p<0.020). 

When other variants were re-included as predictors for a better model, only 21.6% of variance in 

gentamycin MIC (p<0.0005) can be explained by 31 markers including amgSE108Q, 

pmrBAla4Thr, fusA1D588G, nalC gene, mexRL130T, ampR, nuoGA890T, pmrALeu71Arg, 

gidBE186A, pstBE89Q, rplYQ41L, mexZ, nalCG71E, nalDser32Asn, AmpRE114A, 

mexRE70R, lonA499S, pmrBL243Q, mexRG97L, nuoGS468A, nalCS209R, rplYAla123Ser, 

nuoGA574T, phoQY85F, arnAA170T, mexRL29D, gidBE126G, gidBQ28K, mexRR79N, 

arnDG206C, and pmrBA248V. 

3.8. Discussion 

Accurate diagnosis is an essential step for the successful management of any health problem. 

Diagnostic tests can be used at different time points through the management pathway. Among 

the essential purposes of using a diagnostic test is to select for the most appropriate next step in 

the decision-making process. Although higher test accuracy is often used as an important 

indicator for the usefulness of the test, this does not necessary indicate that tests with higher 

accuracy often lead to improved health outcomes and are consequently the tests of choice in 

clinical practice (Mustafa et al., 2017).   

An essential requirement for the evaluation of any medical test is to know whether the test 

provides more information than what is already available to doctors (Moons, Biesheuvel and 

Grobbee, 2004). Diagnostic accuracy is often used as an evaluation indicator (Knottnerus, van 
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Weel and Muris, 2002), however, a series of questions usually needs to be considered when a 

new test is being introduced (Bossuyt et al., 2006). Knowledge of other features of the new test 

such as availability, invasiveness, simplicity, and cost-effectiveness can help define how the test 

is likely to be used, what the role of the test is and where it can be placed in the diagnostic 

algorithm.  

On introducing a new diagnostic strategy, both accuracy of the new diagnostic test and other test 

features should be compared with the existing diagnostic pathway. This helps in identifying the 

potential contribution or, the added value of a new diagnostic strategy compared to an existing 

one. It may not be easy in all situations to define what the existing pathway of diagnosis is. 

Although this is usually provided in practice guidelines, a consensus on the optimal sequence or 

types of diagnostic procedures in different settings may not be easily found, and this adds to the 

complexity of having a comparator gold standard. 

For the diagnosis of antibiotic resistance, the common standard of practice in most settings is 

conventional culture and sensitivity testing (Belkum and Dunne, 2013). Objective standardized 

methods for classifying resistance or sensitivity depend on the clinical breakpoints used to guide 

treatment choices in clinical practice. However, these breakpoints are continuously updated with 

new guidelines coming into practice. For the purpose of assessing markers in this study 

(Chapter), breakpoints from EUCAST (Rules, 2018) were used as the cut-off to classify the 

studied isolates into susceptible and resistant groups. Conventional culture has an inherent 

drawback of longer specimen to answer time. In addition, other limitations of conventional 

culture include the need for relatively large numbers of viable organisms, several steps of pre-

analytic processing, and limited organism spectrum. These together with some other practical 

drawbacks makes the use of Sequencing-based diagnosis and treatment a better future alternative 

in some settings. 

There has been a growing interest in developing new diagnostics for bacterial resistance with the 

recent advances in diagnostics technologies. Many newer technologies have been used including 

MALDI-TOF MS, fluorescent live/dead staining, infrared spectroscopy, microbial cell weighing 

by vibrating cantilevers, magnetic bead spin, and microdroplets among others (Belkum and 

Dunne, 2013). Sequencing-based resistance prediction is now expected to offer a better practical 
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diagnostic alternative for antimicrobial resistance. Mining for the best optimized set of molecular 

markers among what has been previously reported in the literature is the aim of this chapter. 

Different factors need to be considered for the selection and application of any diagnostic test. 

The most important is to define the test purpose. It is important to decide whether the test is 

needed for screening or for confirmatory diagnosis. It is important also to consider whether it is 

used to rule in or to rule out the diagnosis and hence to judge subsequent treatment 

recommendations. It is also essential to define whether a single test, a combination of tests or, a 

diagnostic algorithm is needed to make the final decision (Kosack, Page and Klatser, 2017). 

Acceptable standards in positive and negative predictive values that can translate into changes in 

patient management are still lacking (Caliendo et al., 2013). This makes it important to consider 

all parameters used to assess the accuracy of the diagnostic test in a setting-relevant basis and 

according to the condition being investigated. 

The decisive aim of any diagnostic test is to accurately discriminate subjects with a specific 

disorder from subjects without it. For the evaluation of a diagnostic test, researchers need to 

choose the most informative indices of performance. In this study, sources of bias originating 

from possible deviation in disease spectrum was decreased by including the whole spectrum of 

the condition under evaluation (resistance and susceptibility to antibiotics). Another important 

point to consider when interpreting predictive values is the sample size. This is represented in the 

current analysis by the frequency of the molecular marker to be used as a diagnostic test. The 

more frequent the marker is found in a randomly selected population, the more there is 

confidence about the predictive values obtained because this reflects evaluation of a larger 

sample size. 

In order to make the best selection of the diagnostic molecular markers, the purpose of the 

diagnostic test needs to be considered. Considering how much discriminative power is needed 

depends on the aim of the diagnostic test, its use, and its application. For predicting antibiotic 

resistance, the aim of diagnostic testing using molecular markers can be either to rule-in or to 

rule-out the diagnosis of resistance or the diagnosis of susceptibility. 

In case of antibiotic resistance diagnosis, the cost of false positive is high because the ultimate 

goal is to avoid over prescription resulting from incorrect overdiagnosis of resistance. This 

means that high specificity of the diagnostic test is an essential priority. In addition, LR+ is 
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considered the best indicator for ruling- in the diagnosis of resistance. Higher values of positive 

results on this test (LR+) has significant contribution to diagnosis. 

In addition to high specificity and LR+, high PPV is considered another additional indicator to 

rule-in diagnosis and to avoid the cost of false positives. For confidently considering PPV, the 

marker under evaluation should occur in high frequency and the population under evaluation 

should be randomly selected and should represent an adequate number of resistant isolates.  

The other type of information that can be provided by considering a combination of parameters 

is ruling-out the diagnosis of resistance. When sensitivity of a particular marker is high, 

specificity and LR+ are poor, the presence of this diagnostic marker cannot confirm the 

diagnosis of resistance, but its absence practically rules it out. Having high NPV with high 

marker prevalence in the population is an additional way for ruling out resistance. 

The group of genes and mutations previously identified in the literature as associated with 

resistance to quinolone and aminoglycoside group of antibiotics were reviewed and assessed for 

their predictive potential in this chapter.  

Mutations in QRDR were not frequently encountered in the population studied. Although most 

show high specificity, the low frequency of these mutations reduce their practical use as 

molecular diagnostic markers. A more informative group of markers were those related to efflux 

pump regulatory genes. These genes and gene variants showed better performance in addition to 

higher frequency of occurrence in the population.  

3.8.1. Potential markers to be applied using the rule-in algorithm 

High specificity is usually considered an important parameter to rule in the diagnosis. A group of 

markers showing high specificity and high LR+ to the phenotype under assessment (antibiotic 

resistance or susceptibility) can be used as molecular markers to rule in the diagnosis under 

consideration (Fischer, Bachmann and Jaeschke, 2003). The diagnostic value of this type of 

markers is higher when the marker combines high specificity and high LR+ with high DOR, high 

accuracy and higher PPV towards the same phenotype.  

A group of variants have met these criteria and hence, may be used to rule in quinolone 

resistance. These variants include: gyrA T83I, nfxB A124T, nalC E153Q, nalC Thr50Pro, parE 
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V460G, parC E91K, and ampR D135N. The corresponding measures of performance of these 

variants for both ciprofloxacin and levofloxacin with their corresponding statistical values are 

shown in Table 3.3, Table 3.6, Table 3.7, and Table 3.10. These findings can be supported by 

findings from other recent research observations that showed gyrA and parC QRDR mutations 

among the determinants of levofloxacin resistance in Ps. aeruginosa using four comparative 

methods, however, these research findings have not shown the relative importance of each 

identified mechanism (Jaillard et al., 2017) (Jaillard et al., 2018), the point that was further 

studied using the current analysis. Earle et al., (2016) have also shown gyrA mutations in QRDR 

AA67-106, parC mutations in QRDR AA47-133, and parE mutation in QRDR AA420-458 

conferring resistance to Escherichia coli and Klebsiella pneumonia which support findings from 

the current analysis identifying mutations within the same region showing high predictive 

performance. 

Analysis of molecular markers associated with aminoglycoside resistance showed that variants in 

genes related to cell membrane permeability changes were the most important in accounting for 

resistance with the highest predictive values and highest performance as shown using different 

other measures of performance. These markers can similarly be used to rule in aminoglycoside 

resistance. These markers include arnAA170T, arnDG206C, fusA1D588G, and nalDser32asn. 

The predictive values and other measures of performance associated with this group of markers 

for both gentamycin and amikacin are shown in Table 3.11, Table 3.12, Table 3.17, and Table 

3.18. The Arn (PA3552-PA3559) LPS modification genes have also been linked to 

aminoglycosides resistance because the expression of the arnBCADTEF operon is recognized as 

a contributing factor which decreases the interaction and uptake of polycationic antibiotics 

(Schniederjans, Koska and Häussler, 2017). Results of the current analysis support that because 

the two variants identified i.e. arnAA170T, arnDG206C show higher predictive values to 

aminoglycoside resistance and were also predicted as deleterious using PROVEAN. 

An important finding is the observation of a group of molecular markers showing high 

specificity and high positive predictive values to amikacin susceptibility and these can be 

considered as molecular susceptibility markers to rule in the diagnosis of amikacin susceptibility. 

These include faoAT385A, nuoGA890T, lptAT55A, and lptAR62S. Screening transposon 

insertion mutant library has previously shown that disruption of  faoAB and lptA are associated 
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with increased aminoglycosides susceptibility (Krahn et al., 2012) and these findings support 

findings from the current analysis.  faoAB encodes a multienzyme complex which is involved in 

degradative fatty acid [FA]-oxidation, and lptA encodes a lysophosphatidic acid acyltransferase 

(LPA), responsible for adding the second FA to glycerol-3 phosphate in the synthesis of 

phospholipids (PLs) (Krahn et al., 2012). Both faoAT385A and lptAR62S were predicted as 

deleterious using PROVEAN, so it is proposed that these variants are good candidates to be used 

as aminoglycoside susceptibility markers. This is based on the frequent observation of these 

variants in aminoglycoside susceptible isolates, their higher predictive values towards 

susceptibility and their possible associated functional effect on aminoglycoside binding and 

uptake across the outer LPS membrane of Ps. aeruginosa. 

nuoG operon codes for proton-translocating type I NADH oxidoreductase which is an enzymatic 

complex that significantly contributes to the proton electrochemical gradient. Inactivation of 

NADH dehydrogenase has shown to impair membrane energetics and thereby the uptake of 

aminoglycosides (El’Garch et al., 2007). El’Garch et al., (2007) has previously shown that 

combined simultaneous mutations in galU, nuoG, mexZ, and rplY can increase survival rates in 

Ps. aeruginosa treated with tobramycin up to 16-fold while single gene mutation has a much 

lower effect. Pelegrin et al., (2019) have recently identified a panel of nuoG variants including 

nuoG S468A in association with aminoglycoside resistance. A recent study investigating 

resistance in experimentally evolved Ps. aeruginosa has identified a total of 24 mutated genes in 

association with aminoglycoside resistance with ten mutants in genes directly involved in 

oxidative phosphorylation and proton motive force including nuoG mutants (Wardell et al., 

2019). Some of the identified mutants have also showed clinical relevance when re-tested. The 

same study has also identified the relation of  fusA1, mexR, nalD, and amgS mutants to 

tobramycin resistance. Similar findings from transcriptional profile analysis identifying the nuoG 

among other genes encoding NADH dehydrogenases also support that. The genes were 

downregulated in adaptation to Ps. aeruginosa chronically infected lung (Kordes et al., 2019). 

However, it is also important to consider the phenomenon of collateral sensitivity where evolved 

resistance to one antibiotic concomitantly cause hypersensitivity to another drug. This is 

sometimes explained by a fitness cost where mutations that promote resistance affect the ability 

of bacteria to replicate and survive in normal conditions (Barbosa et al., 2019). Barbosa et al., 

(2019) show that Ps. aeruginosa is one of the bacteria known to evolve collateral sensitivity to 
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certain drug treatments. This phenomenon may explain the observation of some nuoG variants 

identified from the current analysis in relation to amikacin susceptibility including nuoG S468A 

and nuoG A890T which were previously linked to resistance to other aminoglycoside agents. 

This may be attributable to the effect of other secondary mutations or epistatic interactions that 

may reduce overall fitness. Although mutations affecting the activity of nuoG have been 

associated with gradual increase in MIC, this occurred when co-operatively combined with other 

chromosomal mutations in other genes (Islam et al., 2009) and this may explain the reason for 

the different observations reported in the current study. Another explanation for the different 

findings observed with nuoG mutants is that disruption of the gene may affect survival of the 

organism being essential for a functional respiratory complex Ι. Exploiting such phenomenon in 

mutants showing collateral sensitivity may prove useful in the setting of developing a diagnostic 

because it carries the advantage of directing the choice of combination therapy that could slow 

down the evolution of resistance. 

It is interesting here to find that three of the novel aminoglycoside resistance markers identified 

showed high predictive performance using the multiple regression model and also showed higher 

diagnostic predictive values. These include gidBE97Q,  fusA1D588G, and pstBE89Q. These 

findings are supported by the findings of Jaillard et al., (2018) who identified gidB as one of 

genes associated with resistance in M. tuberculosis using four comparative methods. gidB has 

been identified earlier among the genes associated with streptomycin resistance in M. 

tuberculosis strains exhibiting no rpsL or rrs mutations. Although several reports of both 

streptomycin resistant and susceptible isolates have shown association with gidB mutations, gidB 

appears to have complex substrate activity. Several mutants affecting the active site pocket or 

altering secondary-structure motifs and thus showing an overall effect on protein structure have 

been previously reported in relation to streptomycin resistance in M. tuberculosis (Verma et al., 

2014). gidB deletion has also shown to confer high-level aminoglycoside resistance including 

streptomycin and neomycin in Salmonella (Mikheil et al., 2012).  

gidB (glucose-inhibited division gene) is found among the gene cassettes harboring the OriC 

regions in some bacteria including Ps. aeruginosa (Rybenkov, 2014). gidB is known to be 

involved in posttranslational modification, methylation, of 16S RNA. gidB mutant has also 

shown a compromised overall bacterial fitness in Salmonella (Mikheil et al., 2012). This may 
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reflect the physiologic cost of methylation deficiency. The effect of gidB mutations on 

antimicrobial susceptibility is thought to occur through mechanisms involving post-

transcriptional modification which explains its relation to aminoglycoside resistance. gidB is 

considered highly conserved in both Gram-positive and Gram-negative bacteria with gidB 

protein known among the proteins involved in cell cycle control of DNA replication. 

Consequently, its disruption may lead to inhibition of cell division which may also explain the 

association observed with amikacin susceptibility from the current analysis. Three deleterious 

amino acid substitution in gidB including E126G, E97Q, and Q28K showed association with 

amikacin susceptibility phenotype which was not observed with gentamycin. Previously studied 

gidB mutants have shown lack of 16S rRNA methylation activity (Mikheil et al., 2012) which 

explains the role of this mutant in conferring resistance to some of previously studied 

aminoglycoside agents. However, this may not prove true for amikacin. The fact that not all 

aminoglycosides bind to identical sites of the 16SrRNA (Ramirez and Tolmasky, 2017) may 

explain the different observed effects of gidB mutants on susceptibility to different agents from 

the aminoglycoside group. While amikacin binds the A site of the 16S RNA similar to other 

agents from the aminoglycoside group, specific interactions have been observed between its 

modified side group and RNA at the GC pairs C1404–G1497 and G1405–G1496 (Kondo et al., 2006). 

This interaction may be different from other interaction sites that showed to be affected by gidB 

induced N7 methylation of G527 of the 16S rRNA leading to aminoglycoside resistance in 

Salmonella (Mikheil et al., 2012) or low-level streptomycin resistance in M. tuberculosis (Verma 

et al., 2014). 

Mutations in the gene that encodes for elongation factor G, fusA, has been previously linked to 

fusidic acid resistance in Salmonella Typhimurium. This is thought to occur through alteration of 

levels of the transcriptional regulator guanosine tetraphosphate (ppGpp). Some mutations are 

thought to have pleiotropic effects on gene expression which may lead to fitness differences in 

different environments (Andersson and Hughes, 2010). The pleiotropic phenotypes of the fusA 

mutant also showed to include hypersensitivity to other unrelated antibiotics (Macvanin and 

Hughes, 2005). Earle et al., (2016)  have also reported variety of fusA mutations in association 

with Staphylococcus aureus resistance to fusidic acid. Similarly, another fusA1 variant fusA 

P413L has been identified as a factor reducing the exponential growth rate by 67% in S. 

Typhimurium and in E. coli (Knopp and Andersson, 2018). The study shows that the effect of 
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fusA mutants on exponential growth rate was consistent in all genetic backgrounds. Additionally, 

the variant appears to have remarkable effects on resistance levels. fusA class mutants generally 

appear to reduce fitness both in vivo and in vitro (Nagaev et al., 2001). The role of fusA gene as 

a determinant of antimicrobial resistance has also been recently demonstrated. It has been studied 

as a target for argyrin B which act as a natural product with antibacterial activity. It has been 

shown that fusA sequence variation can affect the antibacterial activity of argyrin B against Ps. 

aeruginosa (Jones et al., 2017). These findings support the high predictive values identified for 

variants in the same genes by applying the current analysis.  

Similarly, other fusA1 variants including fusA1N178S, T671A, and I186V were identified by 

Pelegrin et al., (2019) in association with different levels of amikacin susceptibility. However, 

these variants were rare when compared with other aminoglycosides mutations identified by 

Pelegrin et al., (2019) including fusA2 and nuoG variants. In the current analysis, the same 

variant fusA T671A was identified in one isolate which was amikacin susceptible but 

gentamycin resistant. fusA1 Thr671Ala is located at domain V at the start of an alpha helix and is 

probably affecting the gene function. This finding supports findings by Bolard, Plésiat and 

Jeannot, (2018) who showed that replacement of wild-type fusA1 in PAO1 by the mutated allele 

of the gene has decreased amikacin MIC from 32 to 16 but has not affected gentamycin MIC. 

Although the variant fusA1 Thr671Ala has been previously identified in relation to the evolution 

of experimental resistance against tobramycin and gentamycin, experimental evolution of the 

gene occurred together with other variants including fusA1 I61M and fusA1 E100G (López-

Causapé et al., 2018). These other related variants have not been identified in the current analysis 

in relation to fusA1 Thr671Ala which may explain the reason for these different findings. This 

indicates the importance of considering the effect of individual mutations in addition to the effect 

of the dynamics resulting from the interaction of multiple mutations on the phenotypic behavior. 

In support of that is another study investigating the evolutionary trajectories of Ps. aeruginosa on 

experimental exposure to gentamycin (Sanz-García, Hernando-Amado and Martínez, 2018a). 

The study has identified Thr671Ala,  fusA1 Ala595Pro, Gly545Asp, and Arg680Cys among the 

mutations observed in the evolved PA14 populations. Two of these mutations have been 

encountered in the studied set of clinical isolates. 
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Another variant in the same gene, fusA1Y552C, has also been previously reported in the 

literature (Bolard, Plésiat and Jeannot, 2018) (López-Causapé et al., 2018) and identified in the 

current analysis in association with aminoglycoside resistance. These observations point to the 

importance of fusA1 gene which produce elongation factor G (EF-G1A) that is considered a key 

component of the translational machinery that modify/differentiate aminoglycoside 

susceptibility. In support of that are the findings of  fusA mutations which are induced by the in 

vitro exposure of Ps. aeruginosa to increasing concentrations of tobramycin (Feng, Jonker, 

Moustakas, Brul and ter Kuile, 2016).  

Phosphate has an important role in cellular physiology. Microbes have complex regulatory 

networks for sensing phosphate availability and utilization. It has been previously noted that 

genes involved in phosphate regulon becomes upregulated in relation to Ps. aeruginosa host 

pathogenicity and other virulence properties. PstB is a phosphate uptake regulatory protein 

which showed to be upregulated among many other genes inducing cellular cytotoxicity under 

adverse conditions through phosphate acquisition (Bains, Fernández and Hancock, 2012). These 

transcriptional changes showing association with cellular cytotoxicity may explain the role of 

some observed pstB variants from the current analysis, e.g. pstB E89Q, in antibiotic resistance. 

Giving additional support, other mutations in ptsB has been previously linked to low-level 

tobramycin resistance (Sanz-García, Hernando-Amado and Martínez, 2018b). 

On the other hand, inactivation of pstB has previously been linked to aminoglycoside 

susceptibility especially when combined with inactivation of other genes including those 

associated with lipid biosynthesis or metabolism (lptA, faoA) or other two component regulators 

(amgRS) (Krahn et al., 2012). pstB R87C variant has been identified from the results of the 

current analysis in relation to aminoglycoside susceptibility. The variant is predicted as 

deleterious (PROVEAN score= - 6.874), so it is probably causing inactivation of pstB and these 

findings support the findings from the literature as shown above. 

An important point to consider when studying the effects of different mutations in general is that 

the dynamics of mutations interactions should be overall considered. It has been shown that 

buildup of resistance cannot be attributable only to DNA mutations but may develop as a result 

of interactions between mutations and cellular adaptation (Feng, Jonker, Moustakas, Brul and ter 

Kuile, 2016). In addition, the fitness cost of an observed mutation which may lead to cross-
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resistance or collateral sensitivity also need to be considered (Barbosa et al., 2017) as this 

phenomenon has been previously reported in Ps. aeruginosa. 

3.8.2. Potential markers to be applied using the rule-out algorithm 

Although high specificity is considered of primary importance in ruling in the diagnosis of 

resistance, markers showing high sensitivity and high NPV towards the phenotype of interest can 

be applied using the rule-out algorithm. The presence of these markers cannot confirm the 

phenotype or behavior of interest, but its absence practically rules out the same conclusion. This 

can show higher predictive performance when high sensitivity and high NPV are combined with 

low specificity and low LR+ in addition to high LR, high DOR and high accuracy.  

The following group of markers can be used to rule-out susceptibility which means that presence 

of these markers/genes does not guarantee or confirm susceptibility but their absence rule-out 

susceptibility and predict resistance with higher confidence. These markers included genes and 

mutations associated with efflux pump regulation including ampR, nfxB, mexS, nalC and nalD, 

mexR, armR, and mexZ. Values of performance for these genes are shown for different studied 

antibiotic groups in Table 3.3, Table 3.7, Table 3.11, and Table 3.12. In addition, other mexR and 

nalC variants showed similar predictive capabilities. These markers include the following as 

quinolone resistance predictors; nalC S46A, nalC G71E, nalC S209R, mexR R79N, mexR E70R, 

mexR L130T, mexR G97L, and mexR L29D.  

The results of the analyses performed in this chapter show that efflux-pump regulation appears to 

be the greatest contributor of resistance to quinolone group of antibiotics as evidenced by the 

regression model and the best performing predictive values. This role also applies to determining 

aminoglycoside resistance as evidenced by good predictive values for mexZ, armR, nalD, and 

nalC and some of their related variants. This would be supported by some other recent findings 

that have identified the mexZ gene among the essential genes accounting for resistance in Ps. 

aeruginosa using PLINK association analysis and support vector machine model (Noah, 2019). 

In addition, Pelegrin et al., (2019)  have identified nalC G71E, nalC S209R, and multiple other 

armR and nalD variants among those contributing to ciprofloxacin, amikacin, and carbapenem 

resistant Ps. aeruginosa isolates. An important finding here is the high predictive value for nfxB 

regulator absence and of its related variant nfxB A124T which have been identified from the 

current analysis. The importance of this finding comes from the fact that mutation in the nfxB 
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gene is considered particularly important because it is the only known basis for over-expression 

of MexCD-OprJ operon which is normally silent in wild-type cells (Li, Plésiat and Nikaido, 

2015). Higher performance of nfxB and its variant nfxB A124T support reports from the 

literature which shows that MIC of different antibiotic classes can increase up to 500-fold in 

nfxB mutants including the MIC of ciprofloxacin which showed 94-fold increase (Chuanchuen et 

al., 2001). It was also shown that both in vitro-selected and clinical isolates expressing this efflux 

system and exhibiting high levels of quinolone resistance invariably contain mutations in nfxB 

(Purssell and Poole, 2013). 

mexT, mexS, ampR, and mvaT related-variants showed lower performance when considered 

separately but showed more contribution when combined with other efflux-pump or target-

enzymes mutations. This supports findings from the literature showing variants identified in 

these genes and contributing to modifying the expression of MexEF-OprN probably through two 

independent pathways (Westfall et al., 2006). Mutations in genes that encode for the global 

regulators MvaT and AmpR have also been reported in other studies as activators for MexEF-

OprN operon in the in vitro mutants. The MexEF-OprN system is known to be quiescent in wild-

type cells. To produce the pump MexEF-OprN, an active MexT transcriptional regulator is 

required. MexS is an upper negative regulator that inactivates MexT and prevents pump 

expression in wild type strains. Activation and expression of the pump is known to occur through 

two independent pathways (Uwate et al., 2013). nfxC-type mutants of Ps. aeruginosa that 

produce increased amounts of MexEF-OprN and that display multidrug resistance to multiple 

antibiotic agents including quinolones have been repeatedly isolated in vitro and from the clinic 

(Fukuda et al., 1995) (Jalal et al., 2000) (Richardot et al., 2016). An important point to consider 

here is that different mexT, mexS, mvaT, and ampR alterations may be encountered in different 

functional backgrounds. This has been observed through the analysis applied in this chapter by 

finding mexS substitutions with no associated mexT, the observation that would be expected by 

studying the regulatory function of these two regulators (Uwate et al., 2013). 

ampR D135N also showed higher predictive performance in the current analysis which support 

findings from the literature about the important role of AmpR which is defined as a major global 

regulator. AmpR is known to play an important role in acute infections through regulation of 

several pathways in Ps. aeruginosa including virulence, biofilm formation, general metabolism, 
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and quorum sensing (Balasubramanian et al., 2012). It has been shown that ampR can regulate 

transcription of hundreds of genes from diverse pathways (Balasubramanian, Kumari and 

Mathee, 2014). In addition, gene transcriptions and other phenotypic assays have shown that 

ampR negatively regulates the transcription and function of MexEF-OprN efflux system through 

modulating the expression of MexT which encodes a positive regulator (Balasubramanian, 

Kumari and Mathee, 2014) (Cabot et al., 2012). 

Cell membrane permeability changes appear to be the main contributor mechanism among the 

elements assessed in the current analysis for the aminoglycoside group. This is evidenced by the 

best performing markers, pstBE89Q, arnAA170T, arnDG206C, lptAT55A, lptAR62S, 

faoAT385A, and nuoGA890T in both predictive values and the regression model. The role of 

cell membrane permeability changes has been recognized in the literature as affecting 

aminoglycoside resistance. Imperfect production of membrane lipopolysaccharide (LPS) has 

been shown to prejudice the uptake of aminoglycosides across the outer membrane (Bryan, 

O’Hara and Wong, 1984). Similarly, quantitative or qualitative changes in the electron transport 

chain may jeopardize the active uptake process of these drugs across the cytoplasmic membrane. 

As a result, the intracellular concentrations of the drug may decrease to levels below that 

required for ribosome inhibition (Taber et al., 1987). These mechanisms are probably implicated 

in the function of many of the variants identified using the current analysis. 

For antibiotic target changes, gyrAT83I remains an important contributor to both ciprofloxacin 

and levofloxacin resistance phenotype as seen in the predictive model in section 3.5.5 and 

section 3.6.5. Other quinolone target site mutations including parCS87L, parCS87W, 

parCE91K, and gyrAD87N appeared to have some contribution to levofloxacin resistance as 

seen in the predictive model in section 3.6.5. On the other hand, target site changes did not 

appear to be a main contributor to aminoglycoside resistance. This may seem expected as 

observed by the very low frequency of mutations occurring at ribosomal target sites of the 

aminoglycoside group of antibiotics as reported in the literature. However, the novel variant 

fusA1D588G in fusA1 gene coding for elongation factor EF-G1A identified in the current 

analysis appeared to be an important contributor to aminoglycoside resistance. This is supported 

by different findings from the literature. EF-G1A is known to be crucial in protein synthesis 

since it mediates the translocation of mRNA and tRNA through the ribosome and participates in 
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the ribosome recycling process. This novel mechanism has been recently confirmed through site-

directed mutagenesis as associated with a 1- to 3-fold increase in the MICs of tobramycin, 

gentamicin, and amikacin (Bolard, Plésiat and Jeannot, 2018). It has also been suggested that 

multiple mutations in fusA1 co-contribute to aminoglycosides resistance as detailed above. 

Mutations in fusA1, coding for the elongation factor EF-G1A, has also been linked to 

aminoglycoside resistance in both clinical isolates and in-vitro mutants (López-Causapé et al., 

2018). 

In conclusion, results of the analysis performed here show that complete prediction of 

aminoglycosides resistance appears to be challenging. Although cell membrane permeability 

changes-related genes appear to be the most significant, these variants do not offer full 

explanation for the variability in aminoglycoside phenotype. This is evidenced by the finding 

that evaluated elements of quinolone resistance can explain 77.2% and 60.9% of variance in 

quinolone phenotype for ciprofloxacin and levofloxacin respectively (section 3.5.5 and section 

3.6.5) while all evaluated chromosomal elements for aminoglycosides can only explain 17.9% of 

variance in amikacin MIC and only 21.6% of variance in gentamycin MIC (section 3.7.5).  

This result can either be explained by the fact that the main core mechanism of aminoglycoside 

resistance is still not understood or that aminoglycoside inactivating enzymes are the main 

contributors of resistance to aminoglycoside agents. The current analysis aimed at studying the 

chromosomal mechanisms of resistance and has not included the assessment of modifying 

enzymes. These enzymes were assessed in the most diverse set of isolates (87 Ps. aeruginosa 

isolates) using the three aminoglycoside-modifying enzymes which are included in ResFinder 

and CARD database and did not show correlation with aminoglycoside resistance phenotype (as 

shown in detail in Chapter 2). Although aminoglycosides resistant isolates in that assessed set 

tend to be under-represented for amikacin, acquired resistance genes seems to be similarly 

identified in both susceptible and resistant isolates for gentamycin. This finding can be supported 

by other similar findings showing the carriage of acquired resistance genes even in clinically 

susceptible or wild type Ps. aeruginosa isolates (Pitt et al., 1990). Vaziri et al., (2011) have also 

supported these findings by showing that different inactivating enzymes studied including aac 

(6ʹ)-I, aac (6ʹ)-II, ant (2ʺ)-I, and aph (3ʹ)-VI have been identified at different frequencies that 

ranged between 7 % to 36 % of aminoglycoside resistant isolates. However, a further detailed 
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analysis that includes all other modifying enzymes in a larger selection of isolates may be 

required to answer this question. 

An important point to consider here when such a correlational analysis is used that some sort of 

confounding can be introduced with genotypic-based prediction when correlating antibiotic 

resistance phenotype to genotype in Ps. aeruginosa. This confounding can originate from 

genomic islands that are known to have an essential role in the dissemination of multiple 

antibiotic resistance (Chowdhury et al., 2016). Class 1 integrons carrying several gene cassettes 

linked to antibiotic resistance are known to be highly mobilized (Martinez et al., 2012) through 

lateral gene transfer which can play a major role in the dispersal of mobile genetic elements. 

However, the role of chromosomally located genomic islands in transferring resistance cassettes 

in Ps. aeruginosa has been generally under appreciated. Defining the genetic context of class 1 

integrons is essential since several reports have shown the possibility of encountering class 1 

integron in diverse clonal lines in Ps. aeruginosa including lines that show no evidence of 

plasmids (Stokes et al., 2012).  

Therefore, the chromosome has been suggested as an important platform for the dispersal of 

complex resistance regions in Ps. aeruginosa. This has been evidenced by the presence of class 1 

integron in some core chromosomal regions or embedded in some known genomic islands 

(Martinez et al., 2012). Additionally, class 1 integrons possess mechanisms that may facilitate 

re-arrangement under stress conditions as may occur in the case of antibiotic exposure and this 

may result in the re-arrangement of clinically important genes and also in mobilization through 

lateral gene transfer. This can occur at very high rates in some situations (Hocquet et al., 2012).  

Hocquet et al., (2012) showed that SOS response induction activated by antibiotic exposure can 

activate the integrase IntI1 which can consequently modulate antibiotic resistance in class 1 

integron based on insertion of some genetic elements (Hocquet et al., 2012). The multiplicity of 

genomic platform through which integrons can be mobilized and the unpredictable behavior of 

insertion sequences that are capable of mobilizing genes in novel ways can consequently 

influence resistance profiles in an unpredictable way. This is more observable when co-

operatively interacting with other mutations in the cell. This means that resistance profiles are 

sometimes not easily predictable based on the common resistance-underlying pathways. This 

makes it important to realize that multiple existing and emerging mechanisms may interact to 
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generate diverse resistance phenotypes that can be modulated and disseminated through different 

chromosomal or horizontally acquired platforms (Martinez et al., 2013). The next chapter will 

evaluate the best identified molecular predictors in relation to high-risk clonal groups. 
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Introduction and Background 

Accurate identification and classification of infectious agents and subsequent choice of the best 

intervention strategies is the ultimate goal of clinical diagnostic methods. Microbiology 

diagnostics can be used either to direct individual patient choice of treatment or for public health 

interventions to control localized outbreaks and larger epidemics across countries and continents. 

Central to the entire discipline of clinical microbiology is the concept of having a laboratory tool 

that enables precise identification and microbial classification with accurate recognition of 

subtypes and biologically significant markers within any microbial species. This can help to 

control communicable diseases through the identification of infection source, route, and 

mechanism of transmission. This consequently facilitate the control of its spread in susceptible 

populations. 

Typing schemes are based on the principle of finding measurable differences for classification. 

Typing methods vary widely in stability, discriminatory power, and reproducibility. In all cases, 

the marker used for typing and classification should reflect a significant biologic character 

(Ranjbar et al., 2014). The following section briefly explores different typing methods used with 

Ps. aeruginosa in the context of studying the population biology of the organism. 

4.1. Typing approaches for Pseudomonas aeruginosa 

Microbial typing methods can be broadly classified into conventional typing methods and 

molecular typing methods. (Towner and Cockayne, 1993). Conventional methods for microbial 

typing assess the phenotypic gross cell behavior and base the classification upon that. 

Conventional typing methods used with Ps. aeruginosa include biotyping, phage typing, 

serotyping, and bacteriocin typing. On the other hand, molecular typing enables the study of 

microbial diversity based on the information carried by the cellular macromolecules including 

nucleic acids, proteins, and lipopolysaccharides (Towner and Cockayne, 1993). Despite being 

more specific, molecular methods are also subject to variation resulting from downstream 

regulation and intermolecular interactions (Foxman et al., 2005). 

4.1.1. Conventional typing for Ps. aeruginosa 

Typing of Ps. aeruginosa was first developed for purposes of hospital epidemiology. It was 

specifically applied for typing the organism in cystic fibrosis patients. As with other organisms, 
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the earliest methods used for Ps. aeruginosa typing were the conventional ones including phage 

typing, bacteriocin typing, and serotyping. These methods were commonly used in many hospital 

epidemiologic studies. Serotyping has been considered a benchmark typing method commonly 

used for Ps. aeruginosa classification together with other methods including pyocin typing and 

phage typing. Classification of the organism using serotyping is based on the identification of 

group-specific heat-stable lipopolysaccharide O antigen. The earliest serotyping scheme for Ps. 

aeruginosa was proposed in 1961 by Verder and Evans, (1961). Another scheme was then 

developed in China by J. Yuan and Z. Zhao of the Shanghai Biological Products Institute (BPI) 

in 1963 (Yuan, J., & Zhao, 1963). Many other modifications and schemes were also developed 

but the final one universally agreed was the international antigenic typing scheme (Liu and 

Wang, 1990) that classified the species Ps. aeruginosa into 20 serotypes (O1-O20) adding three 

more serotypes to the 17 existing groups from the international antigenic typing system (LIU et 

al., 1983). Serotyping of Ps. aeruginosa has been used for several types of investigations. High 

risk serotypes were studied for their potential link to pathogenicity and virulence factors 

(Hostacká and Majtán 1997; Faure et al. 2003), for their link to specific antibiotic resistance 

profiles (Patzer and Dzierzanowska 1991; Bert and Lambert-Zechovsky 1996; Estahbanati, 

Kashani, and Ghanaatpisheh 2002; Jamasbi and Proudfoot 2008), and for their association with 

clinical outcomes (Lu et al., 2014). 

Although it is possible to find changes in structural antigens (e.g. changes that are related to 

lysogenic conversion), the marker used in serotyping can be considered relatively more stable 

when compared to pyocin typing. Serotyping has some drawbacks including lower 

discriminatory power, problems of poly-agglutination, changing typeability, or non-typeability of 

some strains (Brokopp, Gomez Lus and Farmer, 1977). However, serotyping of Ps. aeruginosa 

can be beneficially applied to track and classify cases of ventilator associated nosocomial 

pneumonia, burn wound infections, and keratitis. It is also useful in drawing some conclusions 

about the prevalence of high-risk clones. This would offer great diagnostic value in some 

resource-limited laboratory settings with limited access to more advanced genomic techniques. 

On the practical side, a continuous supply of serotype-specific antisera needs to be available, 

however, this may be limited to reference laboratories in some settings. A genotypic version of 

serotyping for Ps. aeruginosa which can replace the conventional method to overcome some of 

its technical drawbacks can be alternatively applied in laboratories with sequence-based 
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diagnostics infrastructure. The in-silico serotyping version directly assesses the gene encoding 

for the antigen marker used for typing. A sequence - based serotyping tool has been developed 

for routine hospital outbreak surveillance. The tool can determine isolate serogroup and classify 

high-risk clones based on the sequence of the O-specific antigen (OSA) gene cluster in Ps. 

aeruginosa (Thrane, Véronique L. Taylor, et al., 2016). 

4.1.2. Molecular Typing for Ps. aeruginosa 

Genotyping uses a set of molecular markers to classify isolates’ relatedness. Genotyping is often 

used for surveillance and hospital epidemiology purposes or for research purposes to study the 

population structure of the organism. It has been recognized that molecular polyphasic 

approaches are needed to replace phenotypic, biochemical, or morphological assays in order to 

classify organisms more precisely and meaningfully (Prakash et al., 2007). 

Multi Locus Enzyme Electrophoresis (MLEE) and Random Amplified Polymorphic DNA 

(RAPD) typing are two common molecular typing methods used with Ps. aeruginosa. These 

methods were commonly used in some studies to make inferences about the Ps. aeruginosa 

population structure. Other molecular typing methods that have been commonly used with Ps. 

aeruginosa include Multi-Locus Variable Number Tandem Repeat Analysis (MLVA) and Pulsed 

Field Gel electrophoresis (PFGE).  

PFGE has been used to provide high resolution macro restriction analysis at the whole genome 

level. It is considered highly discriminatory with standardized criteria of interpretation. The 

ability of the method to resolve very large DNA fragments increases its discriminatory power 

(Johnson et al., 2007). This has led to considering the method as a gold standard to define isolate 

relatedness in most studies. The method is suited for long term epidemiologic studies and 

population studies with higher discriminatory power. The main reason for that is its ability to 

provide a classification based on whole genome restriction pattern and not only on single locus 

analysis. However, it shows low intra-laboratory and inter-laboratory reproducibility which also 

limits the usefulness of its discriminatory power. In theory, being based on restriction pattern 

analysis, it is less informative than other locus-based methods which are considered more 

specific (Botes et al., 2003). Another technical factor that limits its practical usefulness is the 

long laboratory time needed for implementation in addition to being too costly and labor 
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intensive to be applied on a routine basis to analyze large numbers of samples on a daily basis, or 

for outbreak-related investigations. 

MLVA is another PCR-based molecular typing method used with Ps. aeruginosa. The method 

can detect variations in short sequence repeat motifs (called microsatellites) in the genome of 

interest in a rapid, easy to perform, inexpensive, and reproducible way with higher resolution 

when compared to PFGE. When compared to RAPD and allozyme analysis, microsatellites offer 

a lower number of variable loci to be analyzed with  higher number of alleles per locus (Jarne 

and Lagoda, 1996) and these characters add to its discriminatory power. 

Variable Number of Tandem Repeat (VNTR) analysis or MLVA has been used to provide 

information for epidemiological investigations and follow up of chronic Ps. aeruginosa 

infection. PFGE and MLVA results appear to be congruent, however, MLVA can provide 

additional information in some cases with the possibility of VNTR variants to reveal the 

evolution of strains during long term infection. Tandem repeats using VNTR typing method have 

higher mutation rates and can be considered a fast-evolving marker. This means that they can 

show distinctive patterns within a short period of time making it suitable for surveillance of local 

outbreaks and for tracking infection sources (Sobral et al., 2012). Some MLVA-typing schemes 

were developed for use in Ps. aeruginosa and these include MLVA-15 Orsay (Vu-Thien et al., 

2007), MLVA-16 Orsay (Sobral et al., 2012), MLVA-9 London (Turton et al., 2010), and 

MLVA-9 Utrecht (Rosa van Mansfeld et al., 2010). 

MLST has been developed as a molecular version of MLEE and has been applied to study the 

population structure based on the concept of indexing nucleotide sequence variation present in 

only seven house-keeping gene fragments (Ibarz Pavón and Maiden, 2009). The method is 

considered an improved way of addressing evolutionary biology because it uses housekeeping 

genes. These genes are assumed to be under neutral or nearly neutral selection. Allele 

designation as used in MLST gives the same weight to both recombination events and point 

mutations (Maiden, 2006). Although considered an advantage, it can be less discriminatory. 

MLST was first introduced in 1998 to index allelic variation for essential metabolic genes. 

Although schemes developed in different organisms are considered highly discriminatory in 

addition to reflecting species diversity (Maiden, 2006), allelic loci used in typing represent less 

than 0.2% of the genome in question. For that reason, the MLST scheme was extended to 
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rMLST that indexes the variation in a larger collection of loci including 53 ribosomal protein 

subunit genes. The typing scheme was extended to include the complete set of coding sequences 

in the core genome or the whole bacterial genome in cgMLST and wgMLST respectively. This 

results in increasing the discriminatory power in each newly developed scheme by including 

more typing loci (Jolley and Maiden, 2014) (Dekker and Frank, 2016). 

MLST is more usefully used to study the population biology of the organism rather than for local 

epidemiologic investigations of hospital outbreaks. The reason for that lies in its lower 

discriminatory potential to detect variability among closely related strains. Another advantage of 

the method that has led to its widespread use lies in its ability to easily construct an electronically 

accessible databases with generating digital data that are highly accurate and portable. This 

makes it easy to compare results among laboratories on a global basis. However, high cost and 

limited accessibility to routine sequencing machines in some laboratories can limit its routine 

application (Maiden, 2006). Another observed drawback of the method lies in the fact that 

different sequence types are assigned based on a combination of alleles which are assigned 

numbers on arbitrary bases. This means that different STs do not necessarily reflect different 

behavioral types. In addition, unknown and newly identified sequence types that result from 

finding new combinations of alleles can continuously be added. Although MLST is based on 

indexing diversity on the basis of allele combinations into different STs, it is not providing the 

full discriminatory potential. 

4.2. Population structure in Pseudomonas aeruginosa 

Proper understanding of the population structure of an organism is essential to make meaningful 

clinical conclusions. This understanding is required when molecular typing is used in 

surveillance, epidemic and outbreak investigation and for the dentification of epidemic high-risk 

clones (Foxman et al., 2005). 

Conclusions drawn about the population structure of the organism are largely based on the type 

of markers used in the analysis, however, this may show different sources of bias. This 

consequently necessitates using a combination of markers instead of using a single marker to 

measure different evolutionary forces (Van Belkum et al., 2001). Most studies analyzing the 

population structure of Ps. aeruginosa have concluded that the organism exhibits non-clonal 
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structure with occasional epidemic clones. This has been suggested in most studies using 

different typing methods. 

Ruimy et al., (2001) used random amplified polymorphic DNA to study the genetic diversity of 

Ps. aeruginosa from different types of infection and from environmental sources. The study 

concluded that the organism exhibits high rate of recombination in the population with no stable 

clonal genotypes differentiating pathogenic from non-pathogenic strains and has also shown that 

there is no clear phylogenic separation evident between the two groups. The study also 

highlighted that a highly discriminant epidemiologic marker is usually needed to perform such 

investigations (Ruimy et al., 2001). 

Pirnay et al., (2009) have investigated 328 unrelated Ps. aeruginosa isolates by combining eight 

parameters to analyze the population structure. The markers used for typing included Amplified 

Fragment Length Polymorphism (AFLP), O serotyping and several other selected genes that are 

related to important traits (Pirnay et al., 2009). Findings from another study (Maatallah et al., 

2011) investigating 110 strains from five Mediterranean countries using different molecular 

markers including PFGE, MLST, serotyping, and some virulence genes, have supported the same 

observation about the panmictic population structure for Ps. aeruginosa clinical and 

environmental isolates (Maatallah et al., 2011). Another study investigating  184 isolates from 

four countries of west and central Africa using MLST has shown a nonclonal epidemic 

population with observations of high-risk international clonal complexes. Eighty distinct STs 

were reported with 24 STs showing no correlation with any previously known sequence types 

(Cholley et al., 2014). In another study, 501 Ps. aeruginosa isolates from environment, animals,  

and human infection (both CF and non CF) were evaluated for genetic diversity and has also 

concluded a nonclonal epidemic structure (Timothy J. Kidd et al., 2012). Earlier studies carried 

out by Pirnay et al., (2002) on 73 clinical and environmental isolates have inferred a panmictic 

population structure of the organism. Other studies have used AFLP, a set of outer membrane 

genes, serotypes, and pyoverdine types in combination. The same was also suggested in two 

earlier studies (Denamur et al., 1993) (Picard et al., 1994). These two studies have compared the 

genetic diversity of Ps. aeruginosa population structure using MLEE and RFLP and showed no 

observed correlation between both methods used (Denamur et al., 1993) (Picard et al., 1994). 

Therefore, the study recommends that no single genetic marker should be used to reflect the 
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population structure. In contrast, another study in 2007 has reported a high degree of clonality in 

the population structure of Ps. aeruginosa. The study used a new genotypic approach based on 

58 distributed target elements for microarray typing. These targets were chosen to represent the 

core and accessory genome. However, the markers chosen may not be comprehensively 

representative or inclusive of all loci needed to represent the whole genome or to represent the 

evolutionary forces needed to achieve the highest level of resolution that can correctly classify 

the population (Wiehlmann et al., 2007). These factors may have resulted into different 

conclusions.  

In general, the population structure of Ps. aeruginosa is consensually believed to be of 

panmictic-epidemic nature (Magalhães et al., 2020). Other more recent findings from the 

literature have also indicated that the population structure of Ps. aeruginosa is predominantly 

non-clonal based on genotyping using PFGE (Brzozowski and Jursa-kulesza, 2020). A study 

from a Mexican clinical collection has also supported the same findings about the epidemic 

structure of Ps. aeruginosa which showed to be represented by some globally distributed clonal 

complexes (Castaneda-Montes et al., 2018). Some other recent findings have also supported the 

same conclusions showing the same epidemic structure related to previously observed high-risk 

clones (Pelegrin et al., 2019). Another study using both MLST and core genome MLST and 

comparing the allelic profiles related to epidemic high-risk clones from both schemes has 

identified the ST235-O11 serotype cluster to contain identical cgMLST profiles (Royer et al., 

2020). In another study, cgMLST allelic profiles have been used to construct MST for some 

studied high-risk clones and did not show much heterogeneity in the epidemic clones studied 

(Schaumburg et al., 2017). 

4.2.1. Observation of high-risk clones and their linkage to behavior 

High-risk clones are specific “serotypes” or “sequence types” that have been frequently observed 

and linked to specific types of bacterial behavior including virulence, antibiotic resistance, site 

specific pathogenicity (e.g. cystic fibrosis, keratitis), or infection outcome and patient prognosis. 

It has been suggested that a limited number of frequently observed widespread clones are 

responsible for human infections (A. Oliver et al., 2015) with other clones showing link to higher 

morbidity and mortality rates in cystic fibrosis patients (Fernández-Olmos et al., 2013), (Van 

Mansfeld et al., 2009), (Caballero et al., 2014), (Garcia-Castillo et al., 2011).  



158 | P a g e  
 

Specific dominant multi-drug resistant and extensively drug resistant (XDR) clones appear to be 

disseminated in hospitals worldwide. These clones include ST235, ST111, and ST175 which  

were repeatedly reported in several studies (Antonio Oliver et al., 2015). Marked as high-risk 

clones, they play a major role in the spread of resistance worldwide (Woodford, Turton and 

Livermore, 2011). In many studies, these three clones accounted for the majority of XDR 

isolates (Pena et al., 2015). ST235, ST175, and ST132 have been identified as the most prevalent 

multi-drug resistant clones in a study including 108 blood stream isolates from 48 hospitals in 36 

cities in Czech (Nemec et al., 2010). Another study including 187 isolates from different 

hospitals in France demonstrated the dissemination of few successful international clonal 

complexes including ST235, ST111, and ST175. These clones were also linked to multidrug 

resistance (Cholley et al., 2011).  

In a population of 123 Ps. aeruginosa isolates sampled from sink fittings of 5 wards in critical 

care units in a non-outbreak situation, high-risk clones were shown to be over represented 

including ST111, ST253, and ST235 (Varin et al., 2017). This can demonstrate the 

underestimated importance of environmental transmission in the dissemination of these high-risk 

clones in clinical ward environments and this also indicate the probability of water systems to act 

as an essential source for the dissemination of high-risk clones. Multiple Ps. aeruginosa 

outbreaks have been previously linked to hospital water systems (Loveday et al., 2014) (Walker 

and Moore, 2015) including the 2011/12 outbreak involving a neonatal unit in Northern Ireland 

causing death in four neonates (Jefferies et al., 2012). 

Clone ST235 is commonly reported as a successful international lineage associated with hospital 

infection and capable of acquiring diverse resistance mechanisms (Empel et al., 2007). In 

addition, the clone has shown the widest international distribution across the five continents and 

is also known to be frequently related to serotype O11 (Antonio Oliver et al., 2015). The clone is 

known to exhibit the highest prevalence among all observed clones in different studies. Among 

27 genotypes, ST235 showed to be the most prevalent clone with no significant change in 

observed clones over a 10 year period (Feng et al., 2019). In addition, other recent studies have 

also identified the frequent carriage of Metallo-b-lactamases among carbapenem resistant Ps. 

aeruginosa isolates from the clonal type ST235 (Osawa et al., 2019). MLST used in more recent 

studies has also identified both ST235 and ST357 as the most frequently observed sequence 
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types (Horna et al., 2019). Continuous surveillance of ST235 shows that the clone is still 

prevalent and worrisome and also showing significant association with antibiotic resistance 

carrying some known resistance determinants (Vatansever et al., 2020). 

ST111 is another widely distributed clone and is known to be related to serotype O12. A study 

including 448 Ps. aeruginosa clinical isolates from 16 Spanish hospitals showed that the four 

sequence types ST175, ST646, ST532, and ST111 were most prevalent. The successful 

international clone ST111 was the most frequent while ST235 was represented in only small 

number of isolates (García-Castillo et al., 2011). In the same study, ST175 was genotypically 

uniform using PFGE and therefore was added to the list of significant epidemic clones reported 

in the organism population. Although phenotypes were not consistently linked to different STs, 

most of the strains belonging to ST175 were quinolone resistant and a high percentage showed 

resistance to gentamycin, ceftazidime, and cefepime. ST175 was formerly considered as a 

contaminant of the hospital environment and as a colonizer. However, it was later noticed to be 

widespread and associated with multidrug resistant phenotype (García-Castillo et al., 2011). 

ST175 has also been linked to serotype O4 and has been observed in several European countries 

and in Japan (Antonio Oliver et al., 2015). In another study, a set of randomly selected 56 

clinical isolates of Ps. aeruginosa showing a high level of diversity and including MDR and non-

drug resistant isolates was studied. The majority of MDR and XDR strains were grouped under 

sequence types ST175 and ST235. ST253 was the third in frequency and included non-MDR 

isolates. The study has concluded that non-resistant and resistant isolates can co-exist within the 

same sequence type and that most susceptible isolates corresponds to singletons (Gomila et al., 

2013). 

More recent studies have also identified ST111 as the most frequent and disseminated clone 

showing lower clonal diversity as identified in MDR/XDR isolates (Pérez et al., 2019). The same 

study has also demonstrated that most XDR/PDR strains belonged to the international high-risk 

clones ST111, ST235, and ST175. The most prevalent serotypes among Ps. aeruginosa 

populations include O11, O12, O6, and O1, with O11 and O12 being particularly common 

among multi-resistant isolates (Pirnay et al., 2009). Although serotype O12 showed a relative 

genetic uniformity of isolates, serotype O11 demonstrated a greater genetic diversity (Samuelsen 
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et al., 2010) (Woodford, Turton and Livermore, 2011). Isolates with O11 serotype belonged to 

either ST227 or to ST230 (Giske et al., 2006). 

4.2.2. Clones linked to Cystic fibrosis 

Cystic fibrosis is considered the most common autosomal recessive disorder in the Caucasian 

population. The disorder results from an abnormal regulation of chloride channels leading to 

chronic pulmonary disease with associated pancreatic exocrine insufficiency (Rommens et al., 

1989). Ps. aeruginosa is considered an important pathogen determining biggest morbidity and 

mortality in cystic fibrosis patients with MDR/XDR strains being highly linked to disease 

exacerbations (Mogayzel et al., 2014). 

Some sequence types have been frequently observed as persistent in the diseased cystic fibrosis 

population. These sequence types have been reported in several studies as epidemic high-risk 

clones. The most prominent of those includes the Liverpool Epidemic Strain (LES), ST146 and 

the Australian Epidemic Strain (AES), ST649. These were repeatedly reported in the cystic 

fibrosis population all over the world and were linked to high level of drug resistance showing 

higher morbidity and mortality (A. Oliver et al., 2015). However, some other studies failed to 

demonstrate the same link between commonly observed clones and other types of linked 

behavior in cystic fibrosis patients. For example, a cross sectional study investigating  the 

population structure of Ps. aeruginosa among cystic fibrosis patients from a Dutch hospital 

showed that the two sequence types (ST406 and ST497) were prevalent among cystic fibrosis 

population despite being not linked genetically to the previously described epidemic clones 

observed in cystic fibrosis lung infection (Van Mansfeld et al., 2009). 

Pirnay et al., (2009) have suggested that there is little evidence about the existence of a global 

CF clone and that resistant CF clones isolated from different parts of the world appear to be 

genetically diverse. He also suggested that clones belonging to a core lineage as seen in patients 

with CF can be seen in the environment. This may indicate an independent acquisition in 

different settings rather than a globally disseminated clone. Another study comparing three 

genotypic methods have studied the population structure of the organism and reached a similar 

conclusion (R. van Mansfeld et al., 2010). The study has reported that the structure of the 

population does not show evidence of a core lineage in which major CF, hospital, or community 

clones co-cluster (R. van Mansfeld et al., 2010). 
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In agreement, another study including 42 different isolates from cystic fibrosis patients reported 

a high degree of diversity with ST242 being identified as the most prevalent lineage. In the same 

study, ST17 and ST809 were the next most prevalent sequence types followed by ST620. On the 

other hand, other STs detected in CF isolates including ST996, ST360, ST274 and ST980 were 

less commonly observed (Garcia-Castillo et al., 2011). Additionally,  T.J. Kidd et al., (2012) 

have suggested that CF strains are likely to be a random sample of the wider organism 

population and that the increased abundance of specific types in some geographic localities can 

be a result of chance colonization followed by adaptation and subsequent local transmission (T.J. 

Kidd et al., 2012). Another study in a Spanish hospital showed that international CF epidemic 

clones previously identified were not represented within that group of chronically colonized CF 

patients. A new sequence type representing a double locus variant of the Dutch ST497 CF 

epidemic clone not previously known was also identified in the same study (Fernández-Olmos et 

al., 2013). Other observations from more recent literature have also identified ST17, ST155, and 

ST179 as the most pervasive clones identified from a set of data including 298 genomes from 5 

cystic fibrosis clinics (Jeukens, Freschi, Kukavica-Ibrulj, J. G. Emond-Rheault, et al., 2019). 

Another study applying MLST has shown wider diversity among the studied Canadian Ps. 

aeruginosa cystic fibrosis population and did not show widespread sharing of the previously 

known dominant clones (Middleton et al., 2018). 

4.2.3. Importance of high-risk clones  

Based on the review above, it can be concluded that several multi-locus sequence types are 

distributed worldwide in relation to epidemics where multidrug resistance confounds treatment 

success. Therefore, it is important to understand the molecular basis of success of these epidemic 

high-risk clones because such understanding can greatly impact treatment selection. Although 

horizontally acquired resistance genes have been linked to clonal dissemination and success of 

some high-risk clones (A. Oliver et al., 2015), acquired resistance mechanisms may not be the 

most essential or the sole contributor to clonal success (Roy Chowdhury, Scott and Djordjevic, 

2017a). 

Better prognostic markers are needed to make better evidence-based patient care decisions 

(Jeukens, Freschi, Kukavica-Ibrulj, J.-G. Emond-Rheault, et al., 2019). These markers should 

predict AMR or high-risk behavior more rapidly and should show clear links to disease and 
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patient outcome. The advantage of using predictive values related to these markers will enable 

rapid intervention or therapy and will also help in molecular epidemiologic surveillance. Greater 

understanding of the general population structure and the predictive capacity of molecular 

markers linked to AMR or high-risk behavior is needed. The analysis used in this chapter aims at 

identifying molecular markers, signatures or combinations linked to high-risk groups. When such 

markers are detected, they can be used to efficiently direct efforts that can further reduce the 

spread of epidemic clones. For example, if a marker is linked to resistance behavior and at the 

same time linked to high-risk clone, it can indicate that the patient or setting carry high-risk 

potential and consequently necessitates additional precautionary measures or isolation practices 

to avoid its transmission. 

Building on the results of chapter 3, the objective of this chapter is to describe the population 

structure of Ps. aeruginosa in a large comprehensive dataset as a primary step to explore the 

relation of different previously identified quinolone and aminoglycoside resistance markers to 

high risk clones. It also aims at exploring the specific molecular markers or combination of 

markers that explain the global success of epidemic high-risk clones. 

Several epidemiologic and population biology studies have been performed using different 

molecular typing tools. Although comprehensive analysis of population structure is not the 

primary objective for the scope of the thesis, it was necessary to describe the population structure 

as a first step. Next, analysis of the correlation of identified quinolones resistance markers to 

background context and to high-risk clones was performed. Two commonly used and well-

established typing methods including MLST and serotyping were used for that purpose. High-

risk clones when described and studied in the literature are usually described using the 

commonly known sequence types and serotypes and that was another reason for using these two 

typing methods. The correlation and clustering of different quinolone and aminoglycoside 

molecular resistance markers were then explored and studied in relation to background 

population structure. For that purpose, a large collection of isolates including an in-house set of 

Ps. aeruginosa clinical isolates and another set of public genomes from the Patric database 

(Wattam et al., 2017) were studied. The analyzed set included the whole spectrum of resistance 

profiles for ciprofloxacin, levofloxacin, gentamycin, and amikacin antibiotics. The panel of 
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molecular markers studied and identified in the previous chapter are evaluated in this chapter for 

their potential relation to clonal success. 

4.3. Methodology 

4.3.1. MLST and serotypes (O-type) analysis 

MLST was performed for all isolates according to previously described typing scheme by Curran 

(Curran et al., 2004). An ST was assigned to each unique allelic profile according to the Ps. 

aeruginosa PubMLST database (http://pubmlst.org/paeruginosa/). Whole genome sequence data 

(WGS) for our in-house group of clinical isolates (163 genomes) in addition to the selected 

clinical isolates from Patric database (528 genomes) were used to identify STs using the method 

publicly available at www.cbs.dtu.dk/services/MLST (Larsen et al., 2012). WGS data was also 

used to determine the serogroups of all studied isolate based on the sequence of O-specific 

antigen (OSA) gene cluster using the Ps. aeruginosa serotyper (PAst) web-tool available on the 

Center for Genomic Epidemiology (CGE) service platform (https://cge.cbs.dtu.dk/services/PAst-

1.0/) (Thrane, Véronique L Taylor, et al., 2016).  

4.3.2. Population structure and diversity analysis 

Strain relationships were analyzed using the geoBURST Full MST algorithm (Francisco et al., 

2009), as implemented in the software PHYLOVIZ  (Francisco et al., 2012) to construct a 

Minimum Spanning Tree (MST) of the total set of Ps. aeruginosa strains based on MLST data 

according to the steps shown in Phylophiz documentation release 2.0 available at 

http://www.phyloviz.net/goeburst/Tutorial.html 

The eBURST algorithm, developed specifically for MLST data, can estimate the evolution of 

each clonal complex from its ancestral genotype or primary founder. An eBURST group (or 

clonal complex) is defined as an ancestral sequence type with all its related sequence types (STs) 

at SLV, DLV or, TLV with at least one other ST in the group and each ST can only be assigned 

to a single group. 

Clonal complexes (CC) were defined in the current analysis as complexes or “groups of studied 

isolates” containing at least three STs sharing the same allele numbers in at least five of seven 

loci. Isolate-specific metadata, including serotypes, quinolone, and aminoglycoside resistance 

data, were then overlaid on top of the minimum spanning tree. Allelic linkage disequilibrium was 

http://pubmlst.org/paeruginosa/
http://www.cbs.dtu.dk/services/MLST
https://cge.cbs.dtu.dk/services/PAst-1.0/
https://cge.cbs.dtu.dk/services/PAst-1.0/
http://www.phyloviz.net/goeburst/Tutorial.html
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assessed with two test options of both Monte Carlo methods and Parametric with 100 resampling 

using LIAN version 3.7 (Haubold and Hudson, 2000) available at 

http://guanine.evolbio.mpg.de/cgi-bin/lian/lian.cgi.pl/query. 

The standardized index of Association (IS
A) and the Mean genetic diversity (H) are two measures 

used to assess linkage equilibrium and degree of association between alleles. An index of 

association (I A) with a lower value approaching 0 is considered highly suggestive of a non-

clonal epidemic population (Smith et al., 1993). Higher mean genetic diversity index also 

supports linkage equilibrium and low evidence of association among the alleles analyzed. 

High mean genetic diversity index together with low index of association may support the idea 

that recombination is playing role in randomizing allele distribution in the population (Lenski, 

1993). 

Discriminatory power (Simpson’s index) and concordance (cluster agreement) between 2 typing 

methods (Adjusted Rand index and Adjusted Wallace) were evaluated according to (Carriço et 

al., 2006) using the web source http://www.comparingpartitions.info/. 

The degree of concordance between the two typing schemes used was first evaluated. Simpson’s 

index of diversity (SID: with 95% confidence intervals) was used as described by (Hunter and 

Gaston, 1988). Inter-method concordance was also evaluated using the Adjusted Wallace 

coefficient (Severiano et al., 2011). Adjusted Wallace coefficient shows the probability that two 

strains classified as the same type by one method will also be classified as the same one when 

using the other method. Adjusted Wallace coefficient allows for assessing the strength and 

directionality of the concordance between the various typing methods according to (Carriço et 

al., 2006). A value of 1 indicates that clusters generated by a given typing method could have 

been completely predicted by another methodology or in other words one method is completely 

concordant with the other method. In this way, it represents the prediction probability of a pair of 

strains that are assigned to the same type by one method are also classified in the same type by 

the other method. 

4.3.3. Resistance genes and markers correlations 

The set of previously identified resistance and sensitivity markers described in Chapter 3 were 

explored for their association with high risk STs and serotypes and their potential to explain the 

http://guanine.evolbio.mpg.de/cgi-bin/lian/lian.cgi.pl/query
http://www.comparingpartitions.info/
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success of epidemic high-risk clones. Chi-square test for independence (with yates’ continuity 

correction) was used to compare groups. A p-value of < 0.05 was considered as statistically 

significant. 

A panel of 10 previously tested ciprofloxacin resistance/sensitivity markers and of 11 tested 

levofloxacin resistance/sensitivity markers were analyzed. In addition, the 5 previously identified 

clusters of molecular markers were tested for possible correlation with high-risk clones. These 

markers included mexZ, nalC S46A, nalC S209R, nalC G71E, gyrA T83I, nalC E153Q, nalC 

Thr50pro, mexS gene, nalD gene, nfxB gene, armR gene, parE V460G, and ampR D135N. 

For aminoglycoside, molecular markers tested included 11 markers for gentamycin and 18 

markers for amikacin. These markers included: phoQY85F, nuoGA890T, pstBE89Q, lptAT55A, 

lptAR62S, faoAT385A, arnAA170T, arnDG206C, mexRR79N, mexRE70R, mexRL130T, 

mexRG97L, mexRL29D, mexZ, ampR gene, pmrBGly423Cys, pmrALeu71Arg, fusA1D588G, 

gidBE186A, armR (PA3719), nalC gene, nalD, nalDser32Asn, gidBQ28K, gidBE97Q, 

nalCE153Q and ampRA51T. 

4.3.4. Phylogenetic analysis 

Phylogenetic analysis and hierarchical clustering were performed to evaluate the distribution of 

the studied set of isolates among all known Ps. aeruginosa genomes. The genes encoding the 

following metabolic enzymes: acsA (acetyl coenzyme A synthetase), aroE (shikimate 

dehydrogenase), guaA (GMP synthetase), mutL (DNA repair protein), nuoD (NADH 

dehydrogenase I chain C, D), ppsA (phosphoenolpyruvate synthase) and trpE (anthralite 

synthetase component I) are commonly used for MLST typing. 

Concatenated sequences of these genes for the studied set of 691 isolates as extracted from the 

MLST output tool provided by https://cge.cbs.dtu.dk/services/MLST/ and concatenated 

sequences of all other known STs for Ps. aeruginosa as extracted from the Pseudomonas 

aeruginosa MLST website available at https://pubmlst.org/paeruginosa/ were aligned using the 

MUSCLE option (Edgar, 2004) implemented in the software MEGA 7 (Kumar, Stecher and 

Tamura, 2016). The phylogenetic tree of the concatenated genes was constructed using the 

UPGMA algorithm. 
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4.4. Results  

4.4.1. Description of population structure in the studied set of isolates 

Figure 4.1 shows the minimum spanning tree (MST) analysis of Ps. aeruginosa strains based on 

all known STs identified with Ps. aeruginosa. The tree shows all the sequence types observed in 

the studied set of isolates among all known STs for the organism. Implementing the geoBURST 

algorithm at the TLV level showed a total of 172 clonal complexes with 125 singletons for all 

known Ps. aeruginosa STs. This indicates high diversity and shows that the isolates under study 

are widely distributed among all known STs. The study isolates are colored on the graph (Figure 

4.1) as shades of dark green and dark blue. The graph also shows the position of high-risk clones 

among all other set of isolates included in the analysis. 
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Figure 4.1. MST analysis of studied Ps. aeruginosa isolates among all known STs 

Study isolates are shown in dark circles (shades of dark blue and dark green) 

High-risk groups are shown in red circles and blue arrows 

4.4.2. Population structure and diversity 

Applying geoBURST algorithm at double locus variant level (DLV) showed 219 clonal 

complexes with 176 singletons. The most frequent clonal complexes observed were: CC 233 

consisting of 20 STs (39 isolates), CC17 consisting of 4 STs (16 isolates), CC 532 consisting of 

4 STs (17 isolates), CC 560 consisting of 7 STs (12 isolates) and CC 316 consisting of 3 STs (12 

isolates). Other important high-risk clones formed clonal complexes that showed only 2 STs. 

Examples include: CC 446 consisting of 2 STs (15 isolates) and CC 111 consisting of 2 STs (35 

ST-111 

ST-27 

ST-235 

ST-233 

ST-253 

ST-395 
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isolates). The index of association (I A) was calculated to estimate the degree of association and 

recombination between alleles at different loci based on MLST allelic profile data (Haubold and 

Hudson, 2000). When all 691 isolates were analyzed, the value of the standardized index of 

Association (IS
A)=0.1302 (P<0.001) which indicates linkage equilibrium and low evidence of 

association among alleles analyzed. Pairwise variance (VD =1.4063) was greater than the critical 

value (L=0.8007). Mean genetic diversity (H): 0.8648 +/- 0.0261. These results support that 

recombination plays a key role in allele distribution and support the non-clonal structure of Ps. 

aeruginosa population based on MLST classification of the studied set of isolates. 

A phylogenetic analysis of the concatenated sequences of the MLST alleles was performed 

including the study isolates and the entire MLST database. The results showed diversity and non-

clustered distribution of the study isolates among all known STs for the organism. Result shown 

in Figure 4.2. 

 

Figure 4.2. Hierarchical clustering showing the distribution of analyzed sequences among all known ST 

Blue circles indicate the position of the studied set of isolates among all other Ps. aeruginosa isolates 

The positions of high-risk clones are also shown on the figure using different colors 

 



169 | P a g e  
 

4.4.3. Analysis of MLST profile in relation to serotype 

Figure 4.3 shows Minimum Spanning Tree (MST) analysis of the studied set of Ps. aeruginosa 

strains based on MLST data at SLV level: each circle corresponds to an ST identified in the 

studied collection of isolates. The area of each circle corresponds to the number of isolates 

showing certain ST. The distance relationship between the isolates is indicated by the lines 

connecting the isolates. Position of high-risk groups is shown in red on each graph. In this figure 

different ST groups are colored based on the corresponding serotype. 

A population analysis of 691 Ps. aeruginosa isolates was performed and considerable genetic 

diversity was observed among the MLST results. MLST analysis identified 311 STs among all 

isolates including 266 known and 45 novel STs. The international clones ST235 (serotype 

O11[98 %]) was the most frequently identified in a total of 50 genomes, followed by 

ST111(serotype O12 [83.3%], serotype O4 [16.7%]) which was identified in a total of 30 

genomes. ST244 (serotype O12 [35%], serotype O2 [30%], serotype O5 [30%]) was identified in 

20 genomes while ST308 (serotype O11[100%]) was identified in 18 genomes. Each of sequence 

types ST395 (serotype O6 [100%]) and ST253 (serotype O10 [94.2%]) was identified in 17 

genomes. ST348 (serotype O2 [53.3%], serotype O5 [40%]) was found in 15 isolates. ST274 was 

identified in 14 isolates. Each of ST179 (serotype O6 [92.3%]) and ST233 (serotype O6 [100%]) 

was found in 13 isolates. ST17 (serotype O1 [100%]) was identified in 12 isolates while ST27 

(serotype O1 [100%]) was identified in 11 isolates and ST175 (serotype O4 [100%]) in 10 

isolates. All the data above are visualized in Figure 4.3 which shows serotypes overlaid on 

corresponding STs. 
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Figure 4.3. MST showing distribution of serotypes in relation to STs 

Each serotype is shown in a different color as indicated in the figure ligand above 

The figure also shows how different serotypes are clustering in relation to different clonal complexes. 

High-risk clones are shown on the figure in red circles. 

As seen in Figure 4.3, O6 serotypes showed tendency to cluster towards ST-395, ST-233, and ST-179. O12 serotype 

constituted the majority of isolates belonging to ST-111 and about one third of the isolates belonging to ST-244. The 

rest of O12 serotype group belonged to other less frequent sequence types including; ST-1006, ST-2031 and ST-

3043 which are at the distances of 12, 12 and 7 locus variants respectively from ST-17 as shown in figure 4.2. O11 

serotype formed nearly all the isolates belonging to ST-235 and many of its close variants. This is represented in 

brown color seen at the left part of figure 4.3. Serotype O1 shown in blue appeared to be more widely distributed 

across different distant clonal groups. It showed clustering at ST-27 and ST-17 and is also related to other sequence 

ST-111 

ST-17 

ST-244 

ST-27 

ST-395 

ST-233 

ST-179 

ST-235 
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types including ST-252, ST-313, and ST-207 among others. The complete set of data are shown in section 4.4.3 and 

are also detailed in table 4.1. 

The degree of concordance between the two typing schemes used was evaluated using Simpson’s 

index of diversity (SID: with 95% confidence intervals) as described in the methods section and 

showed that MLST (Simpson’s ID=0.987 with 95% CI [0.984-0.990]) was more discriminatory 

than serotyping (Simpson’s ID=0.856 with 95% CI [0.843-0.869]). Inter-method concordance 

was also evaluated using the Adjusted Wallace coefficient (Severiano et al., 2011). Adjusted 

Wallace coefficient shows the probability that two strains classified as the same type by one 

method will also be classified as the same one when using the other method. A value of 1 

indicates that clusters generated by a given typing method could have been completely predicted 

by another methodology which represents the prediction probability of a pair of strains that are 

assigned to the same type by one method are also classified in the same type by the other 

method. 

Adjusted Wallace between ST and serotypes =0.840 with 95% CI (0.792-0.889) while that 

between serotypes and STs was significantly low =0.064 with 95% CI (0.048-0.080) which 

means that ST can predict serotype with higher confidence while the opposite is not true. 

4.4.4. Quinolone resistance profile of Ps. aeruginosa epidemic high-risk clones 

Table 4.1, Figure 4.4 and Figure 4.5 all summarize quinolone susceptibility data in relation to 

different STs and high-risk groups. 

Table 4.1 summarize the quinolone MIC values for the high-risk clones observed in the studied 

collection with corresponding serotypes. Figure 4.4 is an MST tree showing levofloxacin 

susceptibility in relation to different STs. Figure 4.5 is an MST tree showing ciprofloxacin 

susceptibility in relation to different STs. 

Table 4.1. Summary of isolates belonging to high-risk clones with their corresponding serotypes and quinolones 

susceptibility 
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levofloxacin sensitivity R S R R R R R S R R R R R R R R R R R R 

ciprofloxacin sensitivity UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN 
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levofloxacin MIC 32 8 8 4 2 2 16 16 32 8 
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1 
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Among the studied set of isolates, the international high-risk clone ST235 was the most 

frequently identified among all STs in the study set (50 isolates). Among those 50 isolates; 13 

are ciprofloxacin resistant, 46 are levofloxacin resistant and only 4 isolates are levofloxacin 

susceptible. ST111 was the next most frequently observed ST in a total of 30 isolates with 28 

levofloxacin resistant isolates and only 2 susceptible isolates, 3 ciprofloxacin resistant and 1 

ciprofloxacin susceptible. ST244 was identified in 20 genomes; 10 are levofloxacin susceptible 

and 10 are levofloxacin resistant, 2 are ciprofloxacin resistant and 7 are ciprofloxacin 

susceptible. ST395 was identified in 17 genomes; 12 are levofloxacin susceptible and 5 are 

levofloxacin resistant, 4 are ciprofloxacin susceptible and 3 are ciprofloxacin resistant. ST175 

was identified in 10 genomes; 9 are levofloxacin resistant and 1 is levofloxacin susceptible. The 

CF clone ST17 was identified in 12 isolates; 5 are levofloxacin susceptible and 7 are 

levofloxacin resistant, 1 is ciprofloxacin resistant and 2 are ciprofloxacin susceptible. Another 

CF clone ST274 was identified in 14 isolates; 9 are levofloxacin susceptible and 5 are 

levofloxacin resistant, 5 are ciprofloxacin susceptible and 1 is ciprofloxacin resistant.  
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Figure 4.4. MST showing distribution of levofloxacin susceptibility in relation to STs 

Orange color represents levofloxacin-resistant isolates while blue color represents levofloxacin-susceptible isolates. 

The distribution of levofloxacin susceptibility and resistance in figure 4.4 does not show a specific distribution 

pattern  for antibiotic susceptibility behavior in relation to different STs in general. This may indicate that ST 

classification does not overall correlate with levofloxacin susceptibility. This may be related to the inherent 

drawback of MLST typing method which gives random alleles designation and does not consider all variations 

resulting from mutations but reduces allele definition to exact matches. This may result in the assumption that MLST 

in general cannot be used to predict resistance or susceptibility except where a high association of specific high-risk 

clones with antibiotic resistance behavior is observed. Another explanation for the observed distribution is that the 

genomic bases differentiating resistance/susceptibility in general are global/multiple combined elements, are 

unpredictable or are subject to epistatic interactions and do not correlate with the MLST classification, the research 

question that needs more in-depth exploration. 

Figure 4.4 also shows that ST-111, ST-235, ST-175, and ST-233 are majorly composed of resistant isolates. 

Numbers are described in detail above. This supports the literature findings about these high-risk clones. On the 

other hand, nearly half of the isolates classified under ST-253, ST-244, ST-17 and ST-27 were not resistant. 
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Figure 4.5. MST showing distribution of ciprofloxacin susceptibility in relation to STs 

Ciprofloxacin-resistant isolates are shown in orange color while ciprofloxacin-susceptible isolates are shown in 

blue. Grey color represents isolates where ciprofloxacin susceptibility data are not available. 

The distribution of ciprofloxacin susceptibility and resistance as seen in Figure 4.5 indicates that no specific pattern 

of distribution for antibiotic susceptibility behavior in relation to different STs is observed. This is similar to what 

was observed with levofloxacin in Figure 4.4. This may also indicate that the information drawn from MLST 

classification may not be sufficient to reflect a true association with an important behavior like antibiotic resistance 

in both levofloxacin and ciprofloxacin. 

4.4.5. Aminoglycosides resistance profile of Ps. aeruginosa epidemic high-risk clones 

Table 4.2, Figure 4.6 and Figure 4.7 all summarize aminoglycosides susceptibility data in 

relation to different STs and high-risk groups. 

Table 4.2 summarizes the quinolone MIC values for the high-risk clones observed in the studied 

collection with corresponding serotypes. Figure 4.6 is an MST tree showing gentamycin 
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susceptibility in relation to different STs. Figure 4.7 is an MST tree showing amikacin 

susceptibility in relation to different STs. 

Table 4.2. Summary of isolates belonging to high-risk clones with their corresponding serotypes and 

aminoglycosides susceptibility 
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UN= Unknown 

For aminoglycosides; 23 isolates with ST235 are amikacin resistant and 27 are amikacin 

susceptible, 3 are gentamycin resistant and 10 are gentamycin susceptible. ST111 included a 

total of 14 amikacin resistant isolates and 16 amikacin susceptible isolates. Isolates belonging to 

ST244 included 6 amikacin resistant isolates, 14 amikacin susceptible isolates, 2 gentamycin 

resistant isolates and 5 gentamycin susceptible isolates. ST395 included 1 amikacin resistant, 16 

amikacin susceptible, 2 gentamycin resistant and 5 gentamycin susceptible. All isolates with 

ST175 were amikacin susceptible, 1 isolate was gentamycin susceptible and 1 was gentamycin 

resistant. Isolates with ST17 included 10 amikacin susceptible isolates, 2 amikacin resistant 

isolates and 3 gentamycin susceptible isolates. Isolates with ST274 included 12 amikacin 

susceptible isolates, 2 amikacin resistant isolates, 3 gentamycin resistant isolates and 3 

gentamycin susceptible isolates. 
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Figure 4.6. MST showing distribution of gentamycin susceptibility in relation to STs 

Red color represents gentamycin-resistant isolates while blue color represents gentamycin-susceptible isolates. 

Grey color represents isolates where gentamycin susceptibility data are not available.\ 

The distribution of gentamycin susceptibility and resistance in Figure 4.6 shows that both gentamycin resistant and 

gentamycin susceptible isolates are evenly distributed all over the MST tree. This may indicate that isolates relate to 

STs at different distances and are not clustering in clones or in relation to specific clonal complexes. This is also 

similar to what was observed with quinolones in Figure 4.4 and Figure 4.5. This may also indicate that the 

information drawn from MLST classification in general may not be sufficient to reflect a true association with 

antibiotic resistance behavior. On the other hand, high-risk clones shown on the graph in Figure 4.6 include both 

resistant and susceptible isolates. This may not support the conclusion of high-risk clones’ dissemination in relation 

to carriage of horizontally acquired resistance genes. Other markers related to increased fitness/virulence may 

underlie the successful dissemination of high-risk clones. This is based on the current observation of high-risk 

clones among both resistant and susceptible isolates. 

ST-235 
ST-244 

ST-253 

ST-27 

ST-17 

ST-175 

ST-179 

ST-111 ST-395 
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Figure 4.7. MST showing the distribution of amikacin susceptibility in relation to STs 

Amikacin-resistant isolates are represented in red color while amikacin-susceptible isolates are represented in blue.  

Based on the distribution of high-risk clones seen in Figure 4.7, amikacin resistance does not appear to correlate 

with high-risk clones. Except for ST-233, the majority of isolates forming all other high-risk STs were mostly 

susceptible. About half of the isolates forming each of ST-111 and ST-235 are resistant. For ST-111, 14 isolates are 

amikacin resistant and 16 are amikacin susceptible. For ST-235, 23 isolates are amikacin resistant and 27 are 

amikacin susceptible. 
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4.4.6. Quinolone resistance markers of Ps. aeruginosa epidemic high-risk clones 

The distribution of previously identified quinolone resistance or susceptibility markers (in 

Chapter 3) and new clusters (combinations) of molecular markers is re-analyzed in this section in 

relation to high-risk clones. Table 4.3 and Table 4.5 summarize this distribution. 

A total of 305 isolates were analyzed for ciprofloxacin sensitivity (110 resistant and 195 

susceptible). Of those analyzed, a total of 82 isolates belonged to epidemic high risk clones (ST 

17 [N=3], ST 27 [N=6], ST 111[N=4], ST 179 [N=6], ST 233 [N=5], ST 235 [N=13], ST 244 

[N=9], ST 253 [N=6], ST 274 [N=6], ST 308 [N=6], ST 446 [N=6], ST 395 [N=7], ST 532 

[N=4]). A chi-square test for independence (with yates’ continuity correction) indicated 

significant association between armR gene and high-risk groups, x2 (1, n= 305) =4, p=0.046, 

phi= 0.114. Significant associations were also found between each of nalCG71E, x2 (1, n= 305) 

=7.031, p=0.030, phi= 0.152, gyrAT83I, x2 (1, n= 305) =8.4, p=0.004, phi= 0.166, nalCE153Q, 

x2 (1, n= 305) =6.09, p=0.048, phi= 0.141 and high risk groups. Cluster 1 previously identified 

showed significant absence in high-risk groups, x2 (1, n= 305) =4.066, p=0.044, phi= - 0.116. 

Cluster 4 also showed significant association with high-risk groups, x2 (1, n= 305) =6.27, 

p=0.012, phi= - 0.144. Significant associations between individual markers for ciprofloxacin and 

specific high-risk clones are summarized in Table 4.4. The detailed distribution of ciprofloxacin 

markers in relation to high-risk clones is shown in Table 4.3. 

Table 4.3. Distribution of ciprofloxacin molecular markers in relation to high-risk clones 
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PAE0067 17 O1 0.12 S             

PAE0128 17 O1 0.06 S             

287.7807 17 O1 1 R             

PAE0029 27 O1 0.12 S             

PAE0009 27 O1 0.08 S             

PAE0050 27 O1 0.25 S             

PAE0086 27 O1 0.06 S             

PAE0108 27 O1 0.06 S             

287.7773 27 O1 2 R             

287.5750 111 O12 8 R             

287.6330 111 O12 8 R             

287.7772 111 O12 2 R             

287.7862 111 O4 0.5 S             

PAE0025 175 O4 0.12 S             

PAE0016 175 O4 8 R             

PAE0092 179 O6 0.12 S             
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PAE0042 179 O6 0.03 S             

PAE0141 179 O6 0.12 S             

287.5748 179 O6 8 R             

287.5969 179 O6 0.25 S             

287.2980 233 O6 8 R             

287.5688 233 O6 8 R             

287.5752 233 O6 8 R             

287.5959 233 O6 8 R             

287.6492 233 O6 8 R             

287.2973 235 O11 8 R             

287.2975 235 O11 8 R             

287.2976 235 O11 8 R             

287.5690 235 O11 8 R             

287.6327 235 O11 8 R             

287.6328 235 O11 8 R             

287.7780 235 O11 2 R             

287.7782 235 O11 2 R             

287.7783 235 O11 2 R             

287.7785 235 O11 2 R             

287.7786 235 O11 2 R             

287.7830 235 O11 2 R             

287.5686 235 O11 4 R             

PAE0056 244 O2 0.06 S             

PAE0064 244 O5 0.12 S             

PAE0066 244 O5 0.08 S             

PAE0069 244 O5 0.03 S             

PAE0121 244 O5 0.12 S             

PAE0143 244 O5 0.06 S             

PAE0173 244 O5 0.06 S             

287.7781 244 O12 2 R             

287.7814 244 O2 2 R             

PAE0055 253 O10 0.25 S             

PAE0102 253 O10 0.06 S             

PAE0105 253 O10 0.12 S             

PAE0122 253 O10 0.12 S             

287.7843 253 O10 1 R             

287.7850 253 O10 2 R             

PAE0045 274 O3 0.06 S             

PAE0103 274 O3 0.06 S             

PAE0159 274 O3 0.25 S             

PAE0169 274 O3 0.03 S             

287.5973 274 O3 0.5 S             

287.7844 274 O3 2 R             

PAE0093 395 O6 0.06 S             

PAE0015 395 O6 0.08 S             

PAE0027 395 O6 0.06 S             

PAE0054 395 O6 0.03 S             

287.5703 395 O6 1 R             

287.5749 395 O6 1 R             

287.5956 395 O6 1 R             

PAE0111 446 O11 2 R             

PAE0127 446 O11 0.12 S             

PAE0139 446 O11 0.03 S             

PAE0150 446 O11 0.12 S             

PAE0166 446 O11 0.25 S             

287.7795 446 O11 2 R             

 

Grey shade: Marker (Gene or Gene variant) present, White: Marker (Gene or Gene variant absent), Yellow shade: Gene absent 
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Table 4.4. Ciprofloxacin molecular markers showing significant associations with specific high-risk clones 

Molecular 

marker 

High-risk 

group 

Chi-square p-value Phi-coefficient 

armR ST-235 6.22 0.013 0.143 

nalCS46A ST-235 24.5 <0.005 0.283 

nalCG71E ST-235 17.1 <0.005 0.237 

nalCG71E ST-244 99.5 <0.005 0.571 

nalCS209R ST-111 8.2 0.017 0.164 

nalCS209R ST-233 10.5 0.005 0.185 

nalCS209R ST-235 17.14 <0.005 0.237 

nalCS209R ST-244 28 <0.005 0.303 

nalCS209R ST-395 21.6 <0.005 0.266 

gyrAT83I ST-233 30.6 <0.005 0.317 

gyrAT83I ST-235 22.26 <0.005 0.27 

gyrAT83I ST-308 4.28 0.039 0.118 

nalCE153Q ST-235 109 <0.005 0.6 

nalCThr50pro ST-179 24.5 <0.005 0.3 

nalCThr50pro ST-235 16.6 <0.005 0.233 

Cluster 1 ST-235 9 0.003 -0.172 

Cluster 4 ST-233 20.5 <0.005 0.26 

Cluster 4 ST-235 8 0.005 0.162 

Cluster 4 ST-395 5.8 0.016 0.138 

 

The tables and analyses presented above show that there is significant association of some of the 

studied ciprofloxacin resistance markers previously identified in Chapter 3 with high-risk clones. 

The markers showing association with all high-risk clones evaluated included armR (especially 

with ST-235), nalCG71E (especially with ST-235 and ST-244), nalCE153Q (especially with ST-

235), and gyrAT83I (especially with ST-235, ST-233 and ST-308). 

Ciprofloxacin resistance markers that showed association with specific high-risk groups 

included: nalCS46A (showing association with ST-235), nalCS209R (showing association with 

ST-235, ST-233, ST-395 and ST-244), nalCThr50Pro (showing association with ST-179 and ST-

235). Ciprofloxacin Cluster 1 showing association with ciprofloxacin susceptibility (Chapter 3) 

showed significant absence in high-risk groups especially with ST-235. On the other hand, 

ciprofloxacin Cluster 4 showing association with ciprofloxacin resistance (Chapter 3) showed 

significant presence in high-risk clones especially with ST-235, ST-233, and ST-395. This may 

add additional evidence to the importance of these clusters to detect resistance behavior in 
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addition to being related to risky clones. This consequently means than identifying such clusters 

can guide specific infection control procedures. 

A total of 691 isolates were analyzed for levofloxacin sensitivity (376 resistant and 315 

susceptible). Of those analyzed, a total of 239 isolates belonged to epidemic high-risk clones (ST 

17 [N=12], ST 27 [N=11], ST 111 [N=30], ST 235 [N=50], ST 175 [N=10], ST 179 [N=13], ST 

244 [N=20], ST 233 [N=13], ST 308 [N=18], ST 395 [N=17], ST 532 [N=8], ST 446 [N=6], ST 

274 [N=14], ST 253 [N=17]). 

A chi-square test for independence (with yates continuity correction) indicated significant 

association between mexZ gene, x2 (1, n= 691) = 5.4, p=0.020, phi= 0.088, arm R, x2 (1, n= 691) 

= 19.3, p<0.005, phi= 0.167, nfxB, x2 (1, n= 691) = 5.8, p=0.016, phi= 0.092, mexS, x2 (1, n= 

691) = 5.33, p=0.021, phi= 0.088, nalC, x2 (1, n= 691) = 4.88, p=0.027, phi= 0.084, gyrAT83I, 

x2 (1, n= 691) = 70.36, p<0.005, phi= 0.319, nalCE153Q, x2 (1, n= 691) = 8.98, p=0.011, phi= 

0.114, nalCS46A, x2 (1, n= 691) = 14.3, p=0.001, phi= 0.144, and high-risk groups. Both 

previously identified clusters 1 and 5 were significantly absent in high risk groups with x2 (1, n= 

691) = 5.22, p=0.022, phi= - 0.087 and x2 (1, n= 691) = 10.8, p=0.001, phi= - 0.125 respectively. 

Previously identified cluster 4 showed significant association with high risk groups, x2 (1, n= 

691) = 34.33, p<0.005, phi= 0.223. Significant associations between individual markers for 

levofloxacin and specific high-risk clones are summarized in Table 4.6. The detailed distribution 

of different markers is shown in Table 4.5. 

Table 4.5. Distribution of levofloxacin molecular markers in relation to high-risk clones 
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PAE0067 17 O1 2 R               

PAE0128 17 O1 0.25 S               

287.1075 17 O1 0.25 S               

287.1129 17 O1 2 R               
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287.847 17 O1 2 R               

287.850 17 O1 0.25 S               

287.900 17 O1 32 R               

287.983 17 O1 32 R               

287.989 17 O1 0.12 S               

287.998 17 O1 0.03 S               

PAE0067 17 O1 2 R               
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PAE0128 17 O1 0.25 S               

287.1075 17 O1 0.25 S               

287.1129 17 O1 2 R               

287.1240 17 O1 32 R               

287.7807 17 O1 2 R               

PAE0029 27 O1 0.5 S               

PAE0009 27 O1 0.25 S               

PAE0050 27 O1 4 R               

PAE0086 27 O1 0.25 S               

PAE0108 27 O1 0.25 S               

287.1086 27 O1 0.25 S               

287.1241 27 O1 4 R               

287.1301 27 O1 1 S               

287.7773 27 O1 4 R               

287.954 27 O1 32 R               

287.987 27 O1 32 R               

287.1000 111 O12 32 R               

287.1046 111 O12 1 S               

287.1084 111 O12 8 R               

287.1093 111 O4 2 R               

287.1095 111 O4 8 R               

287.1098 111 O4 0.25 S               

287.1125 111 O12 32 R               

287.1126 111 O12 32 R               

287.1127 111 O12 16 R               

287.1130 111 O12 32 R               

287.1140 111 O12 32 R               

287.1141 111 O12 32 R               

287.1146 111 O12 32 R               

287.1169 111 O12 8 R               

287.1172 111 O12 8 R               

287.1178 111 O12 32 R               

287.1179 111 O12 32 R               

287.1185 111 O12 16 R               

287.1195 111 O12 8 R               

287.1209 111 O4 32 R               

287.1216 111 O12 32 R               

287.5750 111 O12 8 R               

287.6330 111 O12 8 R               

287.7772 111 O12 4 R               

287.7862 111 O4 2 R               

287.852 111 O12 2 R               

287.909 111 O12 16 R               

287.911 111 O12 16 R               

287.916 111 O12 32 R               

287.951 111 O12 8 R               

PAE0025 175 O4 0.5 S               

PAE0016 175 O4 32 R               

287.1024 175 O4 32 R               

287.1042 175 O4 32 R               

287.1051 175 O4 32 R               

287.1052 175 O4 32 R               

287.1132 175 O4 32 R               

287.1188 175 O4 8 R               

287.1192 175 O4 8 R               

287.908 175 O4 32 R               

PAE0025 175 O4 0.5 S               

PAE0016 175 O4 32 R               
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287.1024 175 O4 32 R               

287.1042 175 O4 32 R               

287.1051 175 O4 32 R               

287.1052 175 O4 32 R               

PAE0092 179 O6 1 S               

PAE0042 179 O6 0.5 S               

PAE0141 179 O6 2 R               

287.1103 179 O6 32 R               

287.1139 179 O11 32 R               

287.1143 179 O6 32 R               

287.1167 179 O6 2 R               

287.1238 179 O6 8 R               

287.5748 179 O6 8 R               

287.5969 179 O6 0.5 S               

287.8029 179 O6 1 S               

287.980 179 O6 0.12 S               

287.988 179 O6 0.5 S               

287.1021 235 O11 32 R               

287.1045 235 O11 32 R               

287.1058 235 O11 32 R               

287.1087 235 O11 32 R               

287.1088 235 O11 32 R               

287.1100 235 O11 32 R               

287.1122 235 O11 0.25 S               

287.1124 235 O11 8 R               

287.1128 235 O11 32 R               

287.1131 235 O11 32 R               

287.1133 235 O11 32 R               

287.1134 235 O11 32 R               

287.1135 235 O11 32 R               

287.1144 235 O11 32 R               

287.1145 235 O11 32 R               

287.1147 235 O11 32 R               

287.1148 235 O11 32 R               

287.1150 235 O11 32 R               

287.1151 235 O11 32 R               

287.1158 235 O11 32 R               

287.1162 235 O11 32 R               

287.1163 235 O11 32 R               

287.1184 235 O11 32 R               

287.1200 235 O11 8 R               

287.1202 235 O11 32 R               

287.1203 235 O11 32 R               

287.1213 235 O11 32 R               

287.2973 235 O11 8 R               

287.2975 235 O11 8 R               

287.2976 235 O11 8 R               

287.5690 235 O11 8 R               

287.6327 235 O11 8 R               

287.6328 235 O11 8 R               

287.7780 235 O11 4 R               

287.7782 235 O11 4 R               

287.7783 235 O11 4 R               

287.7785 235 O11 4 R               

287.7786 235 O11 4 R               

287.7830 235 O11 4 R               

287.855 235 O11 128 R               

287.860 235 O11 0.015 S               
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287.902 235 O10 4 R               

287.903 235 O11 32 R               

287.915 235 O11 4 R               

287.918 235 O11 32 R               

287.955 235 O11 32 R               

287.966 235 O11 32 R               

287.984 235 O11 0.12 S               

287.1031 235 O11 0.06 S               

287.5686 235 O11 8 R               

PAE0056 244 O2 0.25 S               

PAE0064 244 O5 1 S               

PAE0066 244 O5 0.5 S               

PAE0069 244 O5 0.5 S               

PAE0121 244 O5 0.12 S               

PAE0143 244 O5 1 S               

PAE0173 244 O5 0.12 S               

287.1029 244 O2 32 R               

287.1060 244 O12 32 R               

287.1065 244 O2 0.015 S               

287.1089 244 O2 0.25 S               

287.1096 244 O12 32 R               

287.1097 244 O12 32 R               

287.1208 244 O12 32 R               

287.7781 244 O12 4 R               

287.7814 244 O2 4 R               

287.897 244 O12 32 R               

287.905 244 O2 0.25 S               

287.956 244 O12 16 R               

287.975 244 O11 8 R               

PAE0055 253 O10 1 S               

PAE0102 253 O10 0.25 S               

PAE0105 253 O10 0.5 S               

PAE0122 253 O10 1 S               

287.1035 253 O10 0.5 S               

287.1081 253 O10 2 R               

287.1085 253 O10 1 S               

287.1154 253 O10 2 R               

287.1157 253 O10 2 R               

287.7843 253 O10 2 R               

287.7850 253 O10 4 R               

287.873 253 O10 1 S               

287.893 253 O10 0.5 S               

287.894 253 O10 0.25 S               

287.907 253 O10 2 R               

287.912 253 O11 32 R               

287.985 253 O10 1 S               

PAE0045 274 O3 0.5 S               

PAE0103 274 O3 0.5 S               

PAE0159 274 O3 1 S               

PAE0169 274 O3 0.25 S               

287.1007 274 O3 32 R               

287.1019 274 O3 32 R               

287.1228 274 O3 0.25 S               

287.5973 274 O3 2 R               

287.7844 274 O3 4 R               

287.846 274 O3 1 S               

287.878 274 O3 8 R               

287.885 274 O3 0.03 S               
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287.953 274 O3 0.5 S               

287.963 274 O3 0.12 S               

PAE0093 395 O6 0.25 S               

PAE0015 395 O6 0.25 S               

PAE0027 395 O6 1 S               

PAE0054 395 O6 0.5 S               

287.1039 395 O6 0.12 S               

287.1080 395 O6 0.5 S               

287.1106 395 O6 2 R               

287.1115 395 O6 0.5 S               

287.1116 395 O6 1 S               

287.5703 395 O6 2 R               

287.5749 395 O6 2 R               

287.5956 395 O6 8 R               

287.848 395 O6 0.5 S               

287.881 395 O6 1 S               

287.887 395 O6 0.25 S               

287.921 395 O6 4 R               

287.961 395 O6 0.25 S               

PAE0111 446 O11 16 R               

PAE0127 446 O11 0.5 S               

PAE0139 446 O11 1 S               

PAE0150 446 O11 1 S               

PAE0166 446 O11 4 R               

287.1205 446 O11 2 R               

287.7795 446 O11 4 R               

287.875 446 O11 1 S               

 

Grey shade: Marker (Gene or Gene variant) present, White: Marker (Gene or Gene variant) absent, Yellow shade: Gene absent 

Same sequence types are shown in same color 

Table 4.6. Levofloxacin molecular markers showing significant associations with specific high-risk clones 

Molecular 

marker 

High-risk 

group 

Chi-square p-value Phi co-efficient 

armR ST-111 9.14 0.002 0.115 

armR ST-235 8.5 0.004 0.111 

armR ST-233 3.9 0.049 0.075 

gyrAT83I ST-111 40.192 <0.005 0.241 

gyrAT83I ST-235 56.8 <0.005 0.287 

gyrAT83I ST-175 20.9 <0.005 0.174 

gyrAT83I ST-233 29.3 <0.005 0.206 

gyrAT83I ST-308 11.25 0.001 0.128 

nalCE153Q ST-235 80.4 <0.005 0.341 

ParEV460G ST-175 15.7 <0.005 0.150 

nalCS46A ST-27 7.5 0.024 0.104 

nalCS46A ST-111 7 0.031 0.1 

nalCS46A ST-235 19.1 <0.005 0.166 

Cluster 1 ST-111 9.6 0.002 -0.118 
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Cluster 1 ST-235 16.5 <0.005 -0.155 

Cluster 1 ST-233 4.07 0.044 -0.077 

Cluster 4 ST-111 18.6 <0.005 0.164 

Cluster 4 ST-235 15.7 <0.005 0.151 

Cluster 4 ST-308 5.203 0.023 0.087 

Cluster 5 ST-111 4.2 0.041 -0.078 

Cluster 5 ST-235 6 0.014 -0.093 

 

Data and analyses presented above in Table 4.5 and Table 4.6 in relation to levofloxacin markers 

shows that mexZ, armR, nfxB, mexS and nalC are all significantly associated with high risk 

clones. In addition, gyrAT83I showed significant association with high-risk clones (and also 

individually with each of ST-111, ST-235, ST-175, ST-233, ST-308 and ST-395). Similar to 

markers evaluated with ciprofloxacin, each of nalCE153Q and nalCS46A also showed 

significant association with high-risk clones especially with ST-235 for nalCE153Q and with 

ST-111, ST-27 and ST-235 for nalCS46A. The variant parEV460G showed significant 

association with ST-175. Both levofloxacin Cluster 1 and levofloxacin Cluster 5 linked to 

levofloxacin susceptibility (Chapter 3) showed to be significantly absent in high-risk groups, in 

addition, levofloxacin cluster 4 linked to levofloxacin resistance (Chapter 3) showed significant 

association with high-risk groups. 

Figure 4.8 summarizes the differential distribution of tested quinolone molecular markers in 

high-risk vs non high-risk clones in the whole collection of studied isolates. 
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Figure 4.8. Differential distribution of tested quinolone molecular markers in high-risk vs non high-risk groups  

The figure shows the distribution of variants that show significant absence/presence in high-risk groups. The 

distribution of variants among the four groups is represented in four colors. The difference in the distribution 

reflects the magnitude of significance (effect size). 

gyrA T83I, nalC S46A and armR showed larger effect sizes as seen by the difference in the number of isolates 

belonging to each of the four groups. 

Each of cluster1 and cluster5 showed significant absence in high-risk groups. These clusters were also linked to 

quinolone susceptibility. Cluster 4 which was linked to quinolone resistance showed significant presence in high-

risk groups showing larger effect size. The difference in distribution among the four groups represents the 

magnitude of effect (effect size). 

4.4.7. Aminoglycoside resistance markers of Ps. aeruginosa epidemic high-risk clones 

The distribution of previously identified aminoglycoside resistance and sensitivity markers (in 

Chapter 3) is analyzed in this section in relation to high risk clones. Table 4.7 and Table 4.9 

show the detailed distribution for both gentamycin and amikacin. 

A total of 300 isolates were analyzed for gentamycin susceptibility phenotype (106 resistant-194 

susceptible). Of those analyzed, a total of 81 isolates belonged to epidemic high risk clones 

(ST523 [N=4], ST446 [N=6], ST395 [N=7], ST308 [N=6], ST274 [N=6], ST253 [N=5], ST244 
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[N=8], ST235 [N=13], ST233 [N=5], ST179 [N=6], ST175 [N=2], ST111 [N=4], ST27 [N=6], 

ST17 [N=3]). 

A chi-square test for independence (with yates’ continuity correction) indicated significant 

association between nalCE153Q and high-risk groups, x2 (1, n= 300) = 11.84, p=0.001, phi= 

0.199. Significant associations were also found between each of pmrALeu71Arg, x2 (1, n= 300) 

= 9.925, p=0.002, phi= 0.182, gidBE97Q, x2 (1, n= 300) =25.237, p<0.005, phi= 0.29, 

gidBE186A, x2 (1, n= 300) =25.237, p<0.005, phi= 0.29, pstBE89Q, x2 (1, n= 300) =5.255, 

p=0.022, phi= 0.132, arnDG206C, x2 (1, n= 300) =3.839, p<0.05, phi= 0.113 and high-risk 

groups. Significant associations between individual markers and clusters of molecular markers 

for gentamycin and specific high-risk clones are summarized in Table 4.8. 

Table 4.7. Distribution of gentamycin molecular markers in relation to high-risk clones 
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PAE0044 532 11 8               

PAE0022 532 11 2               

PAE0101 532 11 2               

287.7776 532 11 16               

PAE0111 446 11 8               

PAE0127 446 11 4               

PAE0139 446 11 0.5               

PAE0150 446 11 4               

PAE0166 446 11 8               

287.7795 446 11 4               

PAE0093 395 6 4               

PAE0015 395 6 2               

PAE0027 395 6 4               

PAE0054 395 6 1               

287.5703 395 6 16               

287.5749 395 6 16               

287.5956 395 6 4               

PAE0147 308 11 4               

PAE0038 308 11 2               

PAE0052 308 11 2               

PAE0120 308 11 4               

287.5687 308 11 16               

287.6329 308 11 16               

PAE0045 274 3 2               

PAE0103 274 3 4               

PAE0159 274 3 8               

PAE0169 274 3 16               

287.5973 274 3 8               

287.7844 274 3 4               

PAE0055 253 10 8               

PAE0102 253 10 2               
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PAE0105 253 10 1               

PAE0122 253 10 2               

287.7850 253 10 8               

PAE0056 244 2 1               

PAE0064 244 5 1               

PAE0066 244 5 2               

PAE0069 244 5 1               

PAE0121 244 5 2               

PAE0143 244 5 4               

287.7781 244 12 16               

287.7814 244 2 16               

287.5686 235 11 16               

287.2973 235 11 16               

287.2975 235 11 16               

287.2976 235 11 16               

287.5690 235 11 16               

287.6327 235 11 0.5               

287.6328 235 11 4               

287.7780 235 11 16               

287.7782 235 11 16               

287.7783 235 11 16               

287.7785 235 11 16               

287.7786 235 11 8               

287.7830 235 11 4               

287.2980 233 6 16               

287.5688 233 6 16               

287.5752 233 6 16               

287.5959 233 6 16               

287.6492 233 6 16               

PAE0092 179 6 2               

PAE0042 179 6 2               

PAE0141 179 6 4               

287.5748 179 6 8               

287.5969 179 6 2               

287.8029 179 6 4               

PAE0025 175 4 4               

PAE0016 175 4 64               

287.5750 111 12 16               

287.6330 111 12 16               

287.7772 111 12 16               

287.7862 111 4 4               

PAE0029 27 1 8               

PAE0009 27 1 2               

PAE0050 27 1 1               

PAE0086 27 1 1               

PAE0108 27 1 4               

287.7773 27 1 4               

PAE0067 17 1 1               

PAE0128 17 1 4               

287.7807 17 1 4               

 

Shaded cells: variant present, White cells: variant absent 
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Table 4.8. Gentamycin molecular markers showing significant associations with specific high-risk clones 

Molecular marker High-risk 

group 

Chi-square p-value Phi-coefficient 

nalCE153Q ST235 160.177 <0.005 0.731 

pmrALeu71Arg ST532 11.341 0.001 0.194 

pmrALeu71Arg ST308 17.127 <0.005 0.239 

pmrALeu71Arg ST253 14.224 <0.005 0.218 

pmrALeu71Arg ST233 14.224 <0.005 0.218 

pmrALeu71Arg ST235 4.858 0.028 -0.127 

pmrALeu71Arg ST179 17.127 <0.005 0.239 

pmrALeu71Arg ST17 8.477 0.004 0.168 

gidBE97Q ST235 241.202 <0.005 0.897 

gidBE186A ST235 241.202 <0.005 0.897 

pstBE89Q ST233 185.593 <0.005 0.787 

arnAA170T ST233 147.458 <0.005 0.701 

arnDG206C ST233 164.407 <0.005 0.74 

Gentamycin cluster 1 ST111 4.739 0.029 0.126 

Gentamycin cluster 5 ST235 21.254 <0.005 -0.266 

Gentamycin cluster 5 ST233 7.953 0.005 -0.163 
 

The findings and tables presented above aimed at finding the association of gentamycin markers 

(shown in Chapter 3) in relation to high-risk clones. Markers showing significant association 

with high-risk groups included: nalCE153Q (especially with ST-235, high effect size:0.73), 

gidBE97Q (especially with ST-235, high effect size: 0.897), gidBE186A (especially with ST-

235, high effect size: 0.897), pstBE89Q (especially with ST-233, high effect size: 0.787) and 

arnDG206C (especially with ST-233, high effect size: 0.74). In addition, arnAA170T showed 

significant association with ST-233 with high effect size of 0.7. 

Gentamycin Cluster 1 showing association with resistance (Chapter 3) showed to be 

significantly associated with the high-risk clone ST-111 while gentamycin Cluster 5 showing 

association with gentamycin susceptibility (Chapter 3) showed significant absence in high-risk 

clones ST-235 and ST-233. 

A total of 691 isolates were analyzed for Amikacin susceptibility (148 are amikacin resistant). Of 

those analyzed, a total of 239 isolates belonged to epidemic high-risk clones (ST 17 [N=12], ST 

27 [N=11], ST 111 [N=30], ST 235 [N=50], ST 175 [N=10], ST 179 [N=13], ST 244 [N=20], ST 

233 [N=13], ST 308 [N=18], ST 395 [N=17], ST 532 [N=6], ST 446 [N=8], ST 274 [N=14], ST 

253 [N=17]). 
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A chi-square test for independence (with yates’ continuity correction) indicated significant 

association between armR and high-risk groups, x2 (1, n= 691) = 19.289, p<0.005, phi= 0.167. 

Significant association was also found between each of nalC, x2 (1, n= 691) = 4.888, p=0.027, 

phi= 0.084, mexZ, x2 (1, n= 691) = 5.391, p=0.02, phi= 0.088, ampR, x2 (1, n= 691) = 4.452, 

p=0.035, phi= 0.08, pmrBGly423Cys, x2 (1, n= 691) = 18.239, p<0.005, phi= 0.162, 

pmrALeu71Arg, x2 (1, n= 691) = 21.637, p<0.005, phi= 0.177 , nuoGA890T, x2 (1, n= 691) = 

26.014, p<0.005, phi= 0.194, pstBE89Q, x2 (1, n= 691) = 8.42, p=0.004, phi= 0.11, faoAT385A, 

x2 (1, n= 691) = 11.823, p=0.001, phi= 0.131, arnAA170T, x2 (1, n= 691) = 4.213, p=0.04, phi= 

0.078, arnDG206C, x2 (1, n= 691) = 4.213, p=0.04, phi= 0.078, phoQY85F, x2 (1, n= 691) = 

44.957, p<0.005, phi= 0.255 and high-risk groups.  

Each of mexRR70N, x2 (1, n= 691) = 12.347, p<0.005, phi= -0.134, mexRE70R, x2 (1, n= 691) 

= 18.223, p<0.005, phi= -0.162, mexRL130T, x2 (1, n= 691) = 15.579, p<0.005, phi= -0.150, 

mexRG97L, x2 (1, n= 691) = 19.259, p<0.005, phi= -0.167, mexRL29D, x2 (1, n= 691) = 19.23, 

p<0.005, phi= -0.167 showed significant absence in high-risk groups. 

Significant associations between individual markers or clusters of markers for amikacin and 

specific high-risk clones are summarized in Table 4.10. 

Table 4.9. Distribution of amikacin molecular markers in relation to high-risk clones 
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PAE0044 532 11 4                      

PAE0022 532 11 1                      

PAE0101 532 11 2                      

287.1022 532 11 2                      

287.7776 532 11 8                      

287.971 532 11 2                      

PAE0111 446 11 4                      

PAE0127 446 11 2                      

PAE0139 446 11 1                      

PAE0150 446 11 2                      

PAE0166 446 11 4                      

287.1205 446 11 0.1                      

287.7795 446 11 8                      

287.875 446 11 4                      

PAE0093 395 6 4                      

PAE0015 395 6 1                      

PAE0027 395 6 2                      

PAE0054 395 6 1                      
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287.1039 395 6 2                      

287.1080 395 6 2                      

287.1106 395 6 2                      

287.1115 395 6 1                      

287.1116 395 6 4                      

287.5703 395 6 4                      

287.5749 395 6 4                      

287.5956 395 6 16                      

 287.848 395 6 4                      

 287.881 395 6 8                      

287.887 395 6 2                      

287.921 395 6 1                      

287.961 395 6 1                      

PAE0147 308 11 4                      

PAE0038 308 11 1                      

PAE0052 308 11 1                      

PAE0120 308 11 2                      

287.1038 308 11 0.5                      

287.1072 308 11 0.5                      

287.1101 308 11 0.3                      

287.1104 308 11 4                      

287.1118 308 11 0.5                      

287.1138 308 11 128                      

287.1142 308 11 64                      

287.1211 308 11 64                      

287.5687 308 11 64                      

287.6329 308 11 8                      

287.913 308 11 4                      

287.964 308 11 4                      

287.965 308 11 4                      

287.995 308 11 4                      

PAE0045 274 3 2                      

PAE0103 274 3 1                      

PAE0159 274 3 4                      

PAE0169 274 3 16                      

287.1007 274 3 4                      

287.1019 274 3 4                      

287.1228 274 3 4                      

287.5973 274 3 16                      

287.7844 274 3 8                      

287.846 274 3 8                      

287.878 274 3 4                      

287.885 274 3 0.3                      

287.953 274 3 4                      

287.963 274 3 0.1                      

PAE0055 253 10 4                      

PAE0102 253 10 2                      

PAE0105 253 10 1                      

PAE0122 253 10 1                      

287.1035 253 10 2                      

287.1081 253 10 1                      

287.1085 253 10 1                      

287.1154 253 10 1                      

287.1157 253 10 2                      

287.7843 253 10 8                      

287.7850 253 10 16                      

 287.873 253 10 2                      

 287.893 253 10 2                      

287.894 253 10 2                      

287.907 253 10 1                      

287.912 253 11 4                      

287.985 253 10 16                      

PAE0056 244 2 1                      

PAE0064 244 5 2                      

PAE0066 244 5 1                      

PAE0069 244 5 1                      

PAE0121 244 5 1                      

PAE0143 244 5 4                      

PAE0173 244 5 8                      

287.1029 244 2 2                      

287.1060 244 12 8                      

287.1065 244 2 0.5                      

287.1089 244 2 1                      

287.1096 244 12 32                      

287.1097 244 12 64                      
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287.1208 244 12 32                      

287.7781 244 12 32                      

287.7814 244 2 8                      

 287.897 244 12 64                      

287.905 244 2 1                      

287.956 244 12 4                      

287.975 244 11 64                      

287.1031 235 11 32                      

287.5686 235 11 8                      

287.1021 235 11 32                      

287.1045 235 11 32                      

287.1058 235 11 8                      

287.1087 235 11 4                      

287.1088 235 11 4                      

287.1100 235 11 32                      

287.1122 235 11 8                      

 287.1124 235 11 32                      

287.1128 235 11 8                      

287.1131 235 11 16                      

287.1133 235 11 8                      

 287.1134 235 11 64                      

287.1135 235 11 4                      

287.1144 235 11 0.3                      

287.1145 235 11 8                      

287.1147 235 11 128                      

287.1148 235 11 16                      

287.1150 235 11 16                      

287.1151 235 11 8                      

287.1158 235 11 32                      

287.1162 235 11 16                      

287.1163 235 11 128                      

287.1184 235 11 4                      

287.1200 235 11 4                      

287.1202 235 11 64                      

287.1203 235 11 2                      

287.1213 235 11 64                      

287.2973 235 11 64                      

287.2975 235 11 64                      

287.2976 235 11 8                      

287.5690 235 11 64                      

287.6327 235 11 2                      

287.6328 235 11 8                      

287.7780 235 11 8                      

287.7782 235 11 8                      

287.7783 235 11 8                      

287.7785 235 11 32                      

287.7786 235 11 8                      

287.7830 235 11 8                      

287.855 235 11 64                      

287.860 235 11 1                      

287.902 235 10 4                      

287.903 235 11 8                      

287.915 235 11 128                      

287.918 235 11 16                      

287.955 235 11 8                      

287.966 235 11 1                      

287.984 235 11 32                      

287.1004 233 6 128                      

287.1011 233 6 128                      

287.1119 233 6 128                      

287.1136 233 6 64                      

287.1204 233 6 64                      

287.2980 233 6 64                      

287.5688 233 6 64                      

 287.5752 233 6 64                      

287.5959 233 6 64                      

287.6492 233 6 64                      

287.889 233 6 128                      

287.934 233 6 128                      

287.991 233 6 1                      

PAE0092 179 6 2                      

PAE0042 179 6 1                      

PAE0141 179 6 4                      

287.1103 179 6 4                      

287.1139 179 11 16                      
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Grey cells show marker presence, white cells show marker absence, Same STs are highlighted the same color 

 287.1143 179 6 16                      

287.1167 179 6 2                      

287.1238 179 6 8                      

287.5748 179 6 64                      

287.5969 179 6 8                      

287.8029 179 6 8                      

287.980 179 6 2                      

287.988 179 6 4                      

PAE0025 175 4 2                      

PAE0016 175 4 2                      

287.1024 175 4 4                      

287.1042 175 4 4                      

287.1051 175 4 4                      

287.1052 175 4 4                      

287.1132 175 4 2                      

287.1188 175 4 4                      

287.1192 175 4 4                      

287.908 175 4 2                      

287.1000 111 12 32                      

287.1046 111 12 4                      

287.1084 111 12 8                      

287.1093 111 4 2                      

287.1095 111 4 2                      

287.1098 111 4 1                      

287.1125 111 12 128                      

 287.1126 111 12 8                      

287.1127 111 12 4                      

287.1130 111 12 4                      

287.1140 111 12 128                      

287.1141 111 12 128                      

287.1146 111 12 128                      

287.1169 111 12 8                      

287.1172 111 12 2                      

287.1178 111 12 128                      

287.1179 111 12 128                      

287.1185 111 12 8                      

287.1195 111 12 64                      

287.1209 111 4 128                      

287.1216 111 12 128                      

287.5750 111 12 64                      

287.6330 111 12 32                      

 287.7772 111 12 8                      

287.7862 111 4 8                      

287.852 111 12 4                      

287.909 111 12 1                      

287.911 111 12 1                      

287.916 111 12 64                      

287.951 111 12 16                      

PAE0029 27 1 4                      

PAE0009 27 1 1                      

PAE0050 27 1 1                      

PAE0086 27 1 2                      

PAE0108 27 1 1                      

287.1086 27 1 2                      

287.1241 27 1 64                      

287.1301 27 1 8                      

287.7773 27 1 8                      

 287.954 27 1 4                      

287.987 27 1 4                      

PAE0067 17 1 2                      

PAE0128 17 1 2                      

287.1075 17 1 2                      

287.1129 17 1 16                      

287.1240 17 1 32                      

287.7807 17 1 8                      

287.847 17 1 4                      

287.850 17 1 2                      

287.900 17 1 2                      

287.983 17 1 2                      

287.989 17 1 0.1                      

287.998 17 1 4                      
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Table 4.10. Amikacin molecular markers showing significant associations with specific high-risk clones 

Molecular marker High-risk 

group 

Chi-square p-value Phi-coefficient 

armR ST235 8.473 0.004 0.111 

armR ST233 3.863 0.049 0.075 

armR ST111 9.145 0.002 0.115 

mexRR79N ST235 8.625 0.003 -0.112 

mexRR79N ST111 11.861 0.001 -0.131 

mexRE70R ST235 11.117 0.001 -0.127 

mexRE70R ST111 12.389 <0.005 -0.134 

mexRL130T ST235 9.234 0.002 -0.116 

mexRL130T ST111 12.389 <0.005 -0.134 

mexRG97L ST235 9.191 0.002 -0.115 

mexRG97L ST111 13.947 <0.005 -0.142 

mexRL29D ST235 10.655 0.001 -0.124 

mexRL29D ST111 13.602 <0.005 -0.14 
pmrBGly423Cys ST308 21.377 <0.005 0.176 
pmrBGly423Cys ST253 30.584 <0.005 0.21 
pmrBGly423Cys ST244 3.942 0.047 -0.076 
pmrBGly423Cys ST235 26.891 <0.005 0.197 
pmrBGly423Cys ST111 21.784 <0.005 0.178 
pmrALeu71Arg ST532 17.444 <0.005 0.159 
pmrALeu71Arg ST395 6.047 0.014 -0.094 
pmrALeu71Arg ST308 38.514 <0.005 0.236 
pmrALeu71Arg ST253 35.572 <0.005 0.227 
pmrALeu71Arg ST244 4.641 0.031 -0.082 
pmrALeu71Arg ST233 30.682 <0.005 0.211 
pmrALeu71Arg ST179 38.185 <0.005 0.235 
pmrALeu71Arg ST175 29.243 <0.005 0.206 
pmrALeu71Arg ST111 10.882 0.001 -0.125 

Amikacin cluster 1 ST233 42.918 <0.005 -0.245 

Amikacin cluster 1 ST111 9.267 0.002 -0.116 

Amikacin cluster 2 ST233 42.918 <0.005 0.245 

Amikacin cluster 2 ST111 9.267 0.002 0.116 

 

Amikacin resistance markers identified in Chapter 3 were evaluated in relation to high-risk 

groups and showed association of each of armR, nalC, mexZ and ampR with high-risk groups. 

Markers showing significant association with specific high-risk clones included: gidBE186A 

with ST-235, phoQY85F with ST-233, nuoGA890T with ST-395 and lptAR62S with ST-446. 

It is also noticed from assessment of aminoglycoside markers for both gentamycin and amikacin 

that pmrAleu71Arg was specifically highly conserved among isolates with ST-532, ST-253, ST-
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308, ST-233, ST-179, and ST-175. At the same time the marker showed significant absence in 

isolates with ST-446, ST-395, ST-111, ST-235 and ST-244. 

 

Figure 4.9. Differential distribution of tested aminoglycoside markers in high-risk versus non high-risk clones in the 

whole collection of studied isolates 

The figure shows the distribution of variants showing significant absence/presence in relation to high-risk clones. 

The four groups composing each variant are shown in four different colors. The difference in the distribution among 

the four groups composing each variant reflects the magnitude of significance (effect size). 

Markers that were significantly absent in high-risk groups include mexR R79N, mexR E70R, mexR L130T, mexR 

G97L, and mexR L29D. All with smaller effect sizes for the difference between the groups. This is represented by the 

difference in the number of isolates among the four groups. 

Each of pmrA Leu71Arg,  pmrBGly423Cys, gidBE97Q, gidBE186A, and phoQY85F showed significant association 

with high-risk groups with gidB and phoQ variants showing higher effect sizes as seen by the difference of 

distribution of isolates among the groups. 

Gentamycin cluster 5 which clusters towards more gentamycin susceptible isolates showed significant absence in 

high-risk groups with moderate effect size. Gentamycin cluster 1 showed significant presence in high-risk groups in 

general with smaller effect size. 

Amikacin cluster 2 which clusters towards more amikacin resistant isolates showed significant presence in high-risk 

groups. Amikacin cluster 1 linked to amikacin susceptibility showed significant absence in high-risk groups. The 

difference in distribution as seen in different column heights represents the magnitude of difference or the effect size. 
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4.5. Discussion 

The chapter has attempted to provide a brief summary on the population structure of Ps. 

aeruginosa giving an overview on some conventional and molecular typing methods used with 

the organism. Although not the primary objective of the thesis, it was necessary to first describe 

the population structure of the studied set of 691 Ps. aeruginosa isolates. This was based on two 

commonly used typing methods; MLST and serotyping. The association of tested quinolone and 

aminoglycoside resistance/susceptibility markers was then investigated in relation to background 

genomic context and especially to high-risk clones.  

Analysis of the population structure revealed a low value for association index (I A) approaching 

zero. This is considered highly suggestive of a non-clonal epidemic population (Smith et al., 

1993). The standardized index of Association for the studied set of isolates was (IS
A)=0.1302 

(P<0.001). This indicates linkage equilibrium and low evidence of association among the alleles 

analyzed. In support of that is the finding of a relatively high Mean genetic diversity (H): 0.8648 

+/- 0.0261. These results together support the idea that frequent recombination plays a key role 

in allele distribution in the population (Lenski, 1993). 

The results of the current study generally support the description of the population structure of 

Ps. aeruginosa found in most previous studies. Several studies using MLST have consistently 

calculated low index of association of 0.29 (Curran et al., 2004), 0.31 (Kiewitz and Tümmler, 

2000), and 0.35 (Maatallah et al., 2011) indicating non-clonal type of population structure. Most 

studies have consistently reported a panmictic structure (Morales-Espinosa et al., 2012) (Griffith 

et al., 1989) (Lomholt, Poulsen and Kilian, 2001), a finding that is supported by the current 

study. This also supports conclusions drawn about the population structure of Ps. aeruginosa 

which is consensually believed to be of panmictic-epidemic nature (Magalhães et al., 2020). 

Within the panmictic population structure, several multi-locus STs are known to successfully 

disseminate across diverse geographic locations and patient populations worldwide. These are 

commonly reported as related to multidrug resistance (MDR) and are therefore known as high-

risk clones. These STs include ST111, ST175, ST235, ST244, and ST395. ST235 is the most 

prevalent of these international high risk clones which are widespread worldwide showing 

association with poor clinical outcome and are usually linked to high level of antibiotic 

resistance (Pirnay et al., 2002)(Antonio Oliver et al., 2015). Although nearly 100 different 



202 | P a g e  
 

horizontally acquired resistance elements have been reported in these clones especially for the 

most studied clone (ST235 isolates), high level resistance can be readily rendered by other 

chromosomal changes or core genome determinants (Antonio Oliver et al., 2015) (Roy 

Chowdhury, Scott and Djordjevic, 2017). Despite their clinical importance, the molecular basis 

underlying the spread and success of high risk clones including the international clone ST235 

(Treepong et al., 2017) is not completely understood. 

Different molecular epidemiology and population structure studies on Gram-negative bacteria 

have identified MDR strains that successfully disseminate across diverse geographic locations 

and different patient populations and therefore known as high-risk clones. Metallo beta-

lactamases (MBLs) and Extended-spectrum Beta-lactamases (ESBLs) have both been classically 

linked to the successful spread and clonal dissemination of MDR Ps. aeruginosa in several 

studies (Giske et al., 2006) (Empel et al., 2007) (Viedma et al., 2009). However, this finding was 

not consistent. A population analysis of 103 MDR Ps. aeruginosa isolates with 42 isolates 

belonging to ST235 and 15 isolates belonging to ST111 showed that only few ST235 and ST111 

isolates are producing VIM-1, VIM-2 MBLs or other ESBLs including PER-1 or GES-7 

(Guzvinec et al., 2014). In the same study, isolates with multiple amino acid polymorphisms in 

OprD were observed. Only 4 of these isolates belonged to ST235 while 4 other isolates belonged 

to ST111. gyrAT83I was detected only in one isolate from the ST111 sequence type while the 

combination of gyrAT83I and parCS87L were identified only in two isolates belonging to 

ST235. This makes it necessary to understand the genetic environment related to mobilization of 

MBL genes which are frequently observed in high-risk clones. 

Correa et al., (2015) showed that the dissemination of extensively drug resistant Ps. aeruginosa 

has been repeatedly linked to the presence of mobile genetic elements that would facilitate their 

successful spread and clonal dissemination. The study has linked the clonal success of ST235 

and ST111 to harboring bla KPC-2 and bla VIM-2 respectively and showed that XDR high-risk 

clones of Ps. aeruginosa rely on class 1 integrons and on the transposable element Tn4401 as 

principal structures for gene mobilization in ST111 and ST235.  

In addition, Chowdhury et al., (2016) have linked three MDR isolates representative of Ps. 

aeruginosa ST235 to genomic islands 1 (GI1) carrying Tn6162 and genomic islands 2 (GI2) 

carrying Tn6163. These are thought to be probably responsible for capturing and mobilizing 
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antibiotic resistance gene cassettes carried by class 1 integrons (Chowdhury et al., 2016). The 

study shows that the presence of these genomic islands can be considered as a characteristic of 

ST235 clonal lineage. However, there is no sufficient evidence to show whether this association 

is linked to MDR behavior or whether it is an inherent character of the ST235 lineage. Among 

the resistance genes evaluated in the same study were the nfxB gene, the phoQ variant F76Y, and 

the pmrB variant V15I which were all identified in the three ST235 isolates from the same study. 

These findings support findings from the current analysis about the possible importance of the 

associations observed in nfxB, phoQ, and pmrAB variants to the ST235 clone. 

Another study has previously evaluated the genetic characters of ST235 versus non ST235 (Cho 

et al., 2013). Out of 68 Ps. aeruginosa clinical isolates collected over the time period of 4 years, 

34 isolates belonged to ST235. The study has specifically evaluated aminoglycoside modifying 

enzymes (AME) and class 1 integrons and found that all isolates belonging to ST235 contained 

AME whereas 23.5 % of non-ST235 isolates also contained AME genes. The same study has 

also detected class 1 integrase gene in 17 isolates out of 68 isolates; 16 of which belonged to 

ST235 and 1 isolate belonged to ST357 (Cho et al., 2013). This would again question the nature 

of the association observed between the genetic elements observed, MDR behavior and the high-

risk clonal lineage. 

Similar observations have also supported these findings and have reported the frequent carriage 

of GI 1 and GI 2 among the commonly observed international high-risk clones including ST235, 

ST111, and ST175.  Chowdhury et al., (2017) showed that all Ps. aeruginosa strains from their 

study carry one or more class 1 integrons suggesting that acquisition or loss of the observed 

genomic islands and the transposons they harbor (including Tn6060 and Tn6249) are likely 

influencing the resistome carried by ST235 and consequently their global dissemination (Roy 

Chowdhury, Scott and Djordjevic, 2017).  

Although it has been proposed that Ps. aeruginosa “high-risk clones” represent distinct lineages 

which are highly capable of acquiring and maintaining resistance genes and/or the mobile 

genetic elements containing these genes as compared with the general Ps. aeruginosa population 

(L. L. Wright et al., 2015), this assumption needs to be further tested. Clonal success in 

susceptible Ps. aeruginosa high-risk clones tends to be under investigated in most studies which 

consequently necessitates the assessment of the genetic markers underlying clonal success in a 
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range of both resistant and susceptible high-risk clones, the point that the current study set has 

tried to cover. The primary aim of this chapter was to make an additional investigation of the 

molecular basis of success of some identified high-risk clones and to study the possible link that 

may exist between different antibiotic susceptibility and resistance determinants and high-risk 

clones. To achieve that, I have specifically searched for specific signatures in previously 

investigated resistance/susceptibility markers including QRDR, efflux pumps operons, cell 

membrane related proteins and others. 

To ensure the diversity and comprehensive representation of the studied set of isolates, 

phylogenetic analysis and hierarchical clustering of the studied isolates were performed in 

relation to all known STs for Ps. aeruginosa. The studied set of isolates proved to be diversely 

distributed as shown in Figure 4.1 and Figure 4.2. 

Understanding the reason for success of epidemic high-risk clones is essential for designing 

treatment and infection control strategies (Baquero, Coque and de la Cruz, 2011). The specific 

genetic resistance markers of these high-risk clones were described in detail for the first time by 

(Cabot et al., 2012). These may include multiple combinations of chromosomal mutations and/or 

horizontally acquired resistance elements. The mosaic nature observed for either chromosomal or 

acquired resistance elements in relation to high-risk clones should draw much caution before 

making conclusions about the molecular bases of success for these clones. It is also important to 

carefully consider the fitness cost of any of these underlying mutations in relation to the genetic 

background of the strains (Kugelberg et al., 2005). 

Wastewater networks have been recently reported as trafficking sources between hospital wash 

basins for pathogenic bacteria including Ps. aeruginosa. In a recent study, 25 wash basin U-

bends were investigated in five locations in a dental hospital and showed highly related Ps. 

aeruginosa strains identified in several locations with some risky clones including ST179 and 

ST560 (Moloney et al., 2019). In addition, contaminated bronchoscopes rinsing water and 

connecting tubes have been also identified as a reservoir for spreading the organism (Zhang et 

al., 2020). This situation makes it important to understand whether the clonal success of 

epidemic high-risk clones is essentially related to mutational resistance or to horizontally 

acquired resistance elements, i.e. antibiotic inactivating enzymes or integrons carrying specific 
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gene cassettes. Such an understanding can greatly impact the choice of the best approach 

required to tackle these high-risk clones and to control their dissemination. 

Understanding the biologic nature of the genetic markers associated with the poor clinical 

outcome helps to determine whether the poor clinical outcome is related to the MDR behavior, to 

other virulence characters, or to other underlying biologic characters that make the organism 

more pathogenic or aggressive in host tissues. It is important to investigate and discriminate the 

origin on high-risk clones. High-risk behavior may be encountered as a conserved lineage-related 

character which is consistently detected in different hospitals , consequently indicating the higher 

probability of inter-hospital dissemination of XDR/MDR high risk clones. The other probability 

is that originally susceptible clones may undergo independent parallel evolution into high-risk 

clones in different settings by acquiring these markers.  

Although noted that particular sequence types are more infectious and virulent as measured by 

their global spread in different clinical settings, strains carrying ST235 sequence type cannot be 

considered identical. It has been shown that resistance gene content may vary greatly because the 

plasticity of Ps. aeruginosa has allowed the capture and rearrangement of resistance regions. 

This has led to considering strains of ST235 as a potent vector for the spread and evolution of 

complex resistance loci (Martinez et al., 2014). This has been supported in multiple studies 

(Liakopoulos et al., 2013) (Edelstein et al., 2013) including a recent work which has identified a 

new genomic island (PAGI-17) carrying two Tn4401b transposons and double blaKPC-2 

chromosomal insertions and belonging to ST235 (Abril et al., 2019). The study has shown higher 

genetic variability of the accessory genome in ST235 and has suggested the possibility of 

acquiring a specific genetic portion in Ps. aeruginosa long time ago by lateral gene transfer 

which has favored the incorporation and permanence of the two Tn4401b-blaKPC-2 transposons 

(Abril et al., 2019). 

The analysis performed in this chapter shows that 8 of previously identified quinolones 

resistance markers are exhibiting significant association with high-risk clones. The identified 

markers include mexZ, armR, nfxB, mexS, nalC, gyrAT83I, nalCE153Q, and nalCS46A. 

Interestingly observed is that 41 isolates out of 50 isolates within the high-risk group ST235 

showed the following cluster of molecular markers (mexZ, armR, nfxB, mexS, mexR and nalC). 

gyrAT83I was identified in 36/50 isolates and nalCS46A in 43/50 isolates. Both gyrAT83I and 
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nalCS46A showed significant association with ST235 exhibiting the highest effect sizes for 

individual mutations among all those tested. The third molecular marker that showed the highest 

effect size among all tested was nalCE153Q. Part of these findings may be supported by findings 

from the literature which showed that mexZ G195E, leading to MexXY overexpression, and 

gyrAT83I are among the documented variants in relation to the spread of ST175 XDR 

phenotype. These were also identified among the mutational resistance mechanisms showing 

frequent occurrence among ST111 and ST235 high risk clones (Kos et al., 2015). Other findings 

from the study performed by Treepong et al., (2017) also show association between ORDR gyrA 

T83I and ST235. This finding similarly supports findings from the current analysis. However, 

parC S87(80)I variant showing association with ST235 did not show significance in the current 

study set. A possible explanation is that phenotypic data in relation to the high-risk clones 

reported by Treepong et al., (2017) were not studied which may introduce a source of bias in 

their observations. A recent study has also identified a wide range of mutations in all efflux 

pump regulators in relation to high-risk clones including nalCE153Q which showed the highest 

effect size in the current analysis (Pelegrin, Saharman, Griffon, Palmieri, Mirande, Karuniawati, 

Sedono, Aditianingsih, Wil H.F. Goessens, et al., 2019). These findings are also supported by 

other recent findings which demonstrate the importance of QRDR-related mutations in high-risk 

clones (Horna et al., 2019). In the same study, Horna et al., (2019) identified QRDR mutations in 

all isolates belonging to ST235 and ST357. 

Similarly observed for the other frequent high-risk clone ST111, 27 isolates out of 30 isolates 

showed the same cluster of molecular markers (mexZ, armR, nfxB, mexS, mexR and nalC). 

gyrAT83I was identified in 23/30 isolates and nalCS46A identified in 24/30 isolates. Both 

showed statistically significant association. 

 Some of the aminoglycoside markers identified in Chapter 3 also showed significant association 

with high risk groups. These included pmrALeu71Arg, nuoGA890T, pstBE89Q, phoQY85F, 

lptAT55A, and gidBE186A. The pattern of their distribution seemed to be highly conserved for 

specific markers in relation to specific high-risk clones. These findings are supported by other 

recent findings shown by Pelegrin et al., (2019) who identified the same variant phoQY85F as 

highly conserved in ST235. The same study has also shown that pmrALeu71Arg was very 

frequently identified in both ST235 and ST446. Multiple other variants have also been identified 
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in nuoG in association with high-risk clones from the same study (Pelegrin, Saharman, Griffon, 

Palmieri, Mirande, Karuniawati, Sedono, Aditianingsih, Wil H.F. Goessens, et al., 2019).  

On the other hand, both arnAA170T and arnDG206C previously shown in chapter 3 as 

resistance markers to aminoglycosides has also shown significant association with high-risk 

behavior especially with ST233 showing very high effect size.  

pmrALeu71Arg is an interesting example. It showed significant association with high-risk 

clones. The marker was not identified in ST111, ST235, or ST395. On the other hand, it 

appeared to be highly conserved in other high-risk clones including; ST532 (6/6 isolates), ST395 

(15/17 isolates), ST308 (16/18 isolates), ST233 (12/13 isolates), ST179 (13/13 isolates), and 

ST175 (10/10 isolates). These findings are supported by findings from another recent study 

which showed that pmrAB and phoPQ are upregulated in relation to  high-risk clones and 

colistin resistance (Vatansever et al., 2020). The study has reported the presence of multiple 

insertions and deletions in the sequence of these genes but have not shown what specific SNPs 

were identified.  

phoP (which encodes a response regulator) and phoQ (which encodes a sensor kinase) 

(Macfarlane et al., 1999) are part of a three gene-operon. PhoP-PhoQ activity has been 

implicated in resistance to polycationic antimicrobials (e.g., polymyxins) and cationic 

antimicrobial peptides. Their role involves promoting an amino arabinose modification of the 

lipid A portion of lipopolysaccharide (LPS). It is possible that PhoPQ-dependent aminoglycoside 

resistance in Ps. aeruginosa involves a similar modification of LPS (McPhee, Lewenza and 

Hancock, 2003) (Moskowitz, Ernst and Miller, 2004b).  

In addition, some mutations in the two-component sensor-regulator system pmrAB have been 

linked to a changed aminoglycoside resistance phenotype. These include pmrA (Leu71Arg) 

located within the signal receiver domain of the response regulator,  pmrB (Thr4Ala) containing 

the phosphorylation site of the protein located in the protein secretion signal, and pmrB 

(Leu323His) located in close proximity to the histidine kinase A and ATP binding domains. 

While activation of each of the two systems separately only showed slight increases in MIC, 

combined activation of AmgS and the PmrAB system led to a 4-fold increase in the tobramycin 

MIC (Schniederjans, Koska and Häussler, 2017). 
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The findings shown above collectively support findings from the literature which show that 

mutations in several two-component regulatory systems including pmrAB, phoPQ and the 

associated overexpression of the arnBCADTEF-pmrE operon can lead to lipid A modification 

with L-Ara4N. The modification decreases the net negative charge of lipid A and consequently 

repels the binding to positively charged polymyxins. This effect proved to be associated with 

polymyxin resistance in Ps. aeruginosa (Han et al., 2019). Similar effect may also lead to 

gentamycin resistance which can explain the current findings. 

Another interesting example was lptAR62S which appeared to be conserved to ST446. It was 

only identified in all 8 isolates with ST446 and not identified at all in any other isolate belonging 

to other high-risk groups. Similarly, nuoGA890T also appeared to be highly conserved to ST395 

(identified in 17/17 isolates) and was not identified at all in any other high-risk group. 

gidBE186A which showed the highest effect size for significant association with individual high-

risk groups (x2 (1,691) = 241.202, p<0.005, phi=0.897) appeared to be a highly conserved 

marker for ST235. It was identified in 49/50 isolates with ST235 sequence type and in an 

additional one isolate with ST253 sequence type and not at all in any other high-risk isolates. 

Similarly, phoQY85F (x2 (1,691) = 44.957, p<0.005, phi=0.255) appeared to be another 

conserved marker that was exclusively identified in ST233 (13/13 isolates) and not identified at 

all in any other high-risk clone showing very high effect size for its association with ST233 

(phi=0.787). 

Although high-risk clonal lineages have been previously linked to some horizontally acquired 

resistance genes and also to genomic islands 1 (GI1) and genomic islands 2 (GI2), there is still 

insufficient evidence to show whether markers linked to high-risk clones are conserved markers 

across the lineage for each high-risk clone or that these markers occur as a change in originally 

susceptible and frequently occurring clones that undergo independent parallel evolution into 

high-risk clones in different settings. Findings from the current analysis could support the second 

trajectory because high-risk clone related markers analyzed here show association with 

quinolone resistance, but some do not show association with aminoglycoside resistance.  

This observation may support the assumption that the success of these clones is related to  

biological functional changes caused by the associated variants. These functional modifications 

may give the clone its success rather than being merely related to resistance or virulence 
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determinants. Although inactivating enzymes were not assessed here in relation to high-risk 

clones, a new group of mutational variants in chromosomal genes related to efflux pumps, 

efflux-pump regulators, and membrane proteins showing strong association in a large diverse set 

of isolates can support the assumption that horizontally acquired elements ,whether through 

plasmids or integrons, are not the sole underlying molecular elements for the success and spread 

of epidemic high-risk clones. Variants identified from the current analysis can represent biologic 

markers showing increased fitness and leading to the acquisition of specific adaptive or 

beneficial traits. These variants may also represent an adaptation to chronic infections. However, 

this needs to be further investigated by studying the variants’ biologic effect which is beyond the 

objectives of this work. This assumption has been previously supported by observations of Ps. 

aeruginosa sub-lineages with independent signatures of adaptation within the larger population 

which may result into distinct biologic activities (O’Brien et al., 2017). This assumption can be 

supported by findings from other studies that link high-risk clones to some virulence and 

adaptive biologic characters including defective motility, defective pigment production and 

increased biofilm formation (Mulet et al., 2013). Isolates with increased mutation rate (strong 

mutators) are known to be frequent in chronic Ps. aeruginosa infection while isolates with very 

low mutation rate are often linked to acute nosocomial infection (Mena et al., 2008) (Oliver et 

al., 2000). Although not much information is available on mutation rate of Ps. aeruginosa high-

risk clones, it has been suggested that the mutator phenotypes observed in high-risk clones may 

play a role in the adaptability required for the global success and dissemination of high-risk 

clones showing markers similar to those observed with chronic infections (Mulet et al., 2013), an 

assumption that could be supported by the findings from the current analysis. Another evidence 

suggesting the independent acquisition of adaptive characters are the findings of mutational 

resistance arising independently across distinct phylogenetic lineages and contributing to 

mutation-driven evolution of Ps. aeruginosa population structure (Zamudio et al., 2019). 

Although reported that global success of bacterial pathogens is determined by the interplay of 

regulatory networks interconnecting resistance and virulence (Martínez and Baquero, 2002), for 

the purpose and scope of this chapter, a large collection of diverse completely sequenced 

genomes with different resistance profiles was used to analyze a panel of 11 quinolone molecular 

markers, 23 aminoglycoside molecular markers in addition to the combinations of markers that 

have been investigated in the previous chapter. These could show potential link to clonal success 
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and consequently to clinical significance. Some of the previously identified molecular markers 

and clusters of markers showed significant association with some high-risk clones. This can add 

to their potential value to be used as molecular diagnostic markers and can also be useful for 

future design of specific treatment and infection control strategies. 

In summary, the results of this chapter indicate that Ps. aeruginosa high-risk clones are 

significantly associated with a defined set of molecular markers which include; mexZ, armR, 

nfxB, mexS, mexR, nalC, gyrAT83I, nalCS46A, nalCG71E, and nalCE153Q. These markers 

showed significant association with epidemic high-risk clones markedly observed with ST235 

and ST111. It is also important to note here that only ST235, ST111, and ST175 show significant 

association with quinolone resistance with no other high-risk clones showing association with 

aminoglycoside resistance. On the other hand, some aminoglycoside markers have shown 

specific linkage and conservation to specific high-risk clones. These include gidBE186A in 

relation to ST235, phoQY85F in relation to ST233, nuoGA890T in relation to ST395, and 

lptAR62S in relation to ST446. This may result in the assumption that these mutations probably 

offer some sort of adaptive fitness that underlie increased pathogenicity which is not necessarily 

related to antibiotic resistance. This may draw attention into considering the fitness characters of 

high-risk clones as a probable co-shared underlying element for both MDR/XDR phenotype and 

high-risk phenotype. This supports the importance of investigating the molecular basis of fitness 

in high-risk clones independent of their associated resistance or virulence characters although 

some overlap may exist in the genetic determinants underlying all these types of behavior. In 

support of that are findings reporting the lack of correlation between MDR phenotype and 

virulence phenotype among some common high-risk clones (Gómez-Zorrilla et al., 2016). In 

addition, studying the characteristics underlying persistent Ps. aeruginosa infection in cystic 

fibrosis lung has concluded that cytotoxicity was a persistent character among persister versus 

eradicated isolates (Tramper-Stranders et al., 2012) 

Although susceptible or non-MDR isolates from high-risk clones tend to be under investigated in 

the literature (Antonio Oliver et al., 2015), some recent findings have shown that pathogenicity 

characters and virulence genotype is highly correlated with high-risk clones independent of their 

associated MDR phenotype including a significant association of exoU-positive genotype with 

the high-risk clone ST235. It has also been shown in another study that exoU-positive isolates are 
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frequently detected among ST235 and O11 serotype and displaying a poor prognosis (Recio et 

al., 2018). In support of these findings, Horna et al., (2019) also showed that exo-U is 

significantly associated with MDR/XDR phenotype and with quinolone resistance. This should 

usually be considered within the genetic context of the strains and the associated antibiotic 

resistance fitness cost (Abdelraouf et al., 2011). It has been shown that susceptible high-risk 

clones are encountered in different environmental niches (Bel Hadj Ahmed et al., 2019), the fact 

that draws attention into the importance of investigating underlying genetic markers of success in 

both resistant and susceptible high-risk clones. Results of studies performed by Recio et al., 

(2019) have shown that although the associated MDR behavior offers a fitness cost, it appears 

that the pathogenic or poor prognostic characters of high-risk clones are more related to its 

virulence genotype. 

These findings when combined with the high predictive values identified in the previous chapter 

support the fact that efflux pump systems make essential contribution to the problematic nature 

of this species. This conclusion can also be supported by the distribution of susceptibility and 

resistance behavior of the organism population seen in MST diagram. MST diagrams showed 

that there is no clustering or clonality in antibiotic resistance behavior for any of the four studied 

antibiotic agents (amikacin, gentamycin, ciprofloxacin, levofloxacin), the observation that may 

indicate an unpredictable underlying genomic markers’ association with behavior or the presence 

of confounding epistatic interactions. This leaves us in a situation where there is probably no 

clear definition of what represents a high-risk clone. These are clones with MDR or pathogenic 

phenotypes that may also share some common phenotypic features. The clones are also known to 

carry some MDR-related gene structures. These structures include some mobile genetic elements 

including integrons, transposons or plasmids in addition to specific pathogenicity islands which 

are frequently observed with clonality.    

Horna et al., (2019) showed that the spread of a successful local clone is unlikely, however, the 

high-risk behavior can be attributed to the dynamic nature of the species accessory genome that 

leads to acquisition/loss of exoU-encoding genomic islands which co-harbor other integrons 

carrying many other resistance determinant gene cassettes. The same study has also shown 

alteration patterns in efflux pump regulators including mexZ, nfxB, mexS, nalC, and nalD in 

association with quinolone resistance and high-risk behavior (Horna et al., 2019). The study 
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suggests that the efflux pump system acts as an important underlying genetic determinant in 

strains with exoU- background while alterations related to efflux-pump regulation may be 

irrelevant in exoU+ background. The analysis performed in this chapter shows that efflux-pump 

regulators appear to be an important contributor to both quinolone resistance and high-risk 

behavior which support the findings of  Horna et al., (2019), however, the analysis have not 

tested for exo-U. 

Although different conclusions can be drawn about the population structure when different 

typing markers are used especially with polyphasic chromosomal markers that cover the core 

genome, the results of the current assessment agree with what is currently known about the 

species. However, the work done in this chapter can be extended to re-assess the population 

structure using other available typing approaches especially core genome-based typing. 

While a panel of molecular resistance markers were investigated in this chapter for their potential 

association with clonal success which greatly adds to the practical value of using these markers, 

the presence of specific virulence traits or markers in high-risk clones still needs to be further 

explored. In the previous chapter, I have investigated the predictive values for the most 

informative group of molecular diagnostic markers. This chapter has explored the relationship of 

these markers and the newly identified clusters of molecular markers in relation to high-risk 

clones. The chapter that follows moves on to explore for additional molecular determinants that 

can add more to the information and findings at this stage by applying genome wide comparative 

behavioral genomics. Thus far, the approach used aims at finding molecular markers that can be 

used as diagnostic to both resistance and/or high-risk behavior. These markers are studied with 

the aim of being used when enough research findings and reliable workflows become available at 

the practical level. Such markers can be used to guide or direct infection control procedures. 
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5.1. Introduction 

Bacterial genome wide association studies are considered a promising research approach for the 

discovery of novel genetic markers and for the detailed assessment of markers’ effect. The 

approach helps to explore the genetic basis of phenotypic variation in the population in a 

hypothesis free manner. Bacterial genome wide association studies (GWAS) are considered 

useful for predicting genetic variants associated with the phenotypes of interest using a small set 

of measures. The approach is considered superior to targeted and traditional genetic screens 

because it allows thorough testing of all possible elements at the whole system level rather than 

using a hypothesis-based testing which targets specific sets of genes or specific genomic regions. 

GWAS test genotype-phenotype associations based on either gene presence/absence pattern or 

based on SNP associations. The testing aims at exploring significant correlation at different 

levels of significance (Chen and Shapiro, 2015).  

A crucial aim of microbial genomics is to understand the genetic factors underlying different 

phenotypic properties. In GWAS, genomes are compared to find the genetic markers 

systematically correlated with the characters of interest. A true signal of association should be 

differentiated from background noise which may lead to spurious associations. This can usually 

result from the confounding effect of population structure or from recombination (Power, 

Parkhill and de Oliveira, 2017). Microbial association studies have some limitations that need to 

be considered during analysis design. These include four main points. First is the strong 

population structure that results from microbial clonal reproduction. Second is linkage 

disequilibrium that can be unpredictably interrupted by homologous recombination. Third is the 

diversity in gene content and last, but not least, is the variability in the probability of phenotypic 

distribution for a given genotype (Collins and Didelot, 2018).  

In human genetics, rare diseases are usually linked to highly penetrant variants while common 

traits are linked to multiple less-penetrant variants. There is currently some evidence that shows 

that the same may apply to bacterial genetics. Lack of strong associations in variants identified 

using genome-wide analysis is highly suggestive that common traits are affected by multiple 

alleles with smaller individual effect sizes. It has been shown that many bacterial variants 

essential for cell survival have very large effect size similar to Mendelian traits in eukaryotes. 

However, many bacterial traits are influenced by multiple variants with smaller effect sizes. 
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Their genetic basis can be determined by applying GWAS (Read and Massey, 2014). Effect size 

and Cluster analysis performed in the workflow applied in the thesis helps to find the best 

predictor combinations; an approach that can offer a great value to understand complex trait 

genetics. 

Smaller scale genomic studies including methods based on PCR, limited sequence data and 

comparative genome hybridization were considered among the main approaches used for 

investigating  genotypic-phenotypic relatedness in bacteria till 2010. The increasing availability 

of bacterial large-scale genomic sequence data opened the door for the increasing use of bacterial 

GWAS (Read and Massey, 2014).  

The first bacterial GWAS was applied to study Neisseria meningitidis. It was chosen as a 

valuable approach to investigate this organism which cause exclusively human diseases with no 

animal model  available. Bille et al., (2005) have developed a gene-based microarray to 

investigate for the differences between normal nasopharyngeal carriage and invasive isolates 

causing meningococcal disease. This has brought the light to a chromosomally integrated 

bacteriophage which can promote the development of epidemic clones and consequently break 

the commensal relationship of N. meningitidis with humans causing invasive disease (Bille et al., 

2005). In a later study, Bille et al., (2008) have examined a temperate bacteriophage in 1288 

meningococci which were able to confirm a phage associated with hypervirulence. This was 

over-represented in disease isolates from young adults. 

GWAS was also applied to investigate for the genetic factors underlying host adaptation in 

Campylobacter jejuni and C. coli and found that vitamin B5 biosynthesis is playing an important 

role (Sheppard et al., 2013). This was followed by GWAS studies applied to methicillin-resistant 

Staphylococcus aureus clinical isolates used to investigate for vancomycin resistance and also to 

investigate for the ability of bacteria to lyse human cells in other studies. These studies have 

identified 121 novel virulence-associated loci (Laabei et al., 2014) as well as  novel single 

nucleotide polymorphism in rpoB gene (Alam et al., 2014). 

GWAS was also applied to identify polymorphism related to beta-lactam resistance in 

Streptococcus pneumoniae and has also identified multiple novel antibiotic resistance - 

associated loci (Chewapreecha et al., 2014). Mobegi et al., (2017) have used GWAS to analyze 

the genome sequence of 1680 Streptococcus pneumoniae isolates from four independent 
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populations and have identified hotspots of genetic variations that correspond to antibiotic 

resistance phenotype in different antibiotic classes (Mobegi et al., 2017). 

GWAS was also applied for the genomic analysis of extraintestinal pathogenic E. coli and 

identified 17 novel factors as resistance determinants for further functional testing. The study 

showed differential profiles of virulence factor content and antibiotic resistance phenotype 

among the lineages affecting different body sites (Salipante et al., 2015). Genetic architecture for  

ecologic interaction of E. coli and Staphylococcus aureus co-culture was also investigated 

employing a GWAS approach called Q-ROADTRIPS and reported 66 and 111 SNPs as 

associated with interactions in E. coli and S. aureus respectively (He et al., 2017). GWAS was 

also used to investigate the neural and placental tropism in the foodborne pathogen Listeria 

monocytogenes and identified novel virulent genes in relation to hypervirulent clones causing 

central nervous system and maternal neonatal listeriosis (Maury et al., 2016). 

Resistance to anti-tuberculous drugs was also investigated in Mycobacterium tuberculosis using 

GWAS in different studies. Farhat et al., (2013) have identified 39 novel resistance-related loci. 

Another study has also identified 75 SNPs in 50 genes as potential new drivers of drug resistance 

in Mycobacterium tuberculosis (Chen and Shapiro, 2015). Large-scale genomic analysis has also 

been used to investigate the genetic variation underlying meningeal or pulmonary tuberculosis 

and has identified variations in three separate genes as correlated with the TB phenotype, one of 

which plays a role in host-pathogen interaction (Ruesen et al., 2018). 

Oppong et al., (2019) has also used GWAS to study lineage specific correlations with drug 

resistance and showed 17 potential novel correlations between antimicrobial resistance 

phenotype and Mycobacterial tuberculosis genomic variants (Oppong et al., 2019). Another 

recent study has also identified some other novel mutations in bacterial mono-oxygenase-

Rv0565c function that contribute to Ethionamide and Prothionamide Susceptibility in 

Mycobacterium tuberculosis (Hicks et al., 2019). GWAS was also applied in Mycobacterium 

tuberculosis to investigate markers related to disease transmissibility and identified genetic 

markers that confer increased transmissibility in vivo. These are related to altered immune 

response in vitro (Nebenzahl-Guimaraes et al., 2017). Genome-wide studies were also used to 

find correlation between specific pathogen lineages and host genetic risk factors for the disease 

in TB (Omae et al., 2017) (Zheng et al., 2018). They have also been used to identify specific 
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correlations between host genetic factors and human gut microbiota composition and showed 

that host genetic composition can greatly affect bacterial abundance in gut (Davenport et al., 

2015). 

Earle et al., (2016) have used a new GWAS approach to control for population structure and to 

recover lineage-level genes and gene variants underlying resistance to 17 antimicrobials in over 

3000 isolates from diverse clonal and recombining clinically important bacteria including 

Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, and Klebsiella 

pneumoniae. Interestingly, GWAS was also used to understand how bacterial genetic variation 

can influence the risk of developing gastric cancer in Helicobacter pylori (Berthenet et al., 

2018). The study has been performed on 173 H. pylori isolates from European populations 

including 49 isolates with gastric cancer. The study has identified a relationship between gastric 

cancer phenotype and some risky genotypes including the presence of babA gene and the cag 

pathogenicity island. Gori et al., (2019) have recently used pan-GWAS to highlight lineage 

specific genes related to virulence and niche adaptation in Streptococcus agalactiae. 

In Ps. aeruginosa, Redfern et al., (2019) show the usefulness of different GWAS approaches to 

improve our understanding about the diversity of different important phenotypic traits for the 

species including biofilm formation and AMR. A new extended Kmer-based GWAS method has 

previously suggested novel genotype-phenotype correlations in Mycobacterium tuberculosis, 

Staphylococcus aureus and in Pseudomonas aeruginosa (Jaillard et al., 2018). Ps. aeruginosa 

has also been previously investigated as an example of a highly plastic genome using a modified 

alignment free GWAS methodology in another study (Jaillard et al., 2017). Jaillard et al., (2017) 

have shown the power of GWAS approach to explore for the genetic basis of several antibiotic 

resistance phenotypes and have identified 46 novel putative resistance-related polymorphisms 

(Jaillard et al., 2017). In another study, the genetic bases of biofilm production in MDR Ps. 

aeruginosa have been investigated. The study has identified several SNPs in relation to biofilm 

forming phenotype including the arsenic reduction genes and lpxO that encodes a lipid 

hydroxylase (Redfern et al., 2019). 

Beyond investigating pathogenesis, Sutton et al., (2019) showed that GWAS can also be applied 

to explore the predatory behavior in myxobacteria. By studying 29 myxobacterial genomes 

including 10 prey organisms including Ps. aeruginosa, Sutton et al., (2019) have identified 139 
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predation genes. Ps. aeruginosa showed that 42 genes are associated with its  predatory activity 

(Sutton et al., 2019). The most notable finding in the same study was the demonstration of 

formaldehyde secretion as a potential predation resistant trait in Ps. aeruginosa. 

Based on the examples presented above, GWAS has shown promising results and can be 

considered a high-throughput tool for genetic marker discovery in a wide range of organisms 

showing different ranges of genome plasticity. As an approach, GWAS allows the identification 

of significant correlations. This helps to achieve a better understanding of disease etiology by 

exploring the genetic basis of microbial traits. Understanding the different biologic mechanisms 

underlying infectious diseases can guide new drugs and vaccine development. It can also help in 

designing predictive rapid diagnostic tools which guides surveillance for the sake of public 

health interventions. 

5.2. Objectives 

This chapter aims at: 

• Identification of system-level functions associated with susceptibility phenotype to 

quinolone group of antibiotics (1st round of CBG annotation). 

• Identification of gene variants showing significant association with susceptibility and 

resistance to ciprofloxacin and gentamycin (2nd round of CBG annotation). 

• Testing for the potential practical application of the identified variants for use as 

molecular diagnostics by evaluating the predictive diagnostic accuracy of candidate 

markers. 

• Examining the functional effect of prioritized gene variants. 

• Finding the best combination of variants showing improved diagnostic performance. 

• Examining the distribution of candidate alleles in relation to background genomic 

structure. 

5.3. Methods 

5.3.1. Phenotype testing 

Strains were tested phenotypically using three experimental methods. Modified Stoke’s method 

was chosen for the classification of studied isolates during the first exploratory stage of 

comparative behavioral genomics (CBG). MIC values were then used to classify isolates into 
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susceptible and resistant during the next stage of testing predictive values according to clinical 

breakpoints. 

5.3.1.1. Kirby-Bauer Method 

Bacterial inoculum of approximately 1.5*108 CFU/mL (corresponding to 0.5 McFarland 

standard) was applied to the surface of a Mueller-Hinton agar plate.  

Commercially prepared, fixed concentration, paper antibiotic disks were then placed on the 

inoculated agar surface.  

Plates were incubated for 18–20 h at 35 ℃ prior to determination of results. The zones of growth 

inhibition around each of the antibiotic disks were measured to the nearest millimeter. 

Detailed experimental protocol was implemented as shown in the following steps according to 

(Andrews and Howe, 2011) 

• Enough molten agar is poured into sterile Petri dishes to give a depth of 4 ± 0.5 mm (25 

mL in a 90 mm Petri dish).  

• The surface of the agar is dried to remove excess moisture without over-drying. 

• Four to five colonies (from a fresh overnight culture) are taken directly from the plate and 

then suspended in 3 mL broth or saline. in 100*12 mm glass tube to give turbidity that is 

just visible. The suspension is matched to the density of the 0.5 McFarland standard.  

• To inoculate the plate, a sterile cotton-wool swab is dipped into the suspension and 

excess liquid removed by turning the swab against the side of the tube.  

• The inoculum is spread evenly over the entire surface of the plate by swabbing in three 

directions.  

• The plate is then allowed to dry before applying discs. Discs are then applied to the 

surface of the agar within 15 min of inoculation.  

• A disc dispenser is used to apply discs to inoculated agar surface which should be firmly 

placed to the dried agar surface with even contact. 

• Plates are then incubated immediately or within 15 min of disc application.  

• For Pseudomonas spp., incubation should be at 35–37.8 ℃ temperature in air for 18–20 

hours. 
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• Plates should not be stacked more than six high in the incubator. 

• The diameters of zones of inhibition are measured to the nearest millimeter (zone edge is 

taken as the point of inhibition as judged by the naked eye) with a ruler or a digital 

caliper. 

5.3.1.2. Modified Stokes Method 

Stokes’ method was known and used for a long time as a routine method of testing antimicrobial 

sensitivity in most laboratories in the UK. It was listed by BSAC together with MIC as the main 

methods used for sensitivity testing (‘A guide to sensitivity testing. Report of the Working Party 

on Antibiotic Sensitivity Testing of the British Society for Antimicrobial Chemotherapy.’, 1991). 

The comparative disc diffusion techniques based on Stokes’ method for sensitivity testing was 

replaced by standardized Kirby Baeur disc diffusion protocol from 2001 by the BSAC Working 

Party Report (Andrews and BSAC Working Party on Susceptibility Testing, 2001) because of 

technical validity-related drawbacks and also due to some criticism related to the non-plausibility 

of using the same interpretation criteria to classify sensitivity and resistance to all classes of 

antibiotics.  

Although the method is not currently used in routine clinical practice, it was used in this work to 

classify strains phenotype for comparative purposes. It was chosen to control for sources of 

variability that are sometimes encountered during routine susceptibility testing. 

Stokes’ method is usually done by comparing disc zone diameter of the test strains to a normally 

susceptible control strain. The original Stokes’ Method had interpretive criteria in the clinical 

laboratory (Potz et al., 2004), however these were not used for the purpose of this research 

because of many technical drawbacks and lack of validity of such interpretations. For the 

purpose of this research, the method is modified to be used for the purpose of group comparison 

without related cutoff interpretations. In the current analysis, zone difference values were used as 

a scale measurement for sensitivity or resistance behavior for comparative analysis. This would 

help each individual test isolate to be compared to a control strain under the same technical 

conditions of the medium composition, incubation time, atmosphere, temperature, and disc 

content or quality, so both the test and control strain can be measured directly on the same plate. 
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5.3.1.3. Broth micro-dilution for MIC measurement 

The detailed experimental protocol for MIC testing using broth microdilution method was 

implemented as shown in the following steps according to Wiegand, Hilpert and Hancock, 

(2008). 

• Bacterial isolates to be tested were streaked onto nutrient-rich agar plates without 

inhibitors and incubated for 18-24 h at 37 ℃ to obtain single colonies. 

• For each isolate, 3 to 5 similar colonies were selected from the fresh agar plate and 

transferred into sterile cation adjusted Muller-Hinton broth using sterile loop or cotton 

swab and vortexed well to prepare the initial inoculum. 

• Inoculum suspension was adjusted to McFarland Standard of 0.5 (OD625=0.08-0.13). 

• Preparation and storage of antibiotic stock and working solutions were done according to 

Andrews, (2001). Details are shown in Appendix Ι 

• Antibiotic solutions were prepared at 10 different concentrations according to 

recommended test concentrations shown in Andrews, (2001). 

• Sterile 96-well microtiter plate was labelled so that 10 different concentrations are added 

to 10 columns of the microtiter plate. Column 11 was used as growth control well and 

column 12 as sterility control well. 

• 100 µl of sterile broth solution was pipetted into sterility control well (column 12) and 50 

µl of sterile broth solution into growth control well (column 11). 

• For each tested isolate, 50 µl of each antibiotic dilution was added into the respective 

well. 

• Bacterial suspension adjusted to 1.5*108 CFU/ml was mixed and vortexed well and then 

diluted 1:100. 

• Each well containing the different antibiotic solutions and the growth control well was 

inoculated with 50 µl of bacterial suspension. This results into the final desired inoculum 

of 5*105 CFU/ml. 

• 10 µl  aliquot from growth control well was immediately removed after inoculating the 

plate and pipetted into a sterile Eppendorf tube holding 990 µl of sterile broth and mixed 

well by vortexing. 
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• Further (1:10) dilution of the suspension was made by pipetting 100 µl into 900 µl sterile 

broth and mixed well. 

• 100 µl of each of the two dilutions was plated onto two different antibiotic-free nutrient 

rich agar plates using sterile cell spreader to spread the liquid. 

• Microtiter plates were sealed with gas permeable membrane and then incubated at 37 ℃ 

for 18-20 hours.  

• Agar plates were incubated together with the microtiter plate. 

• All experiments were done in triplicate. 

Reading Results and MIC determination 

For the test to be valid, cell counts plated on agar were checked to verify that the right number of 

CFU were used. 

The presence of around 50 colonies on the lower of the two dilutions (1:1000) of the initial 

bacterial suspension was expected when the correct bacterial inoculum density of 5*105 CFU/ml 

was used. 

If the cell number was within the desired range, the test could be analyzed to determine the MIC. 

Antibiotic-free growth control wells were checked. It was necessary to observe sufficient growth 

for the test to be valid (a definite turbidity or a sediments-button size > 2mm-in microtiter 

plates). 

Test results cannot be read if the sterility control well (no bacterial inoculum) is turbid. The MIC 

was defined as the lowest concentration of the antimicrobial agent that inhibits visible growth of 

the tested isolate as observed with the unaided eye. 

5.3.2. Comparative behavioral genomics 

A set of genomes of Ps. aeruginosa species including 167 lab isolates in addition to the reference 

Ps. aeruginosa isolates PA14 and PAO1 were used as an initial set for annotation. Each genome 

was assembled using de novo sequence assembly program SPAdes (Bankevich et al., 2012). 

Assembly quality and downstream sequence analyses were carried out using MUMer (Delcher, 

2002), BLAST (Altschul et al., 1990), and in-house perl scripts. The first round of genome 

annotation was performed using known genes with NCBI annotation and in-house pipeline of 
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annotation to find consensus gene sequences which are then used to resolve a search element for 

each gene. This was used to compose a library of genes for the species. During round 2 of 

genome annotation, the gene search elements were used to search back the genomes in order to 

resolve the alleles for each gene. During this step, allele consolidation was revised manually. 

Consolidated alleles were used to revise the gene library generated and to re-annotate all 

consistent core SNPs in all samples. This was then used to define the core genome and the 

diversity of the collection was defined based on the core genome. During round 3, the most 

diverse set of genomes based on core genome annotation was chosen as an optimized set to apply 

CBG analysis. The dataset included in this study showed a total of 877,218 SNPs in the directly 

comparable pan and core genomes. The isolate distance measure used to ascertain diversity was 

pairwise SNP distance of an isolate from its nearest neighbor in the core genome. The isolates 

had an average nearest neighbor distance of 18,213 SNPs, and the isolates with the minimum and 

maximum distance being 13,731 and 63,011 SNPs, respectively. Based on the identified diverse 

set of isolates, a matrix of gene content (gene presence/absence) and a SNP ID matrix was 

generated. CBG is then performed to find statistically significant association of different genes 

and SNPs using Fischer exact at 0.05 level of significance. Output from CBG shows lists of 

significant correlations for each of the genes and SNPs at different levels of significance. Venn 

diagrams were used to visualize co-shared variants among different pair-wise comparisons 

(Bardou et al., 2014). 

5.3.3. Post-CBG statistical and functional analysis 

5.3.3.1. Correspondence analysis, Effect sizes and predictive values 

This stage of analysis aimed at testing practical and applied significance of prioritized molecular 

markers.  

Statistical analysis: In order to filter the output and to find the most important SNPs candidates, 

statistical techniques used to investigate for practical significance including phi-coefficient, 

effect sizes, and confidence interval risk estimation were calculated using SPSS. To find the 

deviation of different identified genomic elements from independence, principle component 

analysis was used. In order to suit the type of study variables which are qualitative binomial data, 

correspondence analysis was applied using SPSS. 
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Functional analysis: MEGA software was used to map nucleotide changes in individual genes 

to PA-14 as a reference nucleotide changes. After that, functional analysis was applied to predict 

the functional effect of observed amino acid substitutions resulting from non-synonymous 

mutations on gene function. To do so, PROVEAN (Protein Variation Effect Analyzer) was 

applied for that purpose as described previously in Methods section 3.4.3 

Analysis of both effect sizes and predictive values was applied to a larger population of isolates. 

The population is more inclusive of different phenotypes. At the second stage of CBG 

annotation, studied strains were classified into susceptible and resistant groups. This 

classification was then used for diagnostic accuracy testing. This type of case/control binning 

was necessary for predictive values’ calculations which was used in the 2nd round of CBG 

annotation. The binary phenotypes were determined using latest EUCAST guidelines (EUCAST, 

2018). Strains with a gentamycin MIC > 4 were classified as resistant. Using these cutoffs across 

the studied group of strains classified 112 strains as susceptible and 50 strains as resistant. 

Strains with ciprofloxacin MIC > 0.5 were classified as resistant. Using these cutoffs across the 

studied group of strains classified 157 strains as susceptible and only 5 strains as resistant. 

Candidate gene variants were prioritized using primary CBG output sheets based on 

correspondence analysis and were re-identified in 162 isolates using NCBI BLAST (Cock et al., 

2015) . Blast output was visualized and analyzed for identifying SNP distribution using MEGA 

software (Kumar, Stecher and Tamura, 2016). Statistics including principle component analysis, 

predictive values, significance ,and effect sizes were implemented using IBM SPSS statistics 

(SPSS.V21). 

5.3.3.2. Testing for the functional effect of identified gene variants 

Protein sequence information of prioritized genes showing the evaluated variants were retrieved 

from Pseudomonas genome database (Winsor et al., 2009). Possible functional effect of amino 

acid changes identified in the variants of interest was evaluated using PROVEAN (Protein 

Variation Effect Analyzer) available at http://provean.jcvi.org./index.php (Choi and Chan, 2015) 

and I-Mutant v2.0 (Predictor of Protein Stability Changes upon Mutations) available at 

http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi (Capriotti, Fariselli and 

Casadio, 2005). 

 

http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
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5.3.3.3. Cluster analysis used to find best possible combination of molecular markers 

Two-step cluster analysis algorithm developed by (Chiu et al., 2001) for distance-based analysis 

of large datasets was implemented using IBM SPSS statistics (SPSS.V21) . Different gene 

variants of interest were used as input to the clustering function implemented in SPSS to find 

clusters predictive of a good model in relation to antibiotic resistance/susceptibility phenotype. 

Mixed type attributes can be handled using this function and the number of clusters is 

automatically determined (Bacher, Wenzig and Vogler, 2004). 

5.3.3.4. Background genomic context 

The CSI phylogeny tool by the DTU available at https://cge.cbs.dtu.dk/services/CSIPhylogeny/ 

was used to construct whole genome SNP-based dendogram (Kaas et al., 2014). SAMtools (H. 

Li et al., 2009) were used for sequence alignment and mapping and MuMmer (Delcher et al., 

2002) was used for large scale genome alignment and comparison. Concatenated alignment of 

high-quality SNPs was then used to infer phylogeny. The minimum depth at any SNP position 

used was 10x and the minimum distance between SNPs was 10bp. Approximate maximum-

likelihood for large alignments as implemented in Fast tree (Price, Dehal and Arkin, 2010) was 

used to infer phylogeny.  

To test for the effect of recombination on phylogeny, RDP was used to re-test for clonal 

relationship in studied isolates while accounting for recombinational events (Martin et al., 2010). 

RDP4 recombination detection program was used for detection and visualization of 

recombination in whole genome sequence alignments of 162 of tested Ps. aeruginosa isolates. 

Whole genome sequence alignment of 162 isolates was generated using Burrows-Wheeler 

Transform-Based Mapping Algorithms (Li and Durbin, 2009) and (Heng Li et al., 2009). The 

aligned sequences were used as an input to the software. The default exploratory method of the 

software was used to scan for recombination signal in genomes alignment including the primary 

scanning algorithms; RDP (Martin and Rybicki, 2000), MaxCHI (Smith, 1992) and 

GENECONV (Padidam, Sawyer and Fauquet, 1999) which were used to characterize patterns of 

recombination without any prior information. This was followed by BOOTSCAN (Martin et al., 

2005) and SISSCAN (Gibbs, Armstrong and Gibbs, 2000) algorithms to check for the 

recombination signal detected using other exploratory methods. 

https://cge.cbs.dtu.dk/services/CSIPhylogeny/
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Analysis of recombination patterns in whole genome alignments was performed to minimize the 

possible disruptive impact recombinant segments may introduce on inferring phylogeny. 

Therefore, it was important to identify recombination breakpoints and to re-analyze phylogeny 

based on genome regions unbroken by recombination breakpoints. To do so, Maximum 

likelihood tree algorithm (Price, Dehal and Arkin, 2010) was used to re-draw the phylogenetic 

tree after excluding regions of recombination. 

Phandango interactive web application available at www.phandango.net was used to explore and 

to visualize markers’ distribution in relation to background genomic context (Hadfield et al., 

2018). The stages and method workflow are summarized in the following diagram. 

 

http://www.phandango.net/
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5.4. Results. Section 1. Underlying resistance/susceptibility determinants in quinolones 

(individual and co-shared resistance determinants for ciprofloxacin/norfloxacin/ofloxacin) 

5.4.1. Phenotypic correlations of optimized CBG test group for the quinolone group 

This part of the analysis aimed at finding significant correlation between quinolone susceptibility 

phenotype and the underlying genes/gene variants. The phenotype was expressed using the 

difference in zone diameter. This was expressed in millimeter using a susceptible control strain. 

This is shown in method section 5.3.1.2 using modified stokes method. Binning of phenotypic 

groups was used for comparison. This is based on the distribution of phenotypic data as shown in 

Figure 5.1, Figure 5.2, and Figure 5.3. Modified stokes’ method measures the difference in zone 

diameter in mm by subtracting reading of the test isolate out of the control isolate.  Overlapping 

MIC and/or zone diameter data were additionally used to resolve the BINs. The BINs were based 

on phenotypic readings using the three methods. These included modified stokes, MIC, and zone 

diameter. Strains were primarily selected based on genotypic diversity which were then 

phenotypically measured. The following graphs show isolates included in different BINs and 

were used as input to CBG analysis. Readings shown in the graph are based on the phenotypic 

data measured using modified stokes method. 

 

Figure 5.1. Distribution of ciprofloxacin phenotype in 87 optimized CBG set of Ps. aeruginosa isolates 
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Figure 5.2. Distribution of norfloxacin phenotype in 87 optimized CBG set of Ps. aeruginosa isolates 

 

 

Figure 5.3. Distribution of ofloxacin phenotype in 87 optimized CBG set of Ps. aeruginosa isolates 
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Figure 5.4. Correlation between Ciprofloxacin and Ofloxacin phenotype in 87 optimized CBG set of Ps. aeruginosa 

isolates 

 

Figure 5.5. Correlation between Norfloxacin and Ofloxacin phenotype in 87 optimized CBG set of Ps. aeruginosa 

isolates 
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Figure 5.6. Correlation between Norfloxacin and Ciprofloxacin phenotype in 87 optimized CBG set of Ps. 

aeruginosa isolates 
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Table 5.1. Prioritized genes showing best performance for ciprofloxacin resistance and susceptibility phenotype 

 

P-values highlighted in red shows the analysis  method  chosen. This was based on the suitability of BINs for the analysis. 

Odds ratio for cohort behavior susceptible > 1 indicates that the gene tends to occur more frequently in susceptible isolates 

Odds ratio for cohort behavior resistant >1 shows that the gene tends to occur more frequently in resistant isolates. 

Confidence interval for any parameter shows the range of values which is likely to contain the parameter of interest in the population. 

Table 5.2. Prioritized genes showing best performance for norfloxacin resistance and susceptibility phenotype 
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Alcohol dehydrogenase 0.046 0.035 -0.301 0.283 (0.086-0.937) 0.531 (0.292-0.963) 1.872 (0.974-3.597) 

Gluconate-5-

dehydrogenase   
0.013 0.006 0.392 6 (1.566-22.989) 2.250 (1.286-3.936) 0.375 (0.155-0.906) 

Glutaredoxin arsenate 

reductase 
0.072 0.052 0.280 3.333 (0.967-11.487) 1.824 (1.010-3.291) 0.547 (0.273-1.096) 

Glutathione-S-transferase 0.082 0.069 0.259 3.056 (0.897-10.406) 1.725 (0.977-3.047) 0.565 (0.281-1.134) 

p-benzoquinone reductase 0.082 0.069 0.259 3.056 (0.897-10.406) 1.725 (0.977-3.047) 0.565 (0.281-1.134) 

Zinc type alcohol 

dehydrogenase like 
0.082 0.069 0.259 3.056 (0.897-10.406) 1.725 (0.977-3.047) 0.565 (0.281-1.134) 

Lipoprotein signal 

peptidase 
0.057 0.036 0.302 4.038 (1.047-15.581) 1.868 (1.088-3.2080) 0.463 (0.194-1.104) 

Transcriptional regulator 

Zntr 
0.119 0.066 0.263 3.231 (0.901-11.586) 1.744 (0.999-3.044) 0.540 (0.252-1.157) 

MbtB 0.052 0.036 0.303 4.444 (1.039-19.015) 2.476 (0.881-6.958) 0.557 (0.343-0.905) 

Chromosome partitioning 

ATPase soj 
0.032 0.019 0.335 6.400 (1.195-34.285) 2.080 (1.257-3.442) 0.325 (0.092-1.151) 

NAD(P)H azoreductase 0.054 0.034 0.313 4.167 (1.067-16.277) 1.905 (1.092-3.323) 0.457 (0.191-1.092) 

Gramicidin-S-synthase 0.096 0.057 0.272   2.300 (1.654-3.198)   

Vit B12 transporter 0.205 0.124 0.220 2.700 (0.747-9.764) 1.607 (0.915-2.822) 0.595 (0.280-1.264) 

Ethanolamine ammonia 

lyase heavy chain 
0.041 0.026 -0.317 0.113 (0.012-1.028) 0.472 (0.294-0.760) 4.167 (0.667-26.017) 

Ubiquinone -O-methyl 

transferase 
0.355 0.252 0.167 2.036 (0.599-6.922) 1.453 (0.783-2.698) 0.714 (0.383-1.330) 
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NAD(P)H dehydrogenase 

(quinone) 

0.017 0.011 0.321 4.167 (1.348-12.882) 1.864 (1.176-2.953) 0.447 (0.217-0.923) 

MbtB 0.002 0.001 0.406 7 (1.968-24.895) 3.093 (1.260-7.591) 0.442 (0.276-0.707) 

Chromosome partitioning 

ATPase soj 

0.129 0.080 0.221 3.068 (0.845-11.134) 1.591 (1.011-2.505) 0.519 (0.218-1.233) 

NAD(P)H azoreductase 0.015 0.011 0.323 4.412 (1.349-14.428) 1.853 (1.187-2.893) 0.420 (0.189-0.934) 

Gramicidin-S-synthase 0.196 0.094 0.211 5.556 (0.610-50.597) 1.759 (1.121-2.760) 0.317 (0.052-1.927) 

Ethanolamine ammonia lyase 

heavy chain 

0.026 0.014 -0.311 0.1 (0.012-0.856) 0.500 (0.343-0.729) 5 (0.776-32.222) 

Ubiquinone -O-methyl 

transferase 

0.041 0.032 -0.270 0.260 (0.072-0.934) 0.457 (0.191-1.094) 1.76 (1.119-2.768) 

 

P-values highlighted in red shows the analysis  method  chosen. This was based on the suitability of BINs for the analysis. 

Odds ratio for cohort behavior susceptible > 1 indicates that the gene tends to occur more frequently in susceptible isolates 

Odds ratio for cohort behavior resistant >1 shows that the gene tends to occur more frequently in resistant isolates. 

Confidence interval for any parameter shows the range of values which is likely to contain the parameter of interest in the population. 

Table 5.3. Prioritized genes showing best performance for ofloxacin resistance and susceptibility phenotype 
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Alcohol dehydrogenase 0.118 0.077 -0.228 0.393 (0.138-1.117) 0.653 (0.398-1.072) 1.662 (0.934-2.958) 

Gluconate-5-

dehydrogenase   

0.299 0.194 -0.168 0.507 (0.180-1.422) 0.737 (0.461-1.178) 1.455 (0.817-2.591) 

Glutaredoxin arsenate 

reductase 

0.032 0.028 0.284 3.667 (1.117-12.034) 1.667 (1.089-2.552) 0.455 (0.202-1.021) 

Glutathione-S-

transferase 

0.032 0.028 0.284 3.667 (1.117-12.034) 1.667 (1.089-2.552) 0.455 (0.202-1.021) 

NAD(P)H dehydrogenase 

(quinone) 

0.116 0.082 0.224 5.778 (0.650-51.339) 1.683 (1.126-2.514) 0.291 (0.046-1.825) 

Zinc type alcohol 

dehydrogenase like 

0.069 0.053 0.25 2.850 (0.974-8.336) 1.569 (0.994-2.478) 0.551 (0.288-1.054) 

Lipoprotein signal 

peptidase 

0.081 0.047 -0.257 0.138 (0.015-1.259) 0.281  (0.046-1.706) 2.045 (1.264-3.309) 

Transcriptional regulator 

Zntr 

0.028 0.017 0.316 3.818 (1.241-11.752) 1.886 (1.038-3.424) 0.494 (0.276-0.884) 

Chromosome 

partitioning ATPase soj 

0.768 0.653 0.058 1.313 (0.400-4.303) 1.125 (0.685-1.846) 0.857 (0.428-1.716) 

NAD(P)H azoreductase 0.028 0.015 0.313 4.141 (1.264-13.572) 1.748 (1.137-2.686) 0.422 (0.187-0.952) 

Gramicidin-S-synthase          

Vit B12 transporter 0.168 0.099 0.213 2.579 (0.825-8.064) 1.474 (0.955-2.275) 0.571 (0.275-1.188) 

MnmC 0.754 0.550 0.078 1.467 (0.417-5.161) 1.179 (0.707-1.966) 0.804 (0.380-1.704) 

Ubiquinone -O-methyl 

transferase 

0.063 0.047 0.256 7 (0.804-60.981) 1.750 (1.200-2.552) 0.250 (0.039-1.595) 

 

P-values highlighted in red shows the analysis  method  chosen. This was based on the suitability of BINs for the analysis. 

Odds ratio for cohort behavior susceptible > 1 indicates that the gene tends to occur more frequently in susceptible isolates 

Odds ratio for cohort behavior resistant >1 shows that the gene tends to occur more frequently in resistant isolates. 

Confidence interval for any parameter shows the range of values which is likely to contain the parameter of interest in the population. 
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Results of statistical analysis including effect sizes, Fischer exact/Chi square, and risk estimate 

measures are shown in Table 5.1, Table 5.2, and Table 5.3. These were used to extract the genes 

shared among the three quinolone agents. These are illustrated in Figure 5.7.  

 

Figure 5.7. Shared genes showing best performance among the three studied quinolones agents; ciprofloxacin, 

norfloxacin and ofloxacin 

These shared quinolones genes showed significant associations at extremes of phenotypic 

behavior and lacked significance at intermediate groups. Risk estimates as shown in Table 5.1, 

5.2, and 5.3 also support the role of these genes. Applying correspondence analysis has also 

shown that some of these genes were also linked to some behavioral BINs as shown in Figure 5.8 

highlighted in the red circles. 

Correspondence analysis was performed in parallel. At this stage, finer BINs were used to re-

divide the phenotypic behavior into four groups including sensitive, intermediate 1, intermediate 

2, and resistant. This was performed in order to observe the signal of deviation. The first analysis 

was implemented using three-BIN classification and then the second analysis was performed 

using the finer four-BIN classification. This aimed at finding non-observable patterns using 

larger BINs. 
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Results of Correspondence analysis representing deviation from independence for the genes 

showing significant association within different quinolones’ phenotypic categories are shown in 

Figure 5.8. Correspondence analysis summarizes row and column profiles into relative 

frequencies. It calculates co-ordinates representing the distance or the differential proportions 

between row entries that represent the gene/gene variant and column entries that represent 

presence/absence in different phenotypic groups. This can be used as an indication of 

association. 

The distance between lines shown in Figure 5.8 represents the distance between individual row 

and column profiles and the line length represent the distance to the average row and column 

profiles which is shown as zero point. The shorter the line and the closer to zero, the less 

important the difference in the relative frequency is. More important differences show longer 

lines which represents the largest deviation from the expected average in proportion. This allows 

the visualization of how groups are related in addition to visualizing significant correlations 

resulting from the first stage of analysis. 
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Figure 5.8. Correspondence analysis showing 2-dimension deviation from independence for the best performing 

quinolone genes  

Green diamonds show the genes included in the analysis 

Blue diamonds show different phenotypic categories. 

Red circles show possible links between genes and phenotypic groups representing deviation from independence. 
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Based on the 2nd stage Binning of phenotypes into four BINs/groups which has been identified 

from results of correspondence analysis shown in Figure 5.8, the distribution of isolates among 

the-four BINs for each gene is shown in detail in Figure 5.9. 

 

Figure 5.9. Distribution of  genes showing best performance among different categories of susceptibility behavior 

Genes in blue rectangles show tendency to present at more resistant groups (resistant and intermediate 2 groups). The 

number of isolates occurring at each of these groups is represented in columns. 

Genes in brown rectangles show tendency to be absent at more susceptible groups (susceptible and intermediate 1 

groups). The number of isolates occurring at each of these groups is represented in columns. 
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In conclusion, genes/variants shared among different quinolones agents were identified using the 

analyses presented in Table 5.1, Table 5.2, Table 5.3, Figure 5.8, and Figure 5.9. Based on the 

combined findings of all analyses performed, chromosome partitioning soj, Gramicidin-S-

synthase, glutathione-S-transferase, azoreductases, and p-benzoquinone reductases all tend to 

correlate with susceptibility behavior while both alcohol dehydrogenase and ethanolamine 

ammonia lyase tend to correlate with resistance phenotype. In addition, the three genes related to 

susceptibility showed exactly the same distribution. These include NAD(P)H azoreductase, 

glutathione-S-transferase, and p-benzoquinone reductases. The possible role of these genes will be 

shown in detail in discussion section. 

5.5. Results. Section 2. System-level functional determinants of antibiotic resistance to 

ciprofloxacin identified using CBG (1st round of annotation) 

The same approach and steps shown in methodology section were applied to identify a group of 

genes/gene variants belonging to some novel functional pathways. Gene variants appear to be 

linked to resistance. These gene variants and functional pathways are illustrated in this section. 

5.5.1. Susceptibility/resistance determinant mutations identified by comparative behavioral 

genomics 

Table 5.4 shows single nucleotide changes and statistical values expressing their practical 

significance. Table 5.5 shows the predicted functional effect of nucleotide changes using 

PROVEAN. Sequences of genes from PA-14 was used as a reference. 

Table 5.4. Variants showing significance in relation to susceptibility and resistance identified using comparative 

behavioral genomics 
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snp_118 trpE (Anthranilate 

synthase component 1) 

 

A G Ala 40 Thr 0.003 0.383 3.096 1.234 7.767 



239 | P a g e  
 

snp_10 phnA (Anthranilate 

synthase component 

1_ pyocyanine 

specific) 

 

G A Gly 4 Arg 0.088 -0.255 1.8 0.937 3.459 

snp_118 phnA (Anthranilate 

synthase component 

1_ pyocyanine 

specific) 

G A Met 40 Val 0.002 0.407 3.035 1.228 7.499 

snp_11 antA (Anthranilate 

1_2-dioxygenase large 

subunit) 

 

C A Thr 4 Asn 0.003 0.383 3.096 1.234 7.767 

snp_800 pqsA (Anthranilate--

CoA ligase) 

 

C A Ala 267 Glu 0.211 0.188 1.816 0.569 5.794 

snp_366 

 

gltB (Glutamate 

synthase [NADPH] 

large chain) 

 

A C Lys 122 Asn 0.013 0.32 2.085 1.038 4.189 

snp_1638 gdhB (NAD-specific 

glutamate 

dehydrogenase) 

 

C G Leu 546 Phe 0.039 0.269 1.837 0.844 3.997 

snp_1201 gshA (Glutamate--

cysteine ligase) 

 

C A Lys 401 Gln 0.000 0.497 2.400 1.568 3.674 

snp_1130 msuD 

(Methanesulfonate 

monooxygenase) 

 

C T Ala 377 Val 0.001 0.426 4 1.367 11.703 

snp_936 msuD 

(Methanesulfonate 

monooxygenase 

G C Glutamic 

acid 312 

Aspartic 

acid 

0.257 -0.169 1.482 0.759 2.895 

snp_749 ssuD 

(Alkanesulfonate 

monooxygenase) 

T G Leu 250 Arg 0.001 0.502 0.316 0.198 0.504 

 

Table 5.5. Predicted functional effect of observed nucleotide changes using PROVEAN 

Protein variant PROVEAN score Prediction (cutoff) 
gdhB, Leu 546 Phe -3.752 Deleterious (-1.3) 

gltB, Lys 122 Asn -0.479 Neutral (-1.3) 

gshA, Lys 401 Gln -0.168 Neutral (-1.3) 

pqsA, Ala 267 Glu 

 

0.568 Neutral (-1.3) 

antA, Thr 4 Asn 

 

-0.946 Neutral (-1.3) 

phnA, Gly 4 Arg 0.429 Neutral (-1.3) 

phnA, Met 40 Val -1.324 Deleterious (-1.3) 
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trpE, Ala 40 Thr -1.984 Deleterious (-1.3) 

msuD Ala 377 Val -1.194 Neutral (-1.3) 
 

PROVEAN score lower than the prediction cutoff used (-1.3) is predicted as deleterious 

PROVEAN score higher than the prediction cutoff used (-1.3) is predicted as neutral 

Table 5.6 shows the predictive values of the identified genes/gene variants in relation to 

ciprofloxacin susceptibility. 

Tables 5.6(A-B). Ciprofloxacin susceptibility and resistance markers identified from 1st round of CBG annotation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Susceptibility markers 

 Ciprofloxacin 

 Specificity 
Negative predictive 

value 

 Zone data MIC data zone data MIC data 

Azoreductases 71.20 69.6 92.90 97.4 

Glutathione_S-

transferase_GST-6.0 
71.20 69.6 92.90 97.4 

p-benzoquinone 

reductase 
72.60 70.2 93.00 97.4 

trpE (Ala40Thr) 66.20 82.6 84.70 97.1 

antA (Thr4Asn) 82.60 82.6 84.40 98.5 

msuD (Ala377Val) 90.60 90.1 83.30 96.7 

gdhB (Leu546Phe) 62.30 57.1 90.50 96.8 

(B) Resistance markers 

 Ciprofloxacin 

 Sensitivity Negative predictive value 

  Zone data MIC data  Zone data MIC data 

Glutarate-semialdehyde 

dehydrogenase DavD 
71.4 80 78.9 97.4 

Alcohol dehydrogenase 60.70 82.30 40 95.2 

phnA (Gly4Arg) 75.00 87.00 60 96.3 

pqsA (Ala267Glu) 85.70 84.60 100 100 

murI (Arg25Arg) 83.30 91.70 100 100 

gdhB (Leu546Phe) 86.40 40.00 90.50 96.8 
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Figure 5.10. Distribution of CBG markers in relation to background context 

Green color represents marker/gene presence, yellow color represents marker/gene absence 
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The results shown in this section hypothesize a probable role of these functional pathways in cell 

survival to stress. Different functional pathways appear to offer complementary roles in 

determining resistance phenotypes. The distribution of different genetic markers in relation to the 

background genomic context may point to that. Three of the genes identified as probable 

susceptibility determinants were co-absent across the upper section of the tree and co-present 

across the lower section. Absence of these genes is assumed to make the cell susceptible to 

xenobiotic agents including antibiotics. This will be shown in detail in discussion section. 

However, it appears from the distribution of markers as shown on the phylogenetic tree (Figure 

5.10)  that alternative pathways may be acting in that case to protect the cell. This may include the 

Pseudomonas quinolone signal pathway as will be discussed later. It can also involve a possible 

role of alcohol dehydrogenase. Predictive values shown in Table 5.6 give additional support to the 

observed distribution of markers in relation to phylogeny. This is represented by the higher 

specificity and higher NPV for susceptibility-related markers which cluster across the upper 

section of the phylogenetic tree. These include azoreductases, GST-6.0, p-benzoquinone reductase, 

trpE Ala40Thr  and antA Thr4Asn. In addition, resistance markers summarized in Table 5.6 

showed an opposite clustering to susceptibility markers. This indicates that predictive values are 

complementary to other statistical measures and to phylogeny to understand the biologic behavior 

in relation to background genomic context. 

5.5.2. Functional pathways with compounds and gene changes linked to resistance 

(Secondary intermediary metabolism) 

5.5.2.1. Anthranilate biosynthesis and Pseudomonas quinolone signal 

Based on the polymorphisms identified in the genes from the anthranilate biosynthetic pathway, 

changes in anthranilate biosynthesis appear to be significantly correlated with resistance 

behavior. This assumption was based on variants showing significant correlations with quinolone 

resistance phenotype and these are shown in Table 5.4. Anthranilate biosynthesis occurs from 

two different sources including chorismite conversion and tryptophan degradation. Parts of these 

two pathways are illustrated here as extracted from KEGG database (Kanehisa and Goto, 2000) 

in Figure 5.11. The figure illustrates two probable pathways showing the identified variants in 

relation to ciprofloxacin susceptibility and their related statistical assessment. 
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 Anthranilate can act as a primary metabolite precursor for the well-known PQS (2-heptyl-3,4-

dihydroxyquinoline biosynthesis). Pseudomonas quinolone signal is involved in multiple cellular 

functions and pathways including the regulation of several virulence factors, intercellular 

signaling in biofilms and iron chelating activity (Bredenbruch et al., 2006). 

Results of the 1st round of annotation from comparative behavioral genomics suggest the 

involvement of this signaling system in quinolone resistance. This may occur as a result of 

upregulation of oxidative stress response genes triggered by PQS including; superoxide 

dismutases, catalases, and alkyl hydroperoxide reductases. Figure 5.11 (A) illustrates the two 

sources of anthranilate synthesis through tryptophan degradation or corismite conversion. Both 

are considered precursors to PQS signal. 

This hypothesis is based on the observation of several polymorphisms in genes encoding for 

some enzymes involved in several key steps along this pathway. Identified polymorphisms 

showed significant correlation with ciprofloxacin resistance behavior. The identified SNPs are 

summarized in Figure 5.11(B). Two of the identified nucleotide changes were predicted as 

deleterious. These include: phnA Met40Val and trpE Ala40Thr. By observing the distribution of 

the five variants related to that pathway, it appears that both phnA Met40Val and phnA Gly4Arg 

tend to be more frequent at the upper segment of the phylogenetic tree while both trpE Ala40Thr 

and antA Thr4Asn tend to be more frequent at the lower segment of the phylogenetic tree 

(Figure 5.10).   

 

Figure 5.11 (A). The figure represents the two sources of anthranilate synthesis. The variants shown in red exhibited 

significance when CBG was applied 
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Figure 5.11(B). The figure shows gene variants identified using CBG in the pathway of Anthranilate biosynthesis 

and Pseudomonas quinolone signal 

Genes in the pathway of anthranilate biosynthesis are labelled in red 
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5.5.2.2. glutamate and glutathione metabolism 

Changes in genes involved in glutamate metabolism also showed significant correlation with 

ciprofloxacin resistance. Observed variants and their statistical values are shown in Table 5.4. 

The genes identified can be responsible for maintaining the cellular pool of glutamate needed by 

the cell on exposure to oxidative stress as in the case of exposure to quinolones. Increased 

glutamate production can be linked to bacterial cell protection and survival on exposure to 

oxidative stress. In that case, glutamate can be converted in the bacterial cytoplasm into a 

number of compounds such as glutamine, glutathione, GABA or the TCA cycle intermediate 

oxoglutarate or succinate and fumarate to a lesser extent. Figure 5.12 (A) shows 

glutathione/glutamate metabolism. Glutathione is considered one of the antioxidant molecules 

that protect the bacterial cell against reactive oxygen radicals when the bacterial cell is exposed 

to oxidative stress. The level of glutathione has also been noticed to increase during oxidative 

stress in relation to increased glutamate level. On the other hand, oxoglutarate is known as a 

potent antioxidant molecule which can be converted, in absence of any enzymatic reaction, into 

succinate in the presence of H2O2. In addition, conversion of glutamate to oxoglutarate by the 

glutamate dehydrogenase gdhA may increase the production of NADPH, which might also 

contribute to the anti-oxidant effect of glutamate acquisition (Ramond et al., 2014). The 

deactivating nucleotide changes (markers) from CBG output are shown in Table 6.2. These were 

tested using PROVEAN and showed that the gene gdhB is non-functional which can 

consequently affect glutamate utilization pathways.  Figure 5.12 (B) shows parts of the pathways 

of glutathione metabolism and glutamate metabolism extracted from KEGG database (Kanehisa 

and Goto, 2000). The graph shows the gene variants identified through CBG and their statistical 

values of performance. 

 



246 | P a g e  
 

 

Figure 5.12 (A). The diagram illustrates the central nitrogen cycle and the pathways involved in glutamate 

metabolism 

 

Figure 5.12 (B). The diagram illustrates gene variants identified in the pathway of glutamate and glutathione 

metabolism by using CBG 

 

 

 

Glutathione 

metabolism pathway  
Glutamate 

metabolism pathway  
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5.6. Results. Section 3. Post-CBG identification of candidate susceptibility/resistance 

markers for gentamycin in Ps. aeruginosa (2nd round of annotation) 

At this stage, CBG sheets were filtered for finding significant variants at extremes of behavior. 

Genes were re-checked against gene annotations available from public databases. The variants 

defined below and used for calculation of predictive values are based on that annotation. 

5.6.1. Description of the significance and distribution of candidate loci across different 

phenotypes 

The BINs used for CBG comparison consisted of four phenotypic comparison groups. These four 

groups were analyzed in six pairwise comparisons. Each BIN /group was compared to all other 

groups. In order to find the most important differences, the intermediate pairwise comparisons 

were removed and those analyzed included: PWC 2_3, PWC3_4 and PWC1_2. 

The venn diagram shown below represents the number of single nucleotide polymorphisms 

(SNPs) related to gentamycin susceptibility/resistance phenotype for the three analyzed pairwise 

comparison. 

 

Figure 5.13. The venn diagram illustrates the number of SNPs showing significance at the cutoff of 0.05. Three 

pairwise comparison groups were prioritized, and these are illustrated at the three circles shown. The intersections 

represent those SNPs co-detected among the 3 groups 

PWC1_3; Green circle refers to number of gene variants identified in pair-wise comparison of phenotypic BIN 1 and 

BIN 3 

PWC1_4; Blue circle refers to number of gene variants identified in pair-wise comparison of phenotypic BIN 1 and 

BIN 4 
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PWC2_4; Pink circle refers to number of gene variants identified in pair-wise comparison of phenotypic BIN 2 and 

BIN 4 

The venn diagram shown in Figure 5.13 has helped to filter the variants. Variants at the 

intersections of the three groups were studied. 

5.6.2. Diagnostic Performance of candidate loci as potential molecular diagnostic markers 

Gene variants at the intersections of venn diagram shown above were visually and manually 

scanned in order to select those variants showing significant correlation at the extremes of 

gentamycin comparative groups and at the same time lacking significant correlations among 

middle groups. 

As a result, markers shown below were prioritized and were tested for their diagnostic accuracy 

using predictive values. Primary distribution of CBG-based markers in the studied group of lab 

strains (162 isolates) is shown in Supplementary Table 6. These markers were classified into 

susceptible and resistant groups based on the latest clinical breakpoints (Rules, 2018). Predictive 

values and effect sizes were consequently analyzed to reflect practical significance. Measures of 

diagnostic accuracy for gentamycin CBG-based markers are shown in Figure 5.14. This figure 

shows how different measures of performance are distributed for different variants.  
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Figure 5.14. Heatmap showing diagnostic performance for CBG-based gentamycin molecular diagnostic markers 

The analysis showed some variants linked to gentamycin susceptibility and those variants 

showed tendency to be absent at higher MICs. These variants were assessed in two ways. The 

first group showed high specificity and high PPV to susceptibility phenotype. This can 

consequently rule-in susceptibility. The second group showed high NPV to resistance phenotype 

which can consequently rule-out resistance. These variants are shown in detail in Table 5.7 and 

in Table 5.8. 
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5.6.2.1. Candidate gentamycin markers showing high specificity and high PPV 

Variants showing higher specificity and higher PPV to gentamycin susceptibility phenotype are 

shown in Table 5.7. These markers have the potential to be used as rule- in susceptibility 

diagnostic.  

Table 5.7. CBG-based Gentamycin Molecular Markers showing higher specificity/PPV 
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PA4744 Translation initiation factor IF-2 261 C>T 87 R M22 7.1 32.5 100 100 4.93 

PA1041 Outer membrane porin F 543 A>G 181 G M8 4.5 31.4 83.3 98 3.7 

PA1207 
Glutathione-regulated potassium-efflux system protein 

KefC 
393 C>T 131 A M11 3.6 31.2 80 98 

3.08 

PA3860 Long-chain-fatty-acid--CoA ligase 1623 C>G 541 R M35 5.4 31.6 85.7 98 4.3 

PA3431 Inner membrane protein YohK 502 C>T 168 L M31 8.9 32 83.3 96 7.4 

PA3431 Inner membrane protein YohK 517 T>C 173 L M32 12.5 32.9 87.5 96 9.9 

PA5112 Esterase EstA 1188 T>C 396 N M37 21.4 35.3 92.3 96 16.04 

PA2194 Hydrogen cyanide synthase subunit HcnB 714 A>G 238 V M39 7.1 31.6 80 96 6.2 

PA4055 Riboflavin synthase 372 T>G 124 R M40 12.5 32.9 87.5 96 9.9 

PA2836 putative multidrug resistance protein EmrK 993 T>C 331 R M3 13.4 32.6 83.3 94 11.11 

PA2836 putative multidrug resistance protein EmrK 1014 A>G 338 A M4 11.6 32.2 81.3 94 9.9 

PA1207 
Glutathione-regulated potassium-efflux system protein 

KefC 
543 C>T 181 G M12 15.2 33.1 85 94 

12.34 

PA3614 Ribonuclease 1287 A>C 429 P M14 15.2 32.6 81 92 12.96 

PA5201 30S ribosomal protein S1 386 C>A 129 A129E M29 23.2 34.8 86.7 92 18.52 

PA4744 Translation initiation factor IF-2 129 G>A 43 K M23 26.8 34.9 83.3 88 22.22 

PA5197 Ribosomal protein S6--L-glutamate ligase 744 C>T 248 D M28 26.8 34.9 83.3 88 22.22 

PA5181 putative oxidoreductase 1128 G>A 376 Q M27 25.9 34.1 80.6 86 22.22 

PA0009 Glycine--tRNA ligase alpha subunit 540 C>T 180 D M34 19.6 32.3 75.9 86 17.9 

PA5181 putative oxidoreductase 1062 G>A 354 E M26 25.9 33.6 78.4 84 22.84 

PA3614 Ribonuclease 1268 G>C 423 G423A M13 36.3 34.9 77.4 76 32.72 

PA0108 Cytochrome c oxidase subunit 3 846 C>T 282 D M36 29.5 32.5 73.3 76 27.8 

PA2870 Response regulator PleD 1206 C>T 402 H M5 28.6 31.6 71.1 74 27.8 

PA2910 putative manganese efflux pump MntP 534 C>T 178 G M6 31.3 32.5 72.9 74 29.63 

PA1529 DNA ligase 1698 C>G 566 L M18 40.2 35.6 77.6 74 35.8 

PA1630 HTH-type transcriptional regulator TsaQ1/TsaQ2 174 G>A 58 T M19 37.5 34 75 72 34.6 

PA1754 HTH-type transcriptional regulator CysB 174 T>G 58 R M20 55.4 40.5 79.5 68 48.15 
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Markers with highest significance and highest effect sizes among all 26 markers included: M20 ( 

HTH-type transcriptional regulator CysB T 174 G), (phi= 0.216, p=0.006), M37 ( Esterase EstA 

T 1188 C), (phi= 0.219, p=0.005), M22 (Translation initiation factor IF-2 C 261 T), (phi= 0.152, 

p=0.053), M29 (30S ribosomal protein S1 C 386 A), (phi= 0.181, p=0.021), M28 (Ribosomal 

protein S6--L-glutamate ligase C 744 T), (phi= 0.164, p=0.037) and M23 (Translation initiation 

factor IF-2 G 129 A), (phi= 0.164, p=0.037). 

The distribution of the most important molecular predictors across different MICs are shown in 

Figure 5.15 (A-F). 
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Figure 5.15 shows six gentamycin-related molecular markers with higher specificity and higher PPV. These are 

listed in Table 5.7. 

The figure shows that the markers tend to be absent at higher gentamycin MICs. 

5.6.2.2. Candidate gentamycin markers showing higher NPV 

Variants showing high NPV to gentamycin resistance phenotype are shown in Table 5.8. These 

markers have the potential to be used as rule-out resistance diagnostic.  

The two markers showing the highest significance and highest effect sizes among those 

evaluated included; M7 (Cell division inhibitor SulA C111T), (phi= 0.167, p=0.033) and M33 

(Ribosomal RNA small subunit methyltransferase B C423A), (phi= 0.174, p=0.027). The 

distribution of these markers across different MICs is shown in Figure 5.16 (A-B). 

Table 5.8. CBG-based Gentamycin Molecular Markers showing higher NPV 
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PA0017 Ribosomal RNA small subunit methyltransferase B 423 C>A 141 G M33 58 76.4 40 60.7 45.06 

PA3431 Inner membrane protein YohK 132 T>C 44 Y M30 62 74 35 48.2 54.93 

PA3008 Cell division inhibitor SulA 111 C>T 37 S M7 26 72.6 48 87.5 16.7 

PA3587 HTH-type transcriptional regulator CynR 543 C>T 181 Y M17 34 71.6 37 74.1 28.4 

PA0473 putative GST-like protein YibF 678 C>T 226 R M21 20 71.4 46 89.3 13.6 

PA5112 Esterase EstA 1779 C>T 593 F M38 36 71.4 36 71.4 30.9 
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PA1147 Inner membrane protein YjeH 1257 A>G 419 G M10 36 70.9 35 69.6 32.1 

PA3587 HTH-type transcriptional regulator CynR 142 T>C 47.33 L M15 30 70 33 73.2 27.8 

PA2716 NADH oxidase 681 T>C 227 D M1 12 69.9 38 91.1 9.9 

PA3587 HTH-type transcriptional regulator CynR 225 G>A 75 Q M16 44 69.6 31 57.1 43.2 

PA0815 HTH-type transcriptional regulator YjiE 426 G>A 142 V M24 30 69.3 31 70.5 29.6 

PA0782 Bifunctional protein PutA 2958 T>C 986 R M25 8 69.1 31 92 8.02 

PA1060 Inner membrane protein YtfF 123 T>C 41 G M9 32 68.8 30 67 32.7 

PA2691 NADH dehydrogenase-like protein 1032 C>T 344 D M2 40 64.7 26 49.1 47.53 

 

 

Figure 5.16 shows two gentamycin-related molecular markers with the highest NPV as listed in Table 5.8 which 

also shows higher effect size. 

The figure shows that the markers tend to be absent at higher gentamycin MICs. 

5.6.3. Identification of new combinations of potential molecular markers with improved 

diagnostic performance 

Cluster analysis was applied to explore for the possibility of finding better combination of 

markers showing better performance. This was achieved by using the same approach as 

explained in detail in Chapter 3. The following 2 combinations of markers were identified. 

Combination1: A combination of 5 molecular markers including M20, M23, M28, M37 and 

nalC A186 T showed higher effect size in relation to gentamycin susceptibility phenotype. This 

was higher than any of the above markers separately, (chi=15.308, p=0.005, phi=0.307).  
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The detailed composition of these markers and their distribution are shown in Figure 5.17 and in 

Table 5.8. 

 
Figure 5.17. The figure illustrates the relative distribution of gentamycin molecular markers that  form combination 

1 across the 2 identified clusters 

This figure shows how markers are distributed (present/absent) in relation to different MICs. 

  
Table 5.9. Distribution of the components of combination 1 into two clusters in relation to gentamycin susceptibility 

Cluster Cluster.1 Cluster.2 

Size 56.8 % (92) 43.2 % (70) 

M20 Marker Present (81.5%) Marker Absent (95.7%) 

M23 Marker Absent (60.9%) Marker Absent (100%) 

M28 Marker Absent (60.9%) Marker Absent (100%) 

M37 Marker Absent (71.7%) Marker Absent (100%) 

nalC A186T Mutation Absent (98.9%) Mutation Absent (84.3%) 

Average gentamycin MIC 3.55 9.71 

The table shows that M20, M23, M28, and M37 tend to be absent at higher gentamycin MICs.   

Red Column to the right-hand side of each 

cluster shows “marker absence” 

Red Column to the left-hand side of each 

cluster shows “marker presence”. 

Distribution of CN MIC in each cluster is 

shown as continuous scale with higher MICs 

at the right-hand side and lower MICs at the 

left-hand side. 
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These 5 markers have divided the studied isolates into two clusters; Cluster 1 with lower 

gentamycin MICs (56.8%, 92 isolates) and Cluster 2 with higher gentamycin MICs (43.2%, 70 

isolates). Figure 5.18 shows the distribution of the two new clusters of molecular markers among 

different MICs. 

 

The figure shows that cluster 2 tends to occur at higher gentamycin MICs while cluster 1 tends to 

occur at lower gentamycin MICs. 

Cluster 2 was tested for its predictive performance for resistance phenotype and showed 

sensitivity of 66%, PPV of 47.1%, specificity of 67% and NPV of 81.5% with (chi=15.308, 

p<0.005, Phi=0.307). The likelihood ratio of this cluster to differentiate different MICs is 27.697 

with (phi=0.387, P=0.002). 

Cluster 1 was also tested for its predictive performance for sensitivity phenotype and showed 

sensitivity of 37.5%, PPV of 77.8%, specificity of 76% and NPV of 35.2% with (chi=2.835, 

p=0.092, phi=0.132). The likelihood ratio of this cluster to differentiate different MICs =14.028 

with (phi=0.273, p=0.081). 

Combination 2: Applying cluster analysis showed a second model with improved performance. 

This has divided the studied isolates into 3 clusters of markers. The markers ordered starting with 

the most important predictors included; M29, M33, M23, AmpRE114A, M28, M20, M7, M22 
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and nalC E153Q. The combination of 9 molecular markers showed higher effect size in relation 

to gentamycin susceptibility phenotype when compared to any of the individual markers 

separately, (chi=25.74, p=0.058, phi=0.399). The differential distribution of markers in relation 

to MIC is shown in Table 5.10,  

Table 5.10. Distribution of the components of combination 2  into three clusters in relation to gentamycin 

susceptibility 

 Cluster.1 Cluster.2 Cluster.3 

 33.3% (54) 50% (81) 16.7% (27) 

M29 Marker Absent (94.4%) Marker Absent (100%) Marker Present (100%) 

M33 Marker Absent (100%) Marker Present (71.6%) Marker Present (55.6%) 

M23 Marker Present (59.3%) Marker Absent (95.1%) Marker Absent (100%) 

AmpR E114A Mutation Present (59.3%) Mutation Absent (95.1%) Mutation Absent (77.8%) 

M28 Marker Absent (59.3%) Marker Absent (100%) Marker present (51.9%) 

M20 Marker Present (81.5%) Marker Absent (72.8%) Marker Absent (55.6%) 

M7 Marker Absent (100%) Marker Absent (67.9%) Marker Absent (96.3%) 

M22 Marker Absent (85.2%) Marker Absent (100%) Marker Absent (100%) 

nalC E153Q Mutation Absent (92.6%) Mutation Absent (100%) Mutation Absent (96.3%) 

Average 

gentamycin MIC 

3.87 8.86 2.94 

 

The table shows that each of M20, M28, and ampRE114A tends to be absent at higher MICs 

while M33 tends to be present at higher MICs. 

Cluster 2 showed tendency to occur towards higher gentamycin MICs and included 50% of 

isolates (81) while cluster 3 showed tendency to occur towards lower gentamycin MICs and 

included 16.7 % (27) isolates. 

Predictive performance of cluster 2 was tested to resistance phenotype and showed sensitivity of 

70%, PPV of 43.2, specificity of 58.9% and NPV of 81.5% with (chi=11.571, p=0.001, 

phi=0.267). Likelihood ratio of the cluster to differentiate different MICs= 22.648 with (p=0.004, 

phi=0.346).  

Cluster 3 was also tested for its predictive performance to susceptibility phenotype and showed a 

sensitivity of 67%, PPV of 81.5%, specificity of 66% and NPV of 47.1% with (chi=15.308, 
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p<0.005, phi=0.307). Likelihood ratio of cluster to differentiate different MICs= 27.697 with 

(p=0.002, phi=0.387). 

 
Figure 5.19. The figure illustrates the relative distribution of gentamycin molecular markers that form combination 

2 across the 3 identified clusters 

 

This figure shows how markers are distributed (present/absent) in relation to different MICs. 

 
 

Red Column to the right-hand side of 

each cluster shows “marker absence” 

Red Column to the left-hand side of each 

cluster shows “marker presence”. 

Distribution of CN MIC in each cluster is 

shown as continuous scale with higher 

MICs to the right-hand side and lower 

MICs to the left-hand side. 
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The figure shows the tendency of cluster 2 to present at higher gentamycin MICs and the 

tendency of cluster 1 and cluster 3 to present at lower gentamycin MICs. 

5.6.4. Distribution of candidate loci in relation to genomic background 

Microbial genomes are subject to different evolutionary forces that shapes its populations. These 

forces include; mutation, gene gain and loss, genetic re-arrangements and recombination 

(Didelot and Maiden, 2010). Considering that, correct inference of evolutionary tree needs 

accurate identification of its population genetic structure and mosaicism which may have been 

introduced by recombination. 

Recombination is defined as the exchange of genetic information between two lineages. It is very 

common in nature and can show remarkable impact on the evolutionary history especially in 

bacterial populations. Recombination is considered a process that takes genetic material from 

one genetic background and insert it into another (Hanage, 2016). The prevalence of 

recombination suggests its high importance for microbial evolution. Bacterial recombination has 

proved to provide a powerful adaptive benefit (Polz, Alm and Hanage, 2013). A good 

understanding of the impact of recombination on bacterial genomes is therefore crucial for the 

correct interpretation of genome analyses. In order to use bacterial genomic data for 
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epidemiologic purposes and to understand the spread of bacterial pathogens, a good 

understanding of how genetic exchange affects conclusions drawn from microbial genomic 

information is crucial. RDP4 (Martin et al., 2010) was used to generate an alignment cleaned 

from variations which are assumed to have arisen through recombination. The remaining part of 

the genome was then considered as “clonal frame” in which variations are assumed to have 

accumulated only through mutations. This was used to infer true phylogeny and to infer the 

genetic relatedness using maximum likelihood algorithm (Price, Dehal and Arkin, 2010).  

Figure 5.21 shows the distribution of all candidate gentamycin loci analyzed in this section in 

relation to background phylogeny. Candidate loci distributions for the studied set of 162 Ps. 

aeruginosa isolates were then re-mapped to the dendogram after removing recombinant regions 

to study the effect of recombination on the distribution of loci as shown in Figure 5.22. 
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Figure 5.21. Distribution of candidate gentamycin markers in relation to background phylogeny 

Gentamycin and amikacin susceptibility columns resistance/susceptibility as shades of blue where darker shades 

show higher resistance and lighter shades show lower resistance 

Nucleotide changes evaluated at each marker position are shown in different colors where Red color refers to “C” 

nucleotide substitution, Green color refers to “T” nucleotide substitution, Blue color refers to “G” nucleotide 

substitution, and Yellow color refers to “A” nucleotide substitution 
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Figure 5.22. Dendogram showing re-constructed clonal genealogy mapped to candidate gentamycin markers 

Gentamycin and amikacin susceptibility columns show different resistance/ susceptibility as shades of blue where 

darker shades show higher resistance and lighter shades show lower resistance 

Nucleotide changes evaluated at each marker position are shown in different colors where Red color refers to “C” 

nucleotide substitution, Green color refers to “T” nucleotide substitution, Blue color refers to “G” nucleotide 

substitution, and Yellow color refers to “A” nucleotide substitution 

The resulting corrected phylogenetic tree showed change in inter-isolate genetic distances and 

different branch lengths as a result of removing recombinant regions. However, the overall 

structure of the population remains separated into two large distinct groups. In addition, the 

differential distribution of candidate markers across the two large phylogenetic clusters remains 
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the same. This may indicate that these markers are probably more informative. The most 

important observation seen here is that the smaller subpopulation at the lower half of the 

dendogram in Figure 5.21 and Figure 5.22 appears to be more affected by recombination. This is 

seen as change in genetic distance/position of the whole cluster relative to the other 

subpopulation on the upper half of the dendogram when recombination was accounted for. This 

observation may indicate that markers clustering through this subpopulation offer real adaptive 

advantage as opposed to markers clustering through the upper half of the tree showing decreased 

fitness advantage. 

Combining all the analyses of gentamycin markers shown in this section show that M7 and M33 

have higher negative predictive values towards resistance and are distributed across the upper 

section of the phylogenetic tree. This may probably indicate lower fitness and the possibility to 

be used as rule-out resistance diagnostics markers. On the other hand, M20, M28, M29, and M37 

which form a newly identified cluster showing better combined predictive values and higher 

effect size was distributed across different branches of the phylogenetic tree i.e. not clonally or 

evolutionary clustering. This probably indicates a genuine link to important biologic traits.  
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5.7. Results. Section 4. Post-CBG identification of candidate susceptibility/resistance 

markers for ciprofloxacin in Ps. aeruginosa (2nd round of annotation) 

The approach applied here was the same approach used in gentamycin results section 5.7. 

Ciprofloxacin CBG sheets were filtered for finding significant variants at extremes of behavior. 

Genes were re-checked against gene annotations available from public databases and the variants 

defined and used for calculation of predictive values were based on that annotation. 

5.7.1. Description of the significance and distribution of candidate loci across different 

phenotypic groups 

The BINs used for CBG comparison consisted of four phenotypic comparison groups. These four 

groups were analyzed in six pairwise comparisons. Each BIN /group is compared to all other 

groups. In order to find important differences, intermediate pairwise comparisons were removed 

and those analyzed included PWC 2_3, PWC3_4 and PWC1_2. 

The venn diagram shown below represents the number of single nucleotide polymorphisms 

(SNPs) associated with ciprofloxacin susceptibility/resistance phenotype for the three analyzed 

pairwise comparison. 

 

Figure 5.23. The venn diagram summarizes the number of SNPs with significance cutoff of 0.05 in each of the 3 

prioritized pairwise comparison groups and also those co-detected among the 3 groups 

PWC1_3; Green circle refers to number of gene variants identified in pair-wise comparison of phenotypic BIN 1 and 

BIN 3 

PWC1_4; Blue circle refers to number of gene variants identified in pair-wise comparison of phenotypic BIN 1 and 

BIN 4 
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PWC2_4; Pink circle refers to number of gene variants identified in pair-wise comparison of phenotypic BIN 2 and 

BIN 4 

The venn diagram shown in Figure 5.23 has helped to filter the variants, variants at the 

intersections of the three groups were prioritized to study. 

5.7.2. Diagnostic Performance of candidate loci as potential molecular diagnostic markers 

Gene variants at the intersections of venn diagram shown above were visually and manually 

scanned to select those variants showing significant correlations at extremes of gentamycin 

comparative groups and at the same time lacking significant correlations among middle groups. 

As a result, markers were prioritized and were tested for their diagnostic accuracy using 

predictive values. A list of these markers is shown in Table 5.11 and Tables 5.12. Primary 

distribution of CBG-based markers in studied group of lab strains (162 isolates) is shown in 

Supplementary Table 7. These markers were classified into susceptible and resistant based on 

latest clinical breakpoints (Rules, 2018) and then predictive values and effect sizes were 

analyzed to reflect practical significance.  

Measures of diagnostic accuracy for ciprofloxacin CBG-based markers are shown in Figure 5.24. 

The figure shows how different measures of performance are distributed for different variants.  
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Figure 5.24. Heatmap showing diagnostic performance for CBG-based ciprofloxacin molecular diagnostic markers 

The analysis showed that some variants were linked to ciprofloxacin susceptibility and those 

variants showed to be absent at higher MICs. These variants were assessed in two ways. 

The first group showed high specificity and high PPV to susceptibility phenotype and can 

consequently rule-in susceptibility. The second group showed high NPV to resistance phenotype 

and can consequently rule-out resistance. These variants are shown in detail in Table 5.11 and 

Table 5.12. 
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5.7.2.1. Candidate ciprofloxacin markers showing high specificity and high PPV 

Variants showing higher specificity and higher PPV to ciprofloxacin susceptibility phenotype are 

shown in Table 5.11. These markers have the potential to be used to rule- in susceptibility.  

Table 5.11. CBG-based ciprofloxacin Molecular Markers showing higher specificity/PPV  
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PA2788 Methyl-accepting chemotaxis protein PctC 828 C>T 276 G 
M1 

18.5 3.8 100 100 
17.9 

PA3078 putative sensor histidine kinase TcrY 1032 A>G 344 A 
M5 

25.5 3.3 97.6 80 
25.3 

PA1273 c-diamide synthase 156 T>C 52 I 
M6 

28.7 4.3 100 100 
27.77 

PA1273 c-diamide synthase 498 C>T 166 P 
M7 

24.2 3.3 97.4 80 
24.07 

PA1374 putative HTH-type transcriptional regulator 99 A>T 33 L 
M9 

7.6 3.3 100 100 
7.4 

PA1374 putative HTH-type transcriptional regulator 222 T>C 74 R 
M10 

54.1 4 97.7 60 
53.7 

PA1374 putative HTH-type transcriptional regulator 271 G>C 91 V>L 
M11 

7.6 3.3 100 100 
7.4 

PA1374 putative HTH-type transcriptional regulator 300 C>T 100 G 
M12 

7.6 3.3 100 100 
7.4 

PA1374 putative HTH-type transcriptional regulator 376 A>C 126 M>L 
M13 

18.5 3.8 100 100 
17.9 

PA1408 Mechanosusceptible channel MscK 1150 G>A 384 A>T 
M14 

11.5 3.5 100 100 
11.11 

PA1408 Mechanosusceptible channel MscK 1329 G>A 443 V 
M15 

8.3 3.4 100 100 
8.02 

PA1694 Yop proteins translocation protein Q 668 C>T 223 T>I 
M19 

23.6 3.2 97.4 80 
23.45 

PA1805 Peptidyl-prolyl cis-trans isomerase D 1149 A>G 383 K 
M21 

42.7 3.2 97.1 60 
42.59 

PA1805 Peptidyl-prolyl cis-trans isomerase D 1167 C>T 389 R 
M22 

43.3 3.3 97.1 60 
43.2 

PA0454 Inner membrane protein YccS 2184 G>A 728 P 
M28 

26.1 3.3 97.6 80 
25.92 

PA0386 Oxygen-independent coproporphyrinogen-III oxidase-

like protein YqeR 

13 A>G 5 T>A 

M29 

5.1 3.2 100 100 

4.93 

 

M14 showed highest effect sizes among all 16 markers; Mechanosusceptible channel MscK G 

1150 A, (phi= 0.376, p=0.003). Other markers with lower significance included; M5 (putative 

sensor histidine kinase TcrY A 1032 G), (phi= 0.259, p=0.208) and M6 (c-diamide synthase T 

156 C), (phi= 0.111, p=0.159). The distribution of these markers across different MICs is shown 

in Figure 5.25 (A-C). 
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Figure 5.25 (A-C) shows three ciprofloxacin-associated molecular markers showing the higher specificity and 

higher PPV as listed in Table 5.11. 

The figure shows that markers tend to be absent at higher gentamycin MICs. 

5.7.2.2. Candidate ciprofloxacin markers showing higher NPV 

Variants showing higher NPV to ciprofloxacin resistance phenotype are shown in Table 5.12. 

These markers have the potential to be used as rule-out resistance diagnostic. 

The markers showing the highest significance and highest effect sizes among those evaluated 

included; M2 (Methyl-accepting chemotaxis protein PctC C1482 T), (phi= 0.138, p=0.08), M18 

(Yop proteins translocation protein Q C 417 G), (phi= 0.329, p=0.025), M20 (Cysteine--tRNA 

ligase C 738 T), (phi= 0.306, p=0.056), M23 (Anthranilate phosphoribosyl transferase G 96 A), 

(phi= 0.112, p=0.155), M34 (Amino-acid permease RocC C 1071 A), (phi= 0.388, p=0.002) and 
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Figure 5.25 (A).Distribution of M14 

(Mechanosensitive channel MscK G 1150 A) across 

different MIC levels

CIPRO

MIC
.01

.03

.06

.08

.12

.25

.50

2.00

8.00

0

5

10

15

20

25

30

35

40

45

50

MARKER PRESENT MARKER ABSENT

C
o
u

n
t

Figure 5.25 (B).Distribution of M5 (putative sensor 
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M44 (HTH-type transcriptional regulator YofA G 565 A), (phi= 0.369, p=0.005).The distribution 

of these markers across different MIC levels is shown in Figures 5.38- 5.43. 

Table 5.12. CBG-based ciprofloxacin Molecular Markers showing higher NPV 
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PA2788 Methyl-accepting chemotaxis protein PctC 1482 C>T 494 V M2 20 97.4 14.3 96.2 4.32 

PA2811 Inner membrane transport permease YadH 444 G>A 148 V M3 20 97.2 4.8 87.3 12.96 

PA2811 Inner membrane transport permease YadH 450 G>A 150 V M4 20 97.2 4.8 87.3 12.96 

PA1273 c-diamide synthase 795 A>G 265 E M8 40 97.5 4.9 75.2 25.3 

PA3650 1-deoxy-D-xylulose 5-phosphate reductoisomerase 111 T>C 37 T M16 40 97.5 4.7 73.9 26.54 

PA1607 putative HTH-type transcriptional regulator 243 C>T 81 R M17 40 97.3 3.8 68.2 32.09 

PA1694 Yop proteins translocation protein Q 417 C>G 139 P M18 40 97.8 7.1 83.4 17.28 

PA1795 Cysteine--tRNA ligase 738 C>T 246 T M20 40 97.7 5.9 79.6 20.98 

PA0650 Anthranilate phosphoribosyl transferase 96 G>A 32 Q M23 40 97.8 7.4 84.1 16.66 

PA0650 Anthranilate phosphoribosyl transferase 594 C>T 198 T M24 20 97.2 4.8 87.3 12.96 

PA0650 Anthranilate phosphoribosyl transferase 957 G>C 319 L M25 40 97.2 3.8 67.5 32.71 

PA0484 Formyltetrahydrofolate deformylase 495 G>A 165 E M26 40 97.5 4.8 74.5 25.92 

PA0454 Inner membrane protein YccS 1803 G>A 601 E M27 40 97.3 4.1 70.1 30.24 

PA0386 

Oxygen-independent coproporphyrinogen-III oxidase-

like protein YqeR 51 C>T 17 H M30 20 97.2 5.6 89.2 11.11 

PA0386 
Oxygen-independent coproporphyrinogen-III oxidase-

like protein YqeR 57 G>C 19 P M31 20 97.2 5.6 89.2 11.11 

PA0306 HTH-type transcriptional regulator GadX 834 G>C 278 G M32 20 97 3.4 82.2 17.9 

PA4981 Amino-acid permease RocC 516 G>A 172 G M33 20 97.2 5 87.9 12.34 

PA4981 Amino-acid permease RocC 1071 C>A 357 A M34 40 97.9 12.5 91.1 9.87 

PA4979 Acyl-CoA dehydrogenase 603 G>A 201 G M35 40 97.5 4.9 75.2 25.3 

PA4830 Proofreading thioesterase EntH 24 T>C 8 D M36 40 97.3 4 69.4 30.86 

PA4830 Proofreading thioesterase EntH 151 C>G 51 Q>E M37 40 97.5 4.8 74.5 25.92 

PA4830 Proofreading thioesterase EntH 153 A>G 51 Q>E M38 40 97.5 4.9 75.2 25.3 

PA4830 Proofreading thioesterase EntH 162 T>C 54 C M39 40 97.5 4.7 73.9 26.54 

PA4830 Proofreading thioesterase EntH 300 C>T 100 D M40 40 97.5 4.8 74.5 25.92 

PA4749 Phosphoglucosamine mutase 213 T>C 71 D M41 20 97.3 6.3 90.4 9.87 

PA4749 Phosphoglucosamine mutase 228 A>G 76 G M42 20 97.3 6.7 91.1 9.25 

PA0816 HTH-type transcriptional regulator YofA 511 G>A 171 A>T M43 40 97.8 7.1 83.4 17.28 

PA0816 HTH-type transcriptional regulator YofA 565 G>A 189 V>M M44 20 97.2 5 87.9 12.34 
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Figure 5.26 (A-F) shows six ciprofloxacin-associated molecular markers showing higher NPV as listed in Table 

5.12. 

The figure shows that the markers tend to be absent at higher gentamycin MICs. 
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Figure 5.26 (D). Distribution of M23 (Anthranilate 
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Figure 5.26 (E). Distribution of M34 (Amino-acid 

permease RocC C 1071 A) across different MIC levels
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Figure 5.26 (B). Distribution of M18 (Yop proteins 

translocation protein Q C 417 G) across different MIC 

levels
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Figure 5.26 (A). Distribution of M2 (Methyl-accepting 

chemotaxis protein PctC C1482 T) across different 

MIC levels
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Figure 5.26 (C). Distribution of M20 (Cysteine--tRNA 

ligase C 738 T) across different MIC levels

CIPROMIC

.01

.03

.06

.08

.12

.25

.50

2.00

8.00

0

10

20

30

40

50

60

MARKER PRESENT MARKER ABSENT

C
o
u

n
t

Figure 5.26 (F). Distribution of M44 (HTH-type 

transcriptional regulator YofA G 565 A) across 
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5.7.3. Identification of new combinations of potential molecular markers showing improved 

diagnostic performance 

Cluster analysis was applied to explore for the possibility of finding better combination of 

markers with better performance and the following 2 combinations of markers were identified. 

Combination1: A combination of 3 molecular markers M20, M23 and M2 showed higher 

significance and effect size in relation to ciprofloxacin susceptibility phenotype than any of the 

markers above separately, (chi=75.997, p<0.0005, phi=0.685).  

These 3 markers have divided the studied isolates into four clusters; Both Cluster 1 (11.1%, 18 

isolates) and Cluster 4 (63.6%, 103 isolates) showed tendency to cluster towards lower 

ciprofloxacin MIC while cluster 2 (5.6%, 9 isolates) showed tendency to cluster towards higher 

ciprofloxacin MIC. This distribution is shown in Figure 5.27 (distribution of the four new 

clusters of molecular markers among different levels of MIC). 

 
 

Predictive performance of cluster 2 was tested for resistance phenotype and showed sensitivity of 

60%, PPV of 33.3%, specificity of 96.2% and NPV of 98.7% with (chi=29.147, p<0.005, phi=-

0.424). Likelihood ratio of the cluster to differentiate different MICs= 24.357 with (p=0.002, 

phi=0.584).  

Cluster 4 was also tested for its predictive performance for susceptibility phenotype which 

showed a sensitivity of 65.6%, PPV of 100%, specificity of 100% and NPV of 8.5% with 
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(chi=9.007, p=0.003, phi=0.236). Likelihood ratio of cluster to differentiate different MICs= 

19.631 with (p=0.039, phi=0.317). 

Table 5.13. Distribution of the components of combination 1 into four clusters in relation to ciprofloxacin 

susceptibility 

 Cluster.4 Cluster.3 Cluster.1 Cluster.2 

Size 63.6% (103) 19.8% (32) 11.1% (18) 5.6 % (9) 

M20 Marker Absent 

(100%) 

Marker Present 

(100%) 

Marker Absent (100%) Marker Absent 

(77.8%) 

M2 Marker Absent 

(100%) 

Marker Absent 

(100%) 

Marker Absent (100%) Marker Present 

(77.8%) 

 M23 Marker Absent 

(100%) 

Marker Absent 

(78.1%) 

Marker Present (100%) Marker Absent 

(77.8%) 

Average Cipro 

MIC 

0.13 0.3 0.11 2.78 

Cipro 

sensitivity 

100% susceptible 93.8% susceptible 100% susceptible 66.7% susceptible 

 

The table shows that the three markers (M20, M2, M23) tend to be absent at lower ciprofloxacin 

MICs and present at higher ciprofloxacin MICs. 
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Figure 5.28. The figure illustrates the relative distribution of ciprofloxacin molecular markers composing 

combination 1 across the 4 identified clusters 
 

This figure shows how markers are distributed (present/absent) in relation to ciprofloxacin MIC 

 

Combination2: A combination of 5 molecular markers M20, M23, M2, nalC S209R and nalC 

A186T showed higher significance and effect size in relation to ciprofloxacin susceptibility 

phenotype than any of the above markers separately, (chi=88.068, p<0.0005, phi=0.737). The 

distribution of these markers is shown in Table 5.14. 

Table 5.14. Distribution of the components of combination 2 into five clusters in relation to ciprofloxacin 

susceptibility 

 Cluster.2 Cluster.1 Cluster.3 Cluster.5 Cluster.4 

Size 44.4% (72) 21.6% (35) 17.3% (28) 11.7 % (19) 4.9% (8) 

nalC S209R Present 100% Absent 97.1% Present 100% Present 94.7% Present 50% 

M20 Marker Absent 

100% 

Marker Absent 

88.6% 

Marker Present 100% Marker Absent 

100% 

Marker Absent 

75% 

 M23 Marker Absent 

100% 

Marker Absent 

100% 

Marker Absent 75% Marker Present 

100% 

Marker Absent 

87.5% 

M2 Marker Absent 

100% 

Marker Absent 

100% 

Marker Absent 100% Marker Absent 

94.7% 

Marker Present 

75% 

Red Column to the right-hand side of 

each cluster shows “marker absence” 

Red Column to the left-hand side of each 

cluster shows “marker presence”. 

Distribution of CIPRO MIC in each 

cluster is shown as continuous scale with 

higher MICs shown to the right-hand 

side and lower MICs shown to the left-

hand side. 
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nalC A186T Absent 100% Absent 68.6% Absent 100% Absent 100% Absent 87.5% 

Average 

Cipro MIC 

0.14 0.12 0.32 0.11 3.12 

Cipro 

sensitivity 

100% 

susceptible 

100% 

susceptible 

92.9% susceptible  100% susceptible 62.5% 

susceptible 

 

 
Figure 5.29. The figure illustrates the relative distribution of ciprofloxacin molecular markers forming combination 

2 across the 5 identified clusters 

 

The figure shows how markers are distributed (present/absent) in relation to ciprofloxacin MIC. 

 
These 5 markers have divided the studied isolates into five clusters; Cluster 4 (4.9%, 9 isolates) 

showed tendency to cluster towards higher ciprofloxacin MIC while cluster 2 (44.4%, 72 

isolates) showed tendency to cluster towards lower ciprofloxacin MIC. The distribution of the 

five new clusters of molecular markers among different MICs is shown in Figure 5.30. 

Red Column to the right-

hand side of each cluster 

shows “marker absence” 

Red Column to the left-hand 

side of each cluster shows 

“marker presence”. 

Distribution of CIPRO MIC 

in each cluster is shown as 

continuous scale with higher 

MICs shown to the right-

hand side and lower MICs 

shown towards left-hand 

side. 
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The figure shows that cluster 4 tends to occur at higher ciprofloxacin MICs while cluster 1 and 

cluster 2 tend to occur at lower ciprofloxacin MICs. 

Predictive performance of cluster 4 was tested towards resistance phenotype and showed 

sensitivity of 60%, PPV of 37.5%, specificity of 96.8% and NPV of 98.7% with (chi=33.32, 

p<0.0005, phi=-0.454). Likelihood ratio of the cluster to differentiate different MIC levels= 

24.174 with (p=0.002, phi=0.616).  

Cluster 2 was also tested for its predictive performance towards sensitivity phenotype and 

showed a sensitivity of 45.9%, PPV of 100%, specificity of 100% and NPV of 5.6% with 

(chi=4.127, p=0.042, phi=0.16). Likelihood ratio of cluster to differentiate different levels of 

MIC= 9.438 with (phi=0.21) 

 
5.7.4. Distribution of candidate loci in relation to genomic background 

Figure 5.31 shows the distribution of all candidate ciprofloxacin loci analyzed in this section in 

relation to background phylogeny. Candidate loci distributions for studied 162 isolates of Ps. 

aeruginosa were then remapped to dendogram after removing recombinant regions to study the 

effect of recombination on loci distribution as shown in Figure 5.32. 
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Figure 5.31: Distribution of candidate ciprofloxacin markers in relation to background phylogeny 

Ciprofloxacin and levofloxacin susceptibility columns show resistance/ susceptibility as shades of blue where darker 

shades show higher resistance and lighter shades show lower resistance 

Nucleotide changes evaluated at each marker position is shown in different color where Red color refers to “C” 

nucleotide substitution, Green color refers to “T” nucleotide substitution, Blue color refers to “G” nucleotide 

substitution, and Yellow color refers to “A” nucleotide substitution 
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Figure 5.32. Dendogram showing re-constructed clonal genealogy mapped to candidate ciprofloxacin markers 

Ciprofloxacin and levofloxacin susceptibility columns show resistance/susceptibility as shades of blue where darker 

shades show higher resistance and lighter shades show lower resistance 

Nucleotide changes evaluated at each marker position is shown in different color where Red color refers to “C” 

nucleotide substitution, Green color refers to “T” nucleotide substitution, Blue color refers to “G” nucleotide 

substitution, and Yellow color refers to “A” nucleotide substitution 
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5.8. Results Section 5. Predicted Functional effect of amino acid changes (nSSNPs) variants 

For all variants identified in results sections, functional effect of nSSNPs changes were tested to 

understand their possible role. These results would support some of the observed predictive 

values in addition to variants’ distribution in relation to background phylogeny. 

Table 5.15. Summary of predicted functional effect of non-synonymous SNPs identified as candidate markers 

Marker Gene Amino 

acid 

change 

PROVEAN Prediction I-mutant Prediction 

Prediction 

(cutoff -1.3) 

PROVEAN 

score 

Protein 

Stability 

Reliability 

Index 

M29 

(gentamycin) 

30S ribosomal protein S1 A129E Neutral 0.210 Decrease 6 

M13 

(gentamycin) 

Ribonuclease G423A Neutral 0.378 Decrease 1 

M11 

(ciprofloxacin) 

Putative HTH-

transcriptional regulator 

V91L Neutral -0.765 Decrease 6 

M13 

(ciprofloxacin) 

Putative HTH-

transcriptional regulator 

M126L Neutral 0.502 Decrease 6 

M14 

(ciprofloxacin) 

Mechanosusceptible 

channel MscK 

A384T Neutral -0.751 Decrease 7 

M19 

(ciprofloxacin) 

Yop proteins 

translocation protein Q 

T223I Deleterious -2.040 Decrease 4 

M29 

(ciprofloxacin) 

Oxygen-independent 

coproporphyrinogen-III 

oxidase-like protein 

YqeR 

T5A Neutral 0.048 Decrease 3 

M37 

(ciprofloxacin) 

Proofreading thioesterase 

EntH 

Q51E Neutral 1.739 Decrease 2 

M43 

(ciprofloxacin) 

HTH-type transcriptional 

regulator YofA 

A171T Deleterious -1.385 Decrease 6 

M44 

(ciprofloxacin) 

HTH-type transcriptional 

regulator YofA 

V189M Neutral -0.161 Decrease 8 

 

PROVEAN SCORE < -1.3 cutoff is predicted as deleterious 

Reliability index shows the degree of reliability of the predicted effect on protein function stability, the higher the 

number, the more reliable is the prediction. 

Different analyses including different ciprofloxacin variants analyzed in this section show that 

M14, M11 ,and M13 all showed very high specificity and PPV towards susceptibility phenotype 

and were all distributed across the upper section of the phylogenetic tree. These variants were 

also predicted to affect protein stability and may lead to loss of function. This may indicate the 

possibility of being used as susceptibility markers. On the other hand, ciprofloxacin markers 

M43 and M44 showed high NPV and were also distributed across the upper section of the tree 

carrying the possibility of being used as rule-out resistance markers. 
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5.9. Discussion 

5.9.1. Novel insights into system-level functions associated with quinolone susceptibility 

phenotype 

Results of comparative behavioral genomics has identified multiple co-shared genomic elements 

underlying quinolone susceptibility phenotype as shown in Results section 1. These genes and 

variants are identified as candidates for future research. Although the identified genes and 

variants were not all exhaustively studied, the potential importance of some of these elements 

and their link to the studied phenotypes in relation to findings from the literature will be 

discussed in this section. Chromosome partitioning soj and Gramicidin-S-synthase (non –

ribosomal peptide synthase) are two genes identified as co-shared susceptibility markers between 

ciprofloxacin and norfloxacin. 

These two genes can be linked to the lethal action of quinolones through their role in the 

pathway of chromosomal fragmentation and DNA damage that follows replication fork arrest 

(Drlica et al., 2008). Two pathways are known to be involved in releasing DNA ends from QL-

gyrase-DNA complexes. One pathway was linked to an identified protein factor, and is called the 

protein synthesis dependent mode, while the other pathway is known as the chloramphenicol-

insusceptible mode or the protein synthesis independent mode. The lethal effect of quinolones is 

known to arise from the release of DNA ends from QL-gyrase-DNA complexes (Drlica et al., 

2009). Based on that, non-ribosomal type of peptides may be among the proteins responsible for 

releasing these complexes and consequently the final bactericidal effect of quinolones through 

the protein synthesis independent mode. In the current analysis, Gramicidin-S-synthase and 

linear gramicidin synthase can be considered as probable candidates for performing this role. In 

support of this finding are findings from a recent GWAS study investigating Ps. aeruginosa in 

CF which has identified non-ribosomal peptide synthase among the gene presence/absence 

genetic markers set. The analysis was based on using two different approaches including PLINK 

and random forest (Noah, 2019).  

Results of the current CBG analysis has also shed the light on the possible role of Ethanolamine 

utilization in relation to quinolone phenotype. Both ethanolamine ammonia lyase and vit B12 

transporter showed significant association at extremes of phenotypic behavioral groups and were 

prioritized from the current CBG analysis as shown in results section 1.  
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Ethanolamine ammonia lyase catalyzes the AdoCbl dependent conversion of ethanolamine (EA) 

to acetaldehyde and ammonia (Shibata et al., 2010). The enzyme is considered essential for the 

growth of many bacteria on ethanolamine in the presence of exogenous vitamin B12 (Chang and 

Chang, 1975). This is also part of the pathway of glycerophospholipid metabolism (Kanehisa and 

Goto, 2000). It is the first enzyme in the degradative pathway of bacteria carrying the 

ethanolamine utilization (eut) operon (Kofoid et al., 1999). Inhibition of this pathway showed an 

important link in organisms that carry ethanolamine utilization genes and that cause food 

poisoning (Tsoy, Ravcheev and Mushegian, 2009).  

Alcohol dehydrogenase is another gene showing a co-shared resistance behavior to ciprofloxacin 

and ofloxacin. The gene showed tendency to present at more resistant groups as seen by its 

distribution and odds ratio for resistance behavior. This is illustrated in results section 1. Alcohol 

dehydrogenases are ubiquitous enzymes that present in nearly all life forms. These are 

oxidoreductases that catalyze the reversible oxidation of alcoholic compounds into 

corresponding aldehydes or ketones (Levin et al., 2004). Evidence from the literature may 

support the role of alcohol dehydrogenase because many bacterial species possess alcohol 

dehydrogenase with its ability to produce the reactive and toxic acetaldehyde (SALASPURO, 

1997). In addition, acetaldehyde production by microbial alcohol dehydrogenase has been linked 

to some pathogenic, toxic, and carcinogenic effect (Pavlova et al., 2013). The current analysis 

shows that alcohol dehydrogenase is more distributed across resistant isolates showing a possible 

co-interaction in resistance and virulence mechanisms. This finding can be related to the 

predatory behavior of Ps. aeruginosa represented in its acetaldehyde production by alcohol 

dehydrogenase. This assumption may be supported by similar findings from other GWAS studies 

(Sutton et al., 2019). The findings showed that formaldehyde secreted by Ps. aeruginosa 

together with its possession of other formaldehyde detoxifying enzymes are linked to its 

predatory behavior. 

It has been suggested that mucin degradation can act as a carbon source contributing to the 

pathophysiology of the organism in CF lung. Tnseq analysis has shown that some genes related 

to amino acid biosynthesis and cofactor biosynthesis are linked to increased growth fitness 

(Flynn, Phan and Hunter, 2017). Both trpE ,linked to tryptophan biosynthesis, and gshA ,linked 

to glutathione biosynthesis, were among the genes required for growth on mucin as identified 
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using TnSeq fitness screen (Flynn, Phan and Hunter, 2017). The same study has hypothesized 

that amino acids were being liberated from mucin and can act as primary source of carbon and 

energy. In the current analysis, a possible deleterious trpE variant and a gshA variant were 

identified among the genetic markers showing higher effect sizes in relation to ciprofloxacin 

resistance. Although the link to CF phenotype was not studied here, this finding may indicate a 

possible overlap between quinolone resistance phenotype and CF pathogenicity. 

It was also interesting to observe that some of the genes identified in the current analysis in 

relation to ciprofloxacin resistance have been previously identified as fitness determinants in 

Pseudomonas fluorescence. These determinants showed the ability to evade the host immune 

system in plant (Liu et al., 2018). Cole et al., (2017) have used transposon mutagenesis coupled 

with high-throughput transposon sequencing (Tnseq) and have identified hundreds of genes that  

increase fitness in wild type and in immunocompromised plant. Some of these genes were amino 

acid biosynthetic genes which have been similarly identified in previous other studies (Cole et 

al., 2017).  

Variants in trpE, gltB, antA, and ssuD were linked to quinolone resistance as identified using the 

current CBG analysis. Research findings reported by Liu et al., (2018) may support that through 

identifying the same genes, trpE, gltB, antA, and ssuD as fitness determinants. These 

observations may indicate that general fitness determinants in the species are contributing to 

antibiotic resistance phenotypes and that Ps. aeruginosa clinical success especially in 

immunocompromised patients may originate from the general fitness characters the species 

possess. These determinants can be contributing to its success in wide variety of hosts including 

human and plant. The role of shared fitness determinants and its contribution to antibiotic 

resistance behavior may be underestimated in Pseudomonas species. 

A very important finding from the output of the analysis performed in the chapter is observing a 

probable group of non-specific susceptibility determinant genes co-shared among different 

agents from the quinolone group. These genes include glutathione-S-transferase, azoreductases, 

and p-benzoquinone reductases. The genes have shown correlation with susceptibility behavior 

and also showed the same distribution in relation to background genomic context as illustrated in 

results section 1. A possible interpretation is that the three genes share similar functions acting as 

non-specific detoxification enzymes for any type of toxin or xenobiotic agents (non-nutritional 
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foreign chemical species). They may also act as general oxidative-stress related defense agents. 

The ability of any cell to survive any threat including both endogenously produced and 

exogenous xenobiotic agents is fundamental to survival and it is proposed that absence of these 

genes are related to the inability of the bacterial cell to detoxify toxic agents especially reactive 

oxygen species making the cell more susceptible to killing. The absence of these enzymes can 

probably make the cell easily killed and damaged by ROS and consequently make the bacterial 

cell susceptible to the action of antibiotics. However, the presence of these enzymes alone does 

not necessarily lead to resistance in all situations.  

The first gene is one of the glutathione transferases (GSTs). These are major phase Ⅱ 

detoxification enzymes found in the cytosol of living organisms. This family of enzymes can 

bind non-catalytically to a wide range of endogenous and exogenous ligands. They have wide 

range of functions including catalyzing substrates conjugation to glutathione, isomerases and 

peroxidase activities. Novel classes are continuously being identified in non-mammalian species 

carrying out functions that show similarities to other non-GST stress related proteins. These 

enzymes can provide protective function against H2O2-induced cell death by removal of reactive 

oxygen species and re-generation of S-thiolated proteins which are consequences of oxidative 

stress (Sheehan et al., 2001). Although not widely recognized in relation to antibiotic resistance, 

there is some research evidence showing that glutathione-S-transferase can mediate Fosfomycin 

resistance in bacteria (Arca, Hardisson and Suárez, 1990). This mechanism is not known as a 

common mechanism in relation to quinolone resistance and is not commonly reported in recent 

literature among the main quinolone resistance mechanisms. However, an important finding 

from a recent GWAS investigating predation behavior in myxobacteria has shown that the same 

gene identified from CBG (Glutathione S-transferase GST-6.0) is linked to predation behavior in 

some studied organisms (Sutton et al., 2019). In addition, the gene was reported among the 

fitness determinants genes in Ps. fluorescence using transposon mutagenesis coupled with Tnseq 

(Liu et al., 2018). 

Pseudomonas aeruginosa possesses three types of azoreductase enzymes. These enzymes have 

wide substrate activities and can act as NADH quinone oxidoreductases (Ryan et al., 2010). 

Although it has been suggested that these enzymes play a role in quinone detoxification, the 

exact physiologic role of these enzymes has not been clear. It has been shown that these enzymes 
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have a wider role in the metabolism of a wide range of drug classes (Ryan et al., 2011). 

Although azoreductases were previously considered a distinct group of NAD(P)H dependent 

flavoenzymes that have been identified and constitutively expressed in a wide range of bacteria 

(Ryan et al., 2014) , the diverse nature of these enzymes along with their broad substrate 

specificity and their ability to reduce wide variety of both endogenous and exogenous 

compounds shows that they can play a general role in cell survival under adverse or stressful 

conditions. Results of comparative behavioral genomics analysis showed that three genes 

encoding for enzymes with co-shared function were significantly related to quinolone 

susceptibility behavior. These include Glutaredoxin arsenate reductase (ars H), NADH 

azoreductase, and NAD(P)H Dehydrogenase_(quinone). In support of that are findings from a 

recent GWAS study on Ps. aeruginosa showing several arsenate reductase genes including arsH. 

These findings show that arsH is related to different biofilm forming phenotype (Redfern et al., 

2019). 

All these three enzymes share the common flavodoxin like functional fold and are Flavin 

mononucleotide (FMN) dependent enzymes that, despite having low sequence similarity, are 

recently grouped into the same family due to sharing the common function of NAD(P)H 

dependent quinone reductase. All three enzymes have a range of substrate specificity and one of 

their shared substrates is quinone. Quinones are toxic to Ps. aeruginosa and are produced as part 

of innate defense mechanism by many organisms to which Ps. aeruginosa is pathogenic. This 

includes plants, fungi, invertebrates, and human. Ps. aeruginosa has a number of enzymes with 

azoreductase-similar function and new enzymes are discovered and proving to belong to the 

same family of enzymes. These enzymes are usually related to the organism host range. This is a 

reason for their larger number in Ps. aeruginosa than in other Pseudomonads which may be 

attributed to the species wider host range. Quinones production is known as a defense 

mechanism produced by many hosts against Ps. aeruginosa and their toxicity is probably linked 

to their production of hydrogen peroxide. In the current CBG analysis, the genes were 

significantly absent in susceptible isolates. This means that their role is possibly linked to getting 

rid of the free radicals produced by quinones. It is thus assumed that absence of these genes 

makes bacteria more susceptible to antibiotic-mediated killing in general. 
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p-benzoquinone reductase was the third gene showing the same distribution as GST and 

azoreductases. Looking the literature up for benzoquinone reductases in Pseudomonas 

aeruginosa returned the p-benzoquinone reductase (pnpB) gene with an alternative name: 

NAD(P)H dehydrogenase (quinone). The gene was identified in Pseudomonas sp. (strain WBC-

3)(Zhang et al., 2009) as involved in the degradation of para-nitrophenol (PNP) by catalyzing the 

reduction of p-benzoquinone to hydroquinone. This protein is involved in the pathway of 4-

nitrophenol degradation, which is part of Xenobiotic degradation. Search results also returned the 

gene PA1225 which has been previously defined as “probable NAD(P)H dehydrogenase” and 

was also recently re-annotated as “NADPH: quinone reductase” acting on 1,4-benzoquinone and 

2,6-dimethoxy-1,4-benzoquinone as substrates rather than on quinones which are the substrates 

for azoreductases (Flores and Gadda, 2018). This may indicate that this gene also shows the co-

shared non-specific function of getting rid of other classes of xenobiotic agents. 

5.9.2. Exploiting GWAS for the identification of predictive genomic markers 

The new era of high throughput sequencing technologies can greatly inform the way scientists 

use genomic information to impact decision making for public health interventions. Applying 

WGS-based comparative genome analysis to 162 isolates of Ps. aeruginosa has identified some 

candidate genomic markers as potential molecular diagnostics. Identified candidates were tested 

for their informative value as a diagnostic on the basis of their predictive values and their 

potential effect on gene function in the frame of genetic background. 

The phylogenetic approach is the most popular method used to describe the genetic relatedness 

and the population structure. Phylogenetic analysis allows the detailed identification of genetic 

relatedness for sub-populations and also for individuals. Genome comparison aims at identifying 

and inferring the biologic significance of similarities and differences. To explore whether 

identified genetic markers are truly related to the studied property of interest, prioritized markers 

were examined in relation to phylogenetic background to exclude spurious results that originate 

from the confounding effects of population structure or recombination.  

Mutations are considered an important source of variation in any organism and can lead either to 

decreased fitness or to beneficial adaptation. Therefore, determining the distribution of mutations 

in different genetic backgrounds and their related fitness effect is important for a proper 

understanding of important traits. An additional point to consider when interpreting genetic 
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differences from association studies is their effect on protein function. The effect of genetic 

differences on protein function can vary widely making it difficult to interpret phenotype-

genotype relationship. Single point mutations can affect protein function in several ways 

including; stability changes, conformational changes, physical and chemical structural changes, 

changes in electrostatic properties, and intermolecular interactions. In addition, changes in 

subcellular localization which may also affect normal cell function through changing protein 

concentration. This also needs to be considered. Although the ability to predict the functional 

effect of observed variants is complicated, it can offer an additional line of evidence that helps in 

differentiating the fitness effect of mutations. In the current analysis, I-mutant was used to 

identify free energy change upon mutation in order to predict mutation effect on protein stability. 

PROVEAN was used to identify the possible variant effect on protein function and activity. 

Although exploring the functional importance of the newly identified antibiotic 

susceptibility/resistance related mutations from GWAS may be complicated by other epistatic 

interactions influencing these correlations, the identified variants were studied by exploring their 

functional effect, their distribution in relation to background genomic context, and by reviewing 

the literature for the possibility of finding a functional correlation. 

The problem of population stratification encountered in bacterial GWAS can be especially 

problematic with highly clonal species (Read and Massey, 2014) and this is not the case in the 

current analysis of Ps. aeruginosa which is known to be poorly clonal. This consequently means 

that the distribution of variants observed here in relation to phylogenetic background may 

represent a strong association signal rather than a spurious effect of population stratification 

especially with a highly recombining species like Ps. aeruginosa. In the current analysis and as 

shown in the results section 2 and section 3, the corrected phylogenetic tree showed changed 

inter-isolate genetic distances exhibited as different branch lengths as a result of removing 

recombinant regions, however, the overall structure of the population remains separated into two 

large distinct groups. In addition, the differential distribution of candidate markers across the two 

large phylogenetic clusters remains the same which may indicate that the markers shown are 

probably more informative. These observations may indicate that markers clustering through the 

lower subpopulation which is affected by recombination may offer real adaptive advantage as 
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opposed to markers clustering through the upper half of the tree which may be associated with 

decreased fitness advantage. 

Analysis of the distribution pattern of candidate gentamycin markers in relation to their 

background genomic structure showed that some variants showing high NPV towards 

gentamycin resistance phenotype are more frequently occurring in isolates on the upper section 

of the tree; i.e. occur earlier in evolutionary history. These markers have the potential to be used 

to rule-out resistance. These include; M7, M9, M15, M17, M24 and M33. 

On the other hand, it appears that M31, M32 and M36 are beneficial mutations. The mutations 

can provide incremental fitness advantage to resistant isolates. These variants showed to be 

distributed at the lower part of the phylogenetic tree which is probably more affected by 

recombination. The possible higher fitness combined with higher PPV and higher specificity of 

these variants to resistance behavior may indicate the possibility of using these markers to rule-in 

resistance. Findings from the literature can support the current CBG findings for M36 

(cytochrome c oxidase subunit 3). Results of GWAS identifying clusters of predation genes in 

myxobacteria showed that cytochrome oxidase subunit 1 and subunit 2 were among the genes 

identified as predation genes at 100% specificity and 44-50% sensitivity among the studied 

group of organisms (Sutton et al., 2019). PA3431 is a hypothetical cytoplasmic membrane in Ps. 

aeruginosa showing a functional prediction from interproscan with functional domains similar to 

cidB/LrgB family (Winsor et al., 2016). This membrane proteins have been previously linked to 

penicillin tolerance in Staphlococcus aureus (Rice et al., 2003) (Groicher et al., 2000). Findings 

from the literature also show increased expression of PA3431 in response to low oxygen 

conditions (Alvarez-Ortega and Harwood, 2007), (data available at 

https://www.ncbi.nlm.nih.gov/geoprofiles/43497634). These findings from the literature can 

support the assumption from CBG about the possible role of M31 and M32 (variants of PA3431) 

in increasing fitness which can consequently contribute to increased antibiotic resistance as 

shown above. 

Some other gentamycin markers forming best predictor combination 1 (including M20, M28, 

M37) and combination 2 (including M20, M28, M29) with better combined predictive values 

and higher effect sizes did not show clonal or evolutionary clustering and were distributed across 

different branches of the evolutionary tree. This may increase the informative value of these 

https://www.ncbi.nlm.nih.gov/geoprofiles/43497634
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markers because such a distribution may indicate a genuine link to important biologic traits. 

Sutton et al., (2019) has identified the same protein (30S ribosomal protein S1) as one of the 

predation genes in myxobacteria using GWAS. This finding can support the CBG finding shown 

here with M29 (a 30S ribosomal protein S1 variant). Another variant identified with better 

combined predictive performance is another ribosomal modification protein variant (M28). The 

Ribosomal protein S6--L-glutamate ligase (PA5197), with a functional domain similar to 

Escherichia coli rimK (Winsor et al., 2016) is known to add additional Glu residues to the native 

Glu-Glu C-terminus of ribosomal protein S6. Mutation of the Glu-Glu terminus to Lys-Glu has 

shown to block this addition (Zhao et al., 2013). This fact can explain the role of rimK variant 

(M28) identified from CBG analysis in affecting gentamycin resistance. 

Esterase estA (PA5112) variant identified from CBG (M37) in relation to gentamycin resistance 

appears to be linked to many other phenotypic behaviors in Ps. aeruginosa. estA function was 

probably first identified as a lipolytic enzyme which is related to cellular membrane by Wilhelm, 

Tommassen and Jaeger, (1999). The study has shown that this esterase was unique as it was the 

first identified in the outer membrane and is the first example of type Ⅳ secretion system 

(Wilhelm, Tommassen and Jaeger, 1999). Later, reports have shown the possible role of 

membrane bound esterase activity in the production of rhamnolipids which are known to affect 

outer membrane composition, biofilm formation, and cell motility (Wilhelm et al., 2007). More 

recently, the relation of estA expression modification to the overproduction of rhamnolipids has 

been confirmed (Dobler et al., 2017). Rhamnolipids have multiple roles and their presence is 

known to alter cell surface polarity and to promote the uptake of hydrophobic substrates (Al-

Tahhan et al., 2000), a fact that would interpret its possible relation to gentamycin resistance as 

identified in the current CBG analysis. Another recent research finding also supports that role. 

Radlinski et al., (2019) have recently found that rhamnolipids produced by Ps. aeruginosa can 

induce proton motive force-independent aminoglycoside uptake in Staph. aureus and showed 

that rhamnolipids can potentiate aminoglycoside activity by restoring sensitivity to tolerant, 

persister, or the biofilm small colony variant of Staph. aureus (Radlinski et al., 2019). 

Combined testing for ciprofloxacin showed that M14 is an important candidate. M14 showed 

100% specificity and 100% PPV towards sensitivity phenotype. In addition, it showed to be 

exclusively distributed across the upper half of the tree and lost in the lower half of the tree; i.e. 
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more recently, probably because it is disadvantageous. M14 (Mechanosusceptible channel MscK 

A384T) showed the highest significance and the highest effect size (phi=0.376, p=0.003) among 

identified variants. When tested for its functional effect, I-mutant showed that it is possible for 

the variant to exhibit decreased protein stability with high reliability index (RI=7). Although 

PROVEAN did not predict the mutation as deleterious, PROVEAN score was -0.751 which is 

near to the cutoff point. These pieces of information taken together can indicate the higher 

informative value of the marker as susceptibility- related marker. Findings from the literature can 

support the possible role of PA1408 variant (M14) identified from CBG. Expression profiling 

studies showed that the gene is overexpressed in small colony variant (Wei et al., 2011), data 

available at https://www.ncbi.nlm.nih.gov/geoprofiles/91464421. This would support the 

assumption shown in the current analysis about the identified variant which may lead to loss of 

gene function or protein instability in relation to antibiotic susceptibility. 

Similarly, ciprofloxacin markers M11 (Putative HTH-transcriptional regulator V91L) and M13 

(Putative HTH-transcriptional regulator M126L) showed 100% PPV and 100% specificity and 

were exclusively distributed across the upper half of the phylogenetic tree. When tested for 

functional effect, I-mutant showed that variant may show decreased protein stability (reliability 

index, RI=6). Although not predicted as deleterious by PROVEAN, the SNP change needs to be 

tested for its possible effect on protein subcellular localization. This can affect its concentration 

and subsequently its function. 

Ciprofloxacin marker M44 (HTH-type transcriptional regulator YofA V189M) showed NPV of 

97.2 % to resistance phenotype. This means it has the potential to be used to rule out resistance. 

The marker showed high effect size (phi= 0.369, p= 0.005) and was similarly exclusively 

distributed across the upper half of the phylogenetic tree. Functional effect testing showed 

decreased stability with reliability index=8. Although M43 showed lower effect size (phi=0.107, 

p=0.172), it showed high NPV (97.8%) and was also distributed across the upper half of the tree. 

Moreover, it was predicted as deleterious using PROVEAN at -1.3 cutoff. I-mutant predicted 

decreased stability with reliability index=6 in relation to the same variant. 

Results of the analysis performed in this chapter have collectively identified new functional 

elements in addition to markers with good predictive values. However, some may occur in lower 

frequency in the population. The current results need to be re-tested in a larger population in 

https://www.ncbi.nlm.nih.gov/geoprofiles/91464421
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order to re-test for the frequency of encountering these variants and their possible association 

with the studied phenotype in a larger set of population. The analysis performed in this chapter 

has also shown that multiple lines of evidence are usually required to assess any candidate 

marker for its practical applications. Statistical significance tests cannot be considered as the 

only guide about the usefulness of observed markers because they can often be associated with 

many flaws that commonly result from choosing cutoffs for comparing groups. Using predictive 

values, effect sizes, and information about variant frequency in the population in addition to 

testing the functional effect of variants under study should all be considered collectively. 

 A possible limitation of the current analysis is the lower number of resistant strains included 

especially with ciprofloxacin. This may falsely underestimate the significance of tested 

correlations. Another possible limitation is the need to use breakpoints for the calculation of 

predictive values. Breakpoints were used because they are considered the standard practice 

agreed and used in diagnostic laboratories and in clinical practice to prescribe treatment. 

However, using breakpoints to classify groups suffers from the limitation of being not 

completely informative; carrying the possibility of misclassification. This can occur at both 

borders of the cutoff points or at was previously considered as intermediate category. This 

category can carry some clinical and practical uncertainty about clinical treatment success. 
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6.1. Role of rapid diagnostics in addressing antimicrobial resistance problem 

Although great advances have been achieved in diagnostic technologies, empiric antimicrobial 

prescription is still widely used to deal with suspected critical infections. This consequently 

results in overuse of our small inventory of effective and last line antimicrobial agents. This 

leads to the aggravation of antibiotic resistance problem by driving the emergence and spread of 

multi-drug resistant organisms. The gap that currently exists between the traditional 

microbiology workflow and the need for more rapid results, especially in some critical 

conditions, has led to the current problem of overtreatment. Rapid diagnostic tests for infectious 

diseases need to distinguish bacterial from viral infections, to identify the type of infectious 

agent, and to provide reliable information on susceptibility to antimicrobial agents. The test 

needs to be simple and rapid and also to provide results within hours. Rapid diagnostics should 

be able to clarify disease etiology, to influence treatment choice, and to enable public health 

surveillance and interventions. In addition to avoiding the cost of over-prescription and reducing 

time-to-results, the application of rapid diagnostics helps to avoid the complications and patient 

mortality that may arise from antimicrobial therapy and prolonged hospitalization. 

Rapid diagnostics used to identify antimicrobial susceptibility (AST) profile within hours can 

make significant advancement in the management of infectious diseases by improving 

antimicrobial use and hence, clinical outcomes. The timely guided administration of the right 

antibiotic within few hours can be lifesaving in some critical cases. Although standard 

phenotypic testing requires 48-72 hours to provide the final results, rapid diagnostics are capable 

of identifying the correct answers in a shorter time. Although several approaches have been 

proposed as possible solutions to antibiotic resistance problem as discussed in Chapter 1, a 

practical and helpful way for defeating the emergence of antibiotic resistance is to implement 

targeted antibiotic prescription practices through using point of care (POC) testing by general 

practitioners (GPs).  

Although some point of care diagnostics currently exists to differentiate bacterial from viral 

infection and to detect specific types of target organisms and resistance markers, the feasibility 

and the practicality of developing antibiotic resistance detection panel for use as rapid point of 

care diagnostic (POC) is considered challenging and more demanding than appreciated. Some of 

the currently available multiplex diagnostics panels include antibiotic resistance markers in 
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addition to species identification function, however, it is usually considered a real challenge to 

choose the most informative resistance targets to be reliably included into a rapid diagnostic. 

6.2. Opportunities and limitations for technologies used in rapid bacterial identification 

and antibiotic resistance profiling 

As an alternative to growth-based methods, molecular diagnostic tests aim at the rapid detection 

of antibiotic resistance genes from bacterial cultures or from primary specimens within hours of 

collection from patients. Although the main advantage of rapid molecular-based AST diagnostics 

lies in its capability to significantly reduce turn-around time to impact patient management, 

available tests often lack the representative set of antibiotic resistance genes that enables 

comprehensive prediction of resistance phenotype. On the technical side, the primary stages of 

sample processing needed before molecular-based systems can be used reduce the chance of full 

automation. Primary sample processing may require pre-culture steps due to the low numbers of 

target pathogens that may exist in some complex biologic samples 

Different molecular platforms and accelerated phenotypic systems are currently available for 

rapid bacterial ID/AST testing as discussed in Chapter 1. Accelerated phenotypic systems for 

rapid bacterial ID/AST testing depend on confining bacteria in small volumes at single-cell 

levels in microfluidic devices to accelerate bacterial growth and biochemical reactions. Marker 

concentrations in these isolated environments can then reach detectable levels much more 

quickly to be measured. Microfluidic systems can be used to determine resistance profiles based 

on electrochemical reduction of a redox-active molecule resazurin, and can detect growth at very 

low concentrations of 1 CFU/ml (Besant, Sargent and Kelley, 2015). On the other hand, 

molecular platforms used for detection of antibiotic resistance markers use nucleic acid-based 

markers indicative of the presence of bacteria and/or antibiotic resistance for bacterial ID/AST as 

discussed in Chapter 1. The main challenge here is related to the limited spectrum of the genes 

included in the detection panel. Detection panels often include specific types of acquired 

resistance rather than intrinsic resistance elements. This includes most of currently available 

rapid “Multiples Syndromic Panels”. Most available panels detect carbapenemases-related genes 

or Extended-spectrum B-lactamases (ESBL). For example, Xpert CarbaR® detects 5 gene 

families; KPC, NDM, VIM, IMP and OXA-48; Verigene® system detects the most common 

carbapenemases and CTX-M ESBL and FilmArray® BCID detect KPC (Tuite et al., 2014). The 
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scope being investigated here is the potential of sequence-based resistance prediction and 

markers’ interpretation can offer within the background genomic context. The purpose is to offer 

evidence about the use of sequencing technologies as an alternative automated platform for 

infectious disease management using Ps. aeruginosa as an example. 

6.3. Challenges for developing rapid point of care diagnostics for antibiotic resistance 

detection 

Although different platforms exist for rapid bacterial identification and antibiotic resistance 

profiling, the main challenge remains in choosing the best set of molecular markers for inclusion 

in the identification platform. These challenges are summarized in the following subsections. 

6.3.1. Lack of complete understanding of genotype-phenotype relatedness 

The comprehensive understanding of the phenotype-genotype relationship is a difficult to answer 

biologic question. Although  analysis of microbial phenotypic networks inter-relatedness 

suggests common genetic underpinning, this can be jeopardized by different factors including 

different gene repertoires, codon usage bias and proteome compositions (Brbić et al., 2016). This 

basic biologic concept makes the prediction of any phenotypic trait a challenging task. 

6.3.2. Diversity of resistance mechanisms related to different antibiotic targets, different 

classes, and different bacterial species 

It is not feasible to develop POC diagnostics capable of  detecting all different antibiotic 

resistance targets for all species using one tool due to the wide array and multiplicity of 

antimicrobial resistance mechanisms (van Hoek et al., 2011). Instead, prioritizing individual 

markers and combination of markers based on their diagnostic predictive values and their 

frequency of occurrence in different bacterial populations can offer the first valuable step to 

antibiotic resistance diagnostics innovation. Choosing marker combinations that act as resistance 

targets needs to be optimized to include the best performing markers. This is important because 

the inclusion of less informative markers can negatively affect the tool “value: cost” ratio. 

Inclusion of a large number of antibiotic resistance targets in the rapid POC diagnostic panel can 

consequently increase the cost without adding much diagnostic information. 
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Novel POC rapid diagnostics can be developed to include an informative combination of 

resistance targets. This can be used to build a flexible adaptable format which allows the 

inclusion of new types of emerging resistance targets (Mitsakakis et al., 2018). Optimized choice 

of best-performing combinations needs much investigation before being translated into clinically 

applied tools. First, because different bacterial species carry different types of intrinsic resistance 

and second, due to different types of transferable resistance mechanisms carried by different 

species. 

6.3.3. Geographic and personal variation 

Having an up-to-date comprehensive knowledge about the incidence and the changing trends of 

specific resistance mechanisms in different geographic localities is not easily achievable. The 

ongoing genomic epidemiologic analysis of different resistance mechanisms and monitoring of 

the emergence of new variants’ is necessary to get a guided grasp about the characters of the 

bacterial populations and the resistance genes prevalent within target locations. Diagnostic 

innovators need to have access to updated epidemiologic data on antibiotic resistance for 

targeted health care setting. This can be readily achieved when sequencing becomes integrated 

into routine laboratory diagnostic workflow. This is considered an indirect but a beneficial 

outcome of introducing different sequencing technologies in diagnostic clinical settings. Other 

challenging points include the changing geographic-related epidemiology due to travel or ethnic 

background-related carriage and the confounding effect of normal human non-pathogenic 

microbiota which might carry some transferable resistance genes leading to false positive results.  

6.3.4. Guidelines and benchmarking for transforming research findings into applied 

diagnostic tools 

Implementing innovative strategies to prioritize the best-performing markers is considered a 

valuable step for in-depth exploration for the elements underpinning antibiotic resistance 

phenotypes. Nevertheless, there remains the challenge of absence of guidelines needed to 

transform research findings into applied tools. Finding cutoffs for predictive values that shows 

which resistance-related markers are practically used is a highly challenging point.  

The clinical integration of improved diagnostics is considered a demanding process. It requires 

the fulfillment of a wide landscape of practical, technical, strategic, and financial needs. This 
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includes the stimulation of research and development diagnostics to translate new technologies 

and research findings into practical tests. The development of the guidelines needed to conduct 

the diagnostic tests and to communicate the results in addition to ensuring that the necessary 

healthcare infrastructure, including personnel and information technology are met, are all needed 

for practical application.  

To practically adopt a new test, consensus guidelines for diagnostic test interpretation need to be 

accepted by professional societies for incorporating the into clinical practice. This depends on 

many factors including the availability of clinical outcome data and cost-effectiveness of the test, 

especially in resource-limited settings. All these factors can form major challenges for adopting a 

new diagnostic test. Another challenging operational point is the requirement for assay validation 

and verification of performance. 

6.4. Thesis Conclusions and future directions 

It has been discussed in Chapter 2 that the special nature of Ps. aeruginosa makes AMR 

prediction in the species specifically challenging (Jeukens, Freschi, Kukavica-Ibrulj, J.-G. 

Emond-Rheault, et al., 2019). This is in part attributable to the large pan-genome of the species 

in addition to the species-specific complicated regulation of resistance. In their work, J. Jeukens 

et al., (2017) highlight the complexity of correlating phenotype and AMR genotype in Ps. 

aeruginosa. Their results showed that the identified resistome using the CARD database does not 

correlate with phenotype and that some resistance genes can be found in some susceptible 

isolates, the fact that was supported by the analysis performed in Chapter 2. That is the reason 

why it is important to consider that even antibiotic susceptible strains of the species can carry 

some resistance mechanisms due to intrinsic AMR, the fact that makes it necessary to 

differentiate and understand the relative importance of intrinsic resistance as compared to 

clinically meaningful resistance. Another possible source of bias in predicting clinically 

important resistance determinants in Ps. aeruginosa is the current lack of clarity of 

understanding about the difference of gene content for virulence and AMR between clinical and 

environmental isolates (Freschi et al., 2015). Chapter 2 concludes that available NGS-based 

pipelines used for identifying genomic bases of resistance do not perform well in predicting 

quinolones and aminoglycosides resistance in Ps. aeruginosa and shed light on some practical 

steps needed to adopt the use of NGS in diagnostic settings. 



295 | P a g e  
 

Based on these results, the known gene panels used to predict resistance seem to be insufficient 

to predict a specific phenotype with sufficient certainty. The tools used showed high false 

positive results because it does not consider all known gene variants but instead, only a specific 

subset of genes. This necessitates more comprehensive evaluation and investigation of system-

level resistance determinants in order to provide more comprehensive understanding of all 

possible resistance mechanisms to be included into a more inclusive predictor panel of markers. 

This objective was achieved in the thesis in two steps. The first step was to evaluate all the 

resistance elements known from the literature and to find possible clusters or combinations of 

molecular markers that can provide a better prediction of resistance. The second step was to 

apply genome wide association approach to mine for unknown elements underlying resistance. 

Out of 57 tested molecular markers identified from the literature, 13 markers were prioritized to 

have the most significant association with quinolone resistance phenotype and 5 clusters of 

combined markers were identified as well. For Aminoglycosides, out of 51 molecular markers, 8 

were prioritized as the best cluster combination of predictors. 

Different methods of typing are usually used to describe the population structure of different 

bacterial species and to provide the framework that helps to characterize lineages associated with 

resistance, virulence, or other high-risk characters. These markers can then be linked to the risk 

or to the complications of health care related infections. Studying the population structure helps 

to identify the biologic significance of candidate markers in relation to background genomic 

context. Understanding the population structure combined with the predictive capacity of some 

identified molecular markers can help to efficiently reduce the spread of high-risk clones by 

designing better diagnostic markers and better targets for improved infection control and other 

intervention strategies. In Chapter 4, epidemic high-risk clones were studied in relation to the 

previously identified molecular markers. Different markers as well as combinations of markers 

have shown significant association with some high-risk clones. These pieces of information can 

add to the practical value of using these markers in molecular diagnostics. 

Although phenotypic AST testing is currently considered the gold standard, it has some 

drawbacks. Chief is the “time to result” and also is its sensitivity when compared to nucleic acid 

amplification- based methods (Maurer et al., 2017). The majority of the currently available POC 

diagnostics for infectious diseases rely on nucleic acid-based amplification including PCR or 
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isothermal amplification (Craw and Balachandran, 2012). Although there is still an argument 

about PCR being superior to genome sequencing in terms of cost and sensitivity of detection, 

antibiotic resistance occurring as a result of mutations or gene variants are less easily detected 

using nucleic acid amplification.  

OpGen is a newly developed high-throughput multiplex PCR that can test for a large panel of 

genes (Walker et al., 2019). The majority of genes included in the test are acquired resistance or 

plasmids-associated genes. These were chosen based on surveys of resistance genes databases. 

Although the genomes included in the assessment for the purpose of developing this Multiplex 

PCR tool were chosen from different continents and they included 1484 Ps. aeruginosa isolates, 

no information about the genetic diversity of the isolates were provided, the point that may 

question the informative value of the panel of markers included.  

Although it has been shown that resistance genes included in the multiplex panel have included 

the resistance mechanisms for the isolates assessed in the study, it is important to consider more 

inclusive core-genome based markers. This can be considered a more cost-effective approach. 

Including a very large number of horizontally acquired non-specific elements does not achieve 

high cost-value advantage. Acquired and enzymatic resistance cannot be reliably used to judge 

overall resistance in all situations. Acquired resistance is not species-specific and is only part of 

the resistance baggage carried by the bacterial cell. The same theoretical drawback may also 

apply to other accelerated phenotypic methods used for the purpose of rapid AST testing. These 

usually depends on detection of antibiotic-hydrolyzing enzymes very early in the growth cycle 

using colorimetric methods. It becomes obvious here that choosing the best potential set of 

molecular markers for predicting antibiotic resistance phenotype at the practical level represents 

the current gap in knowledge addressed in the thesis as shown in Chapter 1. The thesis also 

suggests a diagnostic and decision algorithm for antibiotic prescription based on the predictive 

values studied for the markers. For example, if we have some sequencing information available 

for Ps. aeruginosa, the studied markers shown can be used as a list to check for markers 

fulfilling certain criteria of performance/predictive values in the sequence and steps shown in 

Figure 6.1, Figure 6.2, and Figure 6.3. This is also illustrated in the examples shown in sections 

6.5, section 6.6, and section 6.8. These markers’ lists can be incorporated into a diagnostic panel 

or can be identified using metagenomic or NGS diagnostic platform. 
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The relative importance of each resistance-related mechanism and the quantitative contribution 

of each type of resistance remains an unanswered question. The notion of different resistance and 

virulence elements showing combinatorial effect and building towards determining the 

phenotype has been shown in the literature. However, no information is available about the 

relative importance or the quantitative contribution of different types of resistance-related 

mechanisms on overall resistance and this was one of the objectives of the analysis performed in 

Chapter 3. Having such information about the variants showing higher quantitative contribution 

indicates that these variants can be prioritized for inclusion into diagnostic panels especially 

when combined with higher predictive values and this is also considered a new way to use 

existing knowledge. 

For antibiotic target changes, gyrAT83I remains an important contributor to both ciprofloxacin 

and levofloxacin resistance phenotype as seen in the predictive model in section 3.5.5 and 

section 3.6.5. Other quinolone target site mutations including parCS87L, parCS87W, 

parCE91K, and gyrAD87N appeared to have some contribution to levofloxacin resistance as 

seen in the predictive model in section 3.6.5. On the other hand, target site changes did not 

appear to be a main contributor to aminoglycoside resistance. This may seem obvious by the 

very low frequency of mutations occurring at ribosomal target sites of the aminoglycoside group 

of antibiotics as reported in the literature. However, the novel variant fusA1D588G in fusA1 

gene coding for elongation factor EF-G1A which has been identified from the current analysis 

appeared to be an important contributor to aminoglycoside resistance. Although cell membrane 

permeability change-related genes appear to be the most significant contributor to 

aminoglycosides resistance, these variants do not offer a full explanation for the variability in 

aminoglycoside phenotype as shown by the predictive model. Evaluated elements of quinolone 

resistance can explain 77.2% and 60.9% of variance in quinolone phenotype for ciprofloxacin 

and levofloxacin respectively (section 3.5.5 and section 3.6.5) while all evaluated chromosomal 

elements for aminoglycosides can only explain 17.9% of variance in amikacin MIC and only 

21.6% of variance in gentamycin MIC (section 3.7.5).  

To consider another important aspect of the diagnostic landscape of antibiotic resistance, an 

additional complementary analysis which shows background population structure and the 

relation of high-risk clones to the analyzed set of molecular markers was applied in Chapter 4. 
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The chapter has described the population structure of the organism using the analyzed set of Ps. 

aeruginosa isolates and has identified some quinolones and aminoglycosides resistance-related  

markers to be significantly related to high-risk clones including: nalCE153Q, pmrALeu71Arg, 

gidBE97Q, gidBE186A, pstBE89Q, arnDG206C, arnAA170T, pmrBGly423Cys, nuoGA890T, 

faoAT385A, phoQY85F, lptAT55A, mexRR70N, mexRE70R, mexRL130T, mexRG97L, 

mexRL29D, armR gene, nalCG71E, nalCS46A, nalD, nfxB, mexS, and mexZ. Some other 

combinations of predictors assessed in Chapter 3 has also shown significant associations with 

high risk clones including, amikacin cluster 1, amikacin cluster 2 and ciprofloxacin cluster 4. 

These markers showing high effect size in relation to the risk clones studied, can be used as 

signals to risky clones or behavior. This can consequently be used to direct infection control 

measures. 

Based on the results described above, it becomes necessary to investigate for core genome - 

based markers rather than using markers related to antibiotic target changes or horizontally 

acquired elements. Comparative genomics was performed in Chapter 5 to gain more 

understanding and to mine for previously unexplored novel resistance-related elements at the 

whole system level. This can build up to add to the existing body of knowledge. 

Using this approach has additively identified two essential functional systems linked to 

quinolone resistance including anthranilate metabolism and glutamate metabolism in addition to 

several diagnostic markers for ciprofloxacin and gentamycin. These can be used in combination 

with some other established markers to provide several alternative combinations of predictors 

showing improved performance. 

The thesis conceptually concludes that choosing a diagnostic panel of molecular markers for 

inclusion into a rapid diagnostic platform is not an easy task. It requires evidence-based research 

in order to choose the most informative and consequently the most cost-effective combination. 

Most of the currently available rapid diagnostic platforms do not consider this aspect, but instead 

includes a set of horizontally acquired elements, the topic that has been discussed above in much 

detail. 

Based on the results of the analyses performed in Chapter 3, Chapter 4 and Chapter 5, it is 

concluded that there is no single marker, gene or gene variant, or combination to be used 

as a diagnostic option, but instead there are several alternative combinations with different 
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improved criteria of performance. These markers occur at different frequencies. These 

individual markers or combination of markers can be alternatively used in a diagnostic 

setting. The composition of these alternative predictors and combinations of predictors are 

shown in detail with their respective criteria of performance in Tables 6.1 - 6.4. There is a 

lack of standard criteria that can be used to interpret predictive values. Also, the difference 

in the frequency of encountering these variants in the population necessitates using this list.  

Table 6.3 and Table 6.4 show the best performing combinations. These include C3, C7, C8, 

C9 and C10. The detailed composition of these clusters is shown in Table 7.2. Cluster C3 

showed 94.6% sensitivity, 100% specificity, 100% PPV, 98.4% NPV, phi=0.965 and 

Youden Index=0.95. Cluster C7 showed 76.4% sensitivity, 100% specificity, 100%PPV, 

88.6%NPV, phi=0.823 and Youden Index=0.76. Cluster C8 showed 94.3% sensitivity, 

100% specificity, 100% PPV, 90.6%NPV, phi= 0.924 and Youden Index=0.94. Cluster C9 

showed 100% sensitivity, 97.2% specificity, 90.8% PPV, 100% NPV, phi=0.94 and Youden 

Index=0.97. Cluster C10 showed 97.2% sensitivity, 100% specificity, 100% PPV, 90.8% 

NPV, phi=0.94 and Youden Index=0.97. 

To translate these findings into practical steps, a suggested diagnostic algorithm can be 

used to guide antibiotic selection. This is illustrated in Assessment algorithms and Decision 

algorithms shown in Figure 6.1, Figure 6.2 , and Figure 6.3. These workflows can be 

implemented using NGS-based platforms or metagenomic sequencing. The combination of 

markers analyzed throughout the thesis and summarized in this Chapter can be plugged 

into these algorithms. The suggested marker can also be incorporated into rapid diagnostic 

panels. The performance criteria of the combinations of markers shown in Table 6.1 and 

Table 6.4 can be applied using the sequence of steps illustrated in the diagrams below. 
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Figure 6.1. Diagram showing suggested diagnostic /Assessment algorithm 
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Figure 6.2. Diagram showing suggested decision algorithm 1 
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± low sensitivity 

± higher DOR (>1-infinity) 

± Higher accuracy (preferably >0.7) 

Rule in the diagnosis of resistance 

Avoid use of antibiotic agent and 

avoid the cost of over-prescription  
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More confident to prescribe 

antibiotic agent 
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6.5. Example.1. Rule-in algorithm 

This example illustrates the steps shown in Figure 6.1 and Figure 6.2. 

By following the steps shown in Figure 6.2 to rule in the diagnosis, we would first look-up 

markers showing higher specificity ± higher NPV. We would then look up if higher specificity is 

also combined with a high LR+ for the same marker. In case higher specificity is also combined 

with a LR+ value which is greater than 10, then the marker has the potential to alter clinical 

decision. If the higher specificity is combined with a LR+ value which ranges between 5 and 10, 

then the marker can provide useful additional information. When markers fulfil one of the above 

two criteria and additionally show high DOR with value > (1-infinity) ± higher accuracy (>0.7), 

this would then give more confidence to rule in the diagnosis. 

In case the criteria of high specificity, high LR+, high accuracy, and high DOR are achieved for 

resistance behavior, the marker can then be used to rule in resistance. This helps to avoid the use 

of antibiotic agent and consequently to avoid the cost of over-prescription. 

To use these markers, we would start by looking up markers with higher frequencies. These have 

a higher chance of being encountered in a random sample. In case the marker is not identified, 

we would then look up markers with lower frequencies. 

Examples for algorithm 1, Rule in Quinolone resistance: 

▪ gyrAT83I: Specificity 99.5%, PPV 96.6%, LR 54.08, DOR 65.67, Accuracy 0.73 

▪ nfxBA124T: Specificity 99%, PPV 80%, LR 10.07, DOR 7.61, Accuracy 0.66 

▪ nalCE153Q: Specificity 97.5-98.4%, PPV 68.8-81%, LR 70.5, DOR 4-5.74, Accuracy 

0.72 

▪ nalCThr50Pro: Specificity 99.5%, PPV 50%, LR 60, DOR 2.35, Accuracy 0.69 

▪ ampRD135N: Specificity 99.5%, PPV 80%, LR 12.6, DOR 7.65, Accuracy 0.66 

▪ parCE91k: Specificity 99.7-100%, PPV 80-100%, LR 2-3.36, DOR 3.35, Accuracy 0.46-

0.64 

▪ parEV460G: Specificity 99.7-100%, PPV 75-100%, LR 2-2.68, DOR 2.51, Accuracy 

0.46-0.64 
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Examples for algorithm 1, Rule in Aminoglycosides resistance: 

▪ arnAA170T: Specificity 98.3-99%, PPV 62.5-80%, LR 8.7-19.7, DOR 6.7-7.84, 

Accuracy 0.67-0.79 

▪ arnDG206C: Specificity 98.2-99%, PPV 58.3-77.8%, LR 7-16, DOR 5.57-6.79, 

Accuracy 0.66-0.79 

▪ fusA1D588G: Specificity 100%, PPV 100%, LR 6.3-15.5, Accuracy 0.66-0.79 

▪ nalDSer32Asn: Specificity 99.4-100%, PPV 66.7-100%, LR 6.3-8.6, DOR 7.6, Accuracy 

0.66-0.79 

6.6. Example.2. Rule-out algorithm 

 

 

 

Figure 6.3. Diagram showing suggested decision algorithm 2 

Using the algorithm shown in Figure 6.3, we would start by looking up markers with high 

sensitivity. For those showing high sensitivity, we can then look up if the same marker shows 

high NPV. This performance can be additionally combined with low specificity ± low LR. Also, 

high LR and high accuracy values would offer useful additional diagnostic information. 

 

High sensitivity

± low specificity, low LHR +

presence of marker cannot 
confirm diagnosis but it 

absence rule out the diagnosis

+ high NPV
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Examples for algorithm 2, Rule out Quinolone susceptibility: 

Presence does not confirm susceptibility, but absence predict resistance 

▪ nfxB: Sensitivity 99.7%, NPV 83.3-97.3%, LR 5.8-34.5, Accuracy 0.5-0.67 

▪ mexS: Sensitivity 99.7%, NPV 91.7-97.1%, LR 17-31.67, Accuracy 0.5-0.67 

▪ ampR: Sensitivity 100%, NPV 100%, LR 8.23, Accuracy 0.65 

▪ nalC: Sensitivity 99.4-100%, NPV 94.3-100%, LR 15.79-59.7, Accuracy 0.5-0.72 

▪ nalD: Sensitivity 100%, NPV 100%, LR 38.6, Accuracy 0.5-0.69 

▪ mexR: Sensitivity 98.3-99%, NPV 62.5-80%, LR 8.7-19.7, DOR 6.7-7.84, Accuracy 0.67 

▪ armR: Sensitivity 82.4-91.1%, NPV 58.4-92.2%, LR 1.98-85.8, Accuracy 0.58-0.71 

▪ mexZ: Sensitivity 97.3-99.1-%, NPV 50.92.5%, LR 11.82, Accuracy 0.5 

▪ mexR R79N: Sensitivity 50.8-98.5%, NPV 52.6-75%, LR 10, Accuracy 0.56-0.66 

▪ mexR E70R: Sensitivity 52.4-99.5%, NPV 53.4-83.3%, LR 7.9, Accuracy 0.57-0.65 

▪ mexR L130T: Sensitivity 53-100%, NPV 54-100%, LR:16.7, Accuracy 0.58-0.66  

▪ mexR G97L: Sensitivity 53-100%, NPV 51.7-100%, LR 8.23, Accuracy 0.56-0.65 

▪ mexR L29D: Sensitivity 53-100%, NPV 52.2-100%, LR 12.43, Accuracy 0.56-0.65 

I here also summarize the final results of the best performing molecular predictors analyzed 

throughout the thesis. Individual predictors and clusters of predictors can be used as “flexible 

format alternative options” for use as diagnostic markers as illustrated in the examples shown 

above. These may be incorporated into a rapid diagnostic panel or alternatively identified using 

NGS platforms or other metagenomic platforms. The thesis provides proof of principle approach 

for some potential diagnostic markers for 2 agents from the aminoglycoside group and 2 agents 

from the quinolone group of antibiotics in Ps. aeruginosa. This can be re-implemented with 

other clinically important organisms and other antibiotic classes and can also be adapted and 

modified based on new research findings. 

Summary of the performance of best analyzed alternative predictor markers and combination of 

predictors to be applied using the suggested assessment and diagnostic algorithms shown above 

are shown in Tables 6.1-6.4. 
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Individual predictors 

Table 6.1. Measures of performance for best predictor quinolone and aminoglycoside molecular markers 
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91.1 59.6 56 92.2 2.25 85.8 15.05 0.507 0.71 58.7 0.494 <0.0005 * 

nalCS46A 71.4 81.8 69 97 3.92 217 72 0.532 0.86 37.4 0.765 <0.0005 * 

nalD gene  100 16.1 67.8 100 1.19 38.6 ND 0.161 0.7 94.2 0.33 <0.0005 * 

nalC gene  100 24.1 70 100 1.32 59.7 ND 0.241 0.73 91.3 0.411 <0.0005  

mexS gene  99.5 9.8 66.1 91.7 1.1 17 21.46 0.093 0.67 96.1 0.232 <0.0005  

nfxB gene 99.5 4.5 64.8 83.3 1.04 5.8 9.2 0.04 0.65 98.1 0.138 0.015  

ampR gene  100 3.6 64.7 100 1.03 8.23 ND 0.036 0.65 98.7 0.152 0.007  

gyrA T83I 25 99.5 96.6 70.1 50 54.08 65.67 0.245 0.73 9.4 0.404 <0.0005 * 

nfxB gene  

L
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fl
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99.7 9.4 47.8 97.3 1.1 34.48 32.97 0.091 0.504 94.7 0.203 <0.0005 * 

mexR gene  100 1.8 45.9 100 1.02 ND ND 0.018 0.46 99 0.092 0.015  

mexS gene  99.7 8.7 47.6 97.1 

1.1 31.67 29.96 

0.084 0.5 

95.1 

0.019

3 

<0.0005 
* 

nalC gene  99.4 8.7 47.5 94.3 1.1 15.79 14.94 0.081 0.49 95 0.183 <0.0005 * 

nalD gene 100 12.3 48.7 100 1.14 ND ND 0.123 0.52 93.3 0.245 <0.0005  

ampR gene  100 8.7 47.7 100 1.1 ND ND 0.087 0.5 95.3 0.203 <0.0005  

mexZ  99.1 9.7 47.7 92.5 1.1 11.8 11.26 0.088 0.5 94.3 0.188 <0.0005 * 

gyrAT83I 48.3 99.4 98.9 61.5 80.5 154.8 147.1 0.477 0.71 26.6 0.537 <0.0005 * 

nalC 

G
en

ta
m

y
ci

n
 

100 1.5 35.7 100 1.02 2.632 ND 0.015 0.36 99 0.074 0.198 * 

mexZ 100 2.1 35.8 100 1.02 3.517 ND 0.021 0.37 98.7 0.086 0.137 * 

ampR 100 1.5 35.7 100 1.02 2.632 ND 0.015 0.36 99 0.074 0.198 * 

nalDser32Asn  2.8 100 100 65.3 ND 6.3 ND 0.03 0.66 6.3 0.136 0.019  

nalDl153Q 2.8 99.5 75 65.2 5.6 2.65 5.62 0.03 0.66 2.65 0.096 0.095  

fusA1D588G 2.8 100 100 65.3 ND 6.3 ND 0.03 0.66 6.3 0.136 0.019  

arnAA170T 7.5 99 80 66.2 7.5 8.68 7.84 0.07 0.67 3.3 0.174 0.003  
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arnDG206C 6.6 99 77.8 66 6.6 6.99 6.79 0.06 0.66 3 0.156 0.007  

arnAA170T 

A
m

ik
a
c
in

 

10.1 98.3 62.5 80.1 5.94 19.69 6.69 0.084 0.79 3.5 0.19 0 * 

pstBE89Q 9.5 98.9 70 80 8.64 22.45 9.35 0.084 0.79 2.9 0.204 0 * 

arnDG206C 9.5 98.2 58.3 79.9 5.28 16.08 5.57 0.077 0.79 3.5 0.171 0 * 

fusA1D588G 3.4 100 100 79.2 ND 15.54 ND 0.034 0.79 0.7 0.164 0  

mexRR79S  2 100 100 21.8 ND 5.351 ND 0.02 0.23 1.6 -0.07 0.081  

amgSE108Q 2 100 100 21.8 ND 5.351 ND 0.02 0.23 1.6 -0.07 0.081  

nuoGA574T 1.4 93.7 5.6 77.7 0.22 7.398 0.21 0.049 0.74 5.2 -0.09 0.017  

 

Clusters of predictors 

Table 6.2. Components of  predictor clusters showing the distribution of best performing predictor combination of 

molecular markers 

Predictor cluster C 1 C 2 

Markers composition   

nalCS209R present96% absent3-100% 

pmrBGly423Cys absent100% present0-70% 

nalCG71E present100% absent 3-45% 

M7 present100% absent 74.3-100% 

M21 present51.9% absent 82.9-97.4% 

nalCA186T absent 100% present 3-33% 

M25 absent 100% present 3-31% 

M1 absent 100% present 6-33% 

faoAT385A absent 100% present 0-23% 

lptAR62S absent 100% present 0-17% 

lptAt55A absent100% present 3-23% 

M11 absent 100% present 0-13% 

nuoGA890T absent 100% present 0-12% 

gidBE186A absent 100% present 0-8% 

gidBE97Q absent 100% present 0-8% 

M22 absent100% present 5-13% 

fusAD588G present 4% absent 100% 

nalCE153Q absent100% present 2-8% 

ampRA51T absent100% present 2.5% 
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nalDser32Asn absent100% present 2.5% 

M35 absent100% present 3-8% 

arnAA170T absent100% present 1.5% 

arnDG206C absent 100% present 1.5% 

mexZ present 100% absent 1.5-3% 

Markers composition C 3 and C 5 C 4 and C 6 

M11 absent 100% present 100% 

M12 absent 100% present 100% 

M13 absent 91.4% present 100% 

M20 present 37% present 8% 

M43 present 25% present 42% 

nalCA186T present 12% present 25% 

ampRD135N present 3% absent 100% 

Markers composition C 7 C 8 

gidB E186A Marker absent 28% Marker absent 69% 

gidBE97Q Marker absent 29% Marker absent 63% 

arnAA170T Marker absent 28% Marker absent 62% 

arnDG206C Marker absent 28% Marker absent 62% 

nalCE153Q Marker absent 29% Marker absent 65% 

pstBE89Q Marker absent 29% Marker absent 62% 

Markers composition C 9 C 10 

arnAA170T Mutation absent 85.3% Mutation absent 100% 

arnDG206C Mutation absent 85.3% Mutation absent 100% 

pstBE89Q Mutation absent 87.7% Mutation absent 100% 

nalDSer32Asn Mutation absent 94.5% Mutation absent 100% 

lptAR62S Marker absent 98.8% Marker absent 95.1% 

nuoGA890T Marker absent 99.4% Marker absent 96.6% 

faoAT385A Marker absent 99.4% Marker absent 97.2% 

Markers composition C 11 C 12 

nalCE153Q Mutation absent 100% Mutation absent 82.1% 

nalCThr50pro Mutation absent 100% Mutation absent 97.4% 

armR Gene present 100% Gene present 97.4% 

nalD Gene present 100% Gene present 97.4% 

gyrA T83I Mutation absent 100% Mutation absent 56.4% 

nfxB A124T Mutation absent 100% Mutation absent 97.4% 

Markers composition C 13 C 14 
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nalCS209R  present 50% 

M20 present 22% present25% 

M23 present 22% present 12% 

M2 present 77.8 absent 25% 

nalCA186T  present 12% 

 

Table 6.3. Best performing quinolone and aminoglycoside predictor combinations 

Predictor 

cluster 

Phenotype Average MIC Cluster 

frequency 

Phi coefficient P-value 

C1 Aminoglycoside resistant AK=8.59 

CN=13.96 

16.7% 0.479 <0.0005 

C2 Aminoglycoside susceptible AK=2.55 

CN=4 

83.3% 0.155 0.13 

C3 Quinolone resistant Levo=6.57 21.6% 0.965 <0.0005 

C4 Quinolone susceptible Levo=0.83 7.4% 0.042 0.597 

C5 Quinolone resistant Cipro=1.05 21.6% 0.34 <0.0005 

C6 Quinolone susceptible Cipro=0.1 7.4% 0.05 0.521 

C7 Aminoglycoside resistant CN=12.94 27% 0.823 <0.0005 

C8 Aminoglycoside susceptible CN=2.9 61% 0.924 <0.0005 

C9 Aminoglycoside resistant AK=54.47 23.6% 0.94 <0.0005 

C10 Aminoglycoside susceptible AK=3.69 76.4% 0.94 <0.0005 

C11 Quinolone susceptible Cipro=0.22 19.1 0.366 <0.0005 

C12 Quinolone resistant Cipro=4.82 12.8 0.509 <0.0005 

C13 Quinolone susceptible Cipro=2.78 5.6 0.424 <0.0005 

C14 Quinolone resistant Cipro=3.12 4.9 0.454 <0.0005 

 

Table 6.4. Measures of diagnostic accuracy for best performing quinolone and aminoglycoside predictor 

combinations 

Performance 

Parameters 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

Sensitivity 100 28.8 94.6 8 100 7.6 76.4 94.3 100 97.2 29.9 35.5 60 60 

Specificity 86.5 100 100 94.6 80.9 100 100 100 97.2 100 100 100 96.2 96.8 

PPV 22.2 100 100 83.3 14.3 100 100 100 90.8 100 100 100 33.3 37.5 

NPV 100 51.6 98.4 23.3 100 3.3 88.6 90.6 100 90.8 44.7 73.2 98.7 98.7 

LR+ 7.4 - - 1.5 5.2 - - - 35.7 - - - 15.8 18.8 

LR - - - 1.5 - - - - - - - - 38 45.4 

DOR - - - 1.5 - - - - - - - - 37.8 45.4 

Youden Index 0.87 0.29 0.95 0.03 0.81 0.08 0.76 0.94 0.97 0.97 0.3 0.36 0.56 0.57 

Accuracy 0.87 0.87 0.99 0.28 0.81 0.1 0.92 0.96 0.98 0.98 0.55 0.77 0.95 0.96 
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High-risk ST 

association * 
UN UN UN UN UN UN UN UN *0.006 *0.006 UN *0.012 UN UN 

 

UN: unknown -not evaluated, *: significant association (p-value<0.05) 

6.7. General summary 

As discussed in Chapter 2, automated tools and bioinformatics platforms that predict for 

antibiotic resistance may suffer the theoretic limitation of restricted spectrum of genes/resistance 

markers identified. This may originate from the fact that our understanding about key resistance 

conferring genes and mutations is still growing. Especially for Ps. aeruginosa, the special nature 

of the species makes AMR prediction in Ps. aeruginosa specifically challenging. This highlights 

the complexity of associating antibiotic resistance phenotype to genotype in the organism. 

When the tools were used to assess genotype-phenotype correlations in Ps. aeruginosa as studied 

in Chapter 2, the results as applied to 87 selected highly diverse isolates showed that there is 

tendency to overpredict resistance with false positive rate of 2-25% for ciprofloxacin 

susceptibility, 24-45% for levofloxacin susceptibility, and 5-21% for amikacin susceptibility for 

the MICRA platform. This is a situation that needs to be minimized to avoid the cost of antibiotic 

over-prescription. 

Using CARD and ResFinder, different sets of predictors were identified in the tested collection 

of isolates. Those were tested for their correlational pattern and predictive capacity to identify 

antibiotic resistance phenotype. The ranges of predictive values for these sets of predictors are 

summarized in Figure 6.4 to Figure 6.7. 
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Figure 6.4. Predictive capacity of identified predictor sets using CARD/ResFinder for differentiating ciprofloxacin 

susceptibility/resistance phenotype in the 87 selected diverse Ps. aeruginosa isolates 

 

Figure 6.5. Predictive capacity of identified predictor sets using CARD/ResFinder for differentiating levofloxacin 

susceptibility/resistance phenotype in the 87 selected diverse Ps. aeruginosa isolates 

Ciprofloxacin 
susceptibility/resistance 

phenotype

Genetic profile 1
Sensitivity 45.5%                PPV 24.4%

Specificity  51.8-52.3%      NPV 73.9-95.7%

Genetic profile 2
Sensitivity 9.1-50%                PPV 9.1-18.2%

Specificity  86.2-88.2%      NPV 73.7-98.7%

Genetic profile 3
Sensitivity 9.1%                PPV 66.7%

Specificity  96.5-98.5%      NPV 76.2-97.6%

Genetic profile 4
Sensitivity 4.5%                PPV 14.3%

Specificity  90.8-91.8%      NPV 73.8-97.5%

Genetic profile 8
Sensitivity 9.1%              PPV 40%

Specificity  94.1-95.4%      NPV 75.6-97.6%

Genetic profile 9
Sensitivity ------- PPV --------%

Specificity  92.3-94.1%      NPV 73.2-97.6%

Levofloxacin 
susceptibility/resistance 

phenotype

Genetic profile 1
Sensitivity 38.1-43.6%      PPV 19.5-41.5%

Specificity  50%                  NPV 52.2-71.7%

Genetic profile 2
Sensitivity 10.3-17.3%    PPV 27.3-36.4%

Specificity  85.4-87.9%      NPV 53.9-76.3%

Genetic profile 3
Sensitivity 5.1-4.8%     PPV 33.3-66.7%

Specificity  97%      NPV 56-76.2%

Genetic profile 4
Sensitivity 7.7-9.5%    PPV 28.6-42.9%

Specificity  91.7-92.4%    NPV 55-76.3%

Genetic profile 8
Sensitivity 7.7-9.5%        PPV 40-60%

Specificity  95.5%      NPV 56.1-76.8%

Genetic profile 9
Sensitivity 5.1-9.5%           PPV 40%

Specificity  93.8-95.5%      NPV 54.9-76.8%
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Figure 6.6. Predictive capacity of identified predictor sets using CARD/ResFinder for differentiating gentamycin 

susceptibility/resistance phenotype in the 87 selected diverse Ps. aeruginosa isolates 

 

 

Figure 6.7. Predictive capacity of identified predictor sets using CARD/ResFinder for differentiating amikacin 

susceptibility/resistance phenotype in the 87 selected diverse Ps. aeruginosa isolates 

 

Gentamycin 
susceptibility/resistance 

phenotype

Genetic profile 1
Sensitivity 54.5%          PPV 30-56.1%

Specificity  55.6-59.1%     NPV 57.8-77.8%

Genetic profile 2
Sensitivity 9.1-9.5%    PPV 18.2-36.4%

Specificity  85%      NPV 49.3-73%

Genetic profile 3
Sensitivity ------ PPV -------%

Specificity  95.5-96.8%      NPV 50-73.5%

Genetic profile 4
Sensitivity 7.1-9.1%    PPV 28.6-42.9%

Specificity  90.9-92.1%    NPV 50.6-74.4%

Genetic profile 8
Sensitivity 4.5-9.5%        PPV 20-80%

Specificity  93.7-97.7%      NPV 53.1-73.8%

Genetic profile 9
Sensitivity 4.5%           PPV 20-40%

Specificity  93.5%      NPV 50.6-73.8%

Amikacin 
susceptibility/resistance 

phenotype

Genetic profile 1
Sensitivity 66.7-75%     PPV 5-8.8%

Specificity  54.2-55.1%    NPV 97.5%

Genetic profile 2
Sensitivity 25-33.3%    PPV 9.1-10%

Specificity  77-88%      NPV 95.2-97.3%

Genetic profile 3
Sensitivity ------- PPV --------

Specificity  96.4-97.1%    NPV 94.4-96.4%

Genetic profile 4
Sensitivity ------ PPV -------

Specificity  91.6-92.8%    NPV 94.1-96.2%

Genetic profile 8
Sensitivity ------ PPV ------

Specificity  92.8-94%      NPV 94.1-96.3%

Genetic profile 9
Sensitivity -------- PPV------

Specificity  94%      NPV 94.2-96.3%
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That is the reason why a larger more genetically and phenotypically inclusive collection of 

isolates have been tested to find elements/ combination of elements that can improve antibiotic 

resistance prediction. Based on observing a group of markers with different tendencies to cluster 

towards higher/lower susceptibility phenotypes, new combinations of markers appeared to offer 

better prediction/differentiation for the studied phenotypes. The predictive capacity of the sets of 

markers shown in Chapter 3 for differentiating antibiotic susceptibility from resistance are 

summarized in Figure 6.8 to Figure 6.11. 

 

Figure 6.8. Predictive capacity of combinations in differentiating ciprofloxacin susceptibility/resistance phenotype 

in all 306 Ps. aeruginosa isolates for which ciprofloxacin susceptibility data are available 

 

The diagram above is based on the results as extracted in Chapter 3 from Table 3.4 and Figure 

3.1. 

Cluster 4 composed of 39 ciprofloxacin resistant Ps. aeruginosa isolates with average MIC of 

4.82 showed presence of gyrA T83I, nalC E153Q, nalC Thr50Pro, nfxB A124T in 43.6%, 

17.9%, 2.6% and 2.6% of isolates respectively and absence of armR, nalD in 2.6% of isolates. 

Cluster 3 composed of 26 ciprofloxacin resistant Ps. aeruginosa isolates with average MIC of 

4.62 showed presence of gyrA T83I and nfxB A124T in 42.3% and 7.7 % of isolates respectively 

In all tested 306 Ps. 
aeruginosa isolates for 

which ciprofloxacin 
phenotypic data are 

available 

combination of armR, 
mexZ, mexS, and nalD can 

rule out ciprofloxacin 
susceptibility

Combination of gyrA T83I, 
nalC E153Q, nalC 

Thr50Pro, nfxB A124T can 
rule in ciprofloxacin 

resistanceSensitivity of 30.5-58.6%

Specificity of 100%

PPV of 100%

NPV of 44.8-81.8%
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absence of nalD, mexS, armR and mexZ in 42.3 %, 38.5 %, 7.7 % and 7.7% of isolates 

respectively. 

Cluster 2 composed of 60 ciprofloxacin susceptible Ps. aeruginosa isolates with average MIC of 

0.22 showed absence of gyrA T83I, nalC E153Q, nalC Thr50Pro, nfxB A124T in 100 % of 

isolates and presence of armR, nalD, mexS and mexZ in 100% of isolates. 

Based on the observed differential distribution among clusters, in all tested 306 Ps. aeruginosa 

isolates for which ciprofloxacin susceptibility phenotype is available, the combination of armR + 

mexZ + mexS + nalD + gyrA T83I + nalC E153Q + nalC Thr50Pro + nfxB A124T can 

differentiate ciprofloxacin resistance from ciprofloxacin susceptibility with overall sensitivity of 

30.5 % - 58.6%, specificity of 100%, PPV of 100% and NPV of 44.8%-81.1%. 

 

 

Figure 6.9. Predictive capacity of combinations in  differentiating levofloxacin susceptibility/resistance phenotype in 

all 694 Ps. aeruginosa isolates for which levofloxacin susceptibility data are available 

The diagram above is based on the results as extracted in Chapter 3 from Table 3.8 and Figure 

3.3,  

Cluster 1 composed of 164 levofloxacin susceptible Ps. aeruginosa isolates with average MIC of 

0.56 showed presence of nalC, nfxB, mexZ, mexS, mexR and armR in 99.4%, 100%, 100%, 

100%, 100%, 43.9% and absence of nalC E153Q, ampR D135N, parC E91K and parE V460G 

in  97.6%, 100%, 100% and 100% isolates respectively.  

In all tested 694 Ps. 
aeruginosa isolates 

for which 
levofloxacin 

phenotypic data are 
available 

combination of nalC, 
nfxB, mexZ, mexS, 

mexR and armR can 
rule out levofloxacin 

susceptibility

Combination of nalC 
E153Q, ampR 

D135N, parC E91K 
and parE V460G can 
rule in levofloxacin 

resistance
Sensitivity of 43.7-87.1%

Specificity of 99.1-100%

PPV of 98.2-100%

NPV of 59.5-90.3%
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Cluster 5 composed of 150 levofloxacin susceptible Ps. aeruginosa isolates with average MIC of 

0.54 showed presence of nalC, nfxB, mexZ, mexS, mexR and armR in 100%, 100%, 99.3%, 

99.3%, 100%, 99.3% and absence of nalC E153Q, ampR D135N, parC E91K and parE V460G 

in 100%, 99.3%, 100% and 99.3% isolates respectively.  

Cluster 3 composed of 31 levofloxacin resistant Ps. aeruginosa isolates with average MIC of 

4.13 showed absence of nalC, nfxB, mexZ, mexS and armR in 100%, 96.8%, 100%, 64.5%, 

96.8% and presence of ampR D135N, parC E91K in 6.5% and 3.2% of isolates respectively.  

Cluster 2 composed of 134 levofloxacin resistant Ps. aeruginosa isolates with average MIC of 

11.05 showed absence of mexZ, mexS and armR in 5.8%, 8.7%, 27.5% and presence of nalC 

E153Q, ampR D135N, parC E91K and parE V460G in 14.5%, 5.8%, 2.9% and 2.2% of isolates 

respectively.  

Based on the observed differential distribution among clusters, in all tested 694 Ps. aeruginosa 

isolates for which levofloxacin susceptibility phenotype is available, combination of nalC + nfxB 

+ mexZ + mexS + mexR + armR + nalC E153Q + ampR D135N + parC E91K + parE V460G 

can differentiate levofloxacin resistance from levofloxacin susceptibility with overall sensitivity 

of 43.7- 87.1%, specificity of 99.1-100%, PPV of 98.2-100% and NPV of 59.5-90.3%. 
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Figure 6.10. Predictive capacity of combinations in differentiating gentamycin susceptibility/resistance phenotype in 

all 301 Ps. aeruginosa isolates for which gentamycin susceptibility data are available 

The diagram above is based on the results as extracted in Chapter 3 from Table 3.13 and Figure 

3.5,  

Cluster 1 collectively composed of 81 gentamycin resistant Ps. aeruginosa isolates with average 

MIC of 12.94 showed presence of gidB E186A, gidB E97Q, arnA A170T, arnD G206C, nalC 

E153Q, pstB E89Q in 72%, 71%, 72%, 72%, 71%, 71% of isolates respectively.  

Cluster 2, 3, 4 collectively composed of 25 gentamycin resistant Ps. aeruginosa isolates with 

average MIC ranging from 10.91-26.89  showed presence of gidB E186A, gidB E97Q, arnA 

A170T, arnD G206C, nalC E153Q, pstB E89Q in (95-100%), (95-100%), (90.9-97%), (81.8-

97%), (30-87.5%), (72.7-96%) of isolates respectively.  

Cluster 5 collectively composed of 183 gentamycin susceptible Ps. aeruginosa isolates with 

average MIC of 2.9 showed absence of gidB E186A, gidB E97Q, arnA A170T, arnD G206C, 

nalC E153Q, pstB E89Q in 69%, 63%, 62%, 62%, 65%, 62% of isolates respectively.  

Based on the observed differential distribution among clusters, in all tested 301 Ps. aeruginosa 

isolates for which gentamycin susceptibility phenotype is available, combination of gidB E186A, 

In all tested 301 Ps. 
aeruginosa isolates 

for which 
gentamycin 

phenotypic data are 
available 

Combination of 
gidB E186A, gidB 

E97Q, arnA A170T, 
arnD G206C, nalC 
E153Q, pstB E89Q 
tend to be present at 

more resistant 
clusters 

Sensitivity of 100% 

Specificity of 94.3%

PPV of 90.6%

NPV of 100%

Combination of 
gidB E186A, gidB 

E97Q, arnA A170T, 
arnD G206C, nalC 
E153Q, pstB E89Q 
tend to be absent at 
more susceptible 

clusters 

Sensitivity of 94.3% 

Specificity of 100%

PPV of 100%

NPV of 90.6%
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gidB E97Q, arnA A170T, arnD G206C, nalC E153Q, pstB E89Q can differentiate gentamycin 

resistance from gentamycin susceptibility with overall sensitivity of 94.3-100%, specificity 94.3-

100%, PPV of 90.6-100% and NPV of 90.6-100%. 

 

 

Figure 6.11. Predictive capacity of combinations in differentiating amikacin susceptibility/resistance phenotype in 

all 690 Ps. aeruginosa isolates for which amikacin susceptibility data are available 

The diagram above is based on the results as extracted in Chapter 3 from Table 3.15 and Figure 

3.7. 

Cluster 1 composed of 528 amikacin susceptible Ps. aeruginosa isolates with average MIC of 

3.69 showed absence of arnA A170T, arnD G206C, pstB E89Q, nalD Ser32Asn in 100% of 

isolates and presence of lptA R62S, nuoG A890T, faoA T385A, lptA T55A in 4.9%, 3.4%, 

2.8%, 8.5% of isolates respectively. 

Cluster 2  composed of  148 amikacin resistant Ps. aeruginosa isolates with average MIC of 

54.47 showed presence of arnA A170T, arnD G206C, pstB E89Q, nalD Ser32Asn in 14.7%, 

14.7%, 12.3%, 5.5% of isolates respectively and absence of lptA R62S, nuoG A890T, faoA 

T385A, lptA T55A in 98.8%, 99.4%, 99.4%, 95.1% of isolates respectively.                                                                                                  

In all tested 690 Ps. aeruginosa 
isolates for which amikacin 

phenotypic data are available 

combination of arnA A170T, arnD 
G206C, pstB E89Q, nalDSer32Asn can 

rule in amikacin resistance

Combination of lptA R62S, nuoG 
A890T, faoA T385A, lptA T55A can 

rule in amikacin susceptibiity

Sensitivity of 97.2-100%

Specificity of 97.2-100%

PPV of 90.8-100%

NPV of 90.8-100%
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Based on the observed differential distribution among clusters, in all tested 690 Ps. aeruginosa 

isolates for which amikacin susceptibility phenotype is available, combination of arnA A170T, 

arnD G206C, pstB E89Q, nalD Ser32Asn, lptA R62S, nuoG A890T, faoA T385A, lptA T55A 

can differentiate amikacin resistance from amikacin susceptibility with overall sensitivity of 

97.2-100%, specificity 97.2-100%, PPV of 90.8-100% and NPV of 90.8-100% 

 

Based on summary diagrams shown, the set of predictors identified through clustering as 

summarized in Fig 6.8, Fig 6.9, Fig 6.10, and Fig 6.11 appears to offer better differentiation/ 

prediction towards quinolone and aminoglycoside susceptibility when compared to genomic 

profiles/predictor sets identified using CARD and ResFinder. Genomic profiles are shown in 

Table 2.1 and Table 2.5. These are also summarized in Figure 6.4, Figure 6.5, Figure 6.6, Figure 

6.7. 

The difference in predictive capabilities for different sets assessed can be summarized as 

follows: 

• From the results shown in Fig 6.4 and Fig 6.8, the set of markers identified for 

ciprofloxacin appears to offer better prediction/differentiation for ciprofloxacin 

susceptibility phenotype with improved sensitivity of 8.6-26%, improved specificity of 

48-98%, improved PPV of 33-90%. 

 

• From the results shown in Fig 6.5 and Fig 6.9, the set of markers identified for 

levofloxacin appears to offer better prediction/differentiation for levofloxacin 

susceptibility phenotype with improved sensitivity of 43-82%, improved specificity of 

12-50%, improved PPV of 31-80% and improved NPV of 13-38%.  

 

• From the results shown in Fig 6.6 and Fig 6.10, the set of markers identified for 

gentamycin appears to offer better prediction/differentiation for gentamycin susceptibility 

phenotype with improved sensitivity of 45-90%, improved specificity of 30-45%, 

improved PPV of 20-80% and improved NPV of 25-50% 
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• From the results shown in Fig 6.7 and Fig 6.11, the set of markers identified for amikacin 

appears to offer better prediction/differentiation for amikacin susceptibility phenotype 

with improved sensitivity of 25-75%, improved specificity of 20-45%, improved PPV of 

80-90%. 

In addition, when using comparative behavioral genomics as shown in Chapter 5, the following 

group of markers showed improved prediction. 

• M28 (Inner membrane protein YccS G2184A) showed 30% improved specificity as compared to 

genomic profile 1 and 31-87% improved PPV as a ciprofloxacin molecular marker. 

• M29 (Oxygen-independent coproporphyrinogen-III oxidase-like protein YqeR A13G) showed 6-15% improved 

specificity and 34-90% improved PPV as a ciprofloxacin molecular marker. 

• M20 (Cysteine--tRNA ligase C738T) showed 27% improved specificity and 22% improved NPV as 

a ciprofloxacin molecular marker. 

• M31 (Oxygen-independent coproporphyrinogen-III oxidase-like protein YqeR G57C) showed 37% improved 

specificity and 22% improved NPV as a ciprofloxacin molecular marker. 

• M32 (HTH-type transcriptional regulator GadX G834C) showed 30% improved specificity and 22% 

improved NPV as a ciprofloxacin molecular marker. 

• M43 (HTH-type transcriptional regulator YofA G511A) showed 31% improved specificity and 22% 

improved NPV as a ciprofloxacin molecular marker. 

• The combination of M11(putative HTH-type transcriptional regulator V 91 L), M12 (putative HTH-type 

transcriptional regulator C 300 T), M13 (putative HTH-type transcriptional regulator M 126 L), M20 (Cysteine--tRNA ligase 

C 738 T), M43 (HTH-type transcriptional regulator YofA  A 171 T), nalCA186T, and ampRD135N can 

differentiate ciprofloxacin resistance from susceptibility at sensitivity of (94.6-100%), 

specificity of (80.9-100%), PPV of (14.3-100%), and NPV of (98.4-100%). This shows 

improved performance when compared to the set of predictors identified using the 

evaluated databases at improved sensitivity of 50%, improved specificity of 10-30%, 

improved PPV of 4-40%. 

• M31(Inner membrane protein YohK C502T) showed 13-36% improved specificity and 28-63% 

improved PPV as a gentamycin molecular marker.  
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• M32 (Inner membrane protein YohK T517C) showed 13-36% improved specificity and 32-60% 

improved PPV as a gentamycin molecular marker.  

• M29 (30S ribosomal protein S1 C386A) showed 7-32% improved specificity and 32-60% improved 

PPV as a gentamycin molecular marker.  

• M28 (Ribosomal protein S6--L-glutamate ligase C744T) showed 3-28% improved specificity and 28-63% 

improved PPV as a gentamycin molecular marker.  

• M36 (Cytochrome c oxidase subunit 3 C846A) showed 16% improved specificity and 18-53% 

improved PPV as a gentamycin molecular marker.  

• The combination of M7 (Cell division inhibitor SulA C 111 T), M21 (putative GST-like protein YibF C 678 T), 

M25 (Bifunctional protein PutA T 2958 C), M1 (NADH oxidase T 681 C), M11 ( Glutathione-regulated potassium-efflux 

system protein KefC C 393 T), M22 (Translation initiation factor IF-2 C 261 T), M35 (Long-chain-fatty-acid--CoA ligase 

C1623 G) in addition to combinations shown above with gentamycin (C1 and C2, Table 7.2) 

can differentiate gentamycin resistance from susceptibility at sensitivity of (28.8-100%), 

specificity of (86.5-100%), PPV of (22.2-100%), and NPV of (51.6-100%). This shows 

improved performance when compared to the set of predictors identified using the 

evaluated databases at improved sensitivity of 24-46%, improved specificity of 15-30%, 

improved PPV of 20% and improved NPV of 22%.  

6.8. Applied Example/Summary 

▪ In a diagnostic setting, the combinations of tested markers shown can be used as a list to 

choose from. Each marker shows different form of improved predictive capabilities. 

▪ Each of the markers/combinations tested have a different frequency of occurrence in the 

population. This means that in a randomly selected sample, there are different chances of 

encountering the marker when a test is performed.  

▪ That is the case where we can use the list of markers showing higher predictive 

capabilities. Some markers can be infrequent or uncommon and this consequently results 

in a lower chance of being detected when the diagnostic test is performed. 

▪ In case a marker is not detected in a sample, we need to test for another 

marker/combination from the list of markers showing best performance. 

Example: If we have an unknown clinical sample which is positive for Ps. aeruginosa with some 

available sequencing information, we would start by testing for combinations/markers showing 
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higher sensitivities as a first step screening, then for those positive for any of the listed 

markers/combinations showing higher sensitivity, we would then test for markers/combinations 

showing higher specificities as a second step. 

The first step would be used as a screening diagnostic. This step aims at detecting all possible 

positive cases showing antibiotic resistance. By doing that, we increase the possibility of 

detecting all cases of resistance and thus ensuring the best possible clinical outcome and better 

patients’ health. This consequently results in reducing mortality and complications related to 

antibiotic resistance. However, tests with high sensitivity also have the drawback of 

including/detecting some false negative cases. That is the reason why sensitive tests should be 

followed by more specific tests. By doing so, we increase the chance of correctly identifying all 

true negative cases using a specific test together with identifying all true positive cases using a 

sensitive test. At the same time, this helps to reduce false positive cases which ultimately results 

in avoiding the cost of antibiotic over-prescription. 

 

 

 

 

 

 

 

 

List 1 (Screening)

armR absence

mexZ absence

mexS absence

nalD absence

mexR absence

nfxB absence

ampR absence

or combinations from the list

List 2 (Confirmation)

gyrAT83I

nfxBA124T

nalCE153Q

nalCThr50Pro

ampRD135N

parCE91k

parEV460G

or combinations of the list

Quinolone Resistance 
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List 1 should be first used to look up individual or/combinations of markers as a 1st step 

screening. Markers included in list 1 show high sensitivity ± high NPV. 

List 2 should then be used to look up individual/combinations of markers as a second step 

confirmation. Markers included in list 2 show higher specificity ± high PPV. 

Predictive performance of markers and combinations are detailed in Table 6.1 and Table 6.4. 

Values of improved performance including improved Sensitivity, Specificity, PPV, and NPV are 

illustrated in diagrams 6.8 – 6.11. 

Concluding statement 

Review of available rapid diagnostic platforms showed that some POC diagnostics can detect 

mutations and can also detect some resistance-related gene variants in combination through gene 

amplification followed by microarray detection or gene sequencing. However, there is a lack of 

research evidence that informs about the best potential set of molecular markers with the 

possibility to act as best diagnostic predictors. All available research and diagnostic platforms 

build on a very small subset of established resistance elements and even do not expand to 

consider the breadth of information available in the literature in addition to including results 

from comprehensive research approaches such as GWAS. The thesis has contributed to fill this 

gap in knowledge by creating a new understanding about the combinatorial quantitative 

List 1 (screening)

nalD absence

nalC absence

mexZ absence

ampR absence

mexR absence

or combinations from the list

List 2 (confirmation)

arnAA170T

arnDG206C

fusA1D588G

nalDSer32Asn

pstB E89Q

nalC E153Q

gidB E186A

gidB E97Q

or combinations from the list

Aminoglycosides Resistance 
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contribution of different resistance mechanisms and by suggesting a way of using this approach 

to be applied in a diagnostic setting. In that way, it has combined the existing body of knowledge 

about resistance-related variants with results of comparative behavioral genomics into a new way 

to understand resistance-underlying elements and applying it at the practical level. This can be 

achieved by translating this new understanding into suggested assessment and decision 

algorithms for antibiotic prescription in addition to the potential of using this knowledge to 

develop new antibiotic-resistance diagnostic panels using different sequencing platforms 

including both NGS and metagenomics.  

Results of the analysis performed here suggest that genome sequencing, once introduced into 

clinical practice with the additional availability of all related infrastructure, would offer the 

ultimate resolution and broadest coverage for detecting all resistance variants. This would also 

offer the added advantage of adapting the panels used for detection. It also carries the additional 

value of attaching all other genomic information which can offer the best optimized and 

personalized infectious diseases management options. Using genome sequencing as a clinical 

diagnostic tool to detect the best combination of markers showing higher predictive performance 

from clinical specimens would consequently impact treatment and offer better choices. Adapting 

that approach would also provide up-to-date epidemiologic information about the incidence and 

trends of new resistance mechanisms that would inform the future development of this type of 

“flexible adaptable format “diagnostic. To achieve that and to bring it closer to practice, rapid 

new portable or benchtop sequencing technologies need to be used together with rapid DNA 

extraction, rapid direct colony sequencing or metagenomic sequencing directly from clinical 

samples. This would greatly help to shorten the time to answer cycle. 

The thesis has attempted to follow a novel approach that explores for the best informative panel 

of markers which can be used for rapid antimicrobial resistance detection using different 

sequencing platforms. Development of high throughput research approaches that improve our 

understanding about the genomic bases of phenotype help to provide personalized sequence-

based diagnostic algorithms which can greatly improve infectious disease management. The 

highest informative value genome sequencing can provide together with the exploitation of the 

advancement in DNA rapid extraction and new sequencing technologies can bring this new 

research-based knowledge closer to the clinic. 
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Appendix Ι 

McFarland Standard 

A BaSO4 0.5 McFarland standard used to standardize the inoculum density for a susceptibility test 

was prepared by adding 0.5-ml aliquot of 0.048 mol/L BaCl2 to 99.5 ml of 0.18 mol/L H2SO4 with 

constant stirring to maintain a suspension. The correct density of the turbidity standard should be 

verified using a spectrophotometer. The absorbance at 625 nm should be 0.008 to 0.10 for the 0.5 

McFarland standard. 

Nanodrop -DNA quality check curves 
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Qubit DNA quantification 

Qubit® dsDNA HS Assay Kits and the Qubit® Fluorometer instrument were used to quantify 

dsDNA according to the following steps: 

Clear thin walled 0.5 ml PCR tubes are set up and labelled according to the number of samples 

and standards. The Qubit® dsDNA HS Assay requires 2 standards. 

The Qubit® working solution is prepared by diluting the Qubit® dsDNA HS Reagent 1:200 in 

Qubit® dsDNA HS Buffer in a clean plastic tube. 

Sufficient Qubit® working solution to accommodate all standards and samples so that the final 

volume in each tube is 200 µl. 

To prepare standards, 190 µL of Qubit® working solution is added to each of the tubes used for 

standards with 10 µL of each Qubit® standard then mixed by vortexing for 2–3 seconds. 

To prepare assay tubes, Qubit® working solution is added at the volume anywhere from 180–

199 µL to each assay tube based on the sample volume which can be anywhere from 1–20 µL. 

The assay tubes with final volume of 200 µl are then mixed by vortexing for 2–3 seconds. 
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All tubes are then allowed to incubate at room temperature for 2 minutes.  

Both standards are then used to measure samples using the Qubit® 3.0 Fluorometer according to 

instructions shown in the Qubit® 3.0 Fluorometer User Guide. 

The Qubit® 2.0 Fluorometer gives values for the Qubit® dsDNA HS Assay in ng/mL which 

corresponds to the concentration after the sample was diluted into the assay tube. 

The concentration in the sample is calculated according to the following equation: 

Concentration of the sample = QF value ×(200/X) where QF value = the value given by the 

Qubit® 2.0 Fluorometer, x = the number of microliters of sample added to the assay tube 

 

MIC evaluator strip 
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Disc-diffusion-Kirby-Bauer method 
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MIC by broth Microdilution 
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Disc-diffusion-Modified Stokes’ 

 

 

 

 

Preparation and storage of antibiotic stock and working solutions 

Preparation of antibiotic stock solutions 

Antibiotic stock solutions are prepared at high concentration (e.g. 1000 µg/ml) from 

commercially available antimicrobial powders (with given potency). The amount needed and the 

diluents can be calculated by using either of the following formulas to determine the amount of 

antimicrobial powder (1) or diluent (2) needed for a standard solution. 
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Preparation of antibiotic dilution ranges according to the following table: 

 

 

Storage of antibiotic Stock solutions 

Antibiotic Solvent Diluent 4℃ -20℃ -70℃ 

Amikacin water water 7days 1 month ------ 

gentamycin   6 months NR NR 

levofloxacin   --------- --------- --------- 

Ciprofloxacin DMSO water 2 weeks 3 months 3 months 

 

NR: Not Recommended 

DMSO: Dimethyl Sulphoxide 

Stock Volume 

from stock 

CAMH 

broth 

Concentration 

In working 

stock 

Final concentration in test plate 

after adding bacterial suspension 

10.000 256ul 20ml 128 64 

10.000 128ul 20ml 64 32 

10.000 64ul 20ml 32 16 

1000 320ul 20ml 16 8 

1000 160ul 20ml 8 4 

1000 80ul 20ml 4 2 

1000 40ul 20ml 2 1 

100 200ul 20ml 1 0.5 

100 100ul 20ml 0.5 0.25 

100 50ul 20ml 0.25 0.125 

10 250ul 20ml 0.125 0.06 

10 125ul 20ml 0.06 0.03 

1 625ul 20ml 0.03 0.015 

1 313ul 20ml 0.015 0.008 

1 156ul 20ml 0.008 0.004 

http://microbeonline.com/wp-content/uploads/2013/11/microdilution-formula.jpg
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APPENDIX Ⅱ 

Supplementary Table 1A: List of Ps. aeruginosa genomes from Patric database analyzed for ciprofloxacin and 

levofloxacin resistance prediction 

Genome ID Strain Completion Date BioProject Accession GenBank Accessions Genome Length GC Content 

1611770.3 MRSN12121 2015-02-23 PRJNA273956 CP010892,CP010893,CP010894 6986763 63.79 

287.1477 MRSN 20176 2015-05-05 PRJNA273956 JYGC02000000 6730817 65.93 

287.1482 MRSN18971 2014-06-20 PRJNA240151 JFJU01000000 6391538 66.45 

287.2972 AR_0103 2016-11-10 PRJNA292904 MPBP00000000 6900175 65.99 

287.2973 AR_0092 2016-11-10 PRJNA292904 MPBS00000000 6963676 66.02 

287.2975 AR_0100 2016-11-10 PRJNA292904 MPBQ00000000 6929574 65.98 

287.2976 AR_0105 2016-11-10 PRJNA292904 MPBO00000000 6425652 66.22 

287.2977 AR_0054 2016-11-10 PRJNA292904 MPBV00000000 7267705 65.81 

287.2978 AR_0064 2016-11-10 PRJNA292904 MPBU00000000 6827144 66.05 

287.2979 AR_0094 2016-11-10 PRJNA292904 MPBR00000000 6882581 66.05 

287.2980 AR_0108 2016-11-10 PRJNA292904 MPBN00000000 6971125 65.98 

287.5685 AR_0360 2018-04-25 PRJNA316321 CP027165 6463575 66.44145 

287.5686 AR_0354 2018-04-25 PRJNA316321 CP027171 6747010 66.09722 

287.5687 AR_0353 2018-04-25 PRJNA316321 CP027172,CP027173 7282236 65.70483 

287.5688 AR_0230 2018-04-25 PRJNA316321 CP027174,CP027175,CP027176 7086054 65.87829 

287.5689 AR_0356 2018-04-25 PRJNA316321 CP027169,CP027168,CP027170,CP027167 7247865 65.59437 

287.5690 AR_0357 2018-04-25 PRJNA316321 CP027166 7162784 65.79707 

287.5701 AR_0355 2018-03-14 PRJNA316321 PSQQ01000000 7172470 65.84778 

287.5702 AR_0359 2018-03-14 PRJNA316321 PSQS01000000 6940345 65.91524 

287.5703 AR_0358 2018-03-14 PRJNA316321 PSQR01000000 7284124 65.71017 

287.5704 AR_0351 2018-03-14 PRJNA316321 PSQP01000000 6611054 66.24956 

287.5746 AR_0443 2018-04-30 PRJNA316321 CP029147 6776714 65.83632 

287.5747 AR_0440 2018-04-30 PRJNA316321 CP029148 7167215 65.84894 

287.5748 AR439 2018-04-30 PRJNA316321 CP029097,CP029095,CP029096 7578039 65.41879 

287.5749 AR442 2018-04-30 PRJNA316321 CP029090 7267567 65.75234 

287.5750 AR445 2018-04-30 PRJNA316321 CP029088 7125975 65.78442 

287.5751 AR441 2018-04-30 PRJNA316321 CP029093,CP029091,CP029092,CP029094 7245771 65.59486 

287.5752 AR444 2018-04-30 PRJNA316321 CP029089 6853499 66.05279 

287.5778 AR_0095 2018-03-14 PRJNA292904 CP027538 6822666 66.10762 

287.5955 AR_0446 2018-06-06 PRJNA316321 CP029660 6475581 66.33031 

287.5956 CCUG 70744 2018-06-06 PRJNA401330 CP023255 6859232 66.04034 

287.5959 AR_0110 2018-06-10 PRJNA292904 CP029745 6799785 66.01369 

287.5969 AR_0447 2018-06-22 PRJNA316321 QHCK01000000 7178792 65.86686 

287.5971 AR_460 2018-07-05 PRJNA316321 CP030351 6303875 66.55481 
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287.5972 AR_455 2018-07-05 PRJNA316321 CP030328 6540996 65.8842 

287.5973 AR_458 2018-07-05 PRJNA316321 CP030327 6685102 66.23354 

287.6326 AR_0459 2018-07-16 PRJNA316321 QMGQ01000000 6752712 66.24611 

287.6327 AR_0457 2018-07-16 PRJNA316321 QMGP01000000 7381251 65.63855 

287.6328 AR_0456 2018-07-16 PRJNA316321 QMGO01000000 7079305 65.85722 

287.6329 AR_0449 2018-07-16 PRJNA316321 QMGL01000000 6792240 65.96245 

287.6330 AR_0241 2018-07-16 PRJNA316321 QMGI01000000 7226502 65.64898 

287.6331 AR_0352 2018-07-16 PRJNA316321 QMGJ01000000 6418505 66.43134 

287.6492 AR_0111 2018-09-17 PRJNA292904 CP032257,CP032256 7075653 65.83051 

287.7771 MRSN8914 2018-12-24 PRJNA446057 RXTB01000000 7356800 65.33966 

287.7772 MRSN8915 2018-12-24 PRJNA446057 RXTA01000000 7064713 65.6805 

287.7773 MRSN994 2018-12-24 PRJNA446057 RXSX01000000 6734108 66.12464 

287.7774 MRSN8139 2018-12-24 PRJNA446057 RXTE01000000 6575059 66.36821 

287.7775 MRSN7014 2018-12-24 PRJNA446057 RXTH01000000 6420453 66.4322 

287.7776 MRSN8912 2018-12-24 PRJNA446057 RXTC01000000 6986301 65.71874 

287.7777 MRSN8136 2018-12-24 PRJNA446057 RXTF01000000 6907900 65.71381 

287.7778 MRSN6695 2018-12-24 PRJNA446057 RXTJ01000000 6235816 66.57632 

287.7779 MRSN6241 2018-12-24 PRJNA446057 RXTL01000000 7161217 65.6252 

287.7780 MRSN6678 2018-12-24 PRJNA446057 RXTK01000000 6782774 66.11963 

287.7781 MRSN6220 2018-12-24 PRJNA446057 RXTM01000000 6910198 66.00948 

287.7782 MRSN5524 2018-12-24 PRJNA446057 RXTO01000000 6725073 65.99564 

287.7783 MRSN5539 2018-12-24 PRJNA446057 RXTN01000000 6769662 66.07058 

287.7784 MRSN552 2018-12-24 PRJNA446057 RXTP01000000 6444919 66.35499 

287.7785 MRSN5519 2018-12-24 PRJNA446057 RXTQ01000000 6751302 66.13514 

287.7786 MRSN4841 2018-12-24 PRJNA446057 RXTT01000000 6475204 66.25277 

287.7787 MRSN5498 2018-12-24 PRJNA446057 RXTS01000000 6821230 66.00017 

287.7788 MRSN443463 2018-12-24 PRJNA446057 RXTU01000000 6393241 66.4404 

287.7789 MRSN315 2018-12-24 PRJNA446057 RXUI01000000 6696919 66.20516 

287.7790 MRSN19711 2018-12-24 PRJNA446057 RXUX01000000 6265327 66.5761 

287.7791 MRSN20190 2018-12-24 PRJNA446057 RXUV01000000 6191883 66.59317 

287.7792 MRSN9873 2018-12-24 PRJNA446057 RXSY01000000 7146707 65.48819 

287.7793 MRSN9718 2018-12-24 PRJNA446057 RXSZ01000000 6861353 66.01952 

287.7794 MRSN8141 2018-12-24 PRJNA446057 RXTD01000000 7161718 65.6272 

287.7795 MRSN8130 2018-12-24 PRJNA446057 RXTG01000000 6828028 66.09563 

287.7796 MRSN6739 2018-12-24 PRJNA446057 RXTI01000000 6298064 66.47807 

287.7797 MRSN5508 2018-12-24 PRJNA446057 RXTR01000000 6439859 66.34678 

287.7798 MRSN435288 2018-12-24 PRJNA446057 RXTW01000000 6363888 66.22477 

287.7799 MRSN321 2018-12-24 PRJNA446057 RXUG01000000 6260875 66.54782 

287.7800 MRSN25678 2018-12-24 PRJNA446057 RXUN01000000 6509751 66.21528 
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287.7801 MRSN18754 2018-12-24 PRJNA446057 RXVH01000000 6270751 66.54153 

287.7802 MRSN390231 2018-12-24 PRJNA446057 RXTZ01000000 6149846 66.37745 

287.7803 MRSN436311 2018-12-24 PRJNA446057 RXTV01000000 6473360 66.41605 

287.7804 MRSN373401 2018-12-24 PRJNA446057 RXUA01000000 6985982 65.97148 

287.7805 MRSN3705 2018-12-24 PRJNA446057 RXUB01000000 6419743 66.57632 

287.7806 MRSN29192 2018-12-24 PRJNA446057 RXUK01000000 6375161 66.43941 

287.7807 MRSN25762 2018-12-24 PRJNA446057 RXUM01000000 6845305 66.2181 

287.7808 MRSN2444 2018-12-24 PRJNA446057 RXUP01000000 6843047 66.06668 

287.7809 MRSN3587 2018-12-24 PRJNA446057 RXUU01000000 6494873 66.36721 

287.7810 MRSN2101 2018-12-24 PRJNA446057 RXUT01000000 6346725 66.37656 

287.7811 MRSN23861 2018-12-24 PRJNA446057 RXUQ01000000 7025487 65.94264 

287.7812 MRSN20176 2018-12-24 PRJNA446057 RXUW01000000 6717057 65.99654 

287.7813 MRSN1948 2018-12-24 PRJNA446057 RXUY01000000 6674435 66.19558 

287.7814 MRSN1906 2018-12-24 PRJNA446057 RXVB01000000 7049219 65.7835 

287.7815 MRSN1938 2018-12-24 PRJNA446057 RXUZ01000000 7052906 66.11615 

287.7816 MRSN1899 2018-12-24 PRJNA446057 RXVD01000000 6573139 66.22041 

287.7817 MRSN1902 2018-12-24 PRJNA446057 RXVC01000000 6344431 66.45721 

287.7818 MRSN18970 2018-12-24 PRJNA446057 RXVE01000000 6370604 66.51189 

287.7819 MRSN17849 2018-12-24 PRJNA446057 RXVK01000000 6738933 66.12466 

287.7820 MRSN16744 2018-12-24 PRJNA446057 RXVO01000000 6776946 66.11751 

287.7821 MRSN16740 2018-12-24 PRJNA446057 RXVP01000000 6670940 66.08019 

287.7822 MRSN1688 2018-12-24 PRJNA446057 RXVM01000000 6606996 66.14838 

287.7823 MRSN16383 2018-12-24 PRJNA446057 RXVQ01000000 6302224 66.53333 

287.7824 MRSN16345 2018-12-24 PRJNA446057 RXVR01000000 6333273 66.51163 

287.7825 MRSN1613 2018-12-24 PRJNA446057 RXVU01000000 6276349 66.51006 

287.7826 MRSN1601 2018-12-24 PRJNA446057 RXVW01000000 6411494 66.28397 

287.7827 MRSN1583 2018-12-24 PRJNA446057 RXVX01000000 6463376 66.37041 

287.7828 MRSN1617 2018-12-24 PRJNA446057 RXVT01000000 6780137 66.19642 

287.7829 MRSN1388 2018-12-24 PRJNA446057 RXWC01000000 7171428 65.86237 

287.7830 MRSN15678 2018-12-24 PRJNA446057 RXVZ01000000 6780257 66.09457 

287.7831 MRSN14981 2018-12-24 PRJNA446057 RXWB01000000 6508561 66.21667 

287.7832 MRSN409937 2018-12-24 PRJNA446057 RXTX01000000 6487691 66.33823 

287.7833 MRSN351791 2018-12-24 PRJNA446057 RXUE01000000 6812488 65.93882 

287.7834 MRSN346179 2018-12-24 PRJNA446057 RXUF01000000 6293739 66.51709 

287.7835 MRSN30858 2018-12-24 PRJNA446057 RXUJ01000000 6382502 66.4238 

287.7836 MRSN26263 2018-12-24 PRJNA446057 RXUL01000000 6430277 66.3206 

287.7837 MRSN1925 2018-12-24 PRJNA446057 RXVA01000000 7130564 65.83213 

287.7838 MRSN25623 2018-12-24 PRJNA446057 RXUO01000000 6635285 66.08652 

287.7839 MRSN18562 2018-12-24 PRJNA446057 RXVI01000000 6494310 66.3681 
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287.7840 MRSN16344 2018-12-24 PRJNA446057 RXVS01000000 6318735 66.45731 

287.7841 MRSN1612 2018-12-24 PRJNA446057 RXVV01000000 6506983 66.235 

287.7842 MRSN1739 2018-12-24 PRJNA446057 RXVL01000000 7031489 65.82428 

287.7843 MRSN16847 2018-12-24 PRJNA446057 RXVN01000000 6594082 65.97868 

287.7844 MRSN15753 2018-12-24 PRJNA446057 RXVY01000000 6547438 66.18349 

287.7845 MRSN1380 2018-12-24 PRJNA446057 RXWD01000000 6339603 66.48981 

287.7846 MRSN15566 2018-12-24 PRJNA446057 RXWA01000000 6408848 66.38998 

287.7847 MRSN1356 2018-12-24 PRJNA446057 RXWE01000000 6555630 66.19885 

287.7848 MRSN12914 2018-12-24 PRJNA446057 RXWH01000000 6756810 65.92381 

287.7849 MRSN12283 2018-12-24 PRJNA446057 RXWK01000000 6301640 66.49963 

287.7850 MRSN12365 2018-12-24 PRJNA446057 RXWJ01000000 6869499 65.87287 

287.7851 MRSN358800 2018-12-24 PRJNA446057 RXUD01000000 6501460 66.35765 

287.7852 MRSN11538 2018-12-24 PRJNA446057 RXWN01000000 6528585 66.2616 

287.7853 MRSN11278 2018-12-24 PRJNA446057 RXWS01000000 6893110 66.04308 

287.7854 MRSN11281 2018-12-24 PRJNA446057 RXWR01000000 6323478 66.49251 

287.7855 MRSN13488 2018-12-24 PRJNA446057 RXWF01000000 5912421 66.50286 

287.7856 MRSN1344 2018-12-24 PRJNA446057 RXWG01000000 6232278 66.49448 

287.7857 MRSN12368 2018-12-24 PRJNA446057 RXWI01000000 6340159 66.43633 

287.7858 MRSN11285 2018-12-24 PRJNA446057 RXWQ01000000 6650291 66.16359 

287.7859 MRSN12282 2018-12-24 PRJNA446057 RXWL01000000 6876949 65.96845 

287.7860 MRSN11536 2018-12-24 PRJNA446057 RXWO01000000 6935556 65.91659 

287.7861 MRSN11286 2018-12-24 PRJNA446057 RXWP01000000 6711313 65.91158 

287.7862 MRSN11976 2018-12-24 PRJNA446057 RXWM01000000 6991711 65.90075 

287.8027 MRSN401528 2018-12-24 PRJNA446057 RXTY01000000 6486368 66.14036 

287.8028 MRSN369569 2018-12-24 PRJNA446057 RXUC01000000 6316238 66.51856 

287.8029 MRSN2144 2018-12-24 PRJNA446057 RXUR01000000 7032738 65.79075 

287.8030 MRSN18855 2018-12-24 PRJNA446057 RXVF01000000 6296953 66.48956 

287.8031 MRSN2108 2018-12-24 PRJNA446057 RXUS01000000 6394452 66.39729 

287.8032 MRSN18803 2018-12-24 PRJNA446057 RXVG01000000 6191380 66.5096 

287.8033 MRSN317 2018-12-24 PRJNA446057 RXUH01000000 6349621 66.47357 

287.8034 MRSN18560 2018-12-24 PRJNA446057 RXVJ01000000 6268481 66.5069 
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Supplementary Table 1B: List of Ps. aeruginosa genomes from Patric database analyzed for levofloxacin resistance 

prediction: 

Genome ID Strain Completion Date BioProject Accession GenBank Accessions Genome Length GC Content 

1611770.3 MRSN12121 2015-02-23 PRJNA273956 CP010892,CP010893,CP010894 6986763 63.79 

287.1000 AZPAE14933 2014-12-04 PRJNA264310 JTRI00000000 7092428 65.74 

287.1001 AZPAE14932 2014-12-04 PRJNA264310 JTRJ00000000 6638040 66.21 

287.1002 AZPAE14931 2014-12-04 PRJNA264310 JTRK00000000 6359186 66.43 

287.1003 AZPAE14930 2014-12-04 PRJNA264310 JTRL00000000 6302622 66.48 

287.1004 AZPAE14929 2014-12-04 PRJNA264310 JTRM00000000 6750744 66.09 

287.1005 AZPAE14928 2014-12-04 PRJNA264310 JTRN00000000 6257878 66.55 

287.1006 AZPAE14927 2014-12-04 PRJNA264310 JTRO00000000 6885375 65.93 

287.1007 AZPAE14926 2014-12-04 PRJNA264310 JTRP00000000 6886320 65.94 

287.1008 AZPAE14925 2014-12-04 PRJNA264310 JTRQ00000000 6462755 66.29 

287.1009 AZPAE14924 2014-12-04 PRJNA264310 JTRR00000000 7042302 65.8 

287.1010 AZPAE14923 2014-12-04 PRJNA264310 JTRS00000000 6724711 66.11 

287.1011 AZPAE14922 2014-12-04 PRJNA264310 JTRT00000000 6839077 65.98 

287.1012 AZPAE14921 2014-12-04 PRJNA264310 JTRU00000000 6815406 65.99 

287.1013 AZPAE14920 2014-12-04 PRJNA264310 JTRV00000000 6882761 66.06 

287.1014 AZPAE14919 2014-12-04 PRJNA264310 JTRW00000000 6284486 66.28 

287.1015 AZPAE14918 2014-12-04 PRJNA264310 JTRX00000000 6318316 66.47 

287.1016 AZPAE14917 2014-12-04 PRJNA264310 JTRY00000000 6308307 66.52 

287.1017 AZPAE14916 2014-12-04 PRJNA264310 JTRZ00000000 6242056 66.5 

287.1018 AZPAE14915 2014-12-04 PRJNA264310 JTSA00000000 6880572 65.9 

287.1019 AZPAE14914 2014-12-04 PRJNA264310 JTSB00000000 6858678 65.91 

287.1020 AZPAE14913 2014-12-04 PRJNA264310 JTSC00000000 6454858 66.27 

287.1021 AZPAE14912 2014-12-04 PRJNA264310 JTSD00000000 6835920 66.08 

287.1022 AZPAE14911 2014-12-04 PRJNA264310 JTSE00000000 6808509 65.93 

287.1023 AZPAE14910 2014-12-04 PRJNA264310 JTSF00000000 6253654 66.5 

287.1024 AZPAE14909 2014-12-04 PRJNA264310 JTSG00000000 7056926 65.94 

287.1025 AZPAE14908 2014-12-04 PRJNA264310 JTSH00000000 6815570 66.14 

287.1026 AZPAE14907 2014-12-04 PRJNA264310 JTSI00000000 6392112 66.38 

287.1027 AZPAE14906 2014-12-04 PRJNA264310 JTSJ00000000 6690011 66.19 

287.1028 AZPAE14905 2014-12-04 PRJNA264310 JTSK00000000 6692731 66.2 

287.1029 AZPAE14904 2014-12-04 PRJNA264310 JTSL00000000 6937853 65.87 

287.1030 AZPAE14903 2014-12-04 PRJNA264310 JTSM00000000 6846030 65.86 

287.1031 AZPAE14902 2014-12-04 PRJNA264310 JTSN00000000 6886932 66.05 

287.1032 AZPAE14901 2014-12-04 PRJNA264310 JTSO00000000 6881448 66.13 

287.1033 AZPAE14900 2014-12-04 PRJNA264310 JTSP00000000 6851898 65.79 

287.1034 AZPAE14899 2014-12-04 PRJNA264310 JTSQ00000000 6470623 66.16 
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287.1035 AZPAE14898 2014-12-04 PRJNA264310 JTSR00000000 6577690 66.12 

287.1036 AZPAE14897 2014-12-04 PRJNA264310 JTSS00000000 6448155 66.24 

287.1037 AZPAE14895 2014-12-04 PRJNA264310 JTST00000000 6330823 66.42 

287.1038 AZPAE14894 2014-12-04 PRJNA264310 JTSU00000000 7003752 65.96 

287.1039 AZPAE14893 2014-12-04 PRJNA264310 JTSV00000000 6769601 65.96 

287.1040 AZPAE14892 2014-12-04 PRJNA264310 JTSW00000000 6609151 66.05 

287.1041 AZPAE14891 2014-12-04 PRJNA264310 JTSX00000000 6447447 66.38 

287.1042 AZPAE14890 2014-12-04 PRJNA264310 JTSY00000000 7016044 65.97 

287.1043 AZPAE14889 2014-12-04 PRJNA264310 JTSZ00000000 6479466 66.26 

287.1044 AZPAE14888 2014-12-04 PRJNA264310 JTTA00000000 6680559 66.15 

287.1045 AZPAE14887 2014-12-04 PRJNA264310 JTTB00000000 6903570 66.01 

287.1046 AZPAE14886 2014-12-04 PRJNA264310 JTTC00000000 7057811 65.77 

287.1047 AZPAE14885 2014-12-04 PRJNA264310 JTTD00000000 6406036 66.22 

287.1048 AZPAE14884 2014-12-04 PRJNA264310 JTTE00000000 6434371 66.45 

287.1049 AZPAE14883 2014-12-04 PRJNA264310 JTTF00000000 6309393 66.42 

287.1050 AZPAE14882 2014-12-04 PRJNA264310 JTTG00000000 6455645 66.42 

287.1051 AZPAE14881 2014-12-04 PRJNA264310 JTTH00000000 6703242 66.06 

287.1052 AZPAE14880 2014-12-04 PRJNA264310 JTTI00000000 6864526 66.11 

287.1053 AZPAE14879 2014-12-04 PRJNA264310 JTTJ00000000 6226729 66.54 

287.1054 AZPAE14878 2014-12-04 PRJNA264310 JTTK00000000 6953921 65.92 

287.1055 AZPAE14877 2014-12-04 PRJNA264310 JTTL00000000 6300065 66.37 

287.1056 AZPAE14876 2014-12-04 PRJNA264310 JTTM00000000 6386042 66.4 

287.1057 AZPAE14875 2014-12-04 PRJNA264310 JTTN00000000 6980738 65.87 

287.1058 AZPAE14874 2014-12-04 PRJNA264310 JTTO00000000 6850351 66.05 

287.1059 AZPAE14873 2014-12-04 PRJNA264310 JTTP00000000 6259215 66.47 

287.1060 AZPAE14872 2014-12-04 PRJNA264310 JTTQ00000000 7250921 65.47 

287.1061 AZPAE14871 2014-12-04 PRJNA264310 JTTR00000000 7054233 65.55 

287.1062 AZPAE14870 2014-12-04 PRJNA264310 JTTS00000000 6899104 66.03 

287.1063 AZPAE14869 2014-12-04 PRJNA264310 JTTT00000000 6796086 66.04 

287.1064 AZPAE14868 2014-12-04 PRJNA264310 JTTU00000000 6390696 66.38 

287.1065 AZPAE14867 2014-12-04 PRJNA264310 JTTV00000000 6785052 65.93 

287.1066 AZPAE14866 2014-12-04 PRJNA264310 JTTW00000000 6452948 66.3 

287.1067 AZPAE14865 2014-12-04 PRJNA264310 JTTX00000000 6894960 65.79 

287.1068 AZPAE14864 2014-12-04 PRJNA264310 JTTY00000000 6160523 66.57 

287.1069 AZPAE14863 2014-12-04 PRJNA264310 JTTZ00000000 7070053 65.55 

287.1070 AZPAE14862 2014-12-04 PRJNA264310 JTUA00000000 7067572 65.64 

287.1071 AZPAE14861 2014-12-04 PRJNA264310 JTUB00000000 6713012 66.14 

287.1072 AZPAE14860 2014-12-04 PRJNA264310 JTUC00000000 6768731 66.15 

287.1073 AZPAE14859 2014-12-04 PRJNA264310 JTUD00000000 6527863 66.22 
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287.1074 AZPAE14858 2014-12-04 PRJNA264310 JTUE00000000 6660551 65.95 

287.1075 AZPAE14857 2014-12-04 PRJNA264310 JTUF00000000 6869309 66.04 

287.1076 AZPAE14856 2014-12-04 PRJNA264310 JTUG00000000 6335571 66.42 

287.1077 AZPAE14855 2014-12-04 PRJNA264310 JTUH00000000 6342011 66.15 

287.1078 AZPAE14853 2014-12-04 PRJNA264310 JTUI00000000 6829167 66.09 

287.1079 AZPAE14852 2014-12-04 PRJNA264310 JTUJ00000000 6860603 65.91 

287.1080 AZPAE14851 2014-12-04 PRJNA264310 JTUK00000000 6617149 66.24 

287.1081 AZPAE14850 2014-12-04 PRJNA264310 JTUL00000000 6729517 66.06 

287.1082 AZPAE14848 2014-12-04 PRJNA264310 JTUM00000000 6252044 66.43 

287.1083 AZPAE14847 2014-12-04 PRJNA264310 JTUN00000000 6345563 66.43 

287.1084 AZPAE14846 2014-12-04 PRJNA264310 JTUO00000000 6819636 65.85 

287.1085 AZPAE14845 2014-12-04 PRJNA264310 JTUP00000000 6621008 66 

287.1086 AZPAE14844 2014-12-04 PRJNA264310 JTUQ00000000 6732772 66.12 

287.1087 AZPAE14843 2014-12-04 PRJNA264310 JTUR00000000 6737478 65.98 

287.1088 AZPAE14842 2014-12-04 PRJNA264310 JTUS00000000 6889407 65.93 

287.1089 AZPAE14841 2014-12-04 PRJNA264310 JTUT00000000 6845205 66.01 

287.1090 AZPAE14840 2014-12-04 PRJNA264310 JTUU00000000 7049244 65.61 

287.1091 AZPAE14839 2014-12-04 PRJNA264310 JTUV00000000 6615080 66.18 

287.1092 AZPAE14838 2014-12-04 PRJNA264310 JTUW00000000 7113432 65.42 

287.1093 AZPAE14837 2014-12-04 PRJNA264310 JTUX00000000 6449289 66.22 

287.1094 AZPAE14836 2014-12-04 PRJNA264310 JTUY00000000 6438844 66.27 

287.1095 AZPAE14835 2014-12-04 PRJNA264310 JTUZ00000000 6500090 66.12 

287.1096 AZPAE14834 2014-12-04 PRJNA264310 JTVA00000000 6792091 65.97 

287.1097 AZPAE14833 2014-12-04 PRJNA264310 JTVB00000000 6876687 65.96 

287.1098 AZPAE14832 2014-12-04 PRJNA264310 JTVC00000000 6543022 66.02 

287.1099 AZPAE14831 2014-12-04 PRJNA264310 JTVD00000000 7184792 65.56 

287.1100 AZPAE14830 2014-12-04 PRJNA264310 JTVE00000000 6816534 66 

287.1101 AZPAE14829 2014-12-04 PRJNA264310 JTVF00000000 6995537 66.05 

287.1102 AZPAE14828 2014-12-04 PRJNA264310 JTVG00000000 6872882 66.04 

287.1103 AZPAE14827 2014-12-04 PRJNA264310 JTVH00000000 7354112 65.59 

287.1104 AZPAE14826 2014-12-04 PRJNA264310 JTVI00000000 7108825 65.87 

287.1105 AZPAE14825 2014-12-04 PRJNA264310 JTVJ00000000 6426191 66.4 

287.1106 AZPAE14824 2014-12-04 PRJNA264310 JTVK00000000 7034546 65.84 

287.1107 AZPAE14823 2014-12-04 PRJNA264310 JTVL00000000 6849147 66.04 

287.1108 AZPAE14822 2014-12-04 PRJNA264310 JTVM00000000 6668034 66.1 

287.1109 AZPAE14821 2014-12-04 PRJNA264310 JTVN00000000 6811510 66.04 

287.1110 AZPAE14820 2014-12-04 PRJNA264310 JTVO00000000 6364162 66.41 

287.1111 AZPAE14819 2014-12-04 PRJNA264310 JTVP00000000 6660543 66.16 

287.1112 AZPAE14818 2014-12-04 PRJNA264310 JTVQ00000000 6303594 66.39 
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287.1113 AZPAE14817 2014-12-04 PRJNA264310 JTVR00000000 6295916 66.49 

287.1114 AZPAE14816 2014-12-04 PRJNA264310 JTVS00000000 6738242 66.04 

287.1115 AZPAE14815 2014-12-04 PRJNA264310 JTVT00000000 7030097 65.89 

287.1116 AZPAE14814 2014-12-04 PRJNA264310 JTVU00000000 6843476 65.98 

287.1117 AZPAE14813 2014-12-04 PRJNA264310 JTVV00000000 6470062 66.2 

287.1118 AZPAE14812 2014-12-04 PRJNA264310 JTVW00000000 7093737 65.99 

287.1119 AZPAE14811 2014-12-04 PRJNA264310 JTVX00000000 6981966 65.94 

287.1120 AZPAE14810 2014-12-04 PRJNA264310 JTVY00000000 6316519 66.4 

287.1121 AZPAE14809 2014-12-04 PRJNA264310 JTVZ00000000 6210274 66.51 

287.1122 AZPAE14732 2014-12-04 PRJNA264310 JTWA00000000 6793558 66.06 

287.1123 AZPAE14731 2014-12-04 PRJNA264310 JTWB00000000 6231966 66.5 

287.1124 AZPAE14730 2014-12-04 PRJNA264310 JTWC00000000 6865760 66.02 

287.1125 AZPAE14729 2014-12-04 PRJNA264310 JTWD00000000 7015575 65.78 

287.1126 AZPAE14728 2014-12-04 PRJNA264310 JTWE00000000 7356424 65.59 

287.1127 AZPAE14727 2014-12-04 PRJNA264310 JTWF00000000 7362494 65.57 

287.1128 AZPAE14726 2014-12-04 PRJNA264310 JTWG00000000 6885273 65.84 

287.1129 AZPAE14725 2014-12-04 PRJNA264310 JTWH00000000 6802459 66.14 

287.1130 AZPAE14724 2014-12-04 PRJNA264310 JTWI00000000 7091089 65.79 

287.1131 AZPAE14723 2014-12-04 PRJNA264310 JTWJ00000000 6639036 66.13 

287.1132 AZPAE14722 2014-12-04 PRJNA264310 JTWK00000000 6781659 66.07 

287.1133 AZPAE14721 2014-12-04 PRJNA264310 JTWL00000000 6867543 66.01 

287.1134 AZPAE14720 2014-12-04 PRJNA264310 JTWM00000000 6813733 66.02 

287.1135 AZPAE14719 2014-12-04 PRJNA264310 JTWN00000000 6855346 66 

287.1136 AZPAE14718 2014-12-04 PRJNA264310 JTWO00000000 6910404 65.98 

287.1137 AZPAE14717 2014-12-04 PRJNA264310 JTWP00000000 7039359 65.87 

287.1138 AZPAE14716 2014-12-04 PRJNA264310 JTWQ00000000 7038646 65.93 

287.1139 AZPAE14715 2014-12-04 PRJNA264310 JTWR00000000 7119339 65.79 

287.1140 AZPAE14714 2014-12-04 PRJNA264310 JTWS00000000 7022276 65.78 

287.1141 AZPAE14713 2014-12-04 PRJNA264310 JTWT00000000 7238306 65.6 

287.1142 AZPAE14712 2014-12-04 PRJNA264310 JTWU00000000 7010520 65.95 

287.1143 AZPAE14711 2014-12-04 PRJNA264310 JTWV00000000 7121620 65.79 

287.1144 AZPAE14710 2014-12-04 PRJNA264310 JTWW00000000 6748304 66.14 

287.1145 AZPAE14708 2014-12-04 PRJNA264310 JTWX00000000 6707536 66.05 

287.1146 AZPAE14707 2014-12-04 PRJNA264310 JTWY00000000 7081209 65.78 

287.1147 AZPAE14706 2014-12-04 PRJNA264310 JTWZ00000000 6921381 66.06 

287.1148 AZPAE14705 2014-12-04 PRJNA264310 JTXA00000000 6888268 65.97 

287.1149 AZPAE14704 2014-12-04 PRJNA264310 JTXB00000000 6282527 66.51 

287.1150 AZPAE14703 2014-12-04 PRJNA264310 JTXC00000000 6892377 65.93 

287.1151 AZPAE14702 2014-12-04 PRJNA264310 JTXD00000000 7131510 65.84 
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287.1152 AZPAE14701 2014-12-04 PRJNA264310 JTXE00000000 6990663 65.93 

287.1153 AZPAE14700 2014-12-04 PRJNA264310 JTXF00000000 6754658 66.09 

287.1154 AZPAE14699 2014-12-04 PRJNA264310 JTXG00000000 5743255 65.28 

287.1155 AZPAE14698 2014-12-04 PRJNA264310 JTXH00000000 6467367 65.44 

287.1156 AZPAE14697 2014-12-04 PRJNA264310 JTXI00000000 6531914 66.18 

287.1157 AZPAE14695 2014-12-04 PRJNA264310 JTXJ00000000 6757024 66.06 

287.1158 AZPAE14694 2014-12-04 PRJNA264310 JTXK00000000 6964286 65.86 

287.1159 AZPAE14693 2014-12-04 PRJNA264310 JTXL00000000 6380431 66.44 

287.1160 AZPAE14692 2014-12-04 PRJNA264310 JTXM00000000 7011166 65.9 

287.1161 AZPAE14691 2014-12-04 PRJNA264310 JTXN00000000 6301926 66.57 

287.1162 AZPAE14690 2014-12-04 PRJNA264310 JTXO00000000 6730564 66.1 

287.1163 AZPAE14689 2014-12-04 PRJNA264310 JTXP00000000 7252889 65.55 

287.1164 AZPAE14688 2014-12-04 PRJNA264310 JTXQ00000000 7007711 66.04 

287.1165 AZPAE14687 2014-12-04 PRJNA264310 JTXR00000000 6995963 65.89 

287.1166 AZPAE14570 2014-12-04 PRJNA264310 JTXS00000000 7094694 65.94 

287.1167 AZPAE14566 2014-12-04 PRJNA264310 JTXT00000000 6870259 65.99 

287.1168 AZPAE14557 2014-12-04 PRJNA264310 JTXU00000000 6772788 66.1 

287.1169 AZPAE14554 2014-12-04 PRJNA264310 JTXV00000000 7101679 65.75 

287.1170 AZPAE14550 2014-12-04 PRJNA264310 JTXW00000000 6317165 66.47 

287.1171 AZPAE14538 2014-12-04 PRJNA264310 JTXX00000000 6267671 66.54 

287.1172 AZPAE14535 2014-12-04 PRJNA264310 JTXY00000000 6944986 65.88 

287.1173 AZPAE14533 2014-12-04 PRJNA264310 JTXZ00000000 6661879 66.27 

287.1174 AZPAE14526 2014-12-04 PRJNA264310 JTYA00000000 6289098 66.55 

287.1175 AZPAE14509 2014-12-04 PRJNA264310 JTYB00000000 6519283 66.29 

287.1176 AZPAE14505 2014-12-04 PRJNA264310 JTYC00000000 6823044 66.04 

287.1177 AZPAE14499 2014-12-04 PRJNA264310 JTYD00000000 6698732 66.12 

287.1178 AZPAE14463 2014-12-04 PRJNA264310 JTYE00000000 7034157 65.85 

287.1179 AZPAE14453 2014-12-04 PRJNA264310 JTYF00000000 7052856 65.76 

287.1180 AZPAE14443 2014-12-04 PRJNA264310 JTYG00000000 6268752 66.59 

287.1181 AZPAE14442 2014-12-04 PRJNA264310 JTYH00000000 7007955 65.97 

287.1182 AZPAE14441 2014-12-04 PRJNA264310 JTYI00000000 6810460 65.93 

287.1183 AZPAE14437 2014-12-04 PRJNA264310 JTYJ00000000 6714753 66.04 

287.1184 AZPAE14422 2014-12-04 PRJNA264310 JTYK00000000 6732223 66.05 

287.1185 AZPAE14415 2014-12-04 PRJNA264310 JTYL00000000 6982687 65.83 

287.1186 AZPAE14410 2014-12-04 PRJNA264310 JTYM00000000 6295059 66.5 

287.1187 AZPAE14404 2014-12-04 PRJNA264310 JTYN00000000 6575587 66.3 

287.1188 AZPAE14403 2014-12-04 PRJNA264310 JTYO00000000 6907387 66.08 

287.1189 AZPAE14402 2014-12-04 PRJNA264310 JTYP00000000 6466306 66.33 

287.1190 AZPAE14398 2014-12-04 PRJNA264310 JTYQ00000000 6693786 66.09 
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287.1191 AZPAE14395 2014-12-04 PRJNA264310 JTYR00000000 6325978 66.49 

287.1192 AZPAE14394 2014-12-04 PRJNA264310 JTYS00000000 6977785 66.01 

287.1193 AZPAE14393 2014-12-04 PRJNA264310 JTYT00000000 6723039 66.23 

287.1194 AZPAE14390 2014-12-04 PRJNA264310 JTYU00000000 6884000 65.97 

287.1195 AZPAE14381 2014-12-04 PRJNA264310 JTYV00000000 6791911 65.83 

287.1196 AZPAE14379 2014-12-04 PRJNA264310 JTYW00000000 6253630 66.51 

287.1197 AZPAE14373 2014-12-04 PRJNA264310 JTYX00000000 6337010 66.43 

287.1198 AZPAE14372 2014-12-04 PRJNA264310 JTYY00000000 6794294 66.13 

287.1199 AZPAE14359 2014-12-04 PRJNA264310 JTYZ00000000 6642619 66.29 

287.1200 AZPAE14353 2014-12-04 PRJNA264310 JTZA00000000 6835254 66.01 

287.1201 AZPAE14352 2014-12-04 PRJNA264310 JTZB00000000 6561378 66 

287.1202 AZPAE13880 2014-12-04 PRJNA264310 JTZC00000000 6855952 66 

287.1203 AZPAE13879 2014-12-04 PRJNA264310 JTZD00000000 6948193 65.92 

287.1204 AZPAE13877 2014-12-04 PRJNA264310 JTZE00000000 6788523 66.1 

287.1205 AZPAE13876 2014-12-04 PRJNA264310 JTZF00000000 6795623 65.85 

287.1206 AZPAE13872 2014-12-04 PRJNA264310 JTZG00000000 6958295 65.9 

287.1207 AZPAE13866 2014-12-04 PRJNA264310 JTZH00000000 7258328 65.73 

287.1208 AZPAE13864 2014-12-04 PRJNA264310 JTZI00000000 6909435 65.95 

287.1209 AZPAE13860 2014-12-04 PRJNA264310 JTZJ00000000 6888735 65.91 

287.1210 AZPAE13858 2014-12-04 PRJNA264310 JTZK00000000 7017824 66.02 

287.1211 AZPAE13856 2014-12-04 PRJNA264310 JTZL00000000 7373661 65.7 

287.1212 AZPAE13853 2014-12-04 PRJNA264310 JTZM00000000 7040099 65.99 

287.1213 AZPAE13850 2014-12-04 PRJNA264310 JTZN00000000 5501656 65.73 

287.1214 AZPAE13848 2014-12-04 PRJNA264310 JTZO00000000 6958460 66.07 

287.1215 AZPAE13757 2014-12-04 PRJNA264310 JTZP00000000 6469470 66.38 

287.1216 AZPAE13756 2014-12-04 PRJNA264310 JTZQ00000000 7335469 65.54 

287.1217 AZPAE12423 2014-12-04 PRJNA264310 JTZR00000000 6535360 66.21 

287.1218 AZPAE12422 2014-12-04 PRJNA264310 JTZS00000000 6331130 66.45 

287.1219 AZPAE12421 2014-12-04 PRJNA264310 JTZT00000000 6243887 66.4 

287.1220 AZPAE12420 2014-12-04 PRJNA264310 JTZU00000000 6283659 66.37 

287.1221 AZPAE12419 2014-12-04 PRJNA264310 JTZV00000000 6290772 66.46 

287.1222 AZPAE12418 2014-12-04 PRJNA264310 JTZW00000000 6737495 66.21 

287.1223 AZPAE12417 2014-12-04 PRJNA264310 JTZX00000000 6360200 66.3 

287.1224 AZPAE12416 2014-12-04 PRJNA264310 JTZY00000000 6527924 66.15 

287.1225 AZPAE12415 2014-12-04 PRJNA264310 JTZZ00000000 6740389 66.26 

287.1226 AZPAE12414 2014-12-04 PRJNA264310 JUAA00000000 6736819 66.28 

287.1227 AZPAE12413 2014-12-04 PRJNA264310 JUAB00000000 6742361 66.26 

287.1228 AZPAE12412 2014-12-04 PRJNA264310 JUAC00000000 6445104 66.39 

287.1229 AZPAE12411 2014-12-04 PRJNA264310 JUAD00000000 6341911 66.42 
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287.1230 AZPAE12410 2014-12-04 PRJNA264310 JUAE00000000 6457280 66.37 

287.1231 AZPAE12409 2014-12-04 PRJNA264310 JUAF00000000 6758579 65.98 

287.1232 AZPAE12156 2014-12-04 PRJNA264310 JUAG00000000 6571733 66.05 

287.1233 AZPAE12155 2014-12-04 PRJNA264310 JUAH00000000 6732273 66.12 

287.1234 AZPAE12154 2014-12-04 PRJNA264310 JUAI00000000 6299347 66.38 

287.1235 AZPAE12153 2014-12-04 PRJNA264310 JUAJ00000000 6193644 66.55 

287.1237 AZPAE12151 2014-12-04 PRJNA264310 JUAL00000000 6332026 66.47 

287.1238 AZPAE12150 2014-12-04 PRJNA264310 JUAM00000000 6594453 65.98 

287.1239 AZPAE12149 2014-12-04 PRJNA264310 JUAN00000000 6355203 66.36 

287.1240 AZPAE12148 2014-12-04 PRJNA264310 JUAO00000000 6650984 66.28 

287.1241 AZPAE12147 2014-12-04 PRJNA264310 JUAP00000000 6522044 66.25 

287.1242 AZPAE12146 2014-12-04 PRJNA264310 JUAQ00000000 6313502 66.44 

287.1243 AZPAE12145 2014-12-04 PRJNA264310 JUAR00000000 6452923 66.4 

287.1245 AZPAE12143 2014-12-04 PRJNA264310 JUAT00000000 6473536 66.34 

287.1246 AZPAE12142 2014-12-04 PRJNA264310 JUAU00000000 6323807 66.42 

287.1247 AZPAE12140 2014-12-04 PRJNA264310 JUAV00000000 6250380 66.55 

287.1248 AZPAE12138 2014-12-04 PRJNA264310 JUAW00000000 6576673 66.14 

287.1249 AZPAE12137 2014-12-04 PRJNA264310 JUAX00000000 6304247 66.52 

287.1250 AZPAE12136 2014-12-04 PRJNA264310 JUAY00000000 6303512 66.43 

287.1301 AZPAE12135 2014-12-04 PRJNA264310 JUAZ00000000 6826162 66.07 

287.1477 MRSN 20176 2015-05-05 PRJNA273956 JYGC02000000 6730817 65.93 

287.1482 MRSN18971 2014-06-20 PRJNA240151 JFJU01000000 6391538 66.45 

287.2972 AR_0103 2016-11-10 PRJNA292904 MPBP00000000 6900175 65.99 

287.2973 AR_0092 2016-11-10 PRJNA292904 MPBS00000000 6963676 66.02 

287.2975 AR_0100 2016-11-10 PRJNA292904 MPBQ00000000 6929574 65.98 

287.2976 AR_0105 2016-11-10 PRJNA292904 MPBO00000000 6425652 66.22 

287.2977 AR_0054 2016-11-10 PRJNA292904 MPBV00000000 7267705 65.81 

287.2978 AR_0064 2016-11-10 PRJNA292904 MPBU00000000 6827144 66.05 

287.2979 AR_0094 2016-11-10 PRJNA292904 MPBR00000000 6882581 66.05 

287.2980 AR_0108 2016-11-10 PRJNA292904 MPBN00000000 6971125 65.98 

287.5685 AR_0360 2018-04-25 PRJNA316321 CP027165 6463575 66.44145 

287.5686 AR_0354 2018-04-25 PRJNA316321 CP027171 6747010 66.09722 

287.5687 AR_0353 2018-04-25 PRJNA316321 CP027172,CP027173 7282236 65.704834 

287.5688 AR_0230 2018-04-25 PRJNA316321 CP027174,CP027175,CP027176 7086054 65.87829 

287.5689 AR_0356 2018-04-25 PRJNA316321 CP027169,CP027168,CP027170,CP027167 7247865 65.59437 

287.5690 AR_0357 2018-04-25 PRJNA316321 CP027166 7162784 65.79707 

287.5701 AR_0355 2018-03-14 PRJNA316321 PSQQ01000000 7172470 65.84778 

287.5702 AR_0359 2018-03-14 PRJNA316321 PSQS01000000 6940345 65.91524 

287.5703 AR_0358 2018-03-14 PRJNA316321 PSQR01000000 7284124 65.71017 
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287.5704 AR_0351 2018-03-14 PRJNA316321 PSQP01000000 6611054 66.24956 

287.5746 AR_0443 2018-04-30 PRJNA316321 CP029147 6776714 65.83632 

287.5747 AR_0440 2018-04-30 PRJNA316321 CP029148 7167215 65.84894 

287.5748 AR439 2018-04-30 PRJNA316321 CP029097,CP029095,CP029096 7578039 65.418785 

287.5749 AR442 2018-04-30 PRJNA316321 CP029090 7267567 65.752335 

287.5750 AR445 2018-04-30 PRJNA316321 CP029088 7125975 65.78442 

287.5751 AR441 2018-04-30 PRJNA316321 CP029093,CP029091,CP029092,CP029094 7245771 65.59486 

287.5752 AR444 2018-04-30 PRJNA316321 CP029089 6853499 66.05279 

287.5778 AR_0095 2018-03-14 PRJNA292904 CP027538 6822666 66.10762 

287.5955 AR_0446 2018-06-06 PRJNA316321 CP029660 6475581 66.33031 

287.5956 CCUG 70744 2018-06-06 PRJNA401330 CP023255 6859232 66.04034 

287.5959 AR_0110 2018-06-10 PRJNA292904 CP029745 6799785 66.01369 

287.5969 AR_0447 2018-06-22 PRJNA316321 QHCK01000000 7178792 65.86686 

287.5971 AR_460 2018-07-05 PRJNA316321 CP030351 6303875 66.55481 

287.5972 AR_455 2018-07-05 PRJNA316321 CP030328 6540996 65.8842 

287.5973 AR_458 2018-07-05 PRJNA316321 CP030327 6685102 66.23354 

287.6326 AR_0459 2018-07-16 PRJNA316321 QMGQ01000000 6752712 66.24611 

287.6327 AR_0457 2018-07-16 PRJNA316321 QMGP01000000 7381251 65.63855 

287.6328 AR_0456 2018-07-16 PRJNA316321 QMGO01000000 7079305 65.857216 

287.6329 AR_0449 2018-07-16 PRJNA316321 QMGL01000000 6792240 65.96245 

287.6330 AR_0241 2018-07-16 PRJNA316321 QMGI01000000 7226502 65.64898 

287.6331 AR_0352 2018-07-16 PRJNA316321 QMGJ01000000 6418505 66.43134 

287.6492 AR_0111 2018-09-17 PRJNA292904 CP032257,CP032256 7075653 65.830505 

287.7771 MRSN8914 2018-12-24 PRJNA446057 RXTB01000000 7356800 65.33966 

287.7772 MRSN8915 2018-12-24 PRJNA446057 RXTA01000000 7064713 65.680504 

287.7773 MRSN994 2018-12-24 PRJNA446057 RXSX01000000 6734108 66.12464 

287.7774 MRSN8139 2018-12-24 PRJNA446057 RXTE01000000 6575059 66.36821 

287.7775 MRSN7014 2018-12-24 PRJNA446057 RXTH01000000 6420453 66.4322 

287.7776 MRSN8912 2018-12-24 PRJNA446057 RXTC01000000 6986301 65.71874 

287.7777 MRSN8136 2018-12-24 PRJNA446057 RXTF01000000 6907900 65.713806 

287.7778 MRSN6695 2018-12-24 PRJNA446057 RXTJ01000000 6235816 66.576324 

287.7779 MRSN6241 2018-12-24 PRJNA446057 RXTL01000000 7161217 65.6252 

287.7780 MRSN6678 2018-12-24 PRJNA446057 RXTK01000000 6782774 66.11963 

287.7781 MRSN6220 2018-12-24 PRJNA446057 RXTM01000000 6910198 66.00948 

287.7782 MRSN5524 2018-12-24 PRJNA446057 RXTO01000000 6725073 65.99564 

287.7783 MRSN5539 2018-12-24 PRJNA446057 RXTN01000000 6769662 66.07058 

287.7784 MRSN552 2018-12-24 PRJNA446057 RXTP01000000 6444919 66.35499 

287.7785 MRSN5519 2018-12-24 PRJNA446057 RXTQ01000000 6751302 66.13514 

287.7786 MRSN4841 2018-12-24 PRJNA446057 RXTT01000000 6475204 66.25277 
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287.7787 MRSN5498 2018-12-24 PRJNA446057 RXTS01000000 6821230 66.00017 

287.7788 MRSN443463 2018-12-24 PRJNA446057 RXTU01000000 6393241 66.4404 

287.7789 MRSN315 2018-12-24 PRJNA446057 RXUI01000000 6696919 66.20516 

287.7790 MRSN19711 2018-12-24 PRJNA446057 RXUX01000000 6265327 66.576096 

287.7791 MRSN20190 2018-12-24 PRJNA446057 RXUV01000000 6191883 66.59317 

287.7792 MRSN9873 2018-12-24 PRJNA446057 RXSY01000000 7146707 65.48819 

287.7793 MRSN9718 2018-12-24 PRJNA446057 RXSZ01000000 6861353 66.019516 

287.7794 MRSN8141 2018-12-24 PRJNA446057 RXTD01000000 7161718 65.6272 

287.7795 MRSN8130 2018-12-24 PRJNA446057 RXTG01000000 6828028 66.09563 

287.7796 MRSN6739 2018-12-24 PRJNA446057 RXTI01000000 6298064 66.478065 

287.7797 MRSN5508 2018-12-24 PRJNA446057 RXTR01000000 6439859 66.34678 

287.7798 MRSN435288 2018-12-24 PRJNA446057 RXTW01000000 6363888 66.22477 

287.7799 MRSN321 2018-12-24 PRJNA446057 RXUG01000000 6260875 66.54782 

287.7800 MRSN25678 2018-12-24 PRJNA446057 RXUN01000000 6509751 66.21528 

287.7801 MRSN18754 2018-12-24 PRJNA446057 RXVH01000000 6270751 66.541534 

287.7802 MRSN390231 2018-12-24 PRJNA446057 RXTZ01000000 6149846 66.37745 

287.7803 MRSN436311 2018-12-24 PRJNA446057 RXTV01000000 6473360 66.416046 

287.7804 MRSN373401 2018-12-24 PRJNA446057 RXUA01000000 6985982 65.97148 

287.7805 MRSN3705 2018-12-24 PRJNA446057 RXUB01000000 6419743 66.576324 

287.7806 MRSN29192 2018-12-24 PRJNA446057 RXUK01000000 6375161 66.43941 

287.7807 MRSN25762 2018-12-24 PRJNA446057 RXUM01000000 6845305 66.2181 

287.7808 MRSN2444 2018-12-24 PRJNA446057 RXUP01000000 6843047 66.06668 

287.7809 MRSN3587 2018-12-24 PRJNA446057 RXUU01000000 6494873 66.36721 

287.7810 MRSN2101 2018-12-24 PRJNA446057 RXUT01000000 6346725 66.376564 

287.7811 MRSN23861 2018-12-24 PRJNA446057 RXUQ01000000 7025487 65.94264 

287.7812 MRSN20176 2018-12-24 PRJNA446057 RXUW01000000 6717057 65.99654 

287.7813 MRSN1948 2018-12-24 PRJNA446057 RXUY01000000 6674435 66.19558 

287.7814 MRSN1906 2018-12-24 PRJNA446057 RXVB01000000 7049219 65.7835 

287.7815 MRSN1938 2018-12-24 PRJNA446057 RXUZ01000000 7052906 66.11615 

287.7816 MRSN1899 2018-12-24 PRJNA446057 RXVD01000000 6573139 66.22041 

287.7817 MRSN1902 2018-12-24 PRJNA446057 RXVC01000000 6344431 66.457214 

287.7818 MRSN18970 2018-12-24 PRJNA446057 RXVE01000000 6370604 66.51189 

287.7819 MRSN17849 2018-12-24 PRJNA446057 RXVK01000000 6738933 66.124664 

287.7820 MRSN16744 2018-12-24 PRJNA446057 RXVO01000000 6776946 66.11751 

287.7821 MRSN16740 2018-12-24 PRJNA446057 RXVP01000000 6670940 66.08019 

287.7822 MRSN1688 2018-12-24 PRJNA446057 RXVM01000000 6606996 66.148384 

287.7823 MRSN16383 2018-12-24 PRJNA446057 RXVQ01000000 6302224 66.533325 

287.7824 MRSN16345 2018-12-24 PRJNA446057 RXVR01000000 6333273 66.51163 

287.7825 MRSN1613 2018-12-24 PRJNA446057 RXVU01000000 6276349 66.510056 
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287.7826 MRSN1601 2018-12-24 PRJNA446057 RXVW01000000 6411494 66.28397 

287.7827 MRSN1583 2018-12-24 PRJNA446057 RXVX01000000 6463376 66.37041 

287.7828 MRSN1617 2018-12-24 PRJNA446057 RXVT01000000 6780137 66.19642 

287.7829 MRSN1388 2018-12-24 PRJNA446057 RXWC01000000 7171428 65.862366 

287.7830 MRSN15678 2018-12-24 PRJNA446057 RXVZ01000000 6780257 66.094574 

287.7831 MRSN14981 2018-12-24 PRJNA446057 RXWB01000000 6508561 66.21667 

287.7832 MRSN409937 2018-12-24 PRJNA446057 RXTX01000000 6487691 66.33823 

287.7833 MRSN351791 2018-12-24 PRJNA446057 RXUE01000000 6812488 65.93882 

287.7834 MRSN346179 2018-12-24 PRJNA446057 RXUF01000000 6293739 66.51709 

287.7835 MRSN30858 2018-12-24 PRJNA446057 RXUJ01000000 6382502 66.4238 

287.7836 MRSN26263 2018-12-24 PRJNA446057 RXUL01000000 6430277 66.320595 

287.7837 MRSN1925 2018-12-24 PRJNA446057 RXVA01000000 7130564 65.83213 

287.7838 MRSN25623 2018-12-24 PRJNA446057 RXUO01000000 6635285 66.08652 

287.7839 MRSN18562 2018-12-24 PRJNA446057 RXVI01000000 6494310 66.368095 

287.7840 MRSN16344 2018-12-24 PRJNA446057 RXVS01000000 6318735 66.457306 

287.7841 MRSN1612 2018-12-24 PRJNA446057 RXVV01000000 6506983 66.235 

287.7842 MRSN1739 2018-12-24 PRJNA446057 RXVL01000000 7031489 65.82428 

287.7843 MRSN16847 2018-12-24 PRJNA446057 RXVN01000000 6594082 65.978676 

287.7844 MRSN15753 2018-12-24 PRJNA446057 RXVY01000000 6547438 66.18349 

287.7845 MRSN1380 2018-12-24 PRJNA446057 RXWD01000000 6339603 66.48981 

287.7846 MRSN15566 2018-12-24 PRJNA446057 RXWA01000000 6408848 66.389984 

287.7847 MRSN1356 2018-12-24 PRJNA446057 RXWE01000000 6555630 66.19885 

287.7848 MRSN12914 2018-12-24 PRJNA446057 RXWH01000000 6756810 65.92381 

287.7849 MRSN12283 2018-12-24 PRJNA446057 RXWK01000000 6301640 66.499626 

287.7850 MRSN12365 2018-12-24 PRJNA446057 RXWJ01000000 6869499 65.87287 

287.7851 MRSN358800 2018-12-24 PRJNA446057 RXUD01000000 6501460 66.35765 

287.7852 MRSN11538 2018-12-24 PRJNA446057 RXWN01000000 6528585 66.261604 

287.7853 MRSN11278 2018-12-24 PRJNA446057 RXWS01000000 6893110 66.043076 

287.7854 MRSN11281 2018-12-24 PRJNA446057 RXWR01000000 6323478 66.49251 

287.7855 MRSN13488 2018-12-24 PRJNA446057 RXWF01000000 5912421 66.50286 

287.7856 MRSN1344 2018-12-24 PRJNA446057 RXWG01000000 6232278 66.494484 

287.7857 MRSN12368 2018-12-24 PRJNA446057 RXWI01000000 6340159 66.43633 

287.7858 MRSN11285 2018-12-24 PRJNA446057 RXWQ01000000 6650291 66.16359 

287.7859 MRSN12282 2018-12-24 PRJNA446057 RXWL01000000 6876949 65.96845 

287.7860 MRSN11536 2018-12-24 PRJNA446057 RXWO01000000 6935556 65.91659 

287.7861 MRSN11286 2018-12-24 PRJNA446057 RXWP01000000 6711313 65.911575 

287.7862 MRSN11976 2018-12-24 PRJNA446057 RXWM01000000 6991711 65.90075 

287.8027 MRSN401528 2018-12-24 PRJNA446057 RXTY01000000 6486368 66.14036 

287.8028 MRSN369569 2018-12-24 PRJNA446057 RXUC01000000 6316238 66.518555 
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287.8029 MRSN2144 2018-12-24 PRJNA446057 RXUR01000000 7032738 65.79075 

287.8030 MRSN18855 2018-12-24 PRJNA446057 RXVF01000000 6296953 66.489555 

287.8031 MRSN2108 2018-12-24 PRJNA446057 RXUS01000000 6394452 66.39729 

287.8032 MRSN18803 2018-12-24 PRJNA446057 RXVG01000000 6191380 66.5096 

287.8033 MRSN317 2018-12-24 PRJNA446057 RXUH01000000 6349621 66.47357 

287.8034 MRSN18560 2018-12-24 PRJNA446057 RXVJ01000000 6268481 66.5069 

287.846 AZPAE15072 2014-12-04 PRJNA264310 JTMA00000000 6437786 66.3 

287.847 AZPAE15071 2014-12-04 PRJNA264310 JTMB00000000 7403124 65.72 

287.848 AZPAE15070 2014-12-04 PRJNA264310 JTMC00000000 7164330 65.83 

287.849 AZPAE15069 2014-12-04 PRJNA264310 JTMD00000000 6980745 65.93 

287.850 AZPAE15068 2014-12-04 PRJNA264310 JTME00000000 6856096 66.14 

287.851 AZPAE15067 2014-12-04 PRJNA264310 JTMF00000000 6651822 66.15 

287.852 AZPAE15066 2014-12-04 PRJNA264310 JTMG00000000 6959180 65.82 

287.853 AZPAE15065 2014-12-04 PRJNA264310 JTMH00000000 6184461 66.47 

287.854 AZPAE15064 2014-12-04 PRJNA264310 JTMI00000000 6687065 66.19 

287.855 AZPAE15063 2014-12-04 PRJNA264310 JTMJ00000000 6768150 66.03 

287.856 AZPAE15062 2014-12-04 PRJNA264310 JTMK00000000 6481258 66.31 

287.857 AZPAE15061 2014-12-04 PRJNA264310 JTML00000000 6832661 65.96 

287.858 AZPAE15060 2014-12-04 PRJNA264310 JTMM00000000 6716256 66.11 

287.859 AZPAE15059 2014-12-04 PRJNA264310 JTMN00000000 6657813 66.25 

287.860 AZPAE15058 2014-12-04 PRJNA264310 JTMO00000000 6567883 66.22 

287.861 AZPAE15057 2014-12-04 PRJNA264310 JTMP00000000 6451298 66.43 

287.862 AZPAE15056 2014-12-04 PRJNA264310 JTMQ00000000 6287511 66.49 

287.863 AZPAE15055 2014-12-04 PRJNA264310 JTMR00000000 6360589 66.37 

287.864 AZPAE15054 2014-12-04 PRJNA264310 JTMS00000000 6647129 65.96 

287.865 AZPAE15053 2014-12-04 PRJNA264310 JTMT00000000 6522359 66.25 

287.866 AZPAE15052 2014-12-04 PRJNA264310 JTMU00000000 6339616 66.38 

287.867 AZPAE15051 2014-12-04 PRJNA264310 JTMV00000000 6814130 66.09 

287.868 AZPAE15050 2014-12-04 PRJNA264310 JTMW00000000 6901290 65.78 

287.869 AZPAE15049 2014-12-04 PRJNA264310 JTMX00000000 6259893 66.46 

287.870 AZPAE15048 2014-12-04 PRJNA264310 JTMY00000000 6924072 65.73 

287.871 AZPAE15047 2014-12-04 PRJNA264310 JTMZ00000000 6898282 66.03 

287.872 AZPAE15046 2014-12-04 PRJNA264310 JTNA00000000 6345609 66.45 

287.873 AZPAE15045 2014-12-04 PRJNA264310 JTNB00000000 6703034 66 

287.874 AZPAE15044 2014-12-04 PRJNA264310 JTNC00000000 6555614 66.21 

287.875 AZPAE15043 2014-12-04 PRJNA264310 JTND00000000 6978967 65.98 

287.876 AZPAE15042 2014-12-04 PRJNA264310 JTNE00000000 6640508 66.27 

287.877 AZPAE15041 2014-12-04 PRJNA264310 JTNF00000000 6739630 66.02 

287.878 AZPAE15040 2014-12-04 PRJNA264310 JTNG00000000 6601216 66.23 
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287.879 AZPAE15039 2014-12-04 PRJNA264310 JTNH00000000 6697373 66.07 

287.880 AZPAE15038 2014-12-04 PRJNA264310 JTNI00000000 6261442 66.49 

287.881 AZPAE15037 2014-12-04 PRJNA264310 JTNJ00000000 7200442 65.83 

287.882 AZPAE15036 2014-12-04 PRJNA264310 JTNK00000000 6412424 66.31 

287.883 AZPAE15035 2014-12-04 PRJNA264310 JTNL00000000 6673047 66.09 

287.884 AZPAE15034 2014-12-04 PRJNA264310 JTNM00000000 6794620 66.14 

287.885 AZPAE15033 2014-12-04 PRJNA264310 JTNN00000000 6087226 66.4 

287.886 AZPAE15032 2014-12-04 PRJNA264310 JTNO00000000 6484573 66.2 

287.887 AZPAE15031 2014-12-04 PRJNA264310 JTNP00000000 6894718 65.98 

287.888 AZPAE15030 2014-12-04 PRJNA264310 JTNQ00000000 6608631 66.18 

287.889 AZPAE15029 2014-12-04 PRJNA264310 JTNR00000000 6860916 66.03 

287.890 AZPAE15028 2014-12-04 PRJNA264310 JTNS00000000 6834546 65.7 

287.891 AZPAE15027 2014-12-04 PRJNA264310 JTNT00000000 6438293 66.36 

287.892 AZPAE15026 2014-12-04 PRJNA264310 JTNU00000000 6358197 66.41 

287.893 AZPAE15025 2014-12-04 PRJNA264310 JTNV00000000 6726954 66 

287.894 AZPAE15024 2014-12-04 PRJNA264310 JTNW00000000 6776478 66 

287.895 AZPAE15023 2014-12-04 PRJNA264310 JTNX00000000 6351355 66.4 

287.896 AZPAE15022 2014-12-04 PRJNA264310 JTNY00000000 6219362 66.56 

287.897 AZPAE15021 2014-12-04 PRJNA264310 JTNZ00000000 6686424 66.05 

287.898 AZPAE15020 2014-12-04 PRJNA264310 JTOA00000000 7163187 65.8 

287.899 AZPAE15019 2014-12-04 PRJNA264310 JTOB00000000 6717129 66.06 

287.900 AZPAE15018 2014-12-04 PRJNA264310 JTOC00000000 6933997 66.06 

287.901 AZPAE15017 2014-12-04 PRJNA264310 JTOD00000000 6594600 66.09 

287.902 AZPAE15016 2014-12-04 PRJNA264310 JTOE00000000 6756824 65.84 

287.903 AZPAE15015 2014-12-04 PRJNA264310 JTOF00000000 6804229 66.08 

287.904 AZPAE15014 2014-12-04 PRJNA264310 JTOG00000000 6400436 66.42 

287.905 AZPAE15013 2014-12-04 PRJNA264310 JTOH00000000 6358832 66.41 

287.906 AZPAE15012 2014-12-04 PRJNA264310 JTOI00000000 6462525 66.32 

287.907 AZPAE15011 2014-12-04 PRJNA264310 JTOJ00000000 6590340 65.85 

287.908 AZPAE15010 2014-12-04 PRJNA264310 JTOK00000000 7014236 65.9 

287.909 AZPAE15009 2014-12-04 PRJNA264310 JTOL00000000 6958019 65.85 

287.910 AZPAE15008 2014-12-04 PRJNA264310 JTOM00000000 6345734 66.18 

287.911 AZPAE15007 2014-12-04 PRJNA264310 JTON00000000 6814810 65.79 

287.912 AZPAE15006 2014-12-04 PRJNA264310 JTOO00000000 6832413 65.95 

287.913 AZPAE15005 2014-12-04 PRJNA264310 JTOP00000000 6889490 66.07 

287.914 AZPAE15004 2014-12-04 PRJNA264310 JTOQ00000000 6345076 66.39 

287.915 AZPAE15003 2014-12-04 PRJNA264310 JTOR00000000 6882469 66.11 

287.916 AZPAE15002 2014-12-04 PRJNA264310 JTOS00000000 6802969 65.79 

287.917 AZPAE15001 2014-12-04 PRJNA264310 JTOT00000000 6582180 66.3 
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287.918 AZPAE15000 2014-12-04 PRJNA264310 JTOU00000000 6858205 66 

287.919 AZPAE14999 2014-12-04 PRJNA264310 JTOV00000000 6427887 66.3 

287.920 AZPAE14998 2014-12-04 PRJNA264310 JTOW00000000 6712745 66.17 

287.921 AZPAE14997 2014-12-04 PRJNA264310 JTOX00000000 6715214 65.98 

287.922 AZPAE14996 2014-12-04 PRJNA264310 JTOY00000000 6459808 66.34 

287.923 AZPAE14995 2014-12-04 PRJNA264310 JTOZ00000000 6389451 66.32 

287.924 AZPAE14994 2014-12-04 PRJNA264310 JTPA00000000 6476787 66.07 

287.925 AZPAE14993 2014-12-04 PRJNA264310 JTPB00000000 6914857 65.97 

287.926 AZPAE14992 2014-12-04 PRJNA264310 JTPC00000000 6510002 66.3 

287.927 AZPAE14991 2014-12-04 PRJNA264310 JTPD00000000 6467607 66.31 

287.928 AZPAE14990 2014-12-04 PRJNA264310 JTPE00000000 6809137 66.09 

287.929 AZPAE14989 2014-12-04 PRJNA264310 JTPF00000000 6549370 66.19 

287.930 AZPAE14988 2014-12-04 PRJNA264310 JTPG00000000 6387737 66.41 

287.931 AZPAE14987 2014-12-04 PRJNA264310 JTPH00000000 6855155 66.02 

287.932 AZPAE14986 2014-12-04 PRJNA264310 JTPI00000000 6471510 66.35 

287.933 AZPAE14985 2014-12-04 PRJNA264310 JTPJ00000000 6781336 66.05 

287.934 AZPAE14984 2014-12-04 PRJNA264310 JTPK00000000 6809111 66.07 

287.951 AZPAE14983 2014-12-04 PRJNA264310 JTPL00000000 7082650 65.77 

287.952 AZPAE14982 2014-12-04 PRJNA264310 JTPM00000000 6455689 66.31 

287.953 AZPAE14981 2014-12-04 PRJNA264310 JTPN00000000 6276540 66.48 

287.954 AZPAE14980 2014-12-04 PRJNA264310 JTPO00000000 6768315 66.16 

287.955 AZPAE14979 2014-12-04 PRJNA264310 JTPP00000000 6751299 66.03 

287.956 AZPAE14978 2014-12-04 PRJNA264310 JTPQ00000000 7130480 65.74 

287.957 AZPAE14977 2014-12-04 PRJNA264310 JTPR00000000 6336142 66.39 

287.958 AZPAE14976 2014-12-04 PRJNA264310 JTPS00000000 6631621 66.06 

287.959 AZPAE14975 2014-12-04 PRJNA264310 JTPT00000000 6369755 66.42 

287.960 AZPAE14974 2014-12-04 PRJNA264310 JTPU00000000 7085926 65.75 

287.961 AZPAE14973 2014-12-04 PRJNA264310 JTPV00000000 7183565 65.78 

287.962 AZPAE14972 2014-12-04 PRJNA264310 JTPW00000000 6399923 66.38 

287.963 AZPAE14971 2014-12-04 PRJNA264310 JTPX00000000 6203904 66.44 

287.964 AZPAE14970 2014-12-04 PRJNA264310 JTPY00000000 6920457 66.05 

287.965 AZPAE14969 2014-12-04 PRJNA264310 JTPZ00000000 6832241 66 

287.966 AZPAE14968 2014-12-04 PRJNA264310 JTQA00000000 6897223 66 

287.967 AZPAE14967 2014-12-04 PRJNA264310 JTQB00000000 6567690 66.17 

287.968 AZPAE14965 2014-12-04 PRJNA264310 JTQC00000000 7042523 65.91 

287.969 AZPAE14964 2014-12-04 PRJNA264310 JTQD00000000 7039582 65.91 

287.970 AZPAE14963 2014-12-04 PRJNA264310 JTQE00000000 6380431 66.44 

287.971 AZPAE14962 2014-12-04 PRJNA264310 JTQF00000000 6963110 65.83 

287.972 AZPAE14961 2014-12-04 PRJNA264310 JTQG00000000 6441305 66.34 



347 | P a g e  
 

287.973 AZPAE14960 2014-12-04 PRJNA264310 JTQH00000000 6370668 66.45 

287.974 AZPAE14959 2014-12-04 PRJNA264310 JTQI00000000 6743682 66.15 

287.975 AZPAE14958 2014-12-04 PRJNA264310 JTQJ00000000 7130390 65.74 

287.976 AZPAE14957 2014-12-04 PRJNA264310 JTQK00000000 6621214 66.11 

287.977 AZPAE14956 2014-12-04 PRJNA264310 JTQL00000000 7110106 65.36 

287.978 AZPAE14955 2014-12-04 PRJNA264310 JTQM00000000 6375587 66.42 

287.979 AZPAE14954 2014-12-04 PRJNA264310 JTQN00000000 6368200 66.43 

287.980 AZPAE14953 2014-12-04 PRJNA264310 JTQO00000000 6809063 66.15 

287.981 AZPAE14952 2014-12-04 PRJNA264310 JTQP00000000 6365190 66.39 

287.982 AZPAE14951 2014-12-04 PRJNA264310 JTQQ00000000 6876017 65.85 

287.983 AZPAE14950 2014-12-04 PRJNA264310 JTQR00000000 6332797 66.24 

287.984 AZPAE14949 2014-12-04 PRJNA264310 JTQS00000000 6899528 66.05 

287.985 AZPAE14948 2014-12-04 PRJNA264310 JTQT00000000 6828755 65.86 

287.986 AZPAE14947 2014-12-04 PRJNA264310 JTQU00000000 6482138 66.33 

287.987 AZPAE14946 2014-12-04 PRJNA264310 JTQV00000000 6592636 66.29 

287.988 AZPAE14945 2014-12-04 PRJNA264310 JTQW00000000 6866953 66.05 

287.989 AZPAE14944 2014-12-04 PRJNA264310 JTQX00000000 6824257 66.11 

287.990 AZPAE14943 2014-12-04 PRJNA264310 JTQY00000000 6250531 66.53 

287.991 AZPAE14942 2014-12-04 PRJNA264310 JTQZ00000000 6787557 66.05 

287.992 AZPAE14941 2014-12-04 PRJNA264310 JTRA00000000 6881480 65.98 

287.993 AZPAE14940 2014-12-04 PRJNA264310 JTRB00000000 6929735 65.97 

287.994 AZPAE14939 2014-12-04 PRJNA264310 JTRC00000000 6351078 66.39 

287.995 AZPAE14938 2014-12-04 PRJNA264310 JTRD00000000 6900154 66.12 

287.996 AZPAE14937 2014-12-04 PRJNA264310 JTRE00000000 6892469 65.86 

287.997 AZPAE14936 2014-12-04 PRJNA264310 JTRF00000000 6265859 66.33 

287.998 AZPAE14935 2014-12-04 PRJNA264310 JTRG00000000 6764634 66.22 

287.999 AZPAE14934 2014-12-04 PRJNA264310 JTRH00000000 6346157 66.37 
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Supplementary Table 2A: Distribution of known quinolone resistance mutations (ciprofloxacin and levofloxacin) 
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Supplementary Table 2B: Distribution of known quinolone resistance mutations (ciprofloxacin and levofloxacin) 
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Supplementary Table 3A: Distribution of known quinolone resistance mutations (Levofloxacin data only) 
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Grey shade: variant present, Grey shade: Antibiotic resistance, Yellow shade: gene absent 

Supplementary Table 3B: Distribution of known quinolone resistance mutations (Levofloxacin data only): 
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Grey shade: Resistant, No shade: susceptible 

Grey shade: Mutant variant or gene present, No shade: variant or gene absent, Yellow shade: gene absent 

 

Supplementary Table 4A: Distribution of aminoglycoside resistance variants (amikacin and gentamycin) 
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Supplementary Table 4B: Distribution of aminoglycoside resistance variants (amikacin only) 

Is
o

la
te

 I
D

 

A
K

 s
e
n

si
ti

v
it

y
 

 

p
m

rB
A

L
A

4
T

h
r 

p
m

rB
L

e
u

3
2

3
H

is
 

p
m

rB
S

e
r4

2
0

A
rg

 

p
m

rB
G

ly
4
2
3

C
y

s 

p
m

rB
L

2
4
3

Q
 

p
m

rB
A

2
4

8
V

 

p
m

rA
L

e
u

7
1

A
rg

 

fu
sA

1
D

5
8
8

G
 

a
m

g
S

E
1

0
8

Q
 

rp
lY

A
la

1
2
3

S
er

 

rp
lY

Q
4
1

L
 

g
id

B
Q

2
8

K
 

g
id

B
E

1
2
6

G
 

g
id

B
E

9
7

Q
 

g
id

B
E

1
8
6

A
 

p
h

o
Q

Y
8
5

F
 

n
u

o
G

S
4
6
8

A
 

n
u

o
G

A
5
7

4
T

 

n
u

o
G

A
8
9

0
T

 

p
st

B
R

8
7

C
 

p
st

B
E

8
9

Q
 

lp
tA

T
5

5
A

 

lp
tA

R
6
2

S
 

fa
o

A
T

3
8
5

A
 

a
rn

A
A

1
7

0
T

 

a
rn

D
G

2
0
6

C
 

287.1000                            

287.1001                            

287.1002                            

287.1003                            

287.1004                            

287.1005                            

287.1006                            

287.1007                            

287.1008                            

287.1009                            

287.1010                            

287.1011                            

287.1012                            

287.1013                            

287.1014                            

287.1015                            

287.1016                            

287.1017                            

287.1018                            

287.1019                            

287.1020                            

287.1021                            

287.1022                            

287.1023                            

287.1024                            

287.1025                            

287.1026                            

287.1027                            

287.1028                            

287.1029                            

287.1030                            

287.1031                            

287.1032                            

287.1033                            

287.1034                            

287.1035                            

287.1036                            

287.1037                            

287.1038                            

287.1039                            

287.1040                            

287.1041                            

287.1042                            

287.1043                            

287.1044                            

287.1045                            

287.1046                            

287.1047                            

287.1048                            

287.1049                            

287.1050                            

287.1051                            

287.1052                            

287.1053                            

287.1054                            

287.1055                            

287.1056                            

287.1057                            

287.1058                            

287.1059                            

287.1060                            

287.1061                            

287.1062                            

287.1063                            

287.1064                            

287.1065                            

287.1066                            

287.1067                            

287.1068                            

287.1069                            



374 | P a g e  
 

Is
o

la
te

 I
D

 

A
K

 s
e
n

si
ti

v
it

y
 

 

p
m

rB
A

L
A

4
T

h
r 

p
m

rB
L

e
u

3
2

3
H

is
 

p
m

rB
S

e
r4

2
0

A
rg

 

p
m

rB
G

ly
4
2
3

C
y

s 

p
m

rB
L

2
4
3

Q
 

p
m

rB
A

2
4

8
V

 

p
m

rA
L

e
u

7
1

A
rg

 

fu
sA

1
D

5
8
8

G
 

a
m

g
S

E
1

0
8

Q
 

rp
lY

A
la

1
2
3

S
er

 

rp
lY

Q
4
1

L
 

g
id

B
Q

2
8

K
 

g
id

B
E

1
2
6

G
 

g
id

B
E

9
7

Q
 

g
id

B
E

1
8
6

A
 

p
h

o
Q

Y
8
5

F
 

n
u

o
G

S
4
6
8

A
 

n
u

o
G

A
5
7

4
T

 

n
u

o
G

A
8
9

0
T

 

p
st

B
R

8
7

C
 

p
st

B
E

8
9

Q
 

lp
tA

T
5

5
A

 

lp
tA

R
6
2

S
 

fa
o

A
T

3
8
5

A
 

a
rn

A
A

1
7

0
T

 

a
rn

D
G

2
0
6

C
 

287.1070                            

287.1071                            

287.1072                            

287.1073                            

287.1074                            

287.1075                            

287.1076                            

287.1077                            

287.1078                            

287.1079                            

287.1080                            

287.1081                            

287.1082                            

287.1083                            

287.1084                            

287.1085                            

287.1086                            

287.1087                            

287.1088                            

287.1089                            

287.1090                            

287.1091                            

287.1092                            

287.1093                            

287.1095                            

287.1096                            

287.1097                            

287.1098                            

287.1099                            

287.1100                            

287.1101                            

 287.1102                            

287.1103                            

287.1104                            

287.1105                            

287.1106                            

287.1107                            

287.1108                            

287.1109                            

287.1110                            

287.1111                            

287.1112                            

287.1113                            

287.1114                            

287.1115                            

287.1116                            

287.1117                            

287.1118                            

287.1119                            

287.1120                            

287.1121                            

287.1122                            

287.1123                            

 287.1124                            

287.1125                            

 287.1126                            

287.1127                            

287.1128                            

287.1129                            

287.1130                            

287.1131                            

287.1132                            

287.1133                            

 287.1134                            

287.1135                            

287.1136                            

287.1137                            

287.1138                            

287.1139                            

287.1140                            

287.1141                            

287.1142                            



375 | P a g e  
 

Is
o

la
te

 I
D

 

A
K

 s
e
n

si
ti

v
it

y
 

 

p
m

rB
A

L
A

4
T

h
r 

p
m

rB
L

e
u

3
2

3
H

is
 

p
m

rB
S

e
r4

2
0

A
rg

 

p
m

rB
G

ly
4
2
3

C
y

s 

p
m

rB
L

2
4
3

Q
 

p
m

rB
A

2
4

8
V

 

p
m

rA
L

e
u

7
1

A
rg

 

fu
sA

1
D

5
8
8

G
 

a
m

g
S

E
1

0
8

Q
 

rp
lY

A
la

1
2
3

S
er

 

rp
lY

Q
4
1

L
 

g
id

B
Q

2
8

K
 

g
id

B
E

1
2
6

G
 

g
id

B
E

9
7

Q
 

g
id

B
E

1
8
6

A
 

p
h

o
Q

Y
8
5

F
 

n
u

o
G

S
4
6
8

A
 

n
u

o
G

A
5
7

4
T

 

n
u

o
G

A
8
9

0
T

 

p
st

B
R

8
7

C
 

p
st

B
E

8
9

Q
 

lp
tA

T
5

5
A

 

lp
tA

R
6
2

S
 

fa
o

A
T

3
8
5

A
 

a
rn

A
A

1
7

0
T

 

a
rn

D
G

2
0
6

C
 

 287.1143                            

287.1144                            

287.1145                            

287.1146                            

287.1147                            

287.1148                            

287.1149                            

287.1150                            

287.1151                            

287.1152                            

287.1153                            

287.1154                            

287.1155                            

 287.1156                            

287.1157                            

287.1158                            

287.1159                            

287.1160                            

287.1161                            

287.1162                            

287.1163                            

287.1164                            

 287.1165                            

287.1166                            

287.1167                            

287.1168                            

287.1169                            

 287.1170                            

287.1171                            

287.1172                            

287.1173                            

287.1174                            

287.1175                            

287.1176                            

287.1177                            

287.1178                            

287.1179                            

287.1180                            

287.1181                            

287.1182                            

287.1183                            

287.1184                            

287.1185                            

287.1186                            

287.1187                            

287.1188                            

287.1189                            

287.1190                            

287.1191                            

287.1192                            

287.1193                            

287.1194                            

287.1195                            

287.1196                            

287.1197                            

287.1198                            

287.1199                            

287.1200                            

287.1201                            

287.1202                            

287.1203                            

287.1204                            

287.1205                            

287.1206                            

287.1207                            

287.1208                            

287.1209                            

287.1210                            

287.1211                            

287.1212                            

287.1213                            

287.1214                            



376 | P a g e  
 

Is
o

la
te

 I
D

 

A
K

 s
e
n

si
ti

v
it

y
 

 

p
m

rB
A

L
A

4
T

h
r 

p
m

rB
L

e
u

3
2

3
H

is
 

p
m

rB
S

e
r4

2
0

A
rg

 

p
m

rB
G

ly
4
2
3

C
y

s 

p
m

rB
L

2
4
3

Q
 

p
m

rB
A

2
4

8
V

 

p
m

rA
L

e
u

7
1

A
rg

 

fu
sA

1
D

5
8
8

G
 

a
m

g
S

E
1

0
8

Q
 

rp
lY

A
la

1
2
3

S
er

 

rp
lY

Q
4
1

L
 

g
id

B
Q

2
8

K
 

g
id

B
E

1
2
6

G
 

g
id

B
E

9
7

Q
 

g
id

B
E

1
8
6

A
 

p
h

o
Q

Y
8
5

F
 

n
u

o
G

S
4
6
8

A
 

n
u

o
G

A
5
7

4
T

 

n
u

o
G

A
8
9

0
T

 

p
st

B
R

8
7

C
 

p
st

B
E

8
9

Q
 

lp
tA

T
5

5
A

 

lp
tA

R
6
2

S
 

fa
o

A
T

3
8
5

A
 

a
rn

A
A

1
7

0
T

 

a
rn

D
G

2
0
6

C
 

287.1215                            

287.1216                            

287.1217                            
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287.880                            

 287.881                            

287.882                            
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287.883                            

287.884                            

287.885                            

287.886                            
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 287.890                            

287.891                            

 287.892                            

 287.893                            

287.894                            

287.895                            

287.896                            

 287.897                            

287.899                            
287.900                            
287.901                            
287.902                            
287.903                            
287.904                            
287.905                            
 287.906                            
287.907                            
287.908                            
287.909                            
287.910                            
287.911                            
287.912                            
287.913                            
287.914                            
287.915                            
287.916                            
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287.955                            
287.956                            
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287.958                            
287.959                            
287.960                            
287.961                            
287.962                            
287.963                            
287.964                            
287.965                            
287.966                            
287.967                            
287.968                            
287.969                            
287.970                            
287.971                            
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287.995                            
287.996                            
287.997                            
287.998                            
287.999                            

 

Supplementary Table 5: Summary of QRDR mutations in relation to quinolones resistance 

S
tu

d
y

 

n
o

. 
o

f 
is

o
la

te
s 

st
u

d
ie

d
 

T
y

p
e 

o
f 

m
u

ta
ti

o
n

 

N
u

m
b

er
 o

f 
is

o
la

te
s 

M
u

ta
ti

o
n

 p
a

tt
er

n
 

R
es

is
ta

n
ce

 r
a

te
 

1 

1
1

4
 c

li
n

ic
al

 i
so

la
te

s 

2
2

 i
so

la
te

s 
w

er
e 

re
si

st
an

t 
to

 

L
ev

o
fl

o
x

ac
in

 (
1
9

.3
%

) six types of mutations 

combination of gyrA and parC mutations were distributed in 10 

different patterns 

Thr83Ile 

(gyrA) 

48 of 114 

isolates 

(42.1%) 

Thr83 to Ile in gyrA alone was most 

frequently found (25 strains; 21.9%) 3/25 are resistant 

Asp87Tyr 

(gyrA) 

3 of 114 

(2.6%) 

combination of Thr83 to Ile in gyrA 

with Asp87 to Asn in gyrA (4 strains; 

3.5%) 2/4 are resistant 
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Asp87Asn 

(gyrA) 

9 of 114 

isolates 

(7.9%) 

combination of Thr83 to Ile in gyrA 

with Asp87 to Tyr in gyrA (3 strains; 

2.6%) 2/3 are resistant 

Glu91Arg 

(parC) 

6 of 114 

(5.3%) 

combination of Thr83 to Ile in gyrA 

with Ser87 to Leu in parC (5 strains; 

4.4%) 4/5 are resistant 

Ser87Leu 

(parC) 

12 of 

114(10.5%) 

combination of Thr83 to Ile in gyrA 

with Ser87 to Trp in parC (2 

strains;1.8 %) 2/2 are resistant 

Ser87Trp 

(parC) 

2 of 114 

(1.8%) 

combination of Thr83 to Ile in gyrA 

with Glu91 to Arg in parC (2 strains; 

1.8%) 2/2 are resistant 

  

combination of Thr83 to Ile in gyrA 

with Asp87 to Asn in gyrA with 

Ser87 to Leu in parC (3 strains; 

2.6%) 3/3 are resistant 

  

combination of Thr83 to Ile in gyrA 

with   Ser87 to Leu in parC with 

Glu91 to Arg in par C (2 strains; 

1.8%) 2/2 are resistant 

  

combination of Thr83 to Ile in gyrA 

with Asp87 to Asn in gyrA, Ser87 to 

Leu in parC with Glu91 to Arg in 

parC (2 strains;1.8%) 2/2 are resistant 
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five types of mutations 

Thr83Ile 

(gyrA 

mutation) 

19 of 38 

isolates mutation in gyrA 

10 out of 22 

resistant to ciprofloxacin, 

ofloxacin, pefloxacin 

His80Arg 

(gyrA 

mutation) 1 isolate mutations in both gyrA and parC 

8 out of 22 

resistant to ciprofloxacin, 

ofloxacin, pefloxacin 

  
no mutations in gyrA or parC 

4 out of 22 

resistant to ciprofloxacin, 

ofloxacin, pefloxacin 

Ser80Leu 

(parC 

mutation) 

8 of 38 

isolates no mutations in all QRDR 

11 out of 38 

susceptible to 

ciprofloxacin 
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Gln84Asp 

(parC 

mutation) 1 isolate mutation in gyrA 

1 out of 5 

resistant to ofloxacin, 

pefloxacin/ intermediate 

to ciprofloxacin 

Ala85Gly 

(parC 

mutation) 1 isolate mutations in both gyrA and parC 

4 out of 5 

resistant to ofloxacin, 

pefloxacin/ intermediate 

to ciprofloxacin 

  
no mutations in all QRDR 

7 out of 7 

resistant to ofloxacin, 

pefloxacin/ susceptible to 

ciprofloxacin 

  
four types of mutations 
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 Thr83Ile (gyrA mutation) Thr83Ile (gyrA mutation) alone 

20 out of 64 

resistant to ciprofloxacin 

and levofloxacin 

Asp87Asn (gyrA mutation) 

combination of Thr83Ile in gyrA 

with Ala 88 Pro in parC 

8 out of 64 

resistant to ciprofloxacin 

Ala88Pro (parC mutation) 

combination of Thr83Ile in gyrA 

withSer87 to Leu in parC 

31 out of 64 

resistant to ciprofloxacin 

and levofloxacin 

Ser87Leu (parC mutation) 

combination of Thr83Ile in gyrA 

with Asp87 to Asn in gyrA with 

Ser87 to Leu in parC 

5 out of 64 

resistant to ciprofloxacin 

  
twenty types of mutations 
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Thr83Ile (gyrA mutation) 

combination of Thr83Ile (gyrA 

mutation) with any listed parC 

mutation 99 out of 232 

Asp87Asn (gyrA mutation) 

combination of Asp87Tyr (gyrA 

mutation) with Ser87Leu parC 

mutation 1 out of 232 

Asp87Tyr (gyrA mutation) No mutations in other QRDR 42 out of 232 

Asp87His (gyrA mutation) 

gyrA mutation alone (any of five 

types listed) 58 out of 232 

Asp87Gly (gyrA mutation) 

combination of Thr83Ile (gyrA 

mutation) with different listed parE 

mutations 15 out of 232 
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Ser87Leu (parC mutation) 

combination of Asp87Asn (gyrA 

mutation) with Ala473Thr (parE 

mutation) 1 out of 232 

Gly85Cys (parC mutation) Ser466Phe (gyrB mutation) only 10 out of 232 

Ser87Trp (parC mutation) 

combination of Thr83Ile in gyrA 

withSer87 to Leu in parC with 

additional parE mutation 4 out of 232 

Glu91Lys (parC mutation) Isolated Ser87Leu in parC 2 out of 232 

Ser466Phe (gyrB mutation) 

 

Leu501Phe (parE 

mutation) 

Ser457Gly (parE mutation) 

Glu453Asp (parE 

mutation) 

Asp419Asn (parE 

mutation) 

Lys388Glu (parE 

mutation) 

Glu459Val (parE 

mutation) 

Val460Phe (parE 

mutation) 

Ala473Val (parE 

mutation) 

Ala473Thr (parE 

mutation) 

Ser457Arg (parE 

mutation) 
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mutation) 

mutations 

were not 

studied in all 

QRDR single Thr83Ile mutation (gyrA) 10 strains out of 15 

Asp87Asn 

(gyrA 

mutation) 

only gyrA 

mutations 

studied single Asp87Asn (gyrA) 1 strain out of 15 

Asp87Gly 

(gyrA 

mutation) 
 

combination of Thr83Ile and Asp87Gly (gyrA) 1 strain out of 

15 
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gyrA Thr83Ile (gyrA mutation) 7 strains out of 20 
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mutation) 

19 isolates 

have efflux 

system 

mutations Asp87Asn (gyrA mutation) 3 strains out of 20 
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mutation) 

no mutations 

in parC or 

mexR in any 
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23 types of mutations 

112 out of 150 isolates levofloxacin non susceptible 

Thr83Ala (gyrA mutation) 1isolate 

Asp87Asn (gyrA mutation) 16 isolates 

Asp87Tyr (gyrA mutation) 2 isolates 

Asp87Gly (gyrA mutation) 2 isolates 

Ser87Leu (parC mutation) 75 isolates 

Ser87Trp (parC mutation) 9isolates 

Glu91Lys (parC mutation)1isolate 

Ala88Pro (parC mutation) 1isolate 

Leu95Gln (parC mutation)1isolate 

Glu470Asp (gyrB mutation) 13 isolates 

Gln469Val (gyrB mutation) 1isolate 

Ser468Tyr (gyrB mutation) 1isolate 

Ser468Phe (gyrB mutation) 3 isolates 

Gln459Arg (gyrB mutation) 1isolate 

Thr-473 Met (gyrB mutation) 1 isolate 

Ala477 Val (gyrB mutation) 7 isolates 



383 | P a g e  
 

Ala473Val (parE mutation) 1 isolate 

Glu459Lys (parE mutation) 1isolate 

Ala473Val (parE mutation) 1isolate 

Glu459Val (parE mutation) 3 isolates 

Asp419Asn (parE mutation) 7 isolates 

Ala425Val (parE mutation) 3 isolates 
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Thr83Ile (gyrA mutation) 

16 isolate out of 22 

combination of Thr83Ile (gyrA 

mutation) with Ser80Leu (parC 

mutation) 5 isolates 

Asp87Gly (gyrA mutation) 

3 isolates out of 22 

combination of Thr83Ile (gyrA 

mutation) with Asp87Gly (gyrA 

mutation) with Ser80Leu (parC 

mutation) 2 isolates 

Asp87Asn (gyrA mutation) 

1 isolate out of 22 

combination of Thr83Ile (gyrA 

mutation) with Asp87Asn (gyrA 

mutation) with Ser80Leu (parC 

mutation) 1 isolate 

  

combination of Thr83Ile (gyrA 

mutation) with Glu84Lys (parC 

mutation) 2 isolates 

Ser80Leu (parC mutation) 

8 isolates out of 22 single Thr83Ile (gyrA mutation) 6 isolates 

Glu84Lys (parC mutation) 

2 isolates out of 22 single Asp87Gly (gyrA mutation) 1 isolate 

9 

3
0
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 s
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ai

n
s 

Thr83Ile (gyrA mutation) 27 isolates out of 30 isolates 

Asp87Gly (gyrA mutation) 1 isolate out of 30 isolates 

Ser464Phe (gyrB mutation) 2 isolates out of 30 isolates 

Ser80Leu (parC mutation) 7 isolates out of 30 isolates 

Ser80Trp (parC mutation) 2 isolates out of 30 isolates 

Glu84Lys (parC mutation) 1 isolate 
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Supplementary Table 6: Distribution of SNP changes in 40 gentamycin CBG markers among study isolates 

ID 
CN 

MIC 

AK 

MIC 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40 

PAE0095 0.25 0.5  T     T  C G          G                     

PAE0149 0.25 0.5                    G   A                  

PAE0151 0.25 0.5  T       C    C C      G     C                

PAE0060 0.5 2                                         

PAE0081 0.5 1     T    C           G  T A     T A       T     

PAE0119 0.5 0.5  T C G T   G C    C   A   A   T A  C   T A     T  T C    

PAE0004 0.5 0.5  T       C         G  G    A    T A C        T  G 

PAE0139 0.5 0.5     T T          A  G A G   A     T      T       

PAE0018 1 2 C    T T     T T C C  A  G A G   A  C A     T C    T   G  

PAE0041 1 0.5  T       C       A   A G      A A   C      T    G 

PAE0057 1 2    G T  T  C     C    G  G        T A C T C   G  C  G  

PAE0099 1 1  T       C    C   A T   G T T A           T       

PAE0161 1 1  T       C         G  G    A    T A C        T  G 

PAE0174 1 2   C  T   G C   T  C           C   T A C T C  T G T C  G  

PAE0033 1 4  T       C         G  G    A    T A C        T  G 

PAE0037 1 1  T       C         G  G    A    T A C        T  G 

PAE0050 1 1         C G  T    A  G   T     A A   C           

PAE0054 1 0.5  T           C  C  T G A G    A  A A T A    A    C T   

PAE0056 1 0.5  T             C  T   G    A      C   A    C    

PAE0058 1 1  T       C    C   A T  A    A       C   A    C    

PAE0064 1 2  T                  G    A      C   A    C    

PAE0065 1 1  T C G T     G     C  T      A A   A   C   A T    T   

PAE0067 1 2       T   G       T             C   A     T   

PAE0069 1 1  T             C  T   G    A      C   A    C    

PAE0075 1 2     T T    G      A  G A G   A           T  T     

PAE0077 1 1  T       C    C                 C           

PAE0078 1 2       T   G       T G   T         C   A     T   

PAE0086 1 2         C G  T    A  G   T     A A   C           

PAE0105 1 0.5     T T      T C C  A   A G        T  C    T  T     

PAE0107 1 0.5  T       C    C                 C           

PAE0118 1 0.5  T       C         G  G    A    T A C        T  G 

PAE0043 2 2  T    T T  C    C C      G             A        

PAE0062 2 1 C  C G T        C C  A  G A G   A  C A     T C  T G T C    

PAE0070 2 2  T        G   C  C  T            A    A     T   

PAE0076 2 2 C T    T   C       A  G      A  A A      A        
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PAE0084 2 1   C G T T     T  C   A  G A   T A  C A A T   T C    T     

PAE0090 2 2     T T  G     C C    G  G   A     T  C     G T C    

PAE0092 2 2      T         C  T G A          A    A   T   G G 

PAE0098 2 1  T       C    C   A    G          C    T       

PAE0106 2 2 C  C G T T     T T C C  A  G A G   A  C A A   C      T C    

PAE0115 2 2  T C G  T  G   T T    A   A G      A A T        T  T   

PAE0116 2 1  T       C         G A                  C  G  

PAE0001 2 2                    G   A                  

PAE0009 2 1         C G  T    A  G   T     A A   C           

PAE0015 2 1  T           C  C  T G A G T   A  A A T A    A    C T   

PAE0017 2 1  T     T  C        T  A G          C   A        

PAE0019 2 2 C    T           A   A G   A     T             

PAE0022 2 1 C  C G T T       C   A    G      A A    T C    T     

PAE0023 2 2      T T         A        A      C      T  T   

PAE0031 2 1     T    C G   C   A T    T            A        

PAE0034 2 2  T        G      A T   G          C   A   T  T   

PAE0038 2 1             C   A   A   T A   A A     C    T     

PAE0042 2 0.5      T         C  T G A          A    A   T   G G 

PAE0045 2 2          G   C  C  T                A T    T  G 

PAE0049 2 2     T T                    A A              

PAE0052 2 1             C   A   A   T A   A A     C         

PAE0053 2 1  T   T T      T    A  G A G        T      T  T     

PAE0066 2 1  T             C  T   G    A      C   A    C    

PAE0073 2 1     T T      T C C  A  G  G   A  C A A          C    

PAE0074 2 2  T     T  C G      A T                A        

PAE0080 2 1                   A G    A         A        

PAE0089 2 2          G      A T    T     A A      A     T   

PAE0094 2 2  T C G  T   C      C     G    A      C        T   

PAE0101 2 2 C  C G T T       C   A    G      A A    T C    T     

PAE0102 2 2     T T      T C C  A   A G        T  C    T  T     

PAE0110 2 1  T       C G     C         A     A         T   

PAE0114 2 2     T T    G      A  G A G   A           T  T     

PAE0117 2 2  T C  T          C   G           A C T    G  C  G  

PAE0121 2 1  T             C  T   G    A      C   A    C    

PAE0122 2 1     T T      T C C  A   A G        T  C    T  T     

PAE0123 2 2          G   C           A         A        

PAE0126 2 1 C T                  G          C   A    C    

PAE0140 2 2  T       C         G  G    A    T A C        T  G 
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PAE0153 2 2  T        G     C   G      A     A C   A        

PAE0155 2 2                A   A G    A      C   A        

PAE0007 4 2  T    T    G                  T A C           

PAE0008 4 4  T        G     C  T              T C      T   

PAE0020 4 2 C     T       C C  A   A G T  A   A A T   T C         

PAE0021 4 2 C  C   T       C C  A       A   A A     C         

PAE0025 4 2      T T  C               A      C        T   

PAE0026 4 4  T       C G         A G T     A A   C   A     T   

PAE0030 4 2       T   G      A T  A G          C           

PAE0036 4 2  T     T  C    C   A              C   A     T   

PAE0040 4 4  T       C G   C       G          C   A   T     

PAE0068 4 4  T     T     T   C  T             C   A        

PAE0071 4 4  T   T T      T    A  G A G        T      T  T     

PAE0082 4 2     T     G      A  G A G   A           T  T     

PAE0083 4 2   C G T T          A   A G                T C    

PAE0087 4 4  T       C G     C     G         A C   A     T   

PAE0093 4 4  T           C  C  T G A G    A  A A T A    A    C T   

PAE0096 4 2  T           C  C  T G A       A A   C    T    T  G 

PAE0112 4 2      T      T C C  A   A G   A     T      T  T     

PAE0147 4 4             C   A   A   T A   A A     C    T     

PAE0148 4 4     T T      T C C  A  G  G   A  C A A         T C    

PAE0158 4 2  T C G T     G     C  T      A A   A   C   A T    T   

PAE0172 4 4  T       C G   C   A  G            C   A        

PAE0003 4 2  T                G A     A      C        T  G 

PAE0013 4 2     T T  G     C C    G  G   A     T  C     G T C    

PAE0027 4 2  T           C  C  T G A G    A  A A T A    A    C T   

PAE0103 4 1          G   C  C  T                A T    T  G 

PAE0108 4 1         C G  T    A  G   T     A A   C           

PAE0120 4 2             C   A   A   T A   A A     C    T     

PAE0127 4 2     T T          A  G A G   A     T      T       

PAE0128 4 2       T   G       T             C   A     T   

PAE0137 4 2  T C G  T   C      C     G    A      C           

PAE0138 4 2  T        G     C   G      A     A C   A     T   

PAE0141 4 4      T         C   G A          A    A   T   G G 

PAE0143 4 4  T             C     G    A      C   A    C    

PAE0150 4 2     T T          A  G A G   A     T      T       

PAE0152 4 2  T        G     C   G      A     A C   A        

PAE0163 4 2  T     T   G     C      T   A      C   A        
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PAE0165 4 2  T        G     C   G      A     A C   A        

PAE0002 8 4 C    T           A   A G   A     T             

PAE0005 8 4 C    T        C C    G A                 T  T   

PAE0011 8 4                A  G A    A  C     C      T     

PAE0012 8 4       T   G       T G   T         C   A     T   

PAE0014 8 4  T       C      C  T G               A     T   

PAE0029 8 4         C G  T    A  G   T     A A   C           

PAE0032 8 4  T              A              C   A   T     

PAE0039 8 4  T   T    C G   C  C  T   G     C     C   A        

PAE0044 8 4 C  C G T T       C   A    G      A A    T C    T     

PAE0047 8 4 C  C G T        C C  A  G A G   A   A A  A  T C  T  T   G  

PAE0048 8 4     T T          A  G A G     C A A T  C     G T C    

PAE0051 8 4  T    T T   G                       A     T   

PAE0055 8 4     T T      T C C  A   A G        T  C    T  T     

PAE0063 8 4  T C G  T   C     C  A    G    A      C        T   

PAE0072 8 2  T    T   C                 A A  A C   A        

PAE0085 8 4 C               A   A     A    T A            

PAE0091 8 4  T     T  C        T  A G          C   A        

PAE0109 8 4                  G      A         A        

PAE0111 8 4      T          A  G A G        T      T       

PAE0113 8 2  T     T  C    C   A       A A  A    C         G  

PAE0125 8 4 C     T          A T   G    A         A        

PAE0136 8 4          G      A T   G          C   A   T  T   

PAE0144 8 4  T        G     C  T G      A     A C   A        

PAE0154 8 8                A   A G    A      C   A        

PAE0160 8 4  T   T  T   G     C  T             C   A     T   

PAE0097 8 4  T    T    G      A   A           C   A T       

PAE0159 8 4          G   C  C                  A T    T  G 

PAE0162 8 4     T    C    C                 C   A   T     

PAE0166 8 4     T T          A  G A G   A     T      T       

PAE0006 16 4      T     T T C   A   A G   A  C A A              

PAE0010 16 8       T  C G     C  T    T         C   A     T   

PAE0024 16 8     T T                    A A              

PAE0035 16 16  T     T  C G      A T    T            A     T   

PAE0046 16 8          G     C  T G   T   A      C        T   

PAE0059 16 8         C               A      C   A        

PAE0061 16 8     T                               T     

PAE0088 16 8  T             C      T         C           
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PAE0124 16 8  T   T  T  C G   C  C  T    T   A      C   A     T   

PAE0142 16 4  T     T   G      A T             C   A        

PAE0145 16 4             C   A   A G          C      T     

PAE0156 16 4       T   G       T             C   A     T   

PAE0167 16 8  T     T   G     C  T    T   A      C   A        

PAE0171 16 8  T       C G     C               C   A        

PAE0169 16 16          G   C  C                  A T    T  G 

PAE0173 16 8  T             C     G    A      C   A    C    

PAE0157 32 32         C       A     T                 T   

PAE0170 32 32  T             C   G               A        

PAE0168 64 32       T G C      C  T    T   A      C   A     T   

PAE0175 64 32  T               T       A      C   A   T  T   

PAE0016 64 2      T T  C               A      C        T   

 

Supplementary Table 7: Distribution of SNP changes in 44 ciprofloxacin CBG markers among study isolates 

 Cipro 

MIC 

Levo 

MIC 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40 M41 M42 M43 M44 

PAE0151 0.008 0.06                         C  A A                A 

PAE0068 0.03 0.25      C    C       T                            

PAE0088 0.03 0.12      C                  T                    A 

PAE0004 0.03 0.25      C    C       T          A A                 

PAE0031 0.03 0.25      C T  T  C T C A   T  T                         A 

PAE0042 0.03 0.5 T       G T    C    T      A  C                  A  

PAE0054 0.03 0.5        G  C      C     G T   C  A                  

PAE0058 0.03 0.25         T  C T C                               A 

PAE0069 0.03 0.5          C       T                            

PAE0107 0.03 0.12          C       T    G T                       

PAE0139 0.03 1                C  G  T   A T  A      C A A A C G G C T C G   

PAE0152 0.03 0.25       T G  C         T  G T A    A A                 

PAE0169 0.03 0.25      C    C   C    T    G T      A               A  

PAE0011 0.06 0.25 T    G  T   C        G              C   A C G G C T     

PAE0020 0.06 0.5   A A G           C  G T T G T A T  A    T C   A  C G G C T C G   

PAE0021 0.06 0.5 T                 G  T                         

PAE0032 0.06 0.5      C   T  C T C              A A                 

PAE0041 0.06 0.5          C      C         C  A A                 

PAE0057 0.06 0.5  T    C          C    T  T       G T C     C     C  A  

PAE0062 0.06 0.5 T  A A   T         C     G T        T C C   A C    T     

PAE0081 0.06 0.25      C               G T   C  A A                A 

PAE0082 0.06 0.25 T      T         C   T       A      C   A C G G C T     
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PAE0083 0.06 0.5   A A G   G        C       A   A    T C C    C    T C G   

PAE0084 0.06 0.5 T  A A   T   C        G   G T     A        A C G G C T     

PAE0093 0.06 0.25        G        C     G T   C  A                  

PAE0099 0.06 0.5          C                 A A                 

PAE0119 0.06 0.5     G     C      C   T  G T          C   A C G G C T     

PAE0136 0.06 0.25   A A G C T   C             A             C         

PAE0149 0.06 0.25          C                                   

PAE0001 0.06 0.5          C                                   

PAE0003 0.06 0.5      C       C       T G T   C                  A  

PAE0013 0.06 1     G     C      C  G                           

PAE0027 0.06 1        G  C      C     G T   C  A                  

PAE0045 0.06 0.5      C    C   C    T    G T      A                 

PAE0049 0.06 0.25     G          A    T     T           A C G G C T     

PAE0053 0.06 0.25     G  T   C     A     T G T  T  A   G T C    A C G G C T     

PAE0056 0.06 0.25          C       T                            

PAE0065 0.06 0.25        G  C           G T  T  A                  A 

PAE0073 0.06 0.25 T    G              T             C   A          

PAE0075 0.06 0.06 T      T         C   T       A      C   A C G G C T     

PAE0086 0.06 0.25     G   G       A    T  G T   C        A  A        A  

PAE0102 0.06 0.25 T    G  T   C      C    T      A          C G G C T     

PAE0103 0.06 0.5      C    C   C    T    G T      A                 

PAE0108 0.06 0.25     G   G       A    T  G T   C        A  A        A  

PAE0117 0.06 0.5     G C   T  C T C            C A   G   C A  A    C      

PAE0120 0.06 0.5     G  T         C  G  T G T   C A    T C   A A C G G C T     

PAE0123 0.06 0.5          C   C    T    G T                       

PAE0126 0.06 0.25          C   C    T        C                  A  

PAE0128 0.06 0.25              A  C        T  A A A                 

PAE0143 0.06 1          C       T                            

PAE0153 0.06 0.5       T G  C         T  G T A    A A                 

PAE0165 0.06 1       T G  C         T  G T A    A A                 

PAE0173 0.06 0.12          C       T                            

PAE0009 0.08 0.25     G   G       A    T  G T   C        A  A        A  

PAE0015 0.08 0.25        G  C      C     G T   C  A                  

PAE0022 0.08 0.5 T  A A            C  G   G T   C       C A A A C G G C  C G   

PAE0066 0.08 0.5          C       T                            

PAE0140 0.08 0.5      C    C       T          A A                 

PAE0002 0.12 1 T  A A G  T         C  G T             C A A A C G G C T     

PAE0005 0.12 1   A A G           C   T  G T A   A   G T C C A  A C    T C G   

PAE0006 0.12 1 T      T   C        G     A T      T C C         C G   
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PAE0007 0.12 1      C    C   C            C A A A       A          

PAE0008 0.12 0.5        G  C   C    T          A A                 

PAE0014 0.12 1        G  C             A            A          

PAE0018 0.12 0.5 T  A A G  T            T  G T    A      C    C G G C T     

PAE0025 0.12 0.5        G  C       T          A                 A 

PAE0029 0.12 0.5     G   G       A    T  G T   C        A  A        A  

PAE0030 0.12 1        G  C      C    T       A A                 

PAE0039 0.12 1          C       T    G T   C A A A    C             

PAE0040 0.12 0.5       T   C       T  T      C  A A                 

PAE0043 0.12 0.5      C   T  C T C    T        C  A A               A  

PAE0044 0.12 0.5 T  A A            C  G   G T   C       C A A A C G G C  C G   

PAE0047 0.12 1   A A G  T         C   T  G T A      G T C C A  A C    T     

PAE0048 0.12 2 T    G C            G   G T              C    T     

PAE0051 0.12 0.5   A A  C T   C   C      T  G T    A                   

PAE0060 0.12 0.5      C T   C       T         A                  A 

PAE0070 0.12 1  T      G T  C T C A      T G T   C                  A  

PAE0072 0.12 0.5        G  C       T    G T                      A 

PAE0076 0.12 0.5          C   C              A A                 

PAE0085 0.12 0.5        G  C          T G T   C                  A  

PAE0090 0.12 0.5     G     C      C  G                           

PAE0091 0.12 1   A A      C           G T A                    A  

PAE0092 0.12 1 T       G T  C T C    T      A  C                  A  

PAE0096 0.12 0.5  T    C T   C       T          A A                 

PAE0098 0.12 0.5              A                               

PAE0106 0.12 0.5 T      T                       T C    A C G G C T     

PAE0109 0.12 0.5   A A    G  C                                   

PAE0112 0.12 1   A A              G   G T          C             

PAE0113 0.12 1   A A    G  C         T    A  C                   A 

PAE0116 0.12 0.5      C T  T  C T C             A                   

PAE0125 0.12 0.5      C   T  C T C     G       C  A A        C G G C    A  

PAE0144 0.12 0.5       T G  C         T  G T A    A A                 

PAE0145 0.12 1 T    G           C   T T    T      T C C A A A C G G C      

PAE0147 0.12 0.5     G  T         C  G  T G T   C A    T C   A A C G G C T     

PAE0157 0.12 1 T    G C    C              T  A                  A 

PAE0161 0.12 0.5      C    C       T          A A                 

PAE0172 0.12 0.5  T        C   C    T                  A         A 

PAE0174 0.12 1  T   G C          C     G T A  C    G T C C A  A C G  C T     

PAE0019 0.12 2 T  A A G  T         C  G T             C A A A C G G C T     

PAE0034 0.12 2   A A G C    C             A             C         
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PAE0037 0.12 0.5      C    C       T          A A                 

PAE0052 0.12 1     G  T         C  G  T G T   C A    T C   A A C G G C T     

PAE0064 0.12 1          C       T G                           

PAE0067 0.12 2              A  C        T  A A A                 

PAE0074 0.12 0.5 T     C T   C       T   T    T                     

PAE0078 0.12 0.5              A   T   T G T   C                    

PAE0089 0.12 0.25        G  C       T  T      C A A A                 

PAE0094 0.12 1      C T              G T   C A          C G G C T     

PAE0101 0.12 0.5 T  A A            C  G   G T   C       C A A A C G G C  C G   

PAE0105 0.12 0.5 T    G  T   C      C    T      A          C G G C T     

PAE0110 0.12 1        G   C T C    T        C  A A        C G G C T     

PAE0118 0.12 0.12      C    C       T          A A                 

PAE0121 0.12 0.12          C       T                            

PAE0122 0.12 1 T    G  T   C      C    T      A          C G G C T     

PAE0127 0.12 0.5                C  G  T   A T  A      C A A A C G G C T C G   

PAE0137 0.12 2      C T              G T   C A          C G G C T     

PAE0141 0.12 2 T       G T  C T C    T      A  C                  A  

PAE0150 0.12 1                C  G  T   A T  A      C A A A C G G C T C G   

PAE0162 0.12 2 T       G T  C T C  A   G       C  A A                 

PAE0012 0.25 2              A   T   T G T   C                    

PAE0026 0.25 1      C          C T        C  A A               A  

PAE0036 0.25 2        G  C     A     T G T   C A          C G G C T   A  

PAE0046 0.25 4        G  C      C T    G T   C                C G A  

PAE0055 0.25 1 T    G  T   C      C    T      A          C G G C T     

PAE0063 0.25 4      C T       A       G T   C A          C G G C T     

PAE0071 0.25 2     G  T   C     A     T G T  T  A   G T C    A C G G C T     

PAE0115 0.25 2          C         T T G T  T      T C C             

PAE0142 0.25 2          C   C               A                 

PAE0148 0.25 1 T    G              T             C   A          

PAE0154 0.25 2      C        A   T  T  G T   C                  A  

PAE0156 0.25 1              A  C        T  A A A                 

PAE0160 0.25 2        G  C         T T G T   C                    

PAE0167 0.25 1      C    C    A             A         C G G C T     

PAE0168 0.25 1      C    C   C    T    G T     A                A  

PAE0171 0.25 1     G   G      A       G T   C  A                  

PAE0175 0.25 1      C  G      A     T  G T A   A   G T C      G G C T    A 

PAE0023 0.25 2        G  C       T          A                 A 

PAE0033 0.25 2      C    C       T          A A                 

PAE0050 0.25 4     G   G       A    T  G T   C        A  A        A  
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PAE0077 0.25 1          C       T    G T                       

PAE0080 0.25 2      C         A  T  T T G T   C                  A  

PAE0097 0.25 4      C T   C   C A             A A                A 

PAE0114 0.25 4 T      T         C   T       A      C   A C G G C T     

PAE0138 0.25 1       T G  C         T  G T A    A A                 

PAE0155 0.25 1      C        A   T  T  G T   C                  A  

PAE0159 0.25 1      C    C   C    T    G T      A                 

PAE0163 0.25 2      C    C    A             A         C G G C T     

PAE0166 0.25 4                C  G  T   A T  A      C  A A C G G C T C G   

PAE0024 0.5 4     G          A    T     T           A C G G C T     

PAE0035 0.5 2      C    C       T   T   A  C                  A  

PAE0059 0.5 4   A A             T G       C        A          A  

PAE0061 0.5 4     G          A   G  T      A          C     C G   

PAE0087 0.5 4     G     C   C A      T G T     A A                A 

PAE0095 0.5 4          C          T       A A                A 

PAE0124 0.5 4     G   G  C         T  G T    A               C G   

PAE0158 0.5 4        G  C           G T  T  A                  A 

PAE0170 0.5 1  T    C    C    A   T    G T     A A                A 

PAE0111 2 16                C  G  T   A T  A      C A A A C G G C T C G   

PAE0038 2 32     G  T         C  G  T G T   C A    T C   A A C G G C T     

PAE0010 8 32  T      G         T  T      C  A A               A  

PAE0016 8 32        G  C       T          A                 A 

PAE0017 8 32   A A      C           G T A                    A  
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